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Chapter I

Preliminaries

The fundamental set theory of this book is Zermelo-Fraenkel set theory. In this
chapter we give a brief account of this theory, insofar as we need it. Sections 1
through 5 cover the early development of the theory up to ordinal and cardinal
numbers. The remaining six sections deal with some special topics of direct rele-
vance to the subject matter of this book, and the coverage is therefore a little more
complete than in the previous sections.

1. The Language of Set Theory

The language of set theory, LST, is the first-order language with predictates =
(equality) and e (set membership), logical symbols Λ (and), —i (not), and 3 (there
exists), variables vθ9υί9...9 and (for convenience) brackets (,).

The primitive (or atomic) formulas of LST are strings of the forms

The formulas of LST are generated from the primitive formulas by means of
the following schemas: if Φ, Ψ are formulas, so too are the strings

(ΦΛΨ), (-IΦ), (3vnΦ).

(We generally use capital Greek letters to denote formulas of LST.)
The notions of free and bound variables are defined as usual. A sentence is a

formula with no free variables.
We write x φ y for —i (x e y) and x Φ y for ~ Ί (X = y). (We generally use, x, y, z,

etc. to denote arbitrary variables of LST.)
The defined logical symbols v , -•, *->, V are introduced in the usual way, and

are frequently treated as if they were basic symbols of LST (i.e. having the same
status as Λ , —i, 3). Likewise for the bounded quantifiers (3 vm e υn) and (V υm e vn)
(where m φ n\ introduced by the schemas:

(3 vm e vn) Φ replaces 3 vm ((vm e vn) A Φ);

(V vm e vn) Φ replaces V υm ((vm e vn) -• Φ).
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The symbols c and 3! are defined thus:

y c z abbreviates (V x e y)(x e z);

3 ! xΦ abbreviates 3

(Thus 3! xΦ means "there is a unique x such that Φ'\) We also write

y c z to mean y c= z A y Φ z.

The above abbreviations are never regarded as a fundamental part of the language
LST, however, unlike the bounded quantifiers, etc.

One final remark. In writing formulas, we strive for legibility at the expense of
strict adherence to the syntax of LST. This particularly applies to our use of
parentheses, which are omitted wherever possible. Also, when nesting of clauses
is required, we sometimes use both (square) brackets as well as parentheses, for
clarity. Out notation for the interpretation of variables in formulas is also chosen
with clarity in mind. If we write, say, Φ(vh Vj), we mean that the free variables of
Φ are amongst the variables vl9Vj.If we subsequntly write Φ(x, y\ where x and
y are specific sets, we mean that Φ is a valid assertion when x interprets vt and y
interprets vjt (Of course, we have also decided to use x, y, z, etc. to denote arbitrary
variables of LST. But in any given case, the context should indicate the intended
meaning.1

2. The Zermelo-Fraenkel Axioms

The theory ZF is the LST theory whose axioms are the usual axioms for first-
order logic (for the langugage LST), together with the following axioms (i)-(vii):

(i) Extensionality: V x V y [V z (z e x <-• z e y) -• (x = y)]
(ii) Union: Vx 3y \/z[z ey<->(3u e x)(z e u)]

(iii) Infinity: 3x[3y(y e x) Λ (Vy e x)(3z e x)(y e z)]
(iv) Power Set: Vx3 - yVz[zey<-»z^x]
(v) Foundation: Vx [3y(y e x) -> 3y(y e x Λ (VZ ey)(z φ x))]

(vi) Comprehension (schema) :VαVx3);Vz[zey«->.zex Λ Φ(z,ά)\
where Φ is any LST formula whose free variables are amongst z, a, and where the
variables a, x, y, z are all distinct.

(We use x, a, etc. to denote finite strings of variables, V a to abbreviate V aί9..., Vαn

and Φ(z,ά) to abbreviate Φ(z, al9..., an). In more complicated situations,

1 Strictly speaking there is no clash of notation here. As far as formal set theory is concerned
there are simply variables (to denote "sets"). But as usual, to avoid incomprehensible use of
quantifiers and formulas to define specific sets, we argue in a loose, semantic fashion whenever
possible, and then it can be useful to distinguish between "formal variables" and "sets which
interpret those variables".
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we often use expressions such as x 0 , . . . , xn. Here, x0 will denote some sequence
*oo> ~ ,Xok> * i will t>e another sequence x l o , . . . , x u , possibly of a different
length, according to context, and so on.)

(vii) Collection (schema):

where Φ is any LST-formula whose free variables are amongst y, x, α, and where
the variables α, x, y, M, t> are all distinct.

In (iii), the exact formulation of the Axiom of Infinity is not important, and
different texts often give different formulations. The main point is to guarantee the
existence of at least one infinite set. Axiom (vi) (the Comprehension Axiom
schema) is sometimes referred to as the Subset Selection schema. The German
word Aussonderungsaxiom is also quite common for this axiom scheme. In Axiom
(vii) (Collection), notice that we have placed the variable y before the variable x.
This is purely a stylistic convention, of course, and reflects the fact that in our
representation of a function as a set of ordered pairs, we shall take the first
member of each ordered pair as the value of the function and the second element
as the argument. Axiom schemas (vi) and (vii) are often replaced by a single
schema: the Axiom of Replacement.

Notice that by virtue of the two axiom schemas, the above list of axioms for
ZF is infinite. We shall soon be able to prove that no finite collection of LST
sentences suffices to axiomatise ZF.

By the Axiom of Infinity, there exists at least one set. The Axiom of Compre-
hension then yields the existence of the empty set 0. Many texts include as an
axiom of ZF the Null Set Axiom, which is the assertion that there exists a set
having no elements, viz.:

Zermelo-Fraenkel set theory includes one further axiom:

(viii) Axiom of Choice (AC):

Vx[(V]/ex)(j;φ0) Λ (Vy, y' e x)(y #= y' -+ Vw(w ey^w φ / )

We denote Zermelo-Fraenkel set theory (which includes AC) by ZFC. This
nomenclature is now fairly standard, despite the rather unfortunate fact that it
means that the letters ZF do not stand for "Zermelo-Fraenkel" set theory, but just
a part of that theory. To try to avoid any confusion, throughout the book we shall
stick to the abbreviated notations ZF and ZFC. Hence, we shall have the "equa-
tion"

ZFC = ZF + A C .
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ZFC is our basic set theory. On occasions it will be important to note that AC
is not being used in an argument, and in such cases we shall write, for example,

Z F h Φ

or else

to mean, respectively, that Φ is provable in ZF or that Ψ is provable from Φ
together with the axioms of ZF.

3. Elementary Theory of ZFC

3.1 (Sets and Classes). The basic objects of discussion of ZFC (i. e. the objects over
which the variables range) are called sets. The universe is the collection of all sets,
and is denoted by V. If Φ(vθ9 vu ..., υn) is an LST formula and x l 5..., xn are sets,
the collection of all sets x for which Φ(x, x l 9..., xn) is a class, denoted by

{x|Φ(x,x1? ...,xn)}.

Every set, y, is a class (consider the formula Φ (x, y) = (x e y)), but not every class
is a set (consider the formula Φ (x) = {x $ x), which would lead at once to the
Russell paradox if the class it defined were a set). We often write

{xey|Φ(x,x 1 ? ...,xπ)}

in place of

{x\xey A Φ(x,x l5 ...,xπ)}.

(By the Axiom of Comprehension, this class is always a set.) We generally use
capital Roman letters X, 7, Z etc. to denote classes, with lower case Roman letters
being reserved for sets (as well as for variables of LST, which denote sets, of
course). A class which is not a set is called a proper class. Proper classes do not
fall under the scope of the axioms of ZFC, but their usage is convenient. We
assume the reader is familiar both with the use of proper classes in set theory and
the means by which such usage may be avoided if required. A particular example
occurs in VI. 1, where we discuss the rudimentary functions. It is convenient,
though avoidable, to develop the relevant theory in terms of "functions" defined
on the whole of V, even though, as proper classes these cannot be functions in the
sense of set theory at all.

Our set-theoretic notation is standard. The set consisting of precisely the
elements x l 5..., xn is denoted by
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{x} is the singleton of x, and {x, y} is the unordered pair of x, y. Many texts include
as an axiom of ZF the Pairing Axiom, which asserts that for every pair of elements
x, y, the set {x,)/} exists, i. e.

z<-n/ = x v w = y).

However, as this "axiom" is easily proved from the axioms we listed earlier, we did
not take it as a basic axiom.

The ordered pair of x and y is defined by

and has the property that

(x? y) = (χ\ y) iff x = x' and y — yf.

The union of x (i.e. the set of all members of all members of x) is denoted by (J x,
and is guaranteed to exist by the Union Axiom. We write x u y instead of (J {x, y}.
The intersection of x, f] x, is defined by

y e Π * iff (VzGx)(yGz),

and is a set whenever x + 0. (By our definition, f] 0 = V, but this is not a case that
will ever concern us.) We write x n y for f] {x, y}. The difference of x and y is
defined by

x - y = {zex\z$y}.

The power set of x (i.e. the set of all subsets of x) is denoted by & (x), and is
guaranteed to exist by the Power Set Axiom.

3.2 (Ordinals). A class M is said to be transitive if

xeyeM^xe M.

If Trans (v0) denotes the LST formula

E v1)(v2 e v0),

then a set x will be transitive iff Trans (x).
An ordinal number (or simply, an ordinal) is a transitive set which is linearly

ordered bye. We use α, /?, y,... to denote ordinals. We denote by On(ι;0) the
LST-formula

Trans (v0) A (Vv1ev0) (V v2 e ι>0) (^i = ι>2 v vi e V2 v vi e υ\)

It is not hard to show that a set x will be an ordinal iff On (x).
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If α, β are ordinals, either α = β or α e β or β e α. So the class

is totally ordered bye. We often write ot < β instead of α e β, and α ̂  /? instead
of (α < β v α = β). It is easily seen that α < β is equivalent to α c /?. Moreover,
for any ordinal α,

By the Axiom of Foundation, the relation < is in fact a well-ordering of On (i.e.
every non-empty subset of On has a < -least element).

If A is a set of ordinals, then u A is also an ordinal. In fact, u A is the least
ordinal δ such that ( V α e i ) ( α ^ δ). This least δ is also called the supremum of A,
denoted by sup (A). Thus sup (A) and u A coincide.

The first ordinal (under the canonical well-ordering e) is the null set, 0, but
when considered as an ordinal it is usually denoted by 0. The next ordinal is the
set {0}, denoted by 1. Then comes the ordinal {0, 1}, denoted by 2, followed by
3 = {0, 1, 2}, and so on. If α is an ordinal, so too is α u {α}, and there is no ordinal
γ strictly between α and α u {α}. We call α u {α} the successor of α, denoted by
α + 1. Any ordinal of the form α + 1 is called a successor ordinal. An ordinal α is
a successor ordinal iff succ (α), where succ (v0) is the LST-formula

On (υ0) A (3 vλ e v0)(V v2 e v0)(v2 e vx v υ2 = vj.

A non-zero ordinal which is not a successor ordinal is called a limit ordinal If
lim (v0) is the LST-formula

On(ι;0) Λ (3vίev0){vί = vx) A (Vv1ev0)(3v2 evo)(vίev2),

then an ordinal α will be a limit ordinal iff lim (α). Using the Axiom of Infinity,
together with other ZF axioms, it can be shown that a limit ordinal exists. The
least limit ordinal is denoted by ω. The elements of the set ω are precisely the finite
ordinal numbers, and are called the natural numbers. We usually denote natural
numbers by m, n, i,j, /c, etc. Notice that ω is definable by the formula

e ^ ( s u c c ^ ) v (Vz;2 e v1)(v2 + υ2)).

We usually write 3 αΦ(α) in place of

and VαΦ(α) in place of

If (X, <) is a well-ordered set, there is a unique ordinal number α such that
(X, <) is isomorphic to α (with the usual ordering). This α is called the order-type
of (X, <), denoted by otp(X, <).
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3.3 (Relations and Functions). Let n > 0 be a natural number. The n-tuple
(xί9..., xn) of sets xl9...,xn is defined thus:

i f n = l , (*i) = Xi;

if n > 1, (*!,..., xn) = (x l 5 (x 2 , . . . , xn))

(=(xi ,(x2,(*3, •••,*,,))) = etc.)

If X1 ? X 2 , . . . , Xπ are classes, their Cartesian product is the class:

Λ ... Λ xneXn}.

We write X2 in place o f l x l , l 3 f o r l x l x X, etc.
Let X be any class. An n-ary relation on X is a class R c X". We often write

# (x) in place of (x) e R.
Suppose R is an (n + l)-ary relation on a class X, where rc > 0. The domain of

K is the class

= {(x)\3yR(y,x)}.

The range of R is the class

If Z c X, we set

(Notice that accoding to our conventions concerning finite strings of variables,
x G Z means xx e Z , . . . , xn e Z. If we want to mean that (xu . . . , xn) e Z we would
write (x) e Z.)

We define

R"Z = τan(R\Z).

Let X be a class, n > 0. An n-ary function over X is an (n + l)-ary relation #
on X such that

We often write R (x) = y instead of R (y, x) in such cases. Thus R (x) is the unique
y such that R(y, x). We say that R is total on X iff dom(#) = X.

Let / be an n-ary function over K We write

to denote that (/ is a function and) dom (/) = X and ran (/) ̂  Z We say that /
is one-one (or ίnjective), and write
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iff for all xί9 x2 e l ,

We say / is onto 7 (or is a surjectίon to 7), and write

iff ran (/) = 7. We say / is a bίjection iff it is both one-one and onto, and write

If/ is bijective there is a unique function / " 1 : 7 -• X (called the inverse off) such
that

Regardless of whether or not / is bijective, we set, for any Z ̂  Y,

Γlf'Z = {xeX\f(x)eZ}.

The set / " * "Z is called the preίmage of Z under f.
Notice that by our definition of the rc-tuples (xl9..., xn), every function is a set

of ordered pairs, regardless of whether or not the function is unary.
If X and Y are structures of the same type, we write

f.X^Y

if / is a bijection from X to Y which preserves the structure (i.e. if / is an iso-
morphism).

We denote the composition of functions/, g by/° g, as usual. Thus if/: 7-> Z
and g: X -• 7, we define/0 g: X -> Z by

For any sets x, y we define

The identity function is the unary function

id = {(y,x)|j = x}

Of course, being a proper class, id is not strictly speaking a function at all, but for
any set X, id \ X will be a function, so this definition is convenient.
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A function whose domain is an ordinal is called a sequence; if α is that ordinal
domain, we say that the sequence is an α-sequence. If/ is an α-sequence, and if
f(ξ) = xξ for all ξ < α, we often write f=(χξ\ξ < α).

If/: / -• V, and if we denote/(z) by xt for each i e /, we often write {xf | z e /} in
place of/" /, \J xf in place of u (/" I), and p] xt in place of n (/" /). Similarly, given

iel iel

a sequence / = (x v |v < τ), we sometimes write [j xv for u ( / " τ ) and f] xv for
v<τ v<τ

n (/"τ). And if /z = (αv | v < τ) is a sequence of ordinals, we would write sup αv for
sup (ft" τ).

The inverse functions to the ordered pair function are defined thus:

if u = (x, y), then (u)0 = x and (u)ί = y;

if u is not an ordered pair, then (u)0 = (u)1 = 0.

Similarly we define inverse functions (U)Q, . . . , (w)"_ x to the rc-tuple function.

3.4 (Induction and Recursion). By using the Axiom of Foundation (together with
other axioms of ZF), every instance of the following schema of proof bye-induction
can be proved in ZF:

More generally, if X is any class, a relation R ^ X2 is said to be well-founded
iff:

(i) (Vx
(ii) Vα[α + 0 Λ α c

If R is such a relation, then every instance of the following schema of proof by
induction on R is a theorem of ZF:

It follows from the above that every instance of the following schema of
definition by recursion is provable in ZF. Let G be a total (n + 2)-ary function
over V, and let H be a total unary function over V such that the relation
{(z, y)\z e H(y)} is well-founded. Then there is a unique, total (n + l)-ary func-
tion F over V such that

F(y9ά) = G{y9ά,F\(H(y)x{(ά)}))

(Actually, some care is required in formulating this result precisely. Given for-
mulas which determine G and if, possibly with reference to certain set parameters,
one can explicitly write down a third formula such that in ZF it is provable that
the class determined by this formula has all of the properties required of F above.
We assume the reader is quite familiar with all of this, though in fact we shall not
really need to know the exact formulation. As is usually the case in set theory, all
that we require is the knowledge that ZF allows definitions "of a recursive nature".)
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A particular case of the above recursion principle is when H = id, when it is
called the principle ofe-recursion. There are also recursion principles applicable to
functions defined not on all of V but on some class, the most common example
being when the class concerned is the class of all ordinals; e-recursion restricted
to the ordinals is known as ordinal recursion, and will be used frequently in this
book.

The total, unary function TC (transitive closure) is defined by the e-recursion

ΊC(x) = xv{J{ΊC(y)\yex}.

(Intuitively, TC(x) = x u ( ( J x) u ( ( J ( J x ) u ( I J U U x ) u ••• l t i s n o t h a r d t 0

show that TC (x) is the c -smallest transitive set y such that x c y. We call the set
TC (x) the transitive closure of x.

The relation {(x,y)\xG TC(y)} is well-founded. Hence we can carry out defi-
nitions by recursion on this relation. This form of recursive definition will also be
quite common in this book.

3.5 (The Cumulative Hierarchy). The cumulative hierarchy of sets is defined by the
ordinal recursion

Vo = 0;

Va = \J{P(Vβ)\β<*}.

It is not hard to see that

(The proof makes central use of the Axiom of Foundation, and indeed the above
"equation" may be taken as an alternative formulation of this axiom.)

The rank of a set x is the least ordinal α such that x eVa+1. We may define the
rank function directly by means of the e-recursion

rank (0) = 0

rank (x) = \J {rank (y) + 11 y e x} .

Notice that xe y implies rank(x) < rank(y).

4. Ordinal Numbers

The notion of an ordinal number plays a central role in set theory, and we have
referred to ordinals several times already. In this section we consider, very briefly,
the arithmetic of ordinal numbers.
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Let α, β be ordinals. We define the ordinal sum α + β by recursion on β, thus:

α + 0 = α;

α + (j?+ l) = (α +j8) + 1;

y (5}, if lim(5).

The ordinal sum is not commutative; for example, 1 + ω = ω but ω + 1 > ω.
The ordinal product α β is defined by the following recursion on β:

α (j8 + 1) = (α β) + α;

(5}, if li

The ordinal product is not commutative; for example 2 ω = ω but ω 2
= ω + ω > ω.

(Both ordinal sum and ordinal product can be defined in an alternative fash-
ion, but we shall not go into that here.)

Notice that (ω α | α e On) enumerates 0 and all the limit ordinals.
For α > 0, the ordinal power ocβ is defined by the following recursion on β:

aδ = [J{*β\β<δ}, if lim(<S).

We shall not be concerned with any of the properties of ordinal exponentiation.

5. Cardinal Numbers

A cardinal number (or simply, a cardinal) is an ordinal α such that there is no β < α
for which there is a function/: β °n°>α.

Clearly, 0, 1, 2, 3, . . . , n,..., ω are all cardinals. All other cardinals are said to
be uncountable. We generally use K, λ, μ, to denote cardinals.

Using AC it can be shown that for every set x there is a unique cardinal K for
which there is a bijection f: κ+-»x. We call K the cardinality of x, denoted by |x | .

Clearly, if K is a cardinal, then, recalling that K is the set {α | α < K:}, we have
|κ | = ιc.

If K is a cardinal, the least cardinal greater than K is called the (cardinal)
successor of K, and is denoted by κ + . For convenience, we extend this notation so
that for any ordinal α, α + denotes the least cardinal greater than α. (So in partic-
ular, we have α + = | α |+.) Any infinite cardinal of the form K + is called a successor
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cardinal. An infinite cardinal which is not a successor cardinal is called a limit
cardinal.

Clearly, if lim (β) and (/cα | α < β) is a strictly increasing sequence of cardinals,
then sup κa is a limit cardinal.

a.<β

The canonical, monotone enumeration of the infinite cardinals, (ωα | α e On),
is defined by the following recursion:

ω 0 = ω;

ω α + 1 = ωα

+;

ω 5 = sup ωα, if lim ((5).
<x<δ

Of course, each cardinal ωα is also an ordinal. In order to distinguish between the
two cases when ωα is being used as a cardinal and when it is being used as an
ordinal, many texts use the symbol Kα ("aleph-α") to denote ωα regarded as a
cardinal, and reserve the notation ωα for pure ordinal use. However, in this book
we shall have very little occasion to use ωα as an ordinal (in the strict sense), so
we shall rely upon the single notation ωa in all cases.

Notice that ωα is a limit cardinal iff α = 0 or lim (α).
We write

VκΦ(κ)

in place of

V α [α is a cardinal -• Φ (α) ].

and

3κΦ(κ)

in place of

3 a [α is a cardinal Λ Φ (α)].

Let (κ:α I α < β) be a sequence of cardinals. The cardinal sum Σ /cα is defined
thus: Λ<P

Clearly, X τcα is the cardinality of the union of any disjoint collection {Aa | α < β}
<z<β

of sets such that \Aa\ = κΆ.
Clearly,
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We write κ0 + κx instead of Σ κ*> Provided that at least one of κ0, κx is
infinite, we have α < 2

κo + κi

We usually rely upon context to distinguish between ordinal and cardinal
addition, rather than introduce additional notation. For instance, α + β would
usually mean ordinal addition, whereas K + λ would mean cardinal addition.

The cardinal product, Y\κ^, is defined thus:

Πκ« = K/i/: J8- I K Λ ( V α

a<β <x<β

Clearly, f l κa i s th e cardinality of the cartesian product
OL<β

X 4 = {/I/: β - U A« & ( V α < $(/(«) e ^)}

of any family of sets Aa, a < β, such that \Aa\ = κa.
We write κ0 κx instead of Π κa. If at least one of κ0, κx is infinite and neither

is 0, then α < 2

κ:0 KΓi = max(fc o ,κ: i) .

The cardinal power, κλ, is defined by

(Again, context and notation are used to distinguish between cardinal and ordinal
exponentiation.) Recalling that for any sets x, y,

we see that if |x | = λ and \y\ = K then

κλ = \xy\.

In particular,

By considering characteristic functions of subsets of x, we see easily that

μ?>(x)| = 2i*ι,

for any set x. Consequently, for any cardinal /c,
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By means of the well-known Cantor diagonal argument, it follows that

2κ>κ.

Hence

For finite K, we only have equality in the above in the cases K = 0 and K = 1. But
for infinite K, the axioms of ZFC set theory do not provide enough information
to decide whether or not 2K = κ + . (The precise situation is rather complicated,
and certainly outside the scope of this book.) The statement

which is neither provable nor refutable in ZFC, is known as the continuum hypo-
thesis (CH). The statement

which is likewise neither provable nor refutable in ZFC, is known as the general-
ised continuum hypothesis (GCH). (The word "continuum" is used here because 2ω

is the cardinality of the real number continuum.)

5.1 Lemma.

(i) Σ and Π a r e commutative and associative operations on cardinal numbers.
(ii) Π distributes over X; i.e.

Π Σ**β = Σ Πκ«/(α)
α<y β<δ /ev<5 α<y

(iii) κ.Σκ«= Σ κ . * α
a<β a<β

(iv) Σκ = \β\.κ.
a<β

Proof. An easy exercise. D

5.2 Lemma. If2^κ^λ and λ^ω, then κλ = 2λ.

Proof. Clearly, 2λ < κλ. Conversely,

κλ < λ λ < (2λ)λ = 2λ-λ = 2λ. D

5.3 Lemma ("The Kόnig Inequality"). Ifκa < λafor all α < β, then

Σ ^ α < Π^α
OL<β OL<β
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Proof. Define

/: U («.*{«})-> X K
a<β a<β

by setting

Clearly, / is one-one. Hence

We show that equality is impossible. Let

h: \J(κax{a})^χλa.
a<β a<β

We show that h cannot be onto. For y < β, define

hy: (J (κ:αx{α})-^Ay
OL<β

by

Λy(ξ,α) = [Λ(ξ,α)](y).

Since κγ < λγ9 hy \ (κy x {y}) cannot map onto λγ, so we can pick

ayeλy- h'y' (κy x {y}).

Define ge X /Lα by
oc<β

= ay (y<β)

Clearly, g φ ran (Λ), so h is not onto, and we are done. D

5.4 Lemma. Let κa be cardinals for α < β, and set

OL<β

For any cardinal λ,

Proof Let
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Thus \X\ = κ. L e t / e xλ. For α < β, define fΛ e <*-U by

Then

<x<β

Since the mapping

/>->(/« I α < / Q

from xλ to X (κ*λ) is clearly one-one and onto, the desired equality is
proved. D «<β

A subset A of a limit2 ordinal α is said to be unbounded in α iff for no y < α do
we have A^y. Equivalently, A ^ α is unbounded in α iff

(i.e. iff sup ( i ) = α.)
Let 7, α be limit ordinals. A function /: y -> α is said to be cofinal iff / is

order-preserving and ran (/) is an unabounded subset of α.
Let α be a limit ordinal. The cofinalίty of α is the least ordinal y such that there

is a cofinal function/: y -• α. We denote the cofinality of α by cf(oc). It is easily seen
that cf (α) is always a cardinal.

A limit ordinal α is said to be regular iff cf (α) = α; otherwise it is singular. Every
regular ordinal is a cardinal. Also, cf (α) is always a regular cardinal. The cardinal
ω is regular; the cardinal ωω is singular of cofinality ω.

5.5 Lemma. Let K be an infinite cardinal Then d(κ) is the least α such that there
are cardinals κξ < K, ξ < α such that

κ= Σ Kξ

Proof. Let A = cf (κ\ and let α be least such that K = Σ κξ f° r some κξ < K. We
must show that λ = α. ^ < α

Let (yξ I ξ < λ) be cofinal in K. For each ξ < λ, \yξ\ < K. But TC = \J γξ. It
follows easily that /c = Σ 17̂ 1 Hence α ^ λ ξ < A

Suppose that α < A. Pick κ:ξ < Λ: for ξ < oc so that K = Σ κξ Since α < λ,

(κξ I ξ < α) is not cofinal in K, SO for some y < K, we have jcξ ^ y for all ξ < α.
Hence Σ ^ ^ ζ Z l 7 l = l a l * l 7 l < / C ? which is a contradiction. Thus a = λ. •

2 On a formal level, this and the following definitions can be applied to any ordinal, but the
notions are trivial in the case of successor ordinals.
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5.6 Lemma. Let K be an infinite cardinal. Then K is regular iff

(Vλ<κ)(λκ= (J λa).
α<κ

Proof. (->) Let λ <κ. If fe [j λoc, then fe λκ. Conversely, if/e λκ, then since cf (K)
ct<κ

= K > λ, ran (/) c α for some α < /c, SO / e Λα. Thus A/c = (J 2 α .

(<-) Let λ <κ,f λ-*κ. For some α < ιc,/e Aα, so / cannot be cofinal. Hence
K is regular. D

5.7 Lemma. Let K be an infinite cardinal. Then κ+ is regular.

Proof. Suppose cf(τc+) < K. By 5.5 there are cardinals κa < κ+ such that

Then

a contradiction. D

5.8 Lemma. Lei K be an infinite cardinal. Then κcί {κ) > K .

Proof Let K = Σ κ^ where κa < K. By 5.3 we have
α<cf (K)

κ= Σ ^ α < Π /c = κ:cf(κ). D
α<cf(κ) α<cf(κ)

The following result shows that under certain circumstances cϊ(κ) may be the
least cardinal λ such that κλ > K.

5.9 Lemma. Let K be an infinite cardinal If λ < cϊ(κ) and (Vμ < κ)(2μ ^ κ\ then
κλ = K.

Proof By an argument as in 5.6 we see that if λ < cf (κ\

But for α < /c we have

| α | ^ ( 2 l α l ) λ = 2lαl A ^ / c .

Hence

K: ^ κλ ^ /c. D

We define the weak power of K by /I thus^
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5.10 Lemma. Let K be an infinite cardinal.

(i) Ifκ is regular and (Vμ < κ)(2μ ̂  κ\ then κ<κ = K.
(ii) Assume GCH. Then K is regular iffκ<κ = κ.

Proof, (i) By 5.9, κλ = K for all λ < cί{κ) = K. Thus

κ<« = £ κλ= Σ κ = κ.
λ<κ λ<κ

(ii) If K is regular then (since GCH implies 2μ = μ+ ^ K for all μ < K) by (i) we
have κ<κ = K. If K is singular, then by 5.8, κ<κ ^ κcΐ{κ) > K. D

5.11 Lemma. Let K be an infinite cardinal.

(i) κκ^κ<κ^2<κ^κ.
(ii) 7/κ: = /l + , ίfeπ κ:<κ = 2<κ = 2λ.

Proof, (i) The only non-trivial inequality is 2<κ ^ K. And this follows quite easily
from the fact that for every λ<κ, 2<κ ^ 2λ > λ.

(ii) We have 2<κ = 2λ and κ<κ = κλ. Hence

2λ = 2<κ < κ<κ = κλ < (2λ)λ = 2A. D

5.12 Lemma. GCH <-> (VK: > ω)(2 < κ = K).

Proof. (->) By GCH,

for any infinite K.
(<-) For any infinite κ9

2« = 2<κ+ =κ + . D

6. Closed Unbounded Sets

Let α be a limit ordinal. Recall that a set A c α is unbounded in α iff

A set ̂ 4 c α is c/osed in α iff (J (^ n γ) e A for all y < α. Equivalently, if we define
a limit point of A to be any limit ordinal γ such that ,4 n γ is unbounded in y, then
A will be closed in α iff it contains all its limit points below α. Still another
formulation is that A is closed in α iff, whenver lim (τ) and (αv | v < τ) is a strictly
increasing sequence of elements of A which is not cofϊnal in α, then (J ave A.
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We use the abbreviation "club" to mean "closed and unbounded". Club sets
play an important role in our development.

6.1 Lemma. Let K be an infinite cardinal, cf(τc) > ω. If A, B are club subsets ofκ,
then Ar\B is club in K.

Proof That An Bis closed in K is obvious. To establish unboundedness, let α < K
be given. Pick β0 e A, β0 > α. By recursion now, let β2n+i be the least member of
B than β2n and let β2n + 2 be the least member of A greater than β2n+1. Let
β = (J βn. Since β = (J β2n and A is closed we have β e A, and similary

n<ω n<ω

β = [j β2n+ί implies β e B. Thus β e A n B, β > α, and we are done. D
n<ω

By generalising the above proof we obtain:

6.2 Lemma. Let K be an uncountable regular cardinal. If λ < K and Av, v < λ, are
club subsets of K, then f] Av is a club subset ofκ. G

Let α be an infinite ordinal. A non-decreasing function /: α -• On is said to be
continuous if for every limit ordinal δ < α,

A normal function on α is a (strictly) increasing, continuous function /: α -• On.

6.3 Lemma. Let cube a limit ordinal. Iffis an increasing function from oc into On,
thenf(y) ^ y for all yea.

Proof By induction on γ. If the result holds below y, then for all β < y we have

> f(β) > β, and hence /(y) > y. D

6.4 Lemma. Lei TC be an uncountable regular cardinal.
(i) IfA^K is club, then the enumeration of A in increasing oder (as ordinals) is

a normal function from K to K.
(ii) If f: K —• K is a normal function, then ran(/) is a club subset of K.

Proof. Trivial. D

6.5 Lemma. Let K be an uncountable regular cardinal, f a normal function from K
to K. Then the set {oceκ |/(α) = α} is club in K.

Proof Let

If y < K is a limit point of A, then

f(y)= U/(°0= U /(°0= U * = y
α<y aeAnγ txeAnγ

(since (J (A n y) = y\ so y e A. Hence A is closed in K.
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To show that A is unbounded in K, let α0 e K be given. By recursion, define
(χn+1 = f(an). Set α = (J απ. Then by 6.3, we have α ^ α0 and, by continuity,

n<ω

/(«)= u / ω = u «„+! = «>
n<to n< to

so α e i . Hence A is unbounded in κ\ D

6.6 Lemma. Lei TC be an uncountable regular cardinal, and let h: K —• K. Set

A = {γeκ\(Vv<γ)(h(v)<γ)}.

Then A is club in K.

Proof. It is immediate that A is closed in K. TO prove unboundedness, given α0 e K,
define, by recursion, αM + 1 to be the least γ such that h"(xn c y? and set α = Q απ.
Clearly, α ^ α0 and α e A D " < ω

7. TTze Collapsing Lemma

In this section we prove a simple lemma which is of extreme importance in
constructibility theory: the Mostowski-Shepherdon Collapsing Lemma. We start
with a definition.

A set X is said to be extensional if:

(Vu,ι;eI)(M + υ^>(3xeX)(xeu<r+x$v))

(In other words, a set X is extensional iff the structure <X,e> is a model of the
Axiom of Extensionality.)

7.1 Theorem (The Collapsing Lemma). Let X be an extensional et. Then there is
a unique transitive set M and a unique bisection π: X <r+M such that

Moreover, if Y c X is transitive, then π \ Y = id \ Y. (The transitive set M is
called the transitive collapse or transitivisation of X)

Proof. We first of all see what a function π as in the theorem must look like. This
will amount to a proof of the uniqueness of π and M. So suppose that

where M is transitive. Let x, y e X, y ex. By isomorphism, π(j ) e π(x). Hence

{π(y)\yeX A y e X} c π ( χ ) .
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Now let x e X, z e π (x). Since M is transitive, z e M. So for some ]/e ! ,z = π (y).
Then π(y) e π(x), so as π is an isomorphism, y e x. Thus

l Λ y e x} .

Hence

π(x) - {π(y) | jeX Λ J GX}.

This shows us what form π must have, as well as providing a proof of the unique-
ness of such a π (and hence also of M = ran (π)). (More precisely, since π, M
necessarily have the above structure, given any two candidates πι,Mι and
π 2, M 2, a triviale-induction shows that πι(x) = π2(x) for all x e X, so πx = π2 and

We prove existence. Define π on X by thee-recursion:

π(x) = {π(y)\yeX,yex}.

Set M = ran (π). We show that π, M are as required.
We prove first that π is one-one. Suppose not, and pick x ^ I o f least rank

such that for some x2 e X, x2 Φ Xi and π (x2) = π (xj. Since X is extensional there
is a y e X such that either y e xί9 y $ x2 oτ else y φ xx, j ; G x2•

Suppose first that y G x l 9 y φ x2. By definition of π(xx) we have π(y) e π(x1).
Hence as π (xx) = π (x2), we have π (y) G π (x2). So by definition of π (x2) there must
be a zeX, z e x 2 , such that π(y) = π(z). Since yφx 2 , y + z. But rank(y)
< rank (xt) so the existence of such a z contradicts the choice of xx.

Now suppose that y φ x l 5 y e x2. By definition of π(x2), we have π(y) G π(x2).
Hence as π (xx) = π (x2), we have π(y)eπ (xx). So by definition of π (x:) there must
be a zeX, zexl9 such that π(y) = π(z). Since yφxi, y + z. But rank(z)
< rank (xx), so the existence of such a y (for z) contradicts the choice of xί.

Having established that π is one-one, we show next that π is ane-isomorphism.
Let x, y G X. If x e y, then by definition of π (y) we have π (x) G π (y). Conversely,
suppose π (x) e π (y). Then by definition of π(y),π (x) = π (z) for some Z G I , Z 6 J ; .

But π is one-one. Hence x = z, giving x e y. Thus π is an e-isomorphism.
Finally, suppose Y c X is transitive. Then for x G 7 we have

j ; G x -• y G 7 ,

so for x G Y we can write the definition of π as

π(x) = {π(y)\yex}.

Suppose now that π \ Y φ id ϊ Y Pick x G 7 of minimal rank such that π (x) φ x.
Then for y e x, we must have π(y) = y, so

π ( x ) = {π(y)\yex} = {y\yex} = x ,

a contradiction. The proof is complete. D
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By an analogous argument we may also prove the following result:

7.2 Theorem (The Representation Lemma). Let X be a set (or, more generally, a
class), E a binary relation on X such that:

(i)
(ii) E is well-founded.

Then there is a unique transitive set (in the general case a class) M and a unique map
π such that

(M is called the transitivisation of (X, £>.) D

8. Metamathematics of Set Theory

In this section we establish various metamathematical results about the theory
ZF. We commence with the well-known reflection principle of Montague and
Levy. Loosely speaking, this says that any valid sentence Φ of LST "reflects down"
to some initial section Va of F(i.e. is valid in Va).

We first of all prove a "generalised reflection principle". We need some prelim-
inaries.

Let M be any class. For each formula Φ of LST we define a new formula Φ M ,
called the relativίsation of Φ to M. ΦM is also a formula of LST. This may not be
immediately clear from our definition, since it will appear that we are using a
unary predicate letter M. But since M is a class, it must be defined by some
formula of LST, and by replacing all mention of " M " in our definition by this
formula we obtain a formula of LST.

The idea is that ΦM should make the same assertion as Φ, but referring only
to the sets in M. In particular, all quantifiers in ΦM should range only over M. The
formal definition of ΦM proceeds by unravelling the logical construction of Φ and
using the following rules.

If Φ is primitive, then ΦM = Φ.
If Φ is of the form Φγ Λ Φ2, then ΦM = Φf Λ Φf.
If Φ is of the form -ι Φo, then ΦM = -ι (Φjf).
If Φ is of the form 3vnΦ0, then ΦM = (3vne M) (Φff). More precisely, if Θ is the

LST formula such that

M = {x\Θ(x)},

then ΦM is the formula

3vn[Θ(vn)A Φ%].

(This is the really significant clause of course, being the only one which involves M.)
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8.1 Theorem (Generalised Reflection Principle). Let (Wa \ a e On) be a hierarchy of
transitive sets, definable by a formula, Ψ, o/LST in the sense that

Wa = {x\Ψ(x,a)}9

and suppose that:

(i) *<β^WΛc Wβ;

(ii) hm(δ)^Wδ= U Wa.
OL<δ

Let

w= u wa.
αeOn

Let Φ (v) be an LST-formula with free variables amongst v. Then the following
sentence is a theorem o/ZF:

(V α) (3 β > α) [lim (β) A (V v e Wβ) [Φw (v) ++ Φwe (ΰ) ] ] .

Proof Let Φ (ΰ) be a given formula of LST. Let 3 Φo (x0),..., Φn (xn) be a sequence
of LST-formulas such that Φn = Φ and for each i = 0,..., n, either Φt is a primitive
formula or else is obtained from previous formulas in the sequence by a direct
application of negation, conjunction, or existential quantification. (The existence
of such a sequence follows from the definition of a formula of LST.) We define
ordinal-valued functions /f (xf), i = 0,..., n, as follows. If Φt is primitive or of the
form —Ί Φj for somej < i, or of the form Φ} A Φk for some j , k < i, let/) (xf) = 0. If
Φi(Xi) is of the form 3yΦj(y, xt) for some j < z, letyj(xf) be the least ordinal γ such
that

Given α now, let β > α be a limit ordinal such that for each i = 0,..., n,

Q/£ieWβ)(fi(id<β)

Using the Axiom of Collection, it is easy to show that such a β exists. We prove
by induction on i = 0,..., n that for xteWβ9

If Φ( is primitive (in particular, if i = 0) this is immediate. And if Φt is —I Φj or
Φj A Φk (where j , k < i), the induction step is trivial. So suppose that Φt (xf) is
3 y Φj(y, Xi), where j < i. Let XiEWβ.

Assume first that Φf (xf). Thus

(3yeW)Φ]v(y,xi).

3 For the convention regarding expressions such as x 0,..., xB, see page 4.
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Since f (*;) < /?, it follows that

(3yeWβ)Φjιr(y9xi).

But for y, xteWp, the induction hypothesis gives

Hence Φfβ (xf).
Now assume that Φfβ (jcf). Thus

Using the induction hypothesis, it follows that

But WβςiW. Hence

In other words, Φl? (xι).
The proof is complete. D

8.2 Corollary (The Reflection Principle). Let Φ(ΰ) be any formula o/LST with free
variables amongst v. Then the following sentence is provable in ZF:

(V α)(3 β > α) [lim (β) A (V ΰ e Vβ) [Φ(ΰ) <-• ΦVβ (v)]]. D

Using 8.2, it is quite easy to show that ZF is not finitely axiomatisable. For
suppose there were a finite set {Φl9..., Φn} of LST-sentences which yielded all of
the ZF axioms. Let

Φ = Φγ A . . . Λ Φn.

Thus Φ is a single axiom for the theory ZF. By the Reflection Principle there is an
ordinal α such that ΦVa. Let α be the least such. Then Va is a model of ZF. Hence
we can apply the Reflection Principle within Va to find an ordinal β e Va such that,
within Va, Φ

Vβ. But this implies that ΦVβ is valid in the real world, and since β < α,
this contradicts the choice of α, and we are done. Notice that we have made
various assumptions in this argument. Firstly, that the set " F / ' as constructed
within the "universe" Va is the same as the real Vβ9 constructed in V. Secondly, we
assumed that if ΦVβ is true inside Va9 then ΦVβ really is true. These are easily verified
examples of the important general concept of absoluteness, discussed below.

Let M be a transitive class and let Φ(x) be an LST-formula. We say Φ(x) is
downward absolute (D-absolute) for M iff
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We say Φ(x) is upward absolute (U-absolute) for M iff

(VxeM)(ΦM(x)-+Φ(x)).

Finally, we say Φ (x) is absolute for M iff it is both D-absolute and ^/-absolute
forM.

In cases where it is clear which class M is concerned, we often drop the explicit
mention of M, and say, for example, simply that "Φ(x) is absolute".

It is clear that primitive LST-formulas will be absolute for any class M. For
other formulas we usually need to assume that the class M is transitive in which
case absoluteness is related to the logical complexity of the formula. In this
connection, a classification of the logical complexity of formulas due to Lέvy is
useful.

In order to describe the Levy hierarchy in the simplest fashion, it is convenient
to regard both universal quantifiers and the two types of bounded quantifier as
integral parts of LST, rather than as mere abbreviations.

Let Φ be an LST-formula. We say that Φ is Σ o (or Πo) iff it contains no
unbounded quantifiers. Thus the only quantifiers in Φ will be of the form (V x e y)
or (3 x e y). Now let n ^ 1. Recursively, we say that Φ is Σn iff it is of the form
3xΨ(x) where Ψ (x) is ΠM_ γ, and that Φ is Un iff it is of the form V x Ψ(x) where

Thus, to say that a formula is Σn is to say that the formula consists of a Σ o

formula preceded by n blocks of like quantifiers, commencing with a block of
existential quantifiers and alternating between blocks of existential quantifiers
and blocks of universal quantifiers.

A formula Φ is said to be Σ JF iff there is a Σπ formula Ψ such that

ZFhΦ^Ψ.

Similarly Π j F . For n > 1, a formula Φ is said to be Δ p iff it is both Σ* F and Π*F.
If T is some sub theory of ZF, we define Σ j , Πj ,Δj in a similar fashion, with

T in place of ZF.
The following simple result is fundamental to much of our later work.

8.3 Lemma. Let T be some subtheory of ZF (possibly ZF itself). Let M be a
transitive class such that ΨM for every axiom ΨofT. Let Φ be any formula o/LST.

(i) If Φ is Σ j , then Φ is absolute (for M).
(ii) If Φ is Σ [ , then Φ is U-absolute.

(iii) If Φ is Π [ , then Φ is D-absolute.

(iv) If Φ is Δf, then Φ is absolute.

Proof, (i) Let Φ have its free variables amongst v, and let Ψ(v) be a Σ o formula of
LST such that

Since T is a subtheory of ZF,
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is a valid assertion. And since ΘM for every axiom Θ of T,

is a valid assertion, which is to say that

is valid. Hence it suffices to prove the result for Ψ. In other words, there is no loss
of generality in assuming that Φ is itself a Σ o formula.

If Φ is primitive, the result is immediate. We proceed now by induction on the
construction of Φ. If Φ is of the form Φx A Φ2 or of the form —i Φ o , the result for
Φ follows trivially from the result for Φo, Φί9 Φ 2 . Suppose that Φ(y, v) has the
form (3 x e y) Ψ (x, y, v), where the result is valid for Ψ. Let y, v e M. If Φ (y9 v)M,
then [(3 xey)Ψ (x, y, ΰ)]M so for some xeM such that x e y we have Ψ (x, y, 0)M.
So by induction hypothesis, Ψ (x, y, v). Hence (3xe y)Ψ (x, y9 v), which means
that Φ(y, v). Conversely, suppose Φ(y, v). Thus (3x e y)Ψ(x9 y9 v), so for some
x G y, Ψ(x, y9 ΰ). But M is transitive, so as y e M we have x e M also. (Note the
importance of transitivity here.) Hence by the induction hypothesis we can con-
clude that Ψ(x, y9 v)M, and hence that [(3 xey)Ψ (x, y9 v)]M, i.e. Φ(y, ί ) M . The case
where Φ has the form (V x e y)Ψ (x, y, 5) is handled similarly. This proves (i).

(ii) As in part (i) there is no loss in generality in assuming that Φ is a Σί

formula. Let Φ = Φ(v) = 3 u Ψ(u, v\ where Ψ is Σ o . Assume Φ(v)M, where v e M.
Thus for some ueM,Ψ (u9 v)M. By part (i), it follows that Ψ (u, ΰ). Thus 3uΨ(u9 ΰ)9

i.e. Φ(ϋ).

(iii) As before we may assume that Φ is Tl1. Let Φ = Φ (ί) = V u Ψ (u9 v\ where
Ψ is Σ o . Assume Φ(£), where ί e M . Then for all u, Ψ(δ, δ). In particular, for all
MeM, !P(fi, ϋ). But by part (i), if u e M, then y (δ, 0) implies !P(δ, v)M. Hence for
all ϋ e M , Ψ(u, v)M. In other words, Φ(v)M.

(iv) By parts (ii) and (iii). D

Let us see where many of the simpler formulas of LST lie in the Levy hierarchy.
Notice that when we speak of, for example

the formula "x is a finite sequence",

we mean the "obvious" rendering of this statement as a formula in LST. In most
cases the rendering is indeed obvious. If there is any significant doubt, we shall
indicate the manner in which the statement is expressed in LST. In the case of our
first lemma there is no such problem.

8.4. Lemma. The following formulas are Σ o : x = y, x e y, x c y? y = {χ l 5..., χ j ?

y = (x l 5 . . . , xB), y = (x)? (for i = 0,..., n - 1), y = x u z , y = xnz, y = (J x,
y = P) x, y = x — z, "x is an n-tuple", "x is a relation on y", "x is α function",
y = dom(x), y = ran(x), y = x(z), y = x"z, y = x f z , y = xxz, y = χ~1

9

y = x u {x}, On(x), lim(x), succ(x), "x is α natural number", "x is α sequence",

x\y ^> z,x\y<r+z. D
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In the case of the next lemma, we shall indicate the fashion in which the
statement is to be expressed in LST, since, unlike the previous lemma, there are
several possibilities.

8.5 L e m m a . The formula " x is finite" isΣ1.

Proof, x is finite <-* 3 n 3/ [n is a natural number Λ / : w <-• x]. D

The following lemma gives various closure properties for the levels in the Levy
hierarchy. The proofs are all trivial.

8.6 Lemma. Let T be any LST theory. (By convention, T therefore includes all the
axioms for predicate logic for LST.) Let Φ, Ψ be formulas o/LST.

(i) IfΦ, Ψ are Σ j , so too are Φ A Ψ, Φ V Ψ, —i Φ.
(π) IfΦ is Σn

Γ, - i Φ is ΠJ; if Φ is Πn

Γ, i Φ is Σ j .
(iii) Φ is Δj iff both Φ and —\ Φ are Σ j .
(iv) 7/Φ, Ψ are Σ j , so are Φ Λ <P, Φ v Ψ, 3 x Φ, (3 x e z) Φ.
(v) IfΦ, Ψ are Ylτ

n, so are Φ A Ψ, Φ V IP, V x Φ, (V x e z) Φ.
(vi) 7/Φ, *P are Δ j , so are Φ Λ Ψ, Φ V !P, —i Φ.

8.7 Lemma. The formula

WF (x, y) <-• "x is α well-founded relation on yn

is Aψ.

Proof. It is easily seen that the formula

"x is a binary relation on y"

is Σ o . Consequently, we need only concentrate upon the clause of WF which
relates to well-foundedness. Let Φ denote this clause. Now, if £ is a binary relation
on a set X, the obvious rendering of Φ(E, X) is:

^X A A*φ->(3aeA)(ϊxeA)-i(xEa)].

(This is the definition of well-foundedness.) This shows at once that in its canonical
rendering in LST, the formula WF (x, y) is Hι. But in ZF it is easy to prove, for
E, X as above, the equivalence

Φ(E, *)<->3f[f:X - On Λ (VX, y e X)(xEy->f{x) <f(y))].

(This involves a fairly routine application of the Recursion Principle.) This shows
that Φ, and hence WF, are Σ?F, so we are done. D

Given an LST formula Φ(y, z), we denote by Φ((x)0, z) the LST-formula

(3u e x)(3a E u)(3b e u)[x = (a,b) A Φ(a,z)].

Similarly for Φ((x)i, z).
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Again, we denote by Φ(x(y% z) the LST-formula

(x is a function) Λ (3 w ex)(3u e w)(3v e u)[w = (v, y) A Φ(V,Z)].

The following lemma is an immediate consequence of these definitions.

8.8 Lemma. IfΦ (x, z) is a Σ o formula o/LST, then so too are Φ ((x)0, z), Φ ((x)1, z),
andΦ(x(y)J). D

8.9 Lemma (Contraction of Quantifiers). Let T be any LST theory whose axioms
include the axioms of null set and pairing (see sections 2 and 3). Then:

(i) Let n^-X and let Φ(z) be a Σn formula. Then there is a Σ o formula Ψ(x, z)
such that

ΓhΦ(z)~3x 1Vx 23x 3 . . .-xπf (*!,...,xπ,z).

(ii) Let n ̂  1 and let Φ(z) be a Un formula. Then there is a Σ o formula Φ(x, z)
such that

Γ h Φ ( z > V x 1 3 x 2 V x 3 . . . - x B ! P ( x 1 xπ,z).

Proof. We prove (i). The proof of (ii) is similar. Consider first the case n = 1. A
general Σx formula has the form

Φ(z): lyily2...3ymθ(yl9...9ym,2),

where Θ is Σ o . If m = 1 now there is nothing further to prove. Suppose that m = 2.
(All other cases m > 2 are handled similarly.) Let Ψ(x, z) be the formula:

(x is an ordered pair) Λ Θ((X)0, (x) l 5 z).

By 8.8, Ψ is Σ o . And clearly, by our assumptions on T,

That deals with the case n = 1. We consider next the case n = 2, and leave it to
the reader to see that the same idea works for all cases n ̂  2. Suppose Φ (z) is the
formula

3 MX 3 w2... 3 ι/p V i?! V v2 .. V vq Θ (ύ, v9 z),

where Θ is Σ o . Let ̂ (x, y, z) be the formula

(x is a /?-tuple) Λ [(y is a

By 8.8, ^ I S Σ Q . Moreover,

The proof is complete. D



9. The Language <?v 31

For the case where the theory, T, concerned is ZF, the following lemma
extends the closure rules given in 8.6.

8.10 Lemma.

(i) // Φ is a Σn formula of LST, then (V x e y) Φ is Σ* F .
(ii) IfΦ is a Πn formula ofLST, then (3xey)Φ is Π*F

Proof We prove (i) and (ii) simultaneously by induction on n. For n = 0 there is
nothing to prove. Suppose now that (i) and (ii) hold for n. We prove (i) and (ii) for
n+ 1.

(i) Let Φ be Σn+1. By 8.9 there is a Un formula Ψ such that

Hence,

ZF h (Vx εy)Φ+-*(Vxey) 3 zΨ.

But, by using the Axiom of Collection,

ZF h (V x e y) 3 z Ψ <-• 3 u (V x e y) (3 z e u) Ψ.

Thus

ZF h (Vx e y) Φ ~ 3 w(Vx e y)(3 zeu)Ψ.

By induction hypothesis, (3 z e w) *F is Π^F. Hence, using 8.7, (V x e y) (3 z e u) Ψ is
Π P . Thus 3 u (V x e j/) (3 z e u) Ψ is Σ ^ x , which means that (V x e y) Φ is Σ ^ x , as
required.

(ii) Now suppose that Φ is Π π + 1 . Then —I Φ is Σ^+j. Hence by the above,
(\/xey)—\Φ is Σ^+ x. It follows that -i(3xey)Φ is Σ j+ l 5 and hence that

ΠH1. D

P. The Language

We develop, within set theory, a formal "language", J5fκ, which consists of an
analogue of LST (which analogue we shall denote by Z£\ together with an individ-
ual constant "symbol" for each set (in V). The purpose of the subscript V in "J2V"
is to indicate that these constants are present. Later on we shall consider sub-
languages S£x of S£v for any set X, where we only allow constants which denote
elements of X. In particular, «Sf0 is the same as j£f, the formal analgoue of LST.

It should be emphasised that the entire development of S£v takes place within
set theory. In particular, all the "symbols" and "formulas" of JSfF will be sets. We
shall require that the various syntactic and semantic notions of S£v have certain
absoluteness properties, and in order to see that this is the case we shall need to
examine the logical complexity of the (real) LST formulas which define the various
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notions of <£v. So, as we proceed with our development of <£γ within set theory,
we shall make regular metamathematical digressions to examine the logical struc-
ture of the various notions. To try to minimise any confusion, we shall use lower
case Greek letters φ,φ,θ,... to denote "formulas" of S£γ (with upper case Greek
letters Φ, Ψ, Θ,... for formulas of LST as before). However, since JS? will have the
same structure as LST, it would be an unnecessary complication to use separate
symbols for the variables and connectives of these two languages, so we shall leave
this distinction to the reader, who will always be aided by the context.

The basic symbols of 5£v will be certain sets, and the formulas of 5£v will be
certain finite sequences of these sets. Accordingly, we must begin by establishing
some notations concerning finite sequence. (Incidentally, the exact fashion in
which S£v is defined is not important, and we have just chosen a reasonably
convenient method.)

The sequence with domain {0} and value x is denoted by <x>. The finite
sequence with domain {0, ...,n — 1} and values x 0 , . . . , * „ _ ! is denoted by
<xO5 ••• 5X11-1 >• (Notice that <x 0 , . . . , xn_ x> is not the same as the n-tuple
(x 0 , . . . , xn-ι).)

If 5, t are sequences, s^t denotes the concatenation of s and ί, i.e. if

s = < x o , . . . , x π - 1 > and t = <y0, •••, ym-ι>, then

If s is a finite sequence, | |s | | denotes the greatest element of dom(s), i.e.
|| 51| = d o m ( s ) - 1.

The variables of the language 5£γ are the sets (2, π), for neω, and we shall
denote (2, n) by the symbol vn.

Let Vbl(x) be the following LST formula:

[x is an ordered pair] Λ [(X)0 = 2] Λ [(X)1 is a natural number].

Clearly,

Vbl(x)«-»x is a variable of Z£v.

In the above equivalence, note the use of the symbol x. Vbl is an LST formula, and
x is a variable of LST. Being a variable of LST, x denotes a set. Vbl (x) says that
the set denoted by x has the form that we have decided to refer to as a "variable"
of <£y. With a little experience, any initial difficulties the reader may encounter due
to points such as this should be easily overcome.

For each set x, J£v has an individual constant symbol, namely the set (3, x),
which we shall denote by x.

Let Const (x) be the LST formula:

[x is an ordered pair] Λ [(X)0 = 3].

Clearly,

Const (x) <-• x is a constant of ££v.
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The primitive formulas of <£v are the sequences of the forms

<0,4,x, jU> and <0, 5, x, y, 1>,

where x and y are variables or constants of S£v. The sequence <0, 4, x, y, 1> will
be denoted by (x e y\ and the sequence <0, 5, x, y, 1> by (x = y). (Thus we are
using the number 0 to correspond to the open bracket symbol of LST and the
number 1 to correspond to the close bracket symbol. The number 4 indicates a
membership formula, and the number 5 indicates an equality formula.)

Let PFml(x) be the LST formula:

[x is a function] Λ [dom(x) = 5] Λ [X(0) = 0] Λ [x(l) = 4 v x(l) = 5]

Λ [Vbl(x(2)) v Const (x (2))] Λ [Vbl(x(3)) v Const (x (3))]

Λ [ X ( 4 ) = 1 ] .

Clearly,

PFml (x) <-• x is a primitive formula of 5£v.

9.1 Lemma. The LST formulas Vbl (x), Const (x), PFml (x) are all Σ o (when written
out fully in LST).

Proof Immediate. D

The formulas of S£v are built up from the primitive formulas by means of the
following schemas:

(φ Λφ) = <0,6}~φ~ψ

where φ, φ are formulas of <£v and u is a variable of ££γ. (Note again the use of
0 and 1 as brackets, with the numbers 6,7, 8 indicating the operations of conjunc-
tion, negation, and existential quantification, respectively.)

We shall presently write down a Σ1 formula of LST which says "x is a formula
of S£γ\ But before we can do this we require several preliminary notions.

The following LST formula, Finseq (x), says that "x is a finite sequence":

[x is a sequence] Λ (V u e dom (x)) [u is a natural number]

Λ (3 u E dom (x)) (Vue dom (x)) [uev v u = v].

9.2 Lemma. The LST formula Finseq (x) is (when written out fully in LST) Σ o .

Proof All we need to observe is that expressions such as

(Vuedom(x))[. . .w.. .]

can be replaced by

which is Σ o by 8.8. D
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We now write down LST formulas which describe the construction of the
"formulas" of Sev.

Let Fe(θ, x, y) be the LST formula

Finseq(0) Λ [dom(0) = 5] Λ [θ(0) = 0] Λ [0(1) = 4] Λ [θ(2) = x]

Clearly, if x, y e Vbl u Const, then

Fe(0, x, y)<-»0 is the j£?F formula ( x e y ) .

Let F = (0, x, y) be the LST formula

Finseq(0) Λ [dom(0) = 5] Λ [0(0) = 0] Λ [0(1) = 5] Λ [0(2) = x]

= y]Λ[θ(4)=l].

Thus if x, y e Vbl u Const, then

F= (0, x, y)<-> 0 is the 5£v formula (x = y).

Let FA (0, φ, φ) be the LST formula

Finseq(0) Λ Finseq(φ) Λ Finseq(^)

Λ [dom(0) - dom(φ) + dom(φ) + 3] Λ [0(0) = 0] Λ [0(1) = 6]

Λ [0(| |0 | |) = 1] Λ (V*edom(φ))[0(i + 2) = φ{ΐ)}

A (VϊEdom(ι/O)[0(dom(φ) + i + 2) = φ(ϊ)].

Thus if φ, φ e Fml, then

FA (0, φ,φ)<^θ is the 5£v formula (φ Λ φ).

Let F_, (0, <p) be the LST formula

Finseq(0) Λ Finseq(φ) Λ [dom(0) = dom(φ) + 3] Λ [0(0) - 0]

Λ [0(1) = 7] Λ [0(| |0 | |) = 1] Λ (Vi6dom(φ))[θ(i + 2) = φ(z)].

Thus if φ e Fml, then

F-, (0, φ) <-+ θ is the jSfF formula (—i φ).

Finally, let F3 (0, u, φ) be the LST formula

Finseq(0) Λ Finseq(φ) Λ [dom(0) = dom(φ) + 4] Λ [0(0) - 0]

Λ [ 0 ( 1 ) = 8 ] Λ [ 0 ( 2 ) = M ] Λ [ 0 ( | | 0 | | ) = 1 ]

Λ (V i G dom(φ)) [0(ί + 3) = φ (/)].
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Thus if φ e Fml and u e Vbl, we have

F3 (θ, u,φ)<^θ is the 5£v formula (3 u φ).

9.3 Lemma. The LST formulas F e, F=, FA, F^, F3 are all Σ o (when written out fully
in LST).

Proof In view of the remark made in the proof of 9.2, this is clear from the nature
of the formulas concerned. D

Now, if φ is a formula of ££v, there must be a finite sequence φ0,..., φn of <£v

formulas such that φn = φ and for each i, φt is either a primitive formula or else
is obtained from one or two formulas in the list φ0,..., φt_ i by an application of
one of the schemas for generating formulas. The sequence \j/0,..., φn thus de-
scribes the way that φ is built up as a formula. We write down an LST formula,
Build (φ, φ) which says that φ is just such a sequence φo,...,φn. Build (φ, φ) is as
follows:

Finseq(^) Λ [^|^|| = Φ ] Λ (V i e dom (φ)) [PFml (ι/̂ )

v (3j, fc e 0 FA (φh φj9 φk) v (3j G 0 F n (^i9 ^ )

v (3jeO(3Meran(φ))(Vbl(u) Λ F 3 ( ^ , M , ^ ) ) ] .

9.4 Lemma. 77ze LST formula Build (φ, φ) is Σ o (w/zen written out fully in LST).

Proo/. The main point to check is that expressions such as

(V i e dom (φ)) (3j, k e ί) FA (φh φj9 φk)

are Σ o . Well, this one can be written as

(V i E d o m (φ)) (3j, k e ί) (3 a,b,ce r a n (φ)) [a = φiΛb = φ j / \ c

A c = φ k A FA(a,b,c)],

which is immediately recognisable as Σ o now. The other cases are handled simi-
larly. D

Clearly,

φ is a formula of <£v <-• (3/) Build (φj),

which presents us with a Σ x formula of LST to define the formulas of ££v. Now,
our main purpose in analysing the logical complexity of the syntactic notions of
(£v is to enable us to prove various absoluteness results. In the case of Σ o notions,

such as in Lemmas 9.1 through 9.4, there is no problem, since then 8.3 (i) guaran-
tees absoluteness for all transitive classes. But for notions which are not Σ o , such
as the notion of being a formula of i f , it is not enough to know that the concept
is Σ l 9 for that will only guarantee [/-absoluteness (see 8.3 (ii)). For full absolute-
ness we require (see 8.3 (iv)) an equivalent Tlι definition as well. Moreover (see 8.3
again), in order that any absoluteness results have the widest possible application,
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it is important that the equivalence of the Σι and Π 1 definitions be proved in the
simplest theory possible, thereby giving absoluteness for all transitive models of
that theory. We now develop such a theory: we call it Basic Set Theory (BS).

BS is the LST theory having the following axioms:

(1) Extensίonalίty. VxVy[Vz(z e x ^ z ey) ->(x = y)];
(2) Induction schema: V a [V x ((V y e x) Φ (y, a) -* Φ (x, a)) -• V x Φ (x, α)], where Φ

is any formula of LST with free variables amongst x, a;
(3) Pairing'. V x Vy 3 z V w [(w G Z) <-* (w = x v w = y)];
(4) l/nκwi: Vx 3y Vz[(z ey)^(3u e x)(z e u)];
(5) /rc/ϊmίy: 3 x [On(x) Λ (X # 0) Λ (Vy e x)(3 z e x)(y e z)];
(6) Cartesian Product: V x Vy 3 z V u [(w G Z) ̂  (3 a e x)(3fc e y)(w = (α, ft))];
(7) Σ0-Comprehension (schema): V α Vx 3 y V z [(z G y) <-• (z e x Λ Φ(a, z))], where

Φ(α, z) is a Σ o formula of LST.

Clearly, BS is a subtheory of ZF (i.e. all the axioms of BS are theorems of ZF).
Indeed, axioms (1), (4) and (5) are axioms of ZF, though in the present formulation
of the Axiom of Infinity we axiomatically guarantee the existence of an infinite
ordinal, rather than any infinite set as we did with ZF. Axioms (3) and (6), which
guarantee the existence of the unordered pair {x, y} and the Cartesian product
x x y of any two sets x and y, respectively, are easily proved theorems of ZF.
Axiom (7) is just the restriction of the usual Comprehension Axiom Schema to the
Σ o formulas of LST. In the absence of full Comprehension, we replace the Axiom
of Foundation of ZF by the induction schema (2).

Notice that BS allows for the construction of all finite sets, i.e. for any n,

BS(-Vx 1 . . .Vx / J 3yVz[(zey)^(z-x 1 v ... v z = xn)].

We now write down a formula of LST, Seq (w, a, n\ which says that u is the set
of all m-sequences of members of a for all m < n. Now, the "obvious" formula
which says this is:

(V x G ύ) (3 m e n) (x is an m-sequence of members of a)

A (V x) (V m e n) (x is an m-sequence of members oi a^xeu).

But this formula is Γ^, whereas we shall require a Σ x definition. (Though we shall
show that our Σί definition is in fact BS-provably equivalent to a U1 definition.)
We obtain our desired Σ x formula by regarding the members of the set u being
built up in stages, constructing first the 1-sequences, then the 2-sequences, and so
on. (The function / in the following formula enumerates these sets of finite se-
quences.)

Let Seq(w, α, ή) be the following formula of LST:

(3/) [Finseq (/) Λ (n is a natural number) Λ (dom (/) = ή)

A (u = \J ran(/)) Λ (Vΐ e dom (/)) (V x e/(ΐ)) (Finseq (x) Λ (dom(x) = i)

A (Vy G 0 (x (/) e a)) A (V i e dom (/)) (V j e i) (V x e/(/)) (V^eα)

It is easily seen that this formula is Σi (when written out fully in LST).



9. The Language S£v 37

9.5 Lemma. The LST formula Seq(w, a, ή) is Δ? s .

Proof. The only unbounded quantifier in the above formula is (3/). This quantifier
can, without any loss of generality, be restricted to range over the set of n-
sequences of finite sequences from a. (That is to say, if such an/exists, it will have
to lie in this bounding set.) Consequently, it is clear from the definition of BS that:

BS h(Vα)(Vne ω)(3 w)Seq(u, α, n).

But we obviously have:

BShVαVn VttVϋ[Seq(M,Λ,n) Λ Seq (ϋ, α, n)-• u= υ].

Hence,

BS h Seq(w, α, ή) <-+ [(n is a natural number) Λ V Z [Seq(z, a, ή) -> z = M]].

This proves the lemma, since the expression on the right of this equivalence is

We are now able to write down an LST formula Fml(x) such that:

Fml (x) <-• x is a formula of 5£v.

As we mentioned earlier, the obvious way to do this is by the formula

(3/) Build (*,/).

So let us take this as our formula Fml(x). By 9.4, Fml(x) is Σ x .

9.6 Lemma. The LST formula Fml(x) is Δf.

Proof Consider the quantifier 3/in the expression

(3/) Build (x,f).

We may clearly bind this quantifier by the set

Λ(x)= U n + 1ί U m + 1 ran(x)].
n G dom (x) n e dom (x)

(Because, as is easily seen,

(3/) Build(x,f) -+(3feA (x)) Build(*,/).)

Moreover, it is easily checked that

BShV x
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Hence

BS h Fml(x)<^Finseq(X)ΛVMVI;[Seq(u, ran(x), dom(x) + 2)

Λ Seq(u, w, dom(x) + 2) -• (3/e υ) Build(x,/)].

This provides us with a Π?s equivalent to Fml (x), so we are done. D

The above trick of finding a convenient bound for a quantifier will be used
frequently during our development of ££γ.

Given any class X, <£x is the "sublanguage" of S£v obtained by omitting from
Sev all constants z for z φX. We write if instead of i?0. Thus if is a formal
analogue of LST within set theory. We shall be particularly concerned with the
languages j£?M where u is a set.

Let Const (x, u) be the LST formula

Const (x) Λ (x)ί e u.

The LST formulas PFml (x, u) and Fml (x, u) are defined in exactly the same way
as the formulas PFml (x) and Fml (x) except that Const (x) is replaced everywhere
by Const (x, u). Clearly,

Fml (x, u) <r+ x is a formula of S£u.

By means of arguments as before, we have:

9.7 Lemma.

(i) The LST formulas Const (x, u) and PFml(x, u) are Σ o .
(ii) The LST formula Fml(x, u) is Δf. D

Our next task is to write down an LST formula Fr (φ, x) such that

Fr(φ, x)<->Fml(φ) Λ [X is the set of variables occuring free in φ].

Now, given a formula φ, how would one go about checking whether a set x is the
set of free variables of φ? One way would be to concentrate on a sequence ψ for
which Build (φ, ψ), and proceed along the members of φ, keeping track of the free
variables at each stage. This approach leads to the following formula, which we
take as our Fr(φ, x):

3ιA3/[Build(φ, φ) A Finseq(/) Λ (dom(/) = dom(φ)) A (X =/( | |/ | | ))

Λ (V i G dom (/)) [(3j, k G i) [FA (φh ψj9 φk) A (f(i) = f(j) u/(k))]

v (3j eW^iφ^φj) A (f(ϊ) =f(j))]

v (ljci)(3uemn(φ))[\b\(u) A F3(φhu,φj) A (f(i) =f(j) - {u})}

v [PFmlOAO Λ [[Vbl^Oi) Λ Vbldφdi) Λ / ( 0 = {{ψdiΛ^}]

v [Vbl((ιAf)2) Λ Const ((φds) Λ / ( 0 = {(Φi)2}]

v [Const ((φ^) A VbHOWa) Λ/(Ϊ) = {{ψ^}]

v [Const #02) A Const #03) */(0 = 0]M
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Clearly, the LST formula Fr(φ, x) is Σ x .

9.8 Lemma. The LST formula Fτ(φ, x) is Δ?s.

Proof. Clearly,

BShFr(φ,;c)<->[Fml(φ) Λ Vz[Fr(φ, z) -+ z = x]].

This gives us a Π®s characterisation of Fr (φ, x). D

We now formulate an LST formula Sub (φ\ φ, v, t\ which will say that φ' and
φ are formulas of jSfF, t; is a variable, ί is a constant, and φ' is the result of
subsituting t for every free occurrence of υ in φ. To arrive at this formula, we adopt
a procedure similar to the one used above for Fr (φ, x). Pick a sequence φ such
that Build (φ, i/r). Proceed through t/f, substituting t for every free occurrence of υ
at each stage. If the quantifier v is ever encountered, delete any substitutions made
previously within the scope of this quantifier. In order to write this out in an
intelligible fashion, we consider first the restriction of Sub(φ\ φ, v, t) to primitive
formulas φ. Let S (φ\ φ9 v, t) denote this restricted formula. That is, let S (φ\ φ, v, t)
be the following LST formula:

PFml(φ') Λ PFml(φ) Λ Vbl(ι ) Λ Const (ί)

Λ [[F= (φ, φ 2 , φ3) A [[φ2 φ υ Λ φ3 φ v A (φf = φ)]

v [φ2 = v A φ3 Φ υ A F= (φf, t, φ3)]

v [φ2 Φ υ A φ3 = v A F= (φ\ φ2, ή]

v [φ2 = v A φ3 = v A F= (φ\ t, ί)]]]

v [Fe(φ,φ2,φ3) A [ ]]],

where the expression denoted in the above is just as in the F= part, but
with Fe in place of F= .

Notice that S(φ\ φ, v, t) is Σ o . Let Sub(φ', φ, υ, t) be the following LST for-
mula:

Fml(φ') Λ Fml(φ) Λ Vbl(t ) Λ Const (ί) Λ 3 φ 3 θ [Build (φ, φ)

A Finseq(#) Λ (dom(β) = dom(φ)) A (Θ^Θ^ = φ')

A (Vie dom (φ)) [(3j, k e ί) (FA (φh ψj9 φk) A FA (θh θj9 θk))

v(3jeί)(F^(φhφj)AF^(θhθj))

v (3j G i) (3ue ran (φ)) (Vbl (M) A (U + V)

This formula is clearly Σ x . Moreover:

9.9 Lemma. The LST formula Sub(<p', φ, υ, t) is Δf.
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Proof. Clearly,

BS h Sub (φ'9 φ, v, t) <-• Fml (φ) A Vbl (υ) A Const (t)

which gives us the lemma at once, since the expression on the right of the above
equivalence is clearly Π? s . D

We are now able to define the notion of satisfaction ("truth") for the languages
JSfM. We shall write down an LST formula Sat(w, φ) such that

Sat(w, φ)<^>φ is a sentence of JS?U which is true in the structure <w,e>
under the canonical interpretation (i.e. with x interpreting x for each
x in u).

The standard way to define satisfaction is as follows. Let/be a function with
domain ω such that /(0) is the set of all primitive formulas of S£u and, in general,
f(i + 1) is the set of all formulas of 5£u which are obtained from formulas in f(i)
by a single application of one of the three formula building schemas. Let g be a
function with domain ω such that g (ί) is the set of all formulas in/(i) which have
no free variables and which are true in <w,e>. Both / and g can be defined by
simple recursions. The function g then provides us with all the sentences of 5£u

which are true in <u,e>. (The function / is required in order to handle negation
in passing from g (ί) to g (i + 1).) Our formula Sat (w, φ) will be obtained by consid-
ering the above process taken sufficiently far to check whether φ is in g (/) or not,
when ί is chosen so that φ ef(ι).

Let E(φ, u) be the following LST formula:

(3xj6M)[(xey) Λ Fe{φ,x, y)] v (3xeu)F=(φ,x,x).

Clearly, E (φ, u) says that φ is a primitive sentence of S£u which is true in the
structure <w,e>. Provided that we are careful when we write it out in LST, the
formula E (φ, u) is Σ o . For example, in rendering the clause (3 x e u) F= (φ, x, x) in
LST we must proceed thus:

(3 x G u)(3 y e mn(φ)){y = x A F=(φ,y,y)).

It should now be clear that E(φ, u) is Σ o .
The following LST formula, S (u, φ), expresses in LST the notion that φ is a

sentence of 5£u which is true in <w,e>. (However, as S(u, φ) will not be Σ l 9 this is
not our sought after formula Sat (w, φ\ but rather a precursor to it.)

(u Φ 0) Λ Fml(φ, u) A 3/3^[Finseq(/) Λ Finseq(gf) Λ (dom(/) =

Λ (φeg(\\g\\)) A Vφ(ψ e / ( 0 ) ~ P F m l ( ψ , u)) A Vψ(ψ εg(0)~E(ψ9u))

A (V; e dom (/)) (V i ej) (V φ) [φ ef(i + l)~{ψ ef(ΐ}) v (3 θ, θ' ef(ί)) FA (ψ, θ, θ')

v (3 θ 6/(0) F-, (ψ, θ)v(3θ 6/(0) (3 v e ran (φ)) (Vbl (υ) A Fe (ψ, v, θ))] A
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(V7 e dom(g))(Vi ej)(Vψ)[ψeg(i + 1)<->(<A e g(/))

v (3 θ, θ' e ff (0) F Λ (ιA, 0, 0') v (3 θ e/(0) (0 φ # (ι) Λ F_, W, 0))

v (3 θ ef(ί)) (3VG ran (ψ)) (3xeu)(3θ'eg (i)) [Vbl (ϋ) Λ F3 (ι/r, v, 0)

It is easily seen that the above formula does define the satisfaction relation. But
it is not a Σt formula. The problem is the quantifier (Vψ), which appears four
times, and the unbounded quantifiers involved in the Δ?s formula Sub (θ\ θ, v, x),
which occurs inside the scope of a number of other quantifiers. However, it is
easily seen that the truth of S (M, φ) is not affected by binding all unbounded
quantifiers involved (including the 3/ and the 3 g) by the set

w(iι, φ) = ( U m + 1 P u feIi e ω} u {i |x G u}])
me dom (φ)

u ( y .+ !(• y ™+1[9u{ t; ί |ieω}u{x|χeu}]]).
n e dom (<JO) m e dom (<p)

(The first set in the above union includes all ££u formulas of lengths at most that
of φ, and the second set includes all finite sequences of such formulas whose
domain is at most dom (φ)) Let Sr (u, φ, w) be the formula obtained from S (w, φ)
by binding all quantifiers not already bound by w. Then for Sat (u, φ) we take the
following LST formula:

3w3x3y3a3b3t[(a = {X\XGU}) A ("t = ω") Λ (b = { i ^ i e ί } )

Λ Seq (x, 9 u a u b, dom (φ) + 1) Λ Seq (y, x, dom (</>) +1)

Λ(W = xvy) Λ S'(u,φ,w)]9

where the formula "ί = ω" is written out thus:

On(ί) Λ lim(ί) Λ (Vieί)[(3jeO(i =7 + 1) v (Vjeί)(/ +;)].

By our previous remarks, Sat (M, φ) is equivalent to S (M, φ), so indeed

Sat(w, φ)^> φ is a sentence of JS?M which is true in <W,G> .

Moreover, Sat(u, φ) is clearly Σ l 5 and in fact:

9.10 Lemma. The LST formula Sat(w, φ) is Δf.

Proo/. Clearly

BS \—i Sat (M, φ ) p π [Fml(φ, M) Λ Fr(φ,0)] v ] θ [ F π (0, φ) Λ Sat (M, 0)].

Hence ~Ί Sat(w, φ) is Σf, whence Sat(w, φ) is Πf. D

We often write NMφ instead of Sat(w, φ).
As we have remarked earlier, the collection of sets which constitute the "for-

mulas" of if provides us with an analogue of the formulas of the genuine language
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LST. Given any formula Φ of LST we can construct a set φ which, according to
the "syntax" of JSf developed above, has the same logical structure as Φ. In this
context, the following result indicates how the formal notion of satisfaction just
defined corresponds to the genuine notion of truth.

9.11 Lemma. Let Φ(v0,..., vn) be any formula of LST, and let φ(v0, ...,vn)be its
counterpart in 5£ (in the sense described above). Then

Proof By induction on the construction of Φ and φ. (The easy details are left as
an exercise for the reader.) D

Notice that the above result is a theorem schema for ZF, which takes us from
a given LST formula Φ and the genuine notion of truth to a "formula" φ of j£? and
the mathematically defined notion of satisfaction.

By analogy with LST, we define a "Levy hierarchy" for the formulas of S£v.
For reasons of technical convenience we only allow for single quantifiers rather
than blocks of like quantifiers as we did for LST.

A formula φ of 5£v is said to be Σ o (or Πo) if, whenever a quantifier 3 vn occurs
in φ it does so in the context

3vn(vnGX Λ ...)

for some x e Vbl u Const. The following LST formula, FmlΣ o (φ), clearly defines
this notion:

Fml(φ) Λ (Vί edom(<p))[(<pi = 0 Λ φi+1 = 8 Λ Vbl(φI + 2))

-+(φi + 3 = 0 Λ φi + 4 = 6 Λ φi + 5 = 0 Λ φi + 6 = 4

Λ φi+Ί = φi+2 A (Const(φ ί + 8 ) v Vbl(<pί+8)) Λ φi + 9 = 1)].

Notice that except for the part Fml(φ), this formula is Σ o . Likewise for the LST
formula FmlΣ o (φ, u\ which says that φ is a Σ o formula of S£u. The following lemma
is immediate:

9.12 Lemma. The LST formulas FmlΣ o(φ) and FmlΣ o(φ, u) are Δ? s . D

A formula φ of 5£v is said to be Σ1 if it is of the form 3 vnφ, where φ is Σ o , and
is said to be H1 if it is of the form —i 3 vnφ where φ is Σ o . In general, an 5£v formula
is said to be Σn+ ί if it is of the form 3vmφ where φ is Π n , and is said to be Π π + 1

if it is of the form ~ Ί φ where φ isΣn+ί.

9.13 Lemma. Fix n > 1. Then there are Aψ formulas FmlΣn(φ), FmlΠ n(φ),
FmlΣ"(φ, M), Fml π "(φ, u) o/LST such that:

F m l Σ n (φ) <-• φ is a Σ n formula of S£v\

F m l Π n ( φ ) <^φ is a Π π formula of ££v\

F m l Σ n ( φ , w)<->φ is a Σn formula of S£u\

F m l Π n (φ, u) <-• φ is a ΠM formula of <£u.
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Proof. These are all more or less the same as FmlΣ o(φ), considered earlier. For
example, FmlΣ l(φ) is:

Fml(φ) Λ [φ0 = 0 Λ φγ = 8 Λ Vbl(φ2)

Λ (Viedom(φ))[(i > 2 Λ φt = 0 Λ φi+ί = 8 Λ Vbl(φ i + 2))

-»(φ i + 3 = 0 Λ φ ί + 4 = 6 Λ (p i + 5 = 0 Λ φi + 6 = 4 Λ φ i + 7 = φ i + 2

Λ (Const (φi+8) v Vbl(φι + 8)) Λ φi+9 = 1)]].

(As rc increases, the length and complexity of FmlΣ n(φ), etc. also increases, of
course, but the overall pattern is much the same.) D

Occasionally we shall wish to consider extensions of the languages S£u in which
there are a finite number of additional predicates. Specifically, let k be some
natural number and let A1 c un{1\ ..., Ak c un{k). The language <£u (λu . . ., Ak) has
the same structure as S£u except that there are the k extra predicate letters
Aί9...,Ak9 where At is n(i)-ary for each i. More precisely, for each i = 1,..., fc,
amongst the primitive formulas oi 5£u{Aγ,..., Ak) we allow the sequences

<0, 8 + i, x ί 9 . . . , x n { ΐ ) 9 1>,

where x l 9 . . . , xπ(f) e Vbl u ConstM. We usually write A{ (x l 5 . . . , xπ(f)) in place of the
sequence <0, 8 + i, x l 5 . . . , xΛ(ί)J 1>. With this modification to the primitive for-
mulas, the development of the rest of the language S^U{AU . . ., Ak) proceeds exact-
ly as for j£?M. Consequently, all of the results obtained in this section for the
languages <£u hold in this more general situation. (Note that the interpretation of
S£U(AU . . ., Ak) in the structure <M,G, Λ U . . ., Λk} is the obvious, canonical one.)

We shall require the following formal analogue of the metamathematical
notion of absoluteness (Section 8).

Let φ (x) be any i f (Au . . ., Ak) formula. Let M, N be structures appropriate
for this language, M a substructure of N. We say that φ is U-absolute for M, N
iff

(VxGM)(NMφ(x) implies NNφ(x)).

We say that φ is D-absolute for M, N iff

(V x G M)(NN φ (x) implies NM φ (x)).

We say that φ is absolute for M, N iff it is both (7-absolute and D-absolute for
M, N. Analogous to 8.3 we have:

9.4 Lemma. Let M, N be !£ (Au . . ., Ak) structures, M a substructure of N. Sup-
pose further that both M and N are transitive sets. Let φ (x) be a formula of

AA
(i) If φ is Σ o , then φ is absolute for M, N.

(ii) If φ is Σ l 5 then φ is U-absolute for M, N.
(iii) If φ is Π 1 ? ί/ierc φ is D-absolute for M, N.

Proof. Similar to the proof of 8.3. (The details are left as an exercise for the
reader.) D
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The following lemma concerns the relationship between the two languages
LST and if, and is related to Lemma 9.11.

9.15 Lemma. Let Φ(x) be a Σ o formula o/LST, and let φ(x) be its counterpart in

&. Then

ZF h "For any transitive set M, (Vx e M) [Φ (x) <-• NM φ (x)]".

Proof. By an easy induction on the length of Φ. (The details are left as an exercise
to the reader.) •

We shall make considerable use of 9.15 and generalisations thereof in
Chapter II.

10. Definability

Consider a structure of the form

where M is a non-empty set and At c Mn{i) for i = 1,..., k. (In such cases we often
omit specific reference to e, as is always the case with = , of course.) By the
M-language we mean the language 5£M{AX,..., Ak) introduced at the end of the
previous section. As we indicated there, all of the various definitions and results
of section 9 hold for M-languages. For instance, there is a Δ? s formula Sat (M, φ)
of LST such that Sat (M, φ) iff φ is a sentence of the M-langugage which is true
in M (under the standard interpretation). Note that we usually write NM φ instead
of Sat(M, φ).

Let N £ M. A set # c Mm is said to be Σj1 (JV) iff there is a Σn formula
φ (v0,..., yw_ x) of the M-language, whose constants are all members of the set
{a I a e AT}, such that

Similary for Uf(N). A set R <= Mm is A™(N) iff it is both Σ%(N) and Π^(iV).
We write Σj1 instead of Σ? (0) and ΣΠ(M) instead of Σ^ (M). Similarly for Π

and Δ.
A set R c M m is said to be M-definable iff it is Σπ (M) for some n.
Notice that the above notions are all formally defined within set theory, and

are not metamathematical notions. For example, there is an LST formula
Φ{R,M) such that

Φ (R, M) <-» M is a non-empty set Λ R C M Λ R is M-definable.

(As an exercise, the reader may like to investigate the logical complexity of such
a formula.)
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It ψ is a formula of the M-language, the interpretations (in M) of the constants
x which occur in φ are called the parameters of φ.

Let A be some class of m-tuples, M a given structre. We say that the class A
is Σj1 (AT) iff A n Mm is Σj1 (JV), etc.

A related notion is the following. Let ϊF be a class of structures of the form
M = <M, e, A!,..., 4k>, where /c is fixed and each 4 f is rc(i)-ary, for fixed rc(i),
ί = 1,..., k. Let ,4 be a class of m-tuples. We say that A is uniformly Σj1 for M G $F
iff there is a single Σn formula φ (v0,..., vm- J oϊ & (Au ..., Ak) such that for each

Similary for uniformly Πj 1 and uniformly A™. We shall presently give some exam-
ples of these important (to us) concepts. In order to do so, however, we require
some preliminary ideas.

A set M is said to be amenable iff it is transitive and satisfies the following
conditions:

(i) (Vx,

(ii) (Vx

(iii) ω G M;

(iv) (\/x,yeM)(xxyeM);

(v) if R SΞ M is Σ 0 (M), then (Vx e M)(R nxeM).

(Intuitively speaking, an amenable set is thus a transitive "model" of the theory BS
of section 9. The idea behind this definition is that it will enable us to prove, within
set theory, semantic analogues of the logical complexity results of section 9.)

Notice that if M is amenable, then x G M whenever x c M is finite.

10.1 Lemma. The predicate "x is finite" is uniformly Σf for amenable M.

Proof Let Φ(x, n,f) be the Σ o LST formula

(n is a natural number) A (/: n <-• x).

Clearly, for any set x,

x is finite <-• 3 n 3fΦ (x, w, / ) .

Let φ be the analogue to Φ in JS?. We prove that for any amenable set M,

which proves the lemma, of course.
Let M be amenable, xe M. Suppose first that

tM3n3fφ(x,n,f).

Then by 9.11,
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But Σ1 formulas of LST are [/-absolute for transitive classes. Hence,

3n3fΦ(x,nJ),

as required. Now suppose that this last formula is true. Pick n, f such that

Φ(x,nJ).

Since M is transitive and ω e M we have ω c M, so certainly neM. Hence
xxne M. But / ^ xxn and/is finite, so/e M. Then by the D-absoluteness of all
Σ o formulas of LST, we have

[Φ(x,n,f)]M.

Thus

[3n3fΦ(x,nJ)]M,

and by 9.11 we conclude that

\=M3n3fφ(x,n,f),

and we are done. D

If R(x0,..., xm) and S(xθ9..., xm) are relations on M, then, extending our
convention that R(x0,..., xm) means (x 0,..., xm) e #, etc., we write:

( # Λ S ) ( x θ J . . . 5 ^ J iff ( x θ 9 . . . , x J e ,

( « v S ) ( x 0 xj iff (xo xJeRuS,

(-iΛ)(xo,...,xJ iff (% . . ,xJeM m + 1 -i?,

(3 x0R)(xt,..., xJ iff (3 x0 e M)((x0, xl9..., x J e R),

((3 x 0 G z) R)(z, x l 9 . . . , x j iff (3 x0 e z)((x0, Xi,..., x J e Λ),

etc.

By means of, in particular, quantifier contraction along the lines of 8.9, we can
easily prove:

10.2 Lemma. Let M be an amenable set, and let M = <M, Au . . ., Ak}. Let JR, S be
m-ary relations on M.

(i) IfR, S are Σ%(N), so too are R Λ S, R v S,~i R.

(ii) //ΛisΣ|?(ΛO,-ιΛisΠ?(JV).

(iii) IfR is Π? (JV), -i Λ is Σ?(Λ0

(iv) Λ is A (̂AT) î fooί/z Rand^R are Σ?(N).

(v) / / £ , 5 are 1^+1 (AT), so are i^ Λ S, R V 5, 3xR, (3xez)R.

(vi) //Λ, S are Π? + 1 (N), 50 are R Λ S, R v S, Vx#, (Vxe z)R.

(vii) //Λ, S are Δ^+ x (N), so are R Λ S, R v S,-ι R. D
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The following simple lemma employs the same trick used in the proofs of both
9.8 and 9.9.

10.3 Lemma. Let M be an amenable set, and let M = <M, Λί9..., Λk}. Let
f^MxMbe a function. (We say f is a function over M in this case.) Iff is Σ™(N)
and dom(f) is Π™(N), then both f and dom(f) are A™(N).

Proof. Since

x e dom(/) ^ 3 y [y =f(x)],

we see at once that dom (/) is Σj1 (N). To see that / is Πjf (JV), note the equivalence

y =/(*)<->[x E dom(/)] Λ\/Z[Z =f(x) -+y = z\. D

10.4 Corollary. Let M be as above. If f.M -> M is Σjf (N), then f is in fact

Δ?(Λ0 •

10.5 Lemma. Let M be amenable, and let M = <M, A l 9 . . . , Ak}. Let n^\ and let
fbe a Σ j 1 (AT) m-ary function over M (ί.e.f c M m + x ) . Lei gbeaΣ™ (N) unary function
over M and let R be a Σ™(N) unary relation on M. Then h, S are Σ j 1 (JV), where:

(i) ft is the m-ary function defined by

(ii) iS is the m-ary relation defined by

S(x)~R(f(x)).

Proof. By 10.2 and the observations

3z[y = g(z) A Z =/(X)] ,

S(x)^3z[R(z) A z=f(x)]. D

10.6 Lemma. Let M be amenable, and let M = <M, Al9..., Ak}. If R(x) is a
Σjf (N) unary relation on M, so too is Q (x), where

Q{x)<r+[χ is an ordered pair A R((X)0)].

Similarly for (x)l9 etc. (We usually write R((x)0) in place of Q(x) as defined above,
etc)

Proof Q (x) <-> x is an ordered pair Λ (3 u e x) (3 y e u) (y = (x)0 A R (y)). D

10.7 L e m m a ( C o n t r a c t i o n of P a r a m e t e r s ) . Let M be as above. Let n^\, and let
R be aΣn (M) relation on M. Then there is a single element p e M such that R is

Proof.. Let R be Σ?({ P l , . . . ,p m }) . Set

Using the method of 10.6 it is easily seen that R is ΣjJ1 ({/?}). D
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We note also the following consequence of 9.11:

10.8 Lemma. Fix n^\. Let M be amenable, and let M = <M, Au...9 Λk). IfR (z)
is a Σj1 (AT) relation on M, there is a ΣjJ (JV) relation S (x, z) on M such that

R(z)^(3x1eM)(\/x2eM)(3x3eM)...(-xneM)S(x,z). D

For later use we make the following definitions. Let M = <M, Aί9..., Ak),
N = <JV, Bί9..., Bk}. We say that N is an elementary substructure of M, and write
N -< M, iff N c M, Bt is the restriction of At to N for i = 1,..., /c, and for all
s e n t e n c e s φ o f ££N (Aί9...9 Ak).

hNφ iff NMφ.

(Notice that the sentence φ may contain constants denoting elements of N.) For
n ^ 0, we say that N is a ΣΛ elementary substructure of M, and write N ̂ <n M, iff
the above holds when φ is restricted to be a Σn sentence. We shall write X -< M
to mean that X is the domain of a (necessarily unique for X) elementary substruc-
ture of M, and analogously X <nM. We write π: N -< M (respectively π : N < n M )
iff π is an isomorphism from N to an elementary (respectively Σn elementary)
substructure of M.

ίί. Kripke-Platek Set Theory. Admissible Sets

We have already worked with one sub theory of ZF, namely the Basic Set Theory,
BS. In this section we consider another, much stronger subtheory: Kripke-Platek
Set Theory, KP. This is a particularly important subtheory of ZF for various
reasons. One reason, of relevance to us, is that KP is the weakest subtheory of ZF
which suffices for the construction of the constructible hierarchy of sets, intro-
duced in Chapter II.

The theory KP is the LST theory whose axioms are the axioms of BS, together
with the Σ o Collection Schema:

where Φ is a Σ o formula of LST.
By an admissible set we mean an amenable set M (see section 10) such that for

any Σ o (M) relation R c M x M, if

(VxeM)(3yeM)R(y,x)

then for any ue M there is a v e M such that

(Vxeu)(3yev)R(y,x).
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Clearly, the notion of an admissible set is related to the theory KP in the same way
that the notion of an amenable set is related to the theory BS (i.e. admissible sets
are transitive "models" of the theory KP.)

For K an uncountable cardinal, we define

Hκ = {x\\ΊC{x)\<κ).

Using the following lemma, we shall be able to show that Hκ is an admissible set
for any uncountable cardinal K.

11.1 Lemma. Let φ(x) be a Σ x formula of5£. Let TC, λ be uncountable cardinals,
λ < K. If x eHλ are such that NH φ(x), then NH;ιφ(x).

Proof Let

W=ΎC({x}).

Clearly, WE Hλ. Pick M < Hκ with W^ M and \M\ = \ W\ < λ. (That this can
always be done follows from the Lowenheim-Skolem-Tarski Theorem. We as-
sume the reader is familiar with this theorem.) Let

π: M ^ N

be the collapsing isomorphism (see 7.1), where N is transitive. Then |JV| = \M\
< λ, so N e Hλ and N <= Hλ. Now, π-u.N<Hκ and (see 7.1) π \ W= id f W, so
¥Nφ(x). But φ is Σ l 5 so by 9.14, φ is ^/-absolute for N,Hλ. Thus NHAφ(Jc), as
required. D

11.2 Lemma. Ifκ is an uncountable cardinal, then Hκ is admissible.

Proof It is easily seen that Hκ is amenable for any uncountable cardinal K.
(Exercise: Check this.) Moreover, it is also easy to see that in the case where K is
regular, Hκ is in fact admissible. We are therefore left with proving admissibility
in the case where K is singular.

So assume that K is singular, and let R c Hκ x Hκ be Σ o (Hκ). We must show
that if

(VxeHκ)(3yeHκ)R(y,x)

and if u e Hκ, then there is a υ e Hκ such that

Q/xeu)(3yeΌ)R(y,x).

Let φ (y, x, a) be a Σ o formula of $£ and a e Hκ be such that

Let u E Hκ be given. We seek a v e Hκ such that

NH (VxEU)(3yEϋ)φ(y,x, a).
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Let

w=τc({u,ά}).

Then We Hκ, so as K is singular there is a regular cardinal λ <κ such that We Hλ.
Now, by the assumptions on R,

So for all x e Hκ,

So by 11.1, for all xeHλ,

Thus

ϊHλ\/x3yφ(y,x,a).

But λ is regular, so as we observed above, Hλ is admissible. Thus asue Hλ, there
is a v e Hλ such that

\=HΛ(Vxeύ)(3yeΰ)φ(y,x,$).

But the sentence involved here is Σ o , and hence (by 9.14) absolute for Hλ, Hκ. Thus

and we are done. D

We shall obtain a few elementary results about the theory KP. Our first two
show that KP entails stronger versions of the Collection and Comprehension
Axioms than were allowed for in the axioms.

11.3 Lemma (Σ1 -Collection Principle). Let Φ(y,x, a) be a Σί formula o/LST.
Then

KP\-Va\yx3yΦ(y9x9ά)^>Vu3υ(Vxeu)(3yeυ)Φ(y9x,ά)].

Proof. Let Ψ(z9 y9 x, a) be a Σ o formula of LST such that

KP h Φ(y9 x, ά)^3zΨ{z, y9 x9 a).

(By 8.9, such a formula can always be found.) Argue in KP from now on.
Let a be given, and assume

Then

V x 3 y 3 z Ψ (z, y, x, a).
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Hence

Vx3wy((w)0,(w)i,x,<$).

Given u now we must find a v such that

(yxeu)(3yeυ)Φ(y,x,a).

But by 8.8, the formula Ψ((w)θ9 (w)l5 x, α) is Σ o , so by Σ0-Collection there is a t
such that

Let ϋ = U(Jί . Then

(Vxeιι)(3yet;)(3z)!P(z,;y,x,a).

Hence

(Vxew)(3yeι;)Φ(y, x, 3),

as required. D

11.1 Lemma (A1 -Comprehension Principle). Let Φ(z, a) be a Afpformula o/LST.
Then

KPhVαVjc]yVz[ze^2exΛ Φ(z,a)].

Proof. By 8.9 we can find Σo formulas Θ, Ψ of LST such that

KP\-Φ(z9ά)++3vΨ{υ,z,ά).

We argue in KP from now on.
Let a, x be given. We seek a y such that

Λ Φ(z,ά)].

Now,

Vz[Φ(z,α) v - i Φ(z,a)].

Hence

Vz3i?[?P(t;,z,a) v - ι θ ( i ; , z , a ) ] .

By Σ0-Collection there is thus a set u such that

(*) (Vz e x)(3 υ e u) [ψ(υ, z, a) v i θ(r, z, α)].

By Σ0-Comprehension, let

y = {z G x I (3 υ e u) Ψ(v, z, a)} .

We finish by showing that

y = {zex|Φ(z,α)}.
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Certainly, for any z e x ,

(3υe u)Ψ(υ, z,ά)->3υ Ψ{v, z, a)

<r+Φ(z,ά),

so what we must prove is that for any z ex,

Φ(z,a)->(3i?eκ)y(ι;,z,a).

By (*), we know that there is a v e u such that

Ψ (v, z,ά)v—iΘ (υ, z, α).

But

Φ(z,a)^>\/vθ(v,z,ά).

Hence for the veu chosen above, we must have

Ψ(v,z,ά).

We are done. D

The following lemma is a useful alternative to the Σ t -Collection Principle
(11.3).

11.5 Lemma (Localised Σι -Collection Schema). IfΦ is a Σι formula o/LST, then

KP h Va [(Vx e u)3y Φ(y, x, a) -> 3 ι;(Vx e u)(3 y e v)Φ(y, x, a)].

Proof. Argue in KP. Assume

(Vxeu)3yΦ(y,x,ά).

Then

V x 3 y (x φ u v Φ (y, x, a)).

So by Σx-Collection there is a t; such that

(V x G u) (3 y G ϋ)(x φ w v Φ (y, x, α)).

But this is logically equivalent to

(VxGw)(3yeι;)Φ(y,x,α),

and we are done. D

The next lemma extends 8.6 (iv), (v) for the theory KP, and is a special case of
8.10.



11. Kripke-Platek Set Theory. Admissible Sets 53

11.6 Lemma, (i) IfΦ(y, x) is a Σt formula of LST, then (Vz e y) Φ(z, x) is Σ? p .
(ii) IfΦ(y, x) is a Πx formula of LST, then (3 z e y)Φ(z, x) is Π^p.

Proof We prove (i); (ii) then follows by taking negations. Let Ψ(w, y, x) be a Σ o

formula such that

By 8.9, such a Ψ can be found, of course. We argue in KP from now on.
We have:

(Vz e y)Φ(z, x)~(Vz ey)(3 w) ψ(w, z, x)

-> (3 ϋ)(Vz G y)(3 w G ϋ) !P(w, z, x) (by 11.5)

-• (V z G y) (3 w) !P (w, z, x) (by logic)

This provides us with the Σ x equivalent

(3v)(V z e y)(3w e v)Ψ (w, z, x)

to (VZG};)Φ(Z,X). D

Now, both in the case of BS and KP, as well as considering these as LST
theories, we introduced analoguous, set-theoretic notions defined within set theo-
ry proper, namely the notions of amenable and admissible sets, respectively. This
is to enable us to obtain, within set theory itself, "localised" analogues of some of
our later results concerning the logical complexity of the constructible hierarchy,
and related notions. By and large, the importance of this will become clear as we
progress through Chapter II, but in the meantime, by way of an illustration, we
formulate our next result not as a theorem schema for KP, as we did with the
previous four lemmas, but rather as a (ZF) theorem about admissible sets. Hope-
fully, the reader should have no difficulty in reformulating both the statement and
the proof of this lemma along the lines of the previous KP-results.

11.7 Lemma. Let M be an admissible set, and let F be a Σ1(Λί) function over M.
IfueMandu^ dom (F), then F \u,F"ue M.

Proof By 10.3, F \u is Aι(M). So by Δx-Comprehension (11.4),

Now,

so by 11.5 (or rather the consequence/analogue of 11.5 for admissible sets) there
is a v G M such that
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Thus F \u ^vxu. But w = υ x u e M, by the Cartesian Product Axiom. Hence

F \u = wn(F \u)eM.

By Σ0-Comprehension now,

F" u = v n {y \ (3 x e u) [(y, x) e F \ u]} e M. D

So far we have stated results either as theorem schemas for KP or as theorems
within ZF about admissible sets. It is convenient to state the next result as a
theorem schema in terms of classes (as we often do for ZF). Thus, a Σ^ p class is a
class of the form

{x\Φ(x)}

where Φ is a Σ^ p formula of LST, etc. And a Σ™ function over V is a class of the
form

{(y,*)\Φ{y,*)}>

such that Φ is a Σ x formula of LST and

11.8 Lemma (The Recusion Theorem). Let G be a total, (n + 2)-ary, ΣY function
over V. Then there is a total, (n + l)-ary, Σ^ p function, F, over V such that:

= G(y,x9(F(z9x)\zey)).

Proof Let Φ(σ, x) be the LST formula

["σ is a function"] Λ ["dom (σ) is transitive"]

dom(σ)(σ(y) = G(y9 x, σ

Since G is total, by 10.3, G is in fact a Δ^p class. Hence Φ is Δ^p. Thus Ψ(z, y, x)
is a Σ^ p formula, where

Claim 1. KP h (V x, y) (3 z) ̂  (z, y, jc).

Proof of claim: Argue in KP. Suppose otherwise. Pick x, y so that

-i(3z)Ψ(z9y9x).

By the Axiom of Foundation, we can ensure that y is chosen here so that

(Vy'ey)(3z)Ψ(z,y,x).
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By 11.5, we can find a set υ such that

(Vy' e y)(3σ e v)(/ e dom(σ) Λ Φ(σ, x)).

By At -Comprehension, set

w = v n {σ\Φ(σ, x)}.

Let ρ = (J w. Then ρ is a function. To see this, it clearly suffices to show that if
zedom(σ 1 )ndom(σ 2 ), where Φ(σl9x) and Φ(σ2,x), for σί9σ2ev9 then σγ(z)
= σ2 (z). But this follows from the nature of Φ bye-induction: if σt(zf) = σ2{z') for
all z' e z, then σ t t z = σ2 f z, and therefore

σΐ(z) = G(z,x,σ1 \z) = G(z,x,σ2 \z) = σ2(z).

And clearly, dom (ρ) is transitive. It is now clear that Φ (ρ, x). Let

τ = ρu{(G(y,x,ρ \ y)9 y)} .

Clearly, Φ(τ,x). But

τ(y) = G(y,x,ρ \y).

Hence Ψ(τ(y), y9 x), contrary to the choice of x, y. The claim is proved.
Let F be the class

{{z,y,i)\Ψ(z9y,£)}.

Claim 2. KP h F is a function.

Proof of claim: Just as the proof that ρ was a function in claim 1.
Clearly, F is a required for the lemma. D

11.9 Corollary. The function TC (transitive closure) is Σfp (and hence Δ^p). D

Using 11.9, together with an argument much as in 11.8, we get:

11.10 Lemma (TC-Recursion Theorem). Let Gbea total (n + 2)-ary, Σfpfunction
over V. Then there is a total, (n + ί)-ary, Σ^p function, F, over V such that

9x) = G(y9Z9(F(z9$)\zeTC{y))). •




