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convolution for random vectors and

stochastic processes
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Abstract: A random vector X is weakly stable iff for all a, b ∈ R there exists

a random variable Θ such that aX + bX′ d
= XΘ. This is equivalent (see [11])

with the condition that for all random variables Q1, Q2 there exists a random
variable Θ such that

XQ1 + X′Q2
d
= XΘ,

where X,X′, Q1, Q2, Θ are independent. In this paper we define generalized
convolution of measures defined by the formula

L(Q1) ⊕µ L(Q2) = L(Θ),

if the equation (∗) holds for X, Q1, Q2, Θ and µ = L(Θ). We study here ba-
sic properties of this convolution, basic properties of ⊕µ-infinitely divisible
distributions, ⊕µ-stable distributions and give a series of examples.

1. Introduction

The investigations of weakly stable random variables started in seventies by the pa-
pers of Kucharczak and Urbanik (see [8, 15]). Later there appeared a series of papers
on weakly stable distributions written by Urbanik, Kucharczak and Vol’kovich (see
e.g. [9, 16–18]). Recently there appeared a paper written by Misiewicz, Oleszkiewicz
and Urbanik (see [11]), where one can find a full characterization of weakly stable
distributions with non-trivial discrete part, and a substantial attempt to character-
ize weakly stable distributions in general case.

In financial mathematics, insurance mathematics and many different areas of
science people are trying to predict future behaviour of certain processes by sto-
chastic modelling. Using independent random variables in a variety of constructions
turned out to be not sufficient for modelling real events. Multidimensional stable
distributions have nice linear properties and enable more complicated structures of
dependencies. On the other hand stable distributions are very difficult in calcula-
tions because of the complicated density functions and because of the possibility of
unbounded jumps stable stochastic processes.

Also the distributions called copulas, extensively investigated recently, are giv-
ing the possibility of modelling complicated structure of dependencies. Namely, for
every choice of parameters such as covariance matrix or a wines structure of con-
ditional dependency coefficients one can find an arbitrarily nice copula with this
parameters.
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In this situation weakly stable distributions and processes seem to be good can-
didates for using in stochastic modelling. They have nice linear properties, i.e. if
(Xi) is a sequence of independent identically distributed random vectors with the
weakly stable distribution µ then every linear combination

∑
aiXi has the same

distribution as X1 · Θ for some random variable Θ independent of X1. This con-
dition holds not only when (ai) is a sequence of real numbers, but also when (ai)
is a sequence of random variables for ai,Xi, i = 1, 2, . . . , mutually independent.
This means that dependence structure of the linear combination

∑
aiXi and de-

pendence structure of the random vector X1 are the same, and the sequence (ai) is
responsible only for the radial behaviour. Moreover weak stability is preserved un-
der taking linear operators A(X1), under taking projections or functionals 〈ξ,X1〉.
On the other hand radial properties of a distribution can be arbitrarily defined
by choosing a proper random variable Θ independent of X1 and considering the
distribution of Θ · X1. Similar properties of tempered stable distributions (see e.g.
[12]) are the reason why they are so important now in statistical physics to model
turbulence, or in mathematical finance to model stochastic volatility.

Throughout this paper we denote by L(X) the distribution of the random vector
X. If random vectors X and Y have the same distribution we will write X d= Y.
By P(E) we denote the set of all probability measures on a Banach space (or on a
set) E. We will use the simplified notation P(R) = P, P([0, +∞)) = P+.

For every a ∈ R and every probability measure µ we define the rescaling operator
Ta : P(E) → P(E) by the formula:

Taµ(A) =
{

µ(A/a) for a �= 0;
δ0(A) for a = 0,

for every Borel set A ∈ E. Equivalently Taµ is the distribution of the random vector
aX if µ is the distribution of the vector X.

The scale mixture µ ◦ λ of a measure µ ∈ P(E) with respect to the measure
λ ∈ P is defined by the formula:

µ ◦ λ(A)
def
=

∫
R

Tsµ (A)λ(ds).

It is easy to see that µ ◦ λ is the distribution of random vector XΘ if µ = L(X),
λ = L(Θ), X and Θ are independent. In the language of characteristic functions we
obtain

µ̂ ◦ λ(t) =
∫

R

µ̂(ts)λ(ds).

It is known that for a symmetric random vector X independent of random variable
Θ we have XΘ d= X|Θ|. From this property we obtain that if µ is a symmetric
probability distribution then

µ ◦ λ = µ ◦ |λ|,
where |λ| = L(|Θ|).
Definition 1. A probability measure µ ∈ P(E) is weakly stable (or weakly stable
on [0,∞)) if for every choice of λ1, λ2 ∈ P (λ1, λ2 ∈ P+) there exists λ ∈ P (λ ∈ P+)
such that

(λ1 ◦ µ) ∗ (λ2 ◦ µ) = λ ◦ µ.

If µ is not symmetric then the measure λ is uniquely determined. This fact was
proven in [11] in the case of a weakly stable measure µ, and in [15] in the case of µ
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weakly stable on [0,∞). If the measure µ is symmetric then only the symmetrization
of λ is uniquely determined (see [11], Remark 1). In this case we can always replace
the measure λ by its symmetrization (1

2δ1 + 1
2δ−1) ◦ λ. For the convenience in this

paper we will assume that for symmetric µ the measure λ is concentrated on [0,∞)
taking if necessary |λ| instead of λ.

The most important Theorem 1 in the paper [11] states that the distribution
µ is a weakly stable if and only if for every a, b ∈ R there exists a probability
distribution λ ∈ P such that Taµ ∗ Tbµ = µ ◦ λ. Moreover we know that (Th. 6 in
[11]) if µ is weakly stable probability measure on a separable Banach space E then
either there exists a ∈ E such that µ = δa, or there exists a ∈ E \ {0} such that
µ = 1

2 (δa + δ−a), or µ({a}) = 0 for every a ∈ E.
Many interesting classes of weakly stable distributions are already known in

the literature. Symmetric stable random vectors are weakly stable, strictly sta-
ble vectors are weakly stable on [0,∞). Uniform distributions on the unit spheres
Sn−1 ⊂ Rn, their k-dimensional projections and their linear deformations by linear
operators are weakly stable. The beautiful class of extreme points in the set of
�1-symmetric distributions in Rn given by Cambanis, Keener and Simons (see [4])
is weakly stable.

2. Generalized weak convolution

Definition 2. Let µ ∈ P(E) be a nontrivial weakly stable measure, and let λ1, λ2

be probability measures on R. If

(λ1 ◦ µ) ∗ (λ2 ◦ µ) = λ ◦ µ,

then the generalized convolution of the measures λ1, λ2 with respect to the measure
µ (notation λ1 ⊕µ λ2) is defined as follows

λ1 ⊕µ λ2 =
{

λ if µ is not symmetric;
|λ| if µ is symmetric.

If Θ1, Θ2 are random variables with distributions λ1, λ2 respectively then the
random variable with distribution λ1 ⊕µ λ2 we will denote by Θ1 ⊕µ Θ2. Thus we
have

Θ1X′ + Θ2X′′ d=
(
Θ1 ⊕µ Θ2

)
X,

where X,X′,X′′ have distribution µ, Θ1, Θ2,X′,X′′ and Θ1 ⊕µ Θ2,X are inde-
pendent. One can always choose such versions of Θ1 ⊕µ Θ2 and X that the above
equality holds almost everywhere.

Now it is easy to see that the following lemma holds.

Lemma 1. If the weakly stable measure µ ∈ P(E) is not trivial then

(1) λ1 ⊕µ λ2 is uniquely determined;
(2) λ1 ⊕µ λ2 = λ2 ⊕µ λ1;
(3) λ ⊕µ δ0 = λ;
(4)

(
λ1 ⊕µ λ2

)
⊕µ λ3 = λ1 ⊕µ

(
λ2 ⊕µ λ3);

(5) Ta

(
λ1 ⊕µ λ2

)
=

(
Taλ1

)
⊕µ

(
Taλ2

)
.

Example 1. It is known that the random vector Un = (U1, . . . , Un) with the
uniform distribution ωn on the unit sphere Sn−1 ⊂ Rn is weakly stable. The easiest
way to see this is using the characterizations of a rotationally invariant vectors.
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Let us recall that the random vector X ∈ Rn is rotationally invariant (spherically
symmetric) if L(X) d= X for every unitary linear operator L : Rn → Rn. It is known
(see [5, 14] for the details) that the following conditions are equivalent

(a) X ∈ Rn is rotationally invariant
(b) X d= ΘUn, where Θ = ‖X‖2 is independent of Un,
(c) the characteristic function of X has the form

Eei〈ξ,X〉 = ϕX(ξ) = ϕ(‖ξ‖2)

for some symmetric function ϕ : R → R.

Now let L(Θ1) = λ1, L(Θ2) = λ2 be such that Θ1, Θ2,Un1,Un2 are independent,
Un1 d= Un2 d= Un. In order to prove weak stability of Un we consider the charac-
teristic function ψ of the vector Θ1Un1 + Θ2Un2

ψ(ξ) = E exp
{
i〈ξ,Θ1Un1 + Θ2Un2〉

}
= E exp

{
i〈ξ,Θ1Un1〉

}
E exp

{
i〈ξ,Θ2Un2〉

}
= ϕ1

(
‖ξ‖2

)
ϕ2

(
‖ξ‖2

)
.

It follows from the condition (c) that Θ1Un1 +Θ2Un2 is also rotationally invariant.
Using condition (b) we obtain that Θ1Un1 + Θ2Un2 d= ΘUn for some random
variable Θ, which we denote by Θ1 ⊕ωn Θ2. This means that Un is weakly stable
and

Θ1 ⊕ωn Θ2 =
∥∥Θ1Un1 + Θ2Un2

∥∥
2

=

(
n∑

k=1

(
Θ1U

n1
k + Θ2U

n2
k

)2

)1/2

,

where Uni = (Uni
1 , . . . , Uni

n ), i = 1, 2. Since U2 = (cos ϕ, sin ϕ) for the random
variable ϕ with uniform distribution on [0, 2π], then in the case n = 2 we get

Θ1 ⊕ωn Θ2 =
(
Θ2

1 + Θ2
2 + 2Θ1Θ2 cos(α − β)

)1/2
,

where Θ1, Θ2, α, β are independent, α and β have uniform distribution on the in-
terval [0, 2π]. It is easy to check that cos(α−β) has the same distribution as cos(α),
thus we have

Θ1 ⊕ωn Θ2
d=

(
Θ2

1 + Θ2
2 + 2Θ1Θ2 cos(α)

)1/2
.

Definition 3. Let L(Θ) = λ, and let µ = L(X) be a weakly stable measure on E.
We say that the measure λ (random variable Θ) is µ-weakly infinitely divisible if
for every n ∈ N there exists a probability measure λn such that

λ = λn ⊕µ · · · ⊕µ λn, (n-times),

where (for the uniqueness) λn ∈ P+ if µ is weakly stable on [0,∞) or if µ is
symmetric, and λn ∈ P if µ is weakly stable nonsymmetric.

Notice that if λ is µ-weakly infinitely divisible then the measure λ◦µ is infinitely
divisible in the usual sense. However if λ ◦ µ is infinitely divisible then it does not
have to imply µ-infinite divisibility of λ.
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Example 2. If γα is a strictly α-stable (symmetric α-stable) distribution on a
separable Banach space E then it is weakly stable on [0,∞) (weakly stable). Simple
application of the definition of stable distribution shows that

Θ1 ⊕γα Θ2
d= (Θα

1 + Θα
2 )1/α

,
(
Θ1 ⊕γα Θ2

d= (|Θ1|α + |Θ2|α)1/α
)

.

Now we see that Θ is γα- weakly infinitely divisible if and only if Θα (respectively
|Θ|α) is infinitely divisible in the usual sense.

Lemma 2. Let µ be a weakly stable distribution, µ �= δ0. If λ is µ-weakly infinitely
divisible then there exists a family {λr : r ≥ 0} such that
(1) λ0 = δ0, λ1 = λ;
(2) λr ⊕µ λs = λr+s, r, s ≥ 0;
(3) λr ⇒ δ0 if r → 0.

Proof. If λ is µ-weakly infinitely divisible then for every n ∈ N there exists a
measure λn such that

(λn ◦ µ)∗n = λ ◦ µ,

where ν∗n denotes the n’th convolution power of the measure ν. We define λ1/n :=
λn. Weak stability of the measure µ implies that for every k, n ∈ N there exists a
probability measure which we denote by λk/n such that

λk/n ◦ µ =
(
λ1/n ◦ µ

)∗k

= (λ ◦ µ)∗k/n
.

The last expression follows from the infinite divisibility of the measure λ ◦ µ. We
see here that for every n, k, m ∈ N we have

λkm/nm = λk/n,

since
(λ ◦ µ)∗km/nm = (λ ◦ µ)∗k/n

.

Now let x > 0 and let (rn)n be a sequence of rational numbers such that rn → x
when n → ∞. Since (λ ◦ µ)∗rn → (λ ◦ µ)∗x and

{λrn ◦ µ : n ∈ N} =
{
(λ ◦ µ)∗rn : n ∈ N

}
then this family of measures is tight. Lemma 2 in [11] implies that also the family
{λrn : n ∈ N} is tight, so there exists a subsequence λrnk weakly convergent to a
probability measure which we call λx. Since λx ◦ µ = (λ ◦ µ)∗x then uniqueness of
the measure λx follows from the uniqueness of (λ ◦ µ)∗x, Remark 1 in [11] and our
assumptions.

To see (3) let rn → 0, rn > 0. Since

λrn ◦ µ = (λ ◦ µ)rn ⇒ δ0 = δ0 ◦ µ,

then {(λ ◦ µ)rn : n ∈ N} is tight, and by Lemma 2 in [11] the set {λrn : n ∈ N} is
also tight. Let {r′n} be the subsequence of {rn} such that λr′

n converges weakly to
some probability measure λ0. Then we have

λr′
n ◦ µ ⇒ λ0 ◦ µ,

and therefore λ0 ◦ µ = δ0 ◦ µ. If µ is not symmetric then Remark 1 in [11] implies
that λ0 = δ0. If µ is symmetric then by our assumptions λ and λrn are concentrated
on [0,∞), thus also λ0 is concentrated on [0,∞). Since by Remark 1 in [11] the
symmetrization of the mixing measure is uniquely determined in this case we also
conclude that λ0 = δ0.
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3. µ-weakly stable random variables and vectors

Definition 4. Let µ be a weakly stable distribution, µ �= δ0. We say that the
probability measure λ is µ-weakly stable if

∀ a, b > 0 ∃ c > 0 such that Taλ ⊕µ Tbλ = Tcλ.

We say that the random variable Θ is µ-weakly stable if

∀ a, b > 0 ∃ c > 0 such that (aΘ)X + (bΘ′)X′ d= (cΘ)X,

where the random variable Θ′ is an independent copy of Θ, the vectors X and X′

have distribution µ and Θ, Θ′,X,X′ are independent.

Directly from the definition we see the following

Lemma 3. Let µ be a weakly stable distribution, µ �= δ0. A probability measure
λ is µ-weakly stable iff the measure λ ◦ µ is strictly stable in the usual sense, thus
there exists α ∈ (0, 2] such that λ ◦ µ is strictly α-stable. In such a case we will say
that λ is µ-weakly α-stable.

Proof. Let us define

ψ(t) = EeitXΘ =
∫

µ̂(ts)λ(ds),

where X has distribution µ, Θ has distribution λ, X and Θ are independent. The
condition of µ-weak stability of λ can be written in the following way

∀ a, b > 0 ∃ c > 0 such that ψ(at)ψ(bt) = ψ(ct),

which is the functional equation defining strictly stable characteristic functions.

Example 3. Let Un be a random vector with the uniform distribution µ = ωn

on the unit sphere Sn−1 ⊂ Rn (or Un,k-any its projection into Rk, k < n). The
ωn-weakly Gaussian random variable Γn is defined by the following equation:

Un · Γn
d= (X1, . . . , Xn) = X,

where Un and Γn are independent, X is an n-dimensional Gaussian random vec-
tor with independent identically distributed coordinates. For convenience we can
assume that each Xi has distribution N(0, 1). It follows from the condition (b) in
the characterization of rotationally invariant random vectors given in Example 1
that Γn has the same distribution as ‖X‖2. Simple calculations show that Γn has
density

f2,n(r) =
2

2n/2Γ(n
2 )

rn−1e−r2/2.

For n = 2 this is a Rayleigh distribution with parameter λ = 2, thus the Rayleigh
distribution is ω2-weakly Gaussian. For n = 3 this is the Maxwell distribution with
parameter λ = 2, thus Maxwell distribution is ω3-weakly Gaussian. Let us remind
that the generalized Gamma distribution with parameters λ, p, a > 0 (notation
Γ(λ, p, a)) is defined by its density function

f(x) =
a

Γ(p/a)λp/a
xp−1 exp

{
−xa

λ

}
, for x > 0.
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Thus we have that the generalized Gamma distribution Γ(λ, n, 2) is ωn-weakly
Gaussian.

Now let Θn
α be an ωn-weakly α-stable random variable. Then UnΘn

α is a rota-
tionally invariant α-stable random vector for Un independent of Θn

α. On the other
hand, every rotationally invariant α-stable random vector has the same distribution
as Y

√
Θα/2, where Y is rotationally invariant Gaussian random vector indepen-

dent of the nonnegative variable Θα/2 with the Laplace transform e−tα/2
. Finally

we have
Un · Θn

α
d= UnΓn

√
Θα/2,

for Un, Γn and Θα/2 independent. This implies that the density of a ωn-weakly
α-stable random variable Θn

α is given by

fα,n(r) =
∫ ∞

0

f2,n

(
r√
s

)
1√
s
fα/2(s)ds.

In particular if we take α = 1 then

f1/2(s) =
1√
2π

x−3/2e−1/(2x), x > 0.

Simple calculations and the equality
√

πΓ(2s) = 22s−1Γ(s)Γ(s + 1
2 ), s > 0, show

that

f1,n(r) =
22−nΓ(n)

Γ(n/2)Γ(n/2)
rn−1

(r2 + 1)(n+1)/2
, r > 0,

is the density function of a ωn-weakly Cauchy distribution.

Example 4. We know that for every symmetric α-stable random vector X with
distribution γα on any separable Banach space E and every p ∈ (0, 1) the random
vector XΘ1/α

p is symmetric αp-stable for X independent of Θp with the distribution
λp and the Laplace transform e−tp

. Since symmetric stable vectors are weakly stable
we obtain that

∀ γα ∀ p ∈ (0, 1) λp is γα − weakly αp − stable.

4. (λ, µ)-weakly stable Lévy processes

In this section we construct a Lévy process based on a nontrivial weakly stable
probability measure µ. The measure µ can be defined on the real line, on Rn or on
a Banach space E. By λ we will denote in this section a µ-weakly infinitely divisible
distribution on R.

Let T = [0,∞) and let m be a Borel measure on T . We say that {Xt : t ∈ T} is
a (λ, µ)-weakly stable Lévy process if the following conditions hold:

(a) X0 ≡ 0;
(b) Xt has independent increments;
(c) Xt has distribution λm[0,t) ◦ µ.

If m is equal to the Lebesgue measure on T then this process has stationary
increments.

Notice that for λ = δ1 and µ = N(0, 1) we obtain with this construction the
Brownian motion.
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Example 5. Let γα be a strictly stable distribution on a separable Banach space E

with the characteristic function exp{−R(ξ)} and let Θr, r > 0, denote the random
variable with distribution

P{Θr = k} =
(

r + k − 1
k

)
(1 − p)kpr, k = 0, 1, 2 . . . ,

for some p ∈ (0, 1). Since R(tξ) = |t|αR(ξ) it is easy to see that the measure
λ = L(Θ1/α

1 ) is γα-weakly infinitely divisible, λr = L(Θ1/α
r ), and

λr ⊕γα λs = λr+s.

Let {Xt : t ∈ T} be the (λ, γα)-weakly stable Lévy process. Then Xt has the
following characteristic function:

E exp{i〈ξ,Xt〉} = E exp{−R(ξ)Θm[0,t)}

=
∞∑

k=0

exp{−R(ξ)k}
(

m[0, t) + k − 1
k

)
(1 − p)kpm[0,t)

=
(

p

1 − (1 − p) exp{−R(ξ)}

)m[0,t)

.

Example 6. For γα being a strictly stable distribution on a separable Banach
space E with the characteristic function exp{−R(ξ)} and λ = L(Q1/α), where Q
has Gamma distribution with parameters p = 1 and a > 0 we obtain (λ, γα)-weakly
stable Levy process with the distribution defined by the following characteristic
function

E exp{i〈ξ,Xt〉} = E exp{−R(ξ)Qm[0,t)}

=
∫ ∞

0

exp{−R(ξ)s} am[0,t)

Γ(m[0, t))
sm[0,t)−1e−asds

=
(

a

a + R(ξ)

)m[0,t)

.

To see this it is enough to notice that λr = L(Q1/α
r ), where Qr has gamma distri-

bution Γ(r, a).

5. µ-weakly one-dependent processes

Let us recall that the stochastic process {Yn : n ∈ N} taking values in a separable
Banach space E is one-dependent if for each n ∈ N the sequences {Y1, . . . ,Yn−1}
and {Yn+1,Yn+2, . . . } are independent. It is evident that if f : R �→ R is a measur-
able function and {Y1,Y2, . . . } is a one-dependent process then also the process
{f(Y1), f(Y2), . . . } is one-dependent. A simples possible one-dependent process
can be obtained as {f(Xi, Xi+1) : i = 1, 2, . . . }, where {Xi} is a sequence of in-
dependent (often identically distributed) random variables. A nice counterexample
that not all one-dependent processes have this construction is given in [1, 2].

There are several possibilities for constructing one-dependent processes with dis-
tributions which are mixtures of a fixed weakly stable measure µ on a separable
Banach space E. In the first of the following examples we give this construction
assuming that the mixing measure is µ-weakly infinitely divisible. In the second
example this assumption is omitted, but the weakly stable measure µ must be
stable.
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Example 7. Let µ be a weakly stable distribution on a separable Banach space
E and let λ be a µ-weakly infinitely divisible measure on R. Assume that m is a
σ-finite measure on a rich enough measure space (S,B) such that S =

⋃∞
n=1 An,

m(An) < ∞, n = 1, 2, . . . and Ai∩Aj = ∅ for i �= j. With each set An we connect the
random variable Zn with distribution λm(An) such that Z1, Z2, . . . are independent.
Let also X1,X2, . . . be the sequence of independent identically distributed random
vectors with distribution µ. Now we define

Yn = ZnXn + Zn+1Xn+1, n = 1, 2, . . . .

It is easy to see that {Yn : n ∈ N} is a one-dependent process with the distribution

L(Yn) = λm(An∪An+1) ◦ µ.

This process is stationary if m(Ai) = m(Aj) for all i, j ∈ N. If µ = ωk then
{Yn : n ∈ N} is elliptically contoured. If µ = γα then {Yn : n ∈ N} is α-substable.
If µ = γα and for some β ∈ (0, 1) λ = L(Θβ), where Θβ is nonnegative β-stable
random variable, then {Yn : n ∈ N} is αβ-stable α-substable.

Example 8. Assume that γp is a symmetric p-stable distribution on a separable
Banach space E, and let {Zn : n ∈ N} be any one-dependent stochastic process
taking values in [0,∞). For the sequence X1,X2, . . . of i.i.d. random vectors with
distribution µ we define

Yn = XnZ1/p
n , n ∈ N.

Directly from the construction, it follows that the process {Yn : n ∈ N} is one-
dependent. This process is also p-substable and the characteristic function of the
linear combination of its components

∑
anYn can be easily calculated using the

Laplace transform for {Zn : n ∈ N}. Namely for every ξ ∈ E∗ we have

E exp
{

i〈ξ,
∑

anYn〉
}

= E exp
{

i
∑

an〈ξ,Xn〉Z1/p
n

}
= E exp

{
−

∑
|an|p‖�(ξ)‖p

pZn >
}

,

where � is the linear operator fom East into some Lp-space such that

E exp {i〈ξ,X1〉} = E exp
{
−‖�(ξ)‖p

p

}
.
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