
Ports Asinorum

Chapter 0

On the Choice of Correct Notions
for the General Theory

This is a book on general recursion theory. The approach is axiomatic, and the
aim is to present a coherent framework for the manifold developments in ordinary
and generalized recursion theory.

The starting point is an analysis of the relation

{ά}(σ) ~ 2,

which is intended to assert that the "computing device" named or coded by a
and acting on the input sequence σ = (xl9..., xn) gives z as output.

The history of this notion goes back to the very foundation of the theory of
general recursion in the mid 1930's. It can be traced from the theory of Turing
on idealized machine computability via Kleene's indexing and normal form
theorems to present-day generalizations.

It was Kleene who in 1959 took this relation as basic in developing his theory
of recursion in higher types [83] subsequently it was adopted by Moschovakis
[112] in his study of prime and search computability over more general domains.

Indexing was also behind various other abstract approaches. We mention the
axiomatics of Strong [166], Wagner [169], and H. Friedman [33], and the com-
putation theories of Y. Moschovakis [113]. The latter theory, in particular, has
been very influential on our own thinking.

Historical development is one thing, conceptual analysis another: it is the
purpose of this introduction to present some theoretical grounds for basing our
approach to general recursion theory on the axiomatic notion of a "computation
theory". The discussion here is not part of the systematic development of the
theory of computation theories and so proofs will not be given, but we urge the
reader to go to the various sources cited.

0.1 Finite Algorithmic Procedures

We shall start out by analyzing how to compute in the context of an arbitrary
algebraic system

51 = (A9 σl9..., σl9 Sl9..., Sk}9

4 0 On the Choice of Correct Notions for the General Theory

where the operations σ and the relations S are finitary but not necessarily total.
Whenever necessary we assume that equality on A is among the basic relations S.

The notion of a, finite algorithmic procedure (fap) is one of a number of abstract
algorithms introduced by H. Friedman [34] and further studied by J. C.
Shepherdson [148]. A comparative study of fap's with inductive definability and
computation theories is carried through in Moldestad, Stoltenberg-Hansen and
Tucker [108, 109].

To be precise a fapP is an ordered list of instructions Il9..., Ik which are of
two kinds:

Operational Instructions

(i) ru := σ(rλ l, . . . ,

i.e. apply the Aw-ary operation σ to the contents of registers r λ l , . . . , rλm and replace
the contents of register rμ by this value.

(ii) ru := rλ,

i.e. replace the content of register rβ with that of rλ.

(iii) H,

i.e. stop.

Conditional Instructions

(iv) if S (r λ l , . . . , rλj then i else j ,

i.e. if the w-ary relation S is true of the contents of r λ l , . . . , rλm then the next
instruction is Ii9 otherwise it is /,.

(v) if rμ = rλ then i elsey,

i.e. if registers rβ and r λ contain the same element then the next instruction is Ii9

otherwise it is /y.
By convention, a fap P involves a finite list of registers r0, rl9..., rn_1 where

the first few registers rl9...,rm are reserved as input registers and r0 as output
register; the remaining registers rm + u . . . , rn.1 are called working registers.

A partial function / : Am -> A is called fop-computable if there exists a fap P
over the system % such that for all (al9..., am) if al9..., am are loaded into
registers rl9..., rm, respectively, and P applied, t h e n / (α l 5 . . . , am) = a iff P halts
and the content of the output register r0 is a.

The class of fap-computable functions over 31 is denoted by FAP(9ί).
The general notion of a fap may be too poor to support a reasonable theory of

0.1 Finite Algorithmic Procedures 5

computing over an algebraic system. There are two natural extensions of the
general notion: a finite algorithmic procedure with stacking (fap S) first defined
in [108], and a finite algorithmic procedure with counting (fap C) which first
appeared in Friedman's paper.

In a fap S we have two new operational instructions

(vi) s := (i;rθ9 . . . , r n _ 1) ,

i.e. place a copy of the contents of the registers r0,..., rn_1 as an w-tuple in the
stack register s together with the marker /; / is a natural number.

(vii) restore (r0, rl9..., rj_ l9 rό+l9..., rn_ 0,

i.e. replace the contents of the registers r0, rl9..., r ; _1 ? rj + l9..., rn_1 by those
of the last (i.e. topmost) w-tuple placed in the stack.

There is one new conditional instruction

(viii) if s = 0 then / else j,

with the obvious meaning.
In a fap S program stacking is only introduced through a stacking block of

instructions

s = (Ϊ ; r0,..., rn_i)

It,
goto k
*:rf := r0

restore (r 0, rl9.. .9r,-l9 rj+1,..., rn_λ).

The meaning of this block is as follows. Let the fap S contain the registers r 0 , . . . ,
rn_1 ? s. At the start of the block we store the information in r0,..., rn_ x on top
of the stack 5 together with its marker i. Then we use a sequence 7 i l ? . . . , Iiι to
reload some but not necessarily all of the registers r 0 , . . . , rn_x. This done, we are
ready for a subcomputation within the total program. For this we use the return
instruction goto k (which is an abbreviation of "if rβ = ru then k else fc"). Note
that Ik must be either an ordinary fap instruction outside all the blocks in the
program or the first instruction of any stacking block in the program. " * : r, :=
r 0 " is called the exit instruction of the block. This means that if the subcomputation
is successful, i.e. that it stops and leaves r0 non-empty, then place the content of
r0 into register r ;. We then restore the contents of r 0 , . . . , ry_i, rj + 1,.. .,rn_1 and
proceed with the main computation using the new content of r5 supplied by the
subcomputation.

Just as above we have a notion of fap ^-computable and a class of functions
FAPS(2I).

6 0 On the Choice of Correct Notions for the General Theory

In a fap C we add to the algebra registers r0, rl9... certain counting registers

cθ9 cu . . . which are to contain natural numbers. There are three new operational

instructions

(ix) cβ := cλ + 1,

i.e. add one to the contents of cλ and place that value in cu.

(x) cβ := cλ ^ 1,

i.e. if cλ contains 0 place 0 in cμ, else subtract one from the contents of cλ and place
that value in cu.

(xi) cu := 0,

i.e. make the contents of cβ zero.
We may add one new conditional instruction

(xii) if cβ = cλ then / elsey,

again with the obvious meaning.
With a fap C program we can have computable functions of two kinds, viz.

/ c a n be a partial function with values in A,

f:ωn x Am^A

o r / c a n have values in ω,

/ : ωn x Am -> ω.

In both cases we use cl9..., cn, rl9..., rm as input registers. In the first case r0

is the output register, in the second c0. We thus get a notion of fap C-computable
and a class of functions FAPC(3ί).

Stacking and counting can be combined to produce a notion of fap CS-
computable and a class FAPCS(3l) over 21.

These are the basic classes and we have the following immediate diagram of
inclusions

FAPCOtt)

FAP(2I) FAPCSCίl).

FAPSOKQ '

It should be clear that when 31 includes enough arithmetic then the classes coin-
cide. In a more general algebraic context there are interesting differences. We
shall relate some basic results from [108] and [109], and, in particular, we shall

0.2 FAP and Inductive Definability 7

discuss how inductive definability over 91 and computation theories over 91 fit
into the above diagram.

0.2 FAP and Inductive Definability

The class Ind(9Γ) of inductively defined functions over the structure 91 can be
introduced in various but related ways. We follow the syntactic description in
[105] which itself is patterned upon Platek's equational calculus [133]. It is
convenient in working with partial functions on A to extend A by a new element
u for undefined. We introduce a class of terms by the following clauses:

(i) Variables xl9 x2,... are terms of type 0.
(ii) For each m, the w-ary partial function variables p™, p29... are terms of

type 1 m.
(iii) For each m-ary operation σ of 91 the function symbol σ is a term of

type l ra.
(iv) For each ra-ary relation S of 91 the function symbol ΌCS is a term of

type l m + 2.
(v) u is a term of type 0.
(vi) If t is a term of type l m and tl9.. .,tm are terms of type 0, then

t(h, , tm) is a term of type 0.
(vii) If t is a term of type 0 then ¥Ϋ[λpf9yl9 ...9ym-t\ is a term of type

\-m.

If S is an m-ary relation in 91 then

(x ifS(al9...,am)
DCs(al9 ...9am,x,y)=λ

{y if-,S(al9...9am).

And FP is the fixed-point operator. It should be clear how to interpret terms in the
algebra 91. A partial function/: Am -> A will be inductively definable if there is an
algebra term (i.e. a term of type 0) with yl9..., ym as its only free variables such
that for all al9...9ameA9 f(al9..., am) = t(al9..., am). Ind(9I) is the class of
functions inductively definable over 91.

As an example let us consider the term

¥P[λp\ yΌCs(y, y, DCsM>0, y,

The reader may want to verify that the following is a fap S program which com-
putes the function defined by the above term. The program has one input register
rλ and two working registers r2, r3.

8 0 On the Choice of Correct Notions for the General Theory

1. if S(ri) then 2 else 4
2. r0 := rλ

3. its = 0 then Helse *
4. r2 := σ̂ A i)

5. if S(r2) then 6 else 8

6. r0 := rj
7. if J = 0 then//e l se*
8. $:= (1 r0, r!, r2, r3)
9. n := σ&J

10. goto 1
11. * : r 2 := r0

12. restore (rθ9rl9rQ)
13. r8 s= σifa)
14. r0 := cτ2(r2,r3)
15. if .y = 0 then //else*

We have a single block I&-I129 and we see how we have to store previous informa-
tion and use this block in the iterative computation of the value of the fixed-point
function on the input value in rλ.

0.2.1 Theorem. Ind^O) = FAPSCtt).

The example is no proof; see [108] for details which are far from trivial. The
example should also suggest that FAP(3I) is in general a proper subclass of Ind(3I).
In fact, in [108] a subclass of "direct terms" of the class of algebra terms is dis-
tinguished such that the corresponding class of directly inductively definable
functions, DInd(2I), exactly corresponds to FAP(5I).

0.3 FAP and Computation Theories

Let there be given a notion {a}(σ) ^ z over some domain A, and from this let us
abstract the set of all computation tuples Θ = {(a, σ, z);{a}(σ) ^ z}' A function/
on A is computable under the given notion if there is an index or code a such that
for all σ

f(σ) - z iff (a, σ, z) 6 Θ.

The axiomatic approach reverses this procedure. Let there be given a set Θ of
tuples (α, σ, z) over A. A function/on A is called Θ-computable if there is a code
a such that the equivalence above holds.

Not every set Θ is a reasonable computation theory. We must put in some basic
functions and require closure of Θ under some reasonable properties the details
are given in the first few paragraphs of Chapter 1.

0.3 FAP and Computation Theories 9

As the reader will see from the general development in Chapter 1, in considering
computation theories over a structure we are almost forced to also include recursive
(sub-) computations on the natural numbers; having given a code set C we can
inside this code set reconstruct a copy of the integers and thus have access to the
recursive functions over this "successor set" (see Section 1.4).

It is therefore natural given a structure 31 = (A σ, S> to expand it to a structure
%ω = {A u ω σ, S, s, p, 0> where s, p9 0 are the successor, predecessor, and
constant zero function on ω, respectively. We have the following relationship [109].

0.3.1 Proposition. Letf: ωn x Am->A orf: ωn x Am->ω. Then

(i) fe FAP(3Iω) i&fis fap C-computable over 51.
(ii) fe FAPS(3Iω) ΊSfis fap CS-computable over 51.

The question is now whether counting alone or both counting and stacking
are necessary to give a computation theory for an arbitrary 31?

To give the answer we need to introduce the notion of a term evaluation function.
The class T[Xl9..., Xn] is inductively defined by the clauses:

(i) Xl9...9Xn belong to T[Xl9 . . . , *»] ;
(ii) if *!,..., tm belong to T[Xl9..., Xn] and σ is an m-ary operation of %

Each term t(Xl9..., Xn) defines a function An -> A by substitution of algebra
elements for indeterminates. Terms in T[Xl9..., Xn] can be numerically coded
uniformly in n, in the sense that there is a recursive subset Ω c ω such that for
each i e Ω there is a unique term [i] in T[Xl9..., Xn], and the correspondence
i^> [i] is a surjection. And there are recursive functions which given ie Ω allow
us to effectively write down the corresponding term [i]. Define En: Ω x An -> A
by£n(/,a)=[/](a).

0.3.2 Proposition. FAP(3Iω) is a computation theory iff En is uniformly fap C-
computable.

This is proved in [109]. One way is rather straightforward. The difficult part comes
in verifying that FAP(3Iω) has a universal function. The problem is that in the
absence of a computable pairing scheme a machine with a fixed number of registers
may not be able to simulate a machine with an arbitrarily large number of registers.
One way of getting around this problem is by letting the simulating machine
manipulate codes for terms instead of actually executing the simulated operations.
For codes for terms are natural numbers for which we do have the required
pairing function. At some points there is a need to evaluate terms and it is exactly
here the computability of the ^-functions is needed.

But En is uniformly fap CS-computable. This is, in fact, by 0.2.1 and 0.3.1
reducible to showing that En belongs to Ind(3Iω). En has the following inductive
definition

10 0 On the Choice of Correct Notions for the General Theory

i d] if i codes X5

σj(En(il9 a),...) if[/] = σχ[i1],...)
u if i does not code a term or codes the

empty term.
Pulling the results together we arrive at the following characterization.

0.3.3 Theorem. FAPS(3Iω) is the minimal computation theory over %ω with code
set ω.

The mathematical part of the theory is clear, we have located the exact position
of Ind(3l) and the minimal computation theory in the diagram of Section 0.1.
We showed in 0.2.1 that Ind(3I) = FAPS(3t), and it follows from 0.3.3 that
FAPSC(3I) is the class of functions computable in the minimal computation theory
over 31 with code set ω.

Going beyond is a matter of personal taste and preference. Our opinion is
that computations in general should be allowed to use both elements of the
structure and natural numbers (e.g. the order of an element in a group). Term
evaluation should also be computable, hence we seem to be led to FAPCS(3l)>
i.e. to a computation theory over 31.

0.3.4 Example. We conclude with an example due to J. V. Tucker (see his [168]
for a more general result). He first shows that if 51 is locally finite, then the halting
problem for FAPS(3I) is fap CS-decidable.

The argument is based upon the simple fact that the number of state descrip-
tions in a fap S computation is effectively bounded by a fap CS-computable func-
tion (because the order of an element in 31 is fap CS-computable).

Let 3l0 be the group of all roots of unity. This is surely a locally finite structure.
We have the following relationships:

Ind(3I0) = FAPSCHo) £ FAPC(3I0) = FAPCS(3t0).

The last equality is typical in algebraic contexts, term evaluation En will be com-
putable. It remains to prove that FAPS(3I0) φ FAPCS(3T0). This follows from the
fact that 3I0 is a computable group in the sense of Rabin-MaΓcev [99], i.e. it
has a recursive coordination a: Ωα -+ 3I0, where we can choose a to be a bijection
on a recursive subset Ωα c ω , and the "pull-back" of the group operation in
3I0 is recursive on Ωα.

We now observe that any fap CS-function pulls back to a recursive function.
Since there are r.e. sets which are not recursive, it follows from the initial observa-
tion that the halting problem for FAPS(3t0) is fap CS-decidable, that FAPS(3ϊ0) φ
FAPCS(3ί0).

We shall in the main part of the book be interested in recursion theories over
domains which include the natural numbers. From this point of view the preceding

0.4 Platek's Thesis 11

discussion gives "sufficient" theoretical grounds for basing the general theory
on the axiomatic notion of a computation theory.

There have, however, been recent discussions of an inductive definability
approach to recursion in higher types. It may be useful to compare these approaches
to the computation-theoretic point of view.

0.4 Platek's Thesis

The aim of this approach is to study definability/computability over an arbitrary
domain Ob using the fixed-point operator. But fixed-points at one level may be ob-
tained from fixed-points of higher levels. This leads to the hierarchy HC of heredi-
tarily consistent functionals over Ob as the natural domain of the general theory.

Remark. Platek's thesis was never published, we follow the discussion in J.
Moldestad Computations in Higher Types [105].

The hierarchy HC is defined inductively as follows. Any type symbol τ Φ 0
can be written in the form τx -> (τ2 -> . . . (τk -> 0) . . .) . The level of T is defined
by /(T) = m2Lx{l(Ti) + 1}. Monotonicity for partial functions is defined as usual.
Then HC(τ) is defined to be the set of all partial monotone functions defined on
a subset of HC(τ^) x . . . x HC(τk) and with values in Ob.

The fixed-point operator at type r is an element FP e HC((τ -> T) -> r), such
that when FP is applied to an element fe HC(τ -+ r) it produces the least fixed-
point FP(f) off, which will be an element of HC(τ).

Platek's index-free approach to recursion theory can now be introduced. Let
& c HC. Then the recursion theory generated by &, which we will denote by
&ω(β)> is the least set extending 31, closed under composition, and containing the
function DC (definition by cases), the combinators /(/) = /, K(f, g) = /, and
S(f> g> h) = f(h)(g(h)), and the fixed-point operator FP.

To set out the relationship with computation theories we quote two results
from Moldestad's study. The first is Platek's reduction theorem.

0.4.1 Reduction Theorem. Let £8 contain some basic functions (a coding scheme,
the characteristic function of the natural numbers, the successor and predecessor
functions). If & c HCι + 2, then

If we are interested in objects of level at most / + 3, then we need only apply
the fixed-point operator up to type / + 1.

0.4.2 Equivalence Theorem. There exists a computation theory Θ (derived from
Kleene's schemata S1-S9 in [83]) such that

12 0 On the Choice of Correct Notions for the General Theory

for all finite lists of HC objects hl9..., hk.

We shall in a moment return to the reduction theorem. But first we spell out
the content of the equivalence theorem. It seems that we can draw the following
conclusions. Let & ^ HC.

1 MJβ) = U {@Jβo) : ̂ o finite subset of &}.

2 For finite Λ o, @ω(βQ) = Θ[ΛO].
3 Stjβ) c &[&], but in general g .

Only the third assertion requires a comment. The notation Θ[^] is somewhat
ambiguous. We must assume that & is given as a list, i.e. with a specific enumera-
tion. This means that in any precise version of Θ[^] we have the enumeration
function of the list ^ . But this enumeration function is not necessarily in 0tω(β).

Back to the reduction theorem. This result shows that the framework of
computation theories is adequate if the aim is to study computability/definability
over some given domain. We need not climb up through the hierarchy HC. A
computation theory Θ can be considered as a set of functions Θ c HC1. Then,
by the reduction theorem

ΛJβ)1 = Λ^θ) 1 = θ,

the last equality being true since Θ satisfies the first recursion theorem see Theorems
1.7.8 and 1.7.9 of Chapter 1.

Remark. Platek obtains Kleene's theory of recursion in higher types as a "pull-
back" from his theory on HC. We shall return to this matter in Chapter 4.

0.5 Recent Developments in Inductive Definability

The index-free approach of Platek is conceptually of great importance in the
development of generalized recursion. The theory has, however, some weak points.
Recently improved and largely equivalent versions have been published inde-
pendently by Y. Moschovakis and S. Feferman.

The relevant papers of Moschovakis are the joint contribution with Kechris,
Recursion in higher types [77], and the paper On the basic notions in the theory of
induction [117]. Feferman's version is presented in Inductive schemata and recur-
sively continuous functionals [25].

Feferman summarizes his criticism of Platek in the following points.

a The structure of natural numbers is included as part—there could be more
general situations, e.g. applications in algebra.

b Inductive definability of relations is not accounted for.

0.5 Recent Developments in Inductive Definability 13

c Platek's pull-back of Kleene's theory of recursion in higher types from HC
is complicated and ad hoc.

We believe that point a is adequately dealt with in Section 0.3 above. We shall
eventually return to point b. In connection with c we just state our complete
agreement and that we will return to it in Chapter 4.

As a basis for a comparison with computation theories we shall discuss a result
from Recursion in higher types.

A partial monotone functional Φ(x,/, g) defines in the usual way a fixed-point
Φ°°(x, g). Let & be a class of functional. If Φ belongs to ^ we call Φ00 an J^-fixed-
point. The class Ind(^") will consist of all functional Ψ(x, g) for which there exists
an ^"-fixed-point Φ°°(u, x, g) and constants n from ω such that

Ψ(x, g) = Φ-(π, x, g).

The induction completeness theorem tells us that Ind(^) is closed under inductive
definability.

Not every collection & gives a reasonable recursion theory. A class & is called
suitable if it contains the following initial objects: characteristic function of ω,
the identity on ω, the successor function on ω, the characteristic function of
equality on ω, and the evaluation functional. In addition & is required to be closed
under addition of variables, composition, definition by cases, substitution of
projections, and functional substitution.

Ind(^) is said to have the enumeration property (is ω-parametrized) if for each
n ^ 1 there is some φ(e, xl9..., xn) e Ind(^) such that a function / belongs to
Ind(^") iff there exists some e e ω such that

f(x) = φ(e9x).

0.5.1 Enumeration Theorem [77]. Let ^ be a suitable class of functionals on a

domain A including ω.If^ is finitely generated and admits a coding scheme, then

has the enumeration property.

Remark. One notices that the machinery provided by the requirement of suitability
of & corresponds to a large extent to what we have put into our general notion
of a computation theory. There is one difference, in the computation-theoretic
approach we have adopted the enumeration property and proved the first recursion
theorem, whereas in the inductive approach the first recursion theorem is an
axiom and enumeration a theorem. One may argue what is "philosophically"
the most basic or natural, mathematically they serve the same purposes provided,
we should add, there is enough coding machinery available.

The enumeration theorem for ϊnά(^) leads to the same situation as pointed
out in connection with Platek's ffljβf). The enumeration theorem leads to a
computation theory Θ, such that if ^ is a finite basis for the finitely generated
class & (and & is suitable and admits a coding scheme), then

14 0 On the Choice of Correct Notions for the General Theory

Both Moschovakis [117] and Feferman [25] include inductive definability in
relations, see point b above. Moschovakis' approach is based on the notion of
induction algebra, which is a structure

where each ^ a is a partial ordering on Xa in which every chain has a least upper
bound, and v α is a supremum operator on Xa

9 i.e. x ^ x v y and if x < y,
then x v y = y, for all x9ye Xa. & is a class of operations, i.e. maps of the form
f:Xai x ... x Xan -> X<*.

The two main examples are the induction algebras of relations and induction
algebras of partial functions. The case of partial functions was discussed above.
In the case of relations we start with a domain A, let X° equal the set of truth values
{T9 F}9 and for n ^ 1, set Xn = all «-ary relations on A. In this case ^ is set
inclusion and v is set union.

Let Φ be a class of second-order relations on A. To each <p(R, s) in Φ we
associate an operation/by

/(R) = {s:φ(R,S)}.

(Conversely, an operation / determines a relation by the equivalence <p(R, s) iff
se/(R).)

In this way—provided suitable conditions are imposed on Φ—we get an
induction algebra of relations on A.

Furthermore, provided the classes we start with are "rich enough" in structure,
there will be an enumeration theorem for the finitely generated algebras, and,
hence, a computation theoretic equivalent. But there could, in principle, be more
general situations. This, however, was discussed at length in Sections 0.2-0.3.
See also Moldestad-Tucker [110] for a discussion of other general approaches
and how they are related to the present development.

We should, perhaps, add one more comment. Codes, indices are usually
claimed to be ad hoc and, hence, conceptually unsatisfactory. And a comparison
with an intrinsic versus coordinate based treatment in geometry is often made.
But is the analogy really to the point! In our discussion of Platek's 8%ω(β)—and
a similar result holds for Ind(^)—we concluded that

where 3S0 is a finite subset of 88 9 and for finite

2. ^ ω (^ 0)

In 2 the codes are introduced as a systematic, even canonical way of referring to
the objects in the finite list @0 and to the operations generating &ω(<$0) out of
31Q. 1 and 2 together say that the global theory MJβ) admits natural local co~

0.5 Recent Developments in Inductive Definability 15

ordίnates Θ[/* l 5..., hk] suitable for more "delicate", i.e. computation-theoretic
investigations of the theory, degree structure, computation in higher types, etc.

This seems to be a reasonable analogy with geometry. But is the analogy
complete? Are there any properties in the large of generalized recursion theory?
Or is everything local, i.e. computation-theoretic?

With these remarks we let our case for computation theories rest. Some brief
comments on the plan for our exposition.

Part A sets out the general theory. Chapter 1 gives the combinatorial part
leading up to the simple representation theorem and a general version of the first
recursion theorem. In Chapter 2 we add the notions of subcomputation and length
of a computation and give a second representation theorem, viz. a representation
in terms of partial type-2 functionals over the domain which preserves not only
the computable objects, but also the full structure of subcomputations.

Part B discusses finite theories on one (Chapter 3) and two (Chapter 4) types.
Finite theories on one type are the general version of hyperarithmic theory or,
equivalently, the theory of recursion in 2E. The finite theories on two types are a
general version of recursion in higher types, but are also a suitable framework
for various developments in second order definability. The relationship to Spector
1- and 2-classes is explained.

Part C is devoted to infinite theories, i.e. general versions of ORT (ordinary
recursion theory) and admissibility theory. Chapter 5 gives the basic facts including
the imbedding theorem of finite theories on one type into infinite theories, and also
various results connected with the "abstract 1-section" theorem. In Chapter 6
a general account of degree theory is given including some recent excursions into
inadmissibility theory.

Part D treats set recursion and computations in higher types. Chapter 7 discusses
reflection phenomena and proves the general plus-1 and plus-2 theorems. Set
recursion and its connection to recursion in higher types is the topic of Chapter 8.
Some discussion of degree theory in higher types is also included.

A collector is never satisfied until all specimens have been collected, neatly
arranged, and labelled. This was never our intention. The book is introductory.
The aim is to provide a reasonably unified view. Not the only possible one, but
one broad and detailed enough to serve as a basis and general framework. Beyond
this the reader must proceed by himself.

Remark. Our approach to the general theory has been developed over a number
of years; see the reports [26], [27], [28], and [29].

