
Chapter II

Embeddings and Extensions of Embeddings
in the Degrees

We define the degrees of unsolvability in this chapter, and show that these degrees
from an uppersemilattice. Much of the rest of this book will be devoted to studying
this upper semilattice. The study begins in this chapter, with sections on embedding
theorems and on extensions of embeddings into the degrees. We also prove the
decidability of a certain natural class of sentences about the degrees.

1. Upper semilattice Structure for the Degrees

We are now ready to define the degrees of unsolvability, and to show that Turing
reducibility induces a partial ordering on these degrees which gives rise to an
uppersemilattice. In Section 4 we will prove that the degrees do not form a lattice.

We begin with some algebraic definitions.

1.1. Definition. A partially ordered set (poset) <P, ̂ > is a set P together with a
binary relation ^ c P2 having the following properties:

(i) Reflexivity: VxeP(x ^ x).
(ii) Antisymmetry: Vx,yeP(x ^y&y^:X^x = y).
(iii) Transitivity: Vx, y, z e P(x ^y&y^z^x^z).

1.2 Definition. An uppersemilattice (usl) is a triple <P, ̂  , v> such that <P, <> is a
poset, and v: P2 —• P (write x v y = z for v(x,y) = z) satisfies:

(i) Vx, y e P(x ̂  x v y&y ^ x v y)

and

(ii) Vx,jμ, ueP(x < u&y ^ u -> x v y ^ ύ).

Thus a usl is a poset in which every pair of elements has a least upper bound.

Clause (ii) of Definition 1.1 prevents the use of ̂  τ to directly transform NN into
a poset. This obstruction is circumvented by using certain equivalence classes of
NN, the degrees, as the domain of the poset. The equivalence relation used is the
following.

1.3 Definition. For/,geNN, define f = τg \ϊf^τg and g ^ Γ / .
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We leave the proof of the fact that = τ is an equivalence relation to the reader
(Exercises 1.11 and 1.12). = τ partitions NN into equivalence classes which are now
defined.

1.4 Definition. Let feNN be given. The degree (of unsolvabilίty) off9f, is {geNN:
g=τf}

1.5 Notation. {f:fεNN} will henceforth be denoted by D.

1.6 Remark. Since \NN\ = 2*° and for each deD, |d| = Ko, a simple computation in
cardinal arithmetic shows that |D| = 2No.

The next two definitions indicate the natural way in which usl structure is
induced on D.

1.7 Definition. Let a,beD be given. We say that a < b if

We leave it to the reader (Exercise 1.13) to show that

a < bo3f9geNN(fe*&geb&f^τg).

1.8 Definition. Let a, b e D, fe a and g e b be given. Define a u b to be the degree of
the function/© geNN defined by

f/(x/2) if x is even,

W if x is odd.

Let 2 = <D, O and 3)% = <D, ̂ , u>. We leave it to the reader (Exercise
1.14) to verify that 3) is a poset and that 3)% is a usl. Note that D has a smallest
element, namely, the degree of the recursive functions (Exercise 1.16).

1.9 Notation. We will write a = b for a ̂  b and b ^ a . <, ̂ , >, # , etc. will have
the obvious meaning. 0 will denote the smallest degree. u{aj: 1 ̂  / ̂  n) will denote
ai u u an, and n{ai: 1 ̂  / ̂  n} will denote the greatest element d e D such that
d ^ aj for i = 1,2,..., n if such an element exists, and will be undefined otherwise.

The study of relative recursion, or equivalently, computation from oracles leads
naturally to the study of the degrees. Questions about information contained in
functions which can be computed from an /oracle are best formulated in terms of
the structure of the degrees below / Hence the study of 3f will shed light on relative
recursion.

Several algebraic and logical problems arise naturally in the study of Θ. We
would like to have a classification of the usls which can be embedded into 2, and to
develop structure theory for 3). We would like to have answers to certain questions
about the elementary theory of 3), e.g., "is the theory decidable?", and "how
complicated is this theory?". Some of these questions have been answered, while a
complete answer to the others still remains to be found. (Note that for the questions
mentioned above, 3) and 3)% are interchangeable.) These, and other questions will
be studied in this book, a study which begins in the next section.
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1.10 Remark. 9 was first defined and studied by Kleene and Post [1954]. This paper
has an interesting history. Kleene received a letter from Post with some of the
definitions and theorems, and suggested that Post publish those results. Post was
reluctant to do so, feeling that some of the most important initial questions about
the degrees had not yet been answered. Some of these questions were later answered
by Kleene, who added his results to Post's and had the paper published. This was
done while Post was terminally ill, and we do not know whether or not Post ever
read the paper.

1.11-1.17 Exercises

*1.11 Show that ^ Γ is transitive.

*1.12 Show that =τ is an equivalence relation.

*1.13 Show that a ^ bo3f,geNN(fea&geb&f^τg).

*1.14 Show that 2% is a usl.

*1.15 Show that every degree contains a set (i.e., a characteristic function).

*1.16 Show that for all degrees a,0 ^ a.

*1.17 Given {/•: N-+N: i = 0 ,1, . . . ,«- 1}, define ©?=(}/»: N'-+N bY
(®nilo fd(n* + b) = fb(x) where 0 ^ b < n. Show that θ Γo1/- and
((' ((/o θ / i ) ®fi) θ *') θ fn-1) have the same degree.

2. Incomparable Degrees

Embeddings into the degrees are considered in this section. Many constructions of
classes of degrees with various properties can be carried out through the use of the
method of forcing. We describe forcing in this section, and use it to construct
incomparable degrees.

Rather than begin immediately with the abstract notion of forcing, we first give
a classical proof of the existence of incomparable degrees. We next describe the
relationship between this proof and the forcing proof. Forcing is then introduced,
and is used to prove the same theorem.

2.1 Definition. Let a,beD be given. Then a and b are incomparable (write a|b) if
a έ̂ b and b έ̂ a.

2.2 Theorem. There exist a0, a! eD such that a0 | a t.

Proof. We construct sets A0,Aί^N such that Ao ^T^IMI^T^O a n d set
aj = Aj for / = 0,1. By the Enumeration Theorem, it suffices to satisfy the
requirements

(1) Pey.Φ*< φA^-i
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for all eeN and ie {0,1}, where we say that Φf* Φ A1~ι is satisfied if

(2) 3xeN(Φ*ix)l Φ Ax-ix) or ΦA

e\x)\\

For / = 0,1, we will define At as the union of a finite sequence of elements of ^
(recall that ^2 is the set of finite sequences of 0s and l s ) α ? c α ί c , (Since each
string is a partial function and each set is identified with its characteristic function,
there is no ambiguity in this definition of Ah) We say that the requirement
φfi φ Ai-i is satisfied by <β0, βi) if β0, βi^^i and for some xeN, either

(3)

or

(4) for all βe¥2 such that β =2 βh Φβ

e(x)l

We first prove the following lemma.

2.3 Lemma. Fix a requirement PeM and let OLQ^OLXES^. be given. Then there are
βo,β\ £&2 such that β0 =) α o,βi => α1 ? and Pei is satisfied by <β0, βi>

Proof Fix Pei: Φf{ Φ Aγ-'X. Fix α o ,α! e^2 and let x =

1. Φβ

e(x)[ for some β e 5^ such that β => αt . Let jβj be such a β. Define β± _f of
length x + 1 by

if y < x,

if y =

if y = χ&Φβί(x)l = O.

It follows immediately from (3) that Pei is satisfied by </?0,βi)

Case 2. Otherwise. Then Φf(x)| for all βe^2 such that β ^ αf. Fix βj ^ oij
arbitrarily for y = 0,1. It follows immediately from (4) that Pei is satisfied by

To prove the theorem, we now let {i^: / e N} be a list of all requirements in {.Peji:
/ ̂  1}. Set oc°o = α? = 0. Given αs

0, α* e«5ζ, choose αs

0

+ x => αs

0 and αs

:

+ x 3 ix\
as in Lemma 2.3 so that Rs is satisfied by ( α ^ ^ α 5 ^ 1 ) . Let A 3 = U{α :̂ seN} for
y = 0,1. Then A0,Aι c TV, and every i?t is satisfied. 0

2.4 Corollary. 77*e degrees are not linearly ordered by ^ .

Many constructions of classes of degrees with given properties, such as the
construction of incomparable degrees, conform to the following pattern.

Step 1. Reduce the statement of the theorem to an equivalent infinite set of
requirements on subsets of N. (For incomparable degrees, this is done in (1).)

Step 2. Define satisfaction of requirements. (For incomparable degrees, this is done
in the first paragraph of the proof of Theorem 2.2.)

Step 3. Show how requirements can be satisfied while leaving infinitely much of the
sets being constructed unspecified. (For incomparable degrees, this is done in the
second paragraph of the proof of Theorem 2.2.)
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Step 4. Show that any requirement can be satisfied by specifying a little bit more of
the sets being constructed than has been specified at a given point in the
construction. (For incomparable degrees, this is done in Lemma 2.3.)

Step 5. Show how to satisfy all requirements by applying Step 4 inductively. (For
incomparable degrees, this is done after the proof of Lemma 2.3.)

The sequence of steps just described can be recast in the language of forcing.
One can then prove general theorems about forcing, eliminating much of the
repetition from proof to proof. In particular, Step 5 can be carried out in the context
of forcing, enabling us to avoid repeating the inductive step in each proof. Forcing
does, however, tend to obscure the intuition behind the constructions. The reader
should be able to reconstruct this intuition by analyzing any forcing proof in terms
of the above sequence of five steps.

Many of the theorems which will be proved using forcing were first proved
before the invention of forcing and do not use the full power of forcing. We do not
feel it advisable to introduce forcing in complete abstraction, i.e., to relate forcing to
satisfaction in a very general setting. Rather than introduce a formal language, state
all requirements as formulas of this language, and then define forcing syntactically
for this language, we will define forcing only for those requirements which are
needed to prove a given theorem. Occasional comments will be made to enable the
reader already familiar with forcing to relate our approach to forcing in set theory.

We will begin our treatment of forcing with definitions ofnotion of forcing, dense
set and <%-generic set where ^ is a collection of dense sets. If G is a ^-generic set, then
we will be able to recover the subsets of N which we wanted to construct from
AG = ΌG. We note the relationship between the forcing approach and the steps
previously outlined. Step 1 remains unchanged, and the change in Step 2 is just a
change in terminology. Step 3 becomes the Satisfaction Lemma and Step 4 becomes
the Density Lemma. Step 5 becomes the Existence Theorem for <$-generic Sets.

Forcing conditions for a set are meant to specify information about what the set
looks like, e.g., whether or not certain numbers are in the set. Thus we write q ^ p
for q refinesp, saying that q contains more information, hence less freedom, than/?.
Hence for σ, τ e 5ξ, σ ^ τ will mean σ Ώ. τ for σ specifies more of the final set A than
does τ.

2.5 Definition. A.notion of forcing is a partially ordered set </% ̂ F > with a greatest
element 1F. The elements of Fare called conditions. For/7, # e /% we say that/? refines
q if/? ^Fa>P is compatible with q if there-is an r e Fsuch that r ^Fp and r ^Fq, and/?
is incompatible with q if /? is not compatible with q. We write p\q for /? is
incompatible with q.

Consider the example where we take, as our set Foϊforcing conditions, the set of
all partial functions φ: N-* {0,1}, and order the conditions by extension, i.e.,
φ ^ F Θ if and only ifφ^θ. Let φ0 be the partial function with domain {0} such that
^ 0(0) = 0, let ψi be the partial function with domain {1} such that I/Ί(1) = 1, let φ2

be the partial function with domain {0,1} such that φ2(0) = φ2(l) = 0, and let φ3

be the partial function with domain {0,1} such that φ3(0) = 0 and ^ 3(1) = 1. Then
φ0, φu and φ3 are pairwise compatible since they have the common extension φ3.
φ0 and φ2 have the common extension φ2, so they are compatible. But φ2 is
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incompatible with both φ1 and φ3 since φ2(\) = 0 ^ 1 = φi(l) = 1A3O), s o Ψ2
cannot have a common extension with φι or φ3.

2.6 Definition. Let </% < F > be a notion of forcing. E ^ Fis dense if every condition
in F has a refinement in E.

Again consider the example where we take as our notion of forcing the set of
finite partial functions φ: 7V-> {0,1}. An example of a dense set is {φ: \dom(φ)\ is
even}. For every finite partial function has an extension to one whose domain has
even cardinality.

We next define the notion of ^-generic set. Such sets are used to naturally
define subsets of TV satisfying a specified set of requirements. Each requirement will
give rise to a dense set, the set of all conditions which force the requirement. If we let
# be the collection of all such dense sets, then a ^-generic set is just a set of
conditions with certain closure properties whose intersection with every C e ^ is
non-empty. Thus given a ^-generic set G and a requirement R, we will have a
condition p e G which forces the requirement R to be satisfied.

2.7 Definition. Let <F, < F> be a notion of forcing, let G c F be given, and let ̂  be a
set of dense subsets of F. Then G is said to be %>-generic if:

(i) l F e G .

(ii)

(iii)

(iv)

Having defined ^-geneiic sets, we show that they exist.

2.8 Existence Theorem for ^-generic Sets. Let </% ^ F> be a notion of forcing and let
peFbe given. Let ^ be a countable set of dense subsets of F. Then there exists a (€-
generic set G such that peG.

Proof Let <£ = {C^. ieN}. Let q0 = p and let qs+ x be any refinement of qs in Cs.
Let G = {reF: 3s(qs ^Fr)}. It is easily verified that G is ^-generic. 0

It is useful to isolate requirements which make UG total on U{dom(/?): peF}
when F consists of partial functions. Such requirements are needed in all forcing
constructions of this chapter.

2.9 Existence Theorem for Total ^-generic Sets. Let </% ^ F > be a notion of forcing
such that each peF is a partial function. Assume that X = U{dom(/?): peF) is
countable, and that for allp eFand xeX there isaq ^ Fp such that q(x)[. Let %> be a
countable set of dense subsets ofF, and letp eP be given. Then there is a %>-generic set
G such that peG and for all xeX there is a qeG such that q{x)[.

Proof. Let <€ = {Q: ieN} and let X = {xf: ieN}. Let q0 = p, let q2s+1 be any
refinement of q2s in Cs, and let q2s + i be any r ^Fq2s+ι such that r(x s ) | . Then
G = {reF: 3s(qs ^Fr)} is the desired ^-generic set. D

Before introducing any specific notions of forcing, we give some notational
conventions, and then state the lemmas which will have to be proved for each
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forcing construction. Below, AG will be a collection of sets naturally defined in
terms of a ^-generic set G.

2.10 Notation. Let R be a requirement. We write AG \= R if R is satisfied by AG and
/? 11- R if the condition /? forces R.

2.11 Density Lemma. For each requirement R, CR = {peF: p\\- R} is a dense set.

2.12 Satisfaction Lemma. If G is %>-generic and CRe^, then AG\= R.

2.13 Remark. (This side remark is meant only for the reader who is familiar with
forcing in set theory.) We indicate how our approach to forcing is an adaptation, to
a simpler setting, of the set-theoretical approach. The reader should refer to
Shoenfield [1971a] for a corresponding set-theoretical approach.

Although it is possible to do so, we do not fix a language and then treat forcing
syntactically. Rather, our requirements are those sentences of the would-be
language which we want to be satisfied (i.e., to hold in our model A G ), and we define
satisfaction on an ad hoc basis to force the sets constructed to have the desired
properties. (The ad hoc definition of satisfaction would coincide with the
appropriate syntactical definition.) Once forcing is defined, we prove the
Satisfaction Lemma relating forcing to satisfaction. The Satisfaction Lemma
corresponds to Shoenfield's Truth Lemma, but is much easier to prove because of
the ad hoc nature of our definition of satisfaction.

Since we are only interested in satisfying certain requirements, we need only
make sure that our generic set meets the dense sets corresponding to those
requirements, rather than every dense set definable in our base model. (This idea is
also present in uses of Martin's Axiom (see Martin and Solovay [1970]).) Thus
Shoenfield's Definability Lemma is replaced by our Density Lemma, each having,
as its purpose, the proof that every appropriate dense set is met by every generic set.
In our approach, it must be shown that the appropriate set is dense, while in the set-
theoretical approach, the density of this set is shown independently of the particular
notion of forcing, but the definability of the set is a problem.

Because of the special nature of our requirements, once a requirement is forced
by a condition /?, it is forced by all conditions q refining/?. If we examine the proof of
Theorem 2.2, we see that this permanence property follows from the use property of
the Enumeration Theorem. Hence Shoenfield's Extension Lemma becomes
unnecessary, its content being absorbed into our Satisfaction Lemma.

We have already noted that we need only look at sets directly related to our
generic set. Thus typically for this chapter, the desired sets will be of the form A[£,
cross-sections of AG = UG. This should be contrasted with set-theoretical forcing
where we look at the model of all sets generated by G.

Our first application of the method of forcing is the use of finite forcing to prove
Theorem 2.2. We take the notion of forcing to be (^\, ^ > i.e., the set of all ordered
pairs of strings of 0s and Is ordered coordinatewise by ^ . Thus given
σ i , τ 1 , σ 2 , τ 2 e ^ , we say that ( α ^ T i ) ^ <σ2,τ2> if σx ^ σ2 andτ x ^ τ 2 . Note that
the greatest element of Sf\ u n d e r this ordering is <0,0>.

2.14 Forcing Proof of Theorem 2.2. Establish requirements as in (1). Satisfaction of
requirements is defined as in (2). Fix a requirement R, say Φ** φ A1-i. We say
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that < β o , j 8 i > | | - ^ if (3) or (4) holds. For each requirement R, let CR =

0, βi}e&Ί' <β0, βi> Ih R}, and let <€ = {CR: R is a requirement}. The Density
Lemma is then Lemma 2.3. By the Existence Theorem for Total ^-generic Sets
(Theorem 2.9), there is a ^-generic set G. Let ΛG = UG = <v40,^i> ^ iV2. The
Satisfaction Lemma now follows from (l)-(4), the definition of AG and the Use
Property of the Enumeration Theorem. (The paragraph following the proof of
Lemma 2.3 is superfluous here. It merely repeats the proof of the existence of a c€-
generic set.) D

Almost all theorems which we will prove about the degrees can be relativized.
We now indicate how to relativize Theorem 2.2, but leave some of the details to the
reader.

2.15 Definition. Let S be any statement about the degrees, and let d e D be given. The
relativization of S to d is the assertion that S is true about the degrees ^ d.

2.16 Remark. We can easily modify 2.14 to obtain a proof of the relativization of
Theorem 2.2 to any degree d. This relativization states that for any degree d, there
are degrees a and b such that a ^ d, b ^ d, and a | b. Fix a set D e d. The notion of
forcing used to prove this relativization is {{θ0, θ± >: θ0, θx are partial functions with
range c {0,1}, 0O(2JC)| = #i(2x)j = D(x) for all xeN, and dom(0o) and dom(0O
each has finite intersection with the odd numbers}, ordered by ^ defined
coordinatewise. We leave it to the reader (Exercise 2.18) to carry out the proof. This
notion of forcing is called infinite-coinfinite pointed forcing.

2.17 Remarks. Theorem 2.2 was proved by Kleene and Post [1954]. The concept of
forcing is due to Cohen [1963], and the forcing we have done in this section is a
simplified version of Cohen forcing. The reals constructed by Cohen also have
incomparable Turing degrees. The connection between Cohen forcing and some
prior constructions in Recursion Theory was made shortly after the invention of
Cohen forcing by Gandy and Sacks independently. Feferman [1965] has developed
the corresponding version of forcing for arithmetic, and more recently, Jockusch
[1980] has studied the application of forcing to proving new theorems about the
degrees. Some of Jockusch's work is discussed in Chap. IV.

2.18-2.19 Exercises

*2.18 Given d e D , construct a pair of incomparable degrees above d.

2.19 Construct infinitely many degrees d0, άί9... such that for all /, jeN, if / φ j
then dijdj.

3. Embeddings into the Degrees

The main result of Section 2.2, Theorem 2.2, states that a certain poset can be
embedded into Q). We investigate embeddings of other posets into 3) in this section.
In particular, we show that any finite poset can be embedded into the degrees. This
result will be used to show that a certain natural fragment of the elementary theory
of Qi is decidable.
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For the most part, the embeddings we will consider are poset or usl embeddings.
Embeddings for such structures are now defined.

3.1 Definition. Let % = <ί/, ^v} and F = <Γ, ^ Γ > be posets. A poset embedding
of °lί into 3~ is a one-one map h\ U-+T satisfying

Vx, y e U(x ^ υ y <-* h(x) ^ τ h(y)).

3.2 Definition. Let % = <U,^U9 vv} and F = <Γ, ^ τ , v τ > be usls. A us/
embedding is a one-one map h:U-+Tsuch that Λ is a poset embedding of <U, ^v}
into <Γ, ^ Γ > which satisfies

Vx,ye U(h(x wvy) = h(x) wτh{y)).

On occasion, we will talk about embeddings or isomorphisms for structures
other than posets or usls. Such embeddings and isomorphisms are now defined.

3.3 Definition. Let

and

be similar structures, i.e.

(i) VieI3neN(Ri c Un&Qi <= Tn)\

(ii) \fjeJ3neNtfj: Un ̂  U&gj. Tn ̂  T);

(iii) VkeK(ckeU&dkeT).

A map h: £/ -• Γis said to be an embedding oi°U into 2Γ if /z is one-one and satisfies

(iv) V/e/Vj1,...,jΛe^(<j1,...,jn>eΛ i<-><A(ίi),...,A(jII)>eβ i);

(v) y/e/Vji,.. .9sHEN(h(fj<sl9..., JΠ)) = flf/A^i),..., A(JB)));

(vi)

If A is an embedding mapping °ll onto Γ, then h is said to be an isomorphism of ̂
with ^Γ We write ^ c^ ^ if there is an embedding of % into ̂  and % ~ ZΓ'ύty and
5" are isomorphic.

The embeddings of this section will be constructed from a collection of subsets
of N whose degrees form an independent set. This notion of independence is now
defined.

3.4 Definition. A set of degrees {a^ iel} is independent if for all finite subsets J c /
and all iel — J, ai ̂  KJ{^: jeJ}.
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We will construct A c N2 such that {AU]: ieN} is a collection of sets whose
degrees form an independent set. It will be convenient to have notation for finite
disjoint unions of such sets.

3.5 Definition. Let F^ A and 0: A x B^ C be given. Let {nt: i < \F\} be an
enumeration of the elements of Fin order of magnitude. Define Θ[F]: \F\ x B -• C
by θiF\Ux) = θ(nhx). ifjeA and F= A - {;}, then we write θίJ] for Θ[F\

3.6 Theorem. There is a countable set of independent degrees.

Proof. We will use forcing to prove this theorem. The domain of the notion of
forcing used is F = {θ c N2: dom(0) is finite}. We let F be ordered by Ώ. where
θ => φ if θli] => φ[i] for all ieN.

Given a class # of dense sets and a ^-generic set G, let ̂ G = UG = A, and let
Ai = Al£. Then {A^. zeTV} will be the collection of sets whose degrees form an
independent set.

By the Existence Theorem for Total ^-generic Sets, it suffices to have A satisfy
the following requirements for all eJeN:

(1) R(e9ή:ΦfhΦAi.

Given θeF, the forcing definition is given by

(2) 011- R(e9 ΐ) <-• 3x e N3σ e ̂ 2((σ c θ[ί] & Φσ

e{x)[ φ θ[i](x)l)

orlxeNVσe ^2(θ[ί] c σ -> Φ^

(Note that (TV x TV)[/] is a space, so can be identified with N, and hence we are
permitted to make the above identification of θ[ι] with a partial function of one
variable.)

The Satisfaction Lemma follows easily from the Use Property of the
Enumeration Theorem. It thus suffices to verify the Density Lemma, i.e., to show
that for each requirement R as in (1), CR = {θ e F: θ 11- R} is dense. The desired sets
{Ai'. ieN} can then be recovered as above from any ^-generic set G, where
%> = {CR: Ris a requirement}.

Fix e, ie N. Let R = R(e, i) and let CR = {θ e F: θ f= R}. Let φ e F be given. Fix
the least xeN such that φ[i\x)t If there are θeF and σs6f2 such that θ^φ,
σ <= Θ[Ί\ and Φσ

e(x)U fix such a 0 for which θ[i\x)l and Φσ

e(x) Φ θ[i\x). Such a θ will
exist as ^ [ l ] (x) | . It then follows from (2) that θeCR. If no such θ exists, then it
follows from the second disjunct of (2) that φ 11- R, so φ e CR. In either case, φ has a
refinement in CR, so C κ is dense. D

The set {a^ /eTV} of independent degrees constructed in Theorem 3.6 has an
even stronger independence property. For if we let aj be the degree of A[i], then we
have shown that ai ̂ έ a^ This fact is used in Exercise 3.14.

We now characterize the finite lattices which can be embedded into <&.

3.7 Corollary. Let % = (JJ\ ^ > be α finite poset. Then 91 d> 2.
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Proof. Let U = {wt : i<n}. By Theorem 3.6, we can fix a set {as: / < «} of
independent degrees. For each / < n, let At be a set of degree aif Let 4̂ <= [0,«) x TV
be given such that A[i] = At for all i < n. For each k <n, let i^/c) = {/: u x ^ wfc},
2?k = Amk)\ and let i?k have degree bk. It is easily verified that

(3) Y/, k < n(uj ̂ uk^Aj^τ Bk).

Let g: U -> D be defined by g(wk) = b k for every A: < n. To verify that #: % CL> ̂ ,
we must show that for all /, j <n,Uj^ukoBj ^τBk.

First assume that Uj ̂  uk. Then / (̂y) c F ^ ) so for all ieF(j) there are m,r < n
such that

Hence Bj ^ Γ 5 k .
Conversely, suppose that Bj ^ Γ Bk. We assume that w7 ̂  uk and obtain a

contradiction to complete the proof of the corollary. It follows from (3) that

Hence

* j < b k = u { a j i ut^ uk)

contradicting the choice of {a^ / < n) as a set of independent degrees. D

Corollary 3.7 will be used to show that a natural class of sentences about 2 is
decidable. We first need some definitions.

3.8 Definition. Let S£ be the language of the pure predicate calculus with one
additional binary symbol, ^ . A formula of 5£ is an 3 0 formula if it contains no
quantifiers. For all n ^ 0, a formula of i f is an Vπ formula if its negation is logically
equivalent to an 3n formula. And for all n ^ 0, a formula of 5£ is an 3n + λ formula if
it is of the form 3xl9..., xk(A(x1,..., xk)) where A(xu . . . , xk) is an Vn formula.

3.9 Definition. Th(^), the elementary theory ofQ), is the collection of all sentences of
if which are true in 3>.

3.10 Definition. A set of sentences in a language is decidable if that set of sentences is
a recursive set. (Note that the set of all finite sequences of symbols in a countable
language is a space.)

We now show that a natural class of sentences of i f is true about Si.

3.11. Corollary. T h ^ n ^ is decidable.

Proof. An 3ί sentence of i f asserts the existence of finitely many (not necessarily
distinct) elements <z0,..., an such that for any /, j < n, either at ^ a} is specified, or
a^aj is specified, or neither of these formulas in specified. Such a sentence is
potentially true if there is a poset °U = < U, ^ > having at most n + 1 elements and
an assignment of the variables of the sentence to the elements of U which makes the
sentence true in %. There are only finitely many possible choices for °U (up to
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isomorphism), and for each such choice, only finitely many possible assignments of
variables. Furthermore, a list of all possible posets and assignments can effectively
be given from the number of variables in the sentence. Hence the class of potentially
true 3χ sentences of Sg is decidable. By Corollary 3.7, the potentially true 31

sentences are exactly the 3χ sentences of i f true in 3). D

3.12 Remarks and Further Results. Theorem 3.6 and Corollary 3.7 were first proved
by Kleene and Post [1954]. In fact, they proved that any countable linearly ordered
set can be embedded into Q). We leave this result to the reader to prove (Exercise
3.14). Sacks [1961a] considered embeddings of uncountable posets into 2 and
proved the following theorems :

(51) Let % = <t/, ^ > be a poset such that \U\ < Ki Then * <z>0oeach
member of U has only countably many predecessors.

(52) Let % = < U, < > be a poset such that | U\ < 2X o and each member of U has at
most Kx successors. Then °ll <=+ Q)o each member of U has only countably many
predecessors.

(53) Let % = < U, <> be a poset such that | U\ ̂  2No. If each member of U has only
finitely many predecessors then % c^ Q).

Sacks' results completely solve the embedding problem under the assumption of
the continuum hypothesis, namely, 2K o = N^ Groszek and Slaman [1983] have
constructed a model of Set Theory containing a poset of cardinality the continuum
each of whose elements has at most countably many predecessors, such that the
poset is not embeddable into 2. Sacks' methods are similar to those discussed in the
next section, which deals with extension theorems.

3.13-3.16 Exercises

3.13 Prove the relativization of Theorem 3.6 to any degree d.

3.14 Show that any countable poset can be embedded into 2. {Hint: Choose an
appropriate d and apply Exercise 3.13.)

3.15 (Sacks [1961a]) Show that there exists a set S of independent degrees such
that |S| = 2No. (Hint: Take as the domain of the notion of forcing the functions
T: £f2 -+ &2 whose domain is { σ e ^ 2 : lh(σ) ^ /} for some ieN and such that
V σ , τ e d o m ( Γ ) ( ( σ c τ - . Γ ( σ ) c T(τ)) & (σ\τ ^ T(σ)\T(τ))). This set is partially
ordered by 2 , i.e., S refines T if S extends Γas a partial function. The sets whose
degrees form an independent set will be {As: S c N}9 where As = U{ T(σ): σ c S}.

For each eeN, σ e ^ , and subset F = {τ l 5 . . . ,τk} of { τ e ^ : lh(τ) = lh(σ)&
τ Φ σ}, establish the requirement

C=®{Ai: \^i^k}^Φc

eφB).

Show that it suffices to satisfy all such requirements. Define forcing for
requirements and prove that the Density and Satisfaction Lemmas are true.)
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3.16 Prove (S3). {Hint: Use the independent degrees from Exercise 3.15 to define
the embedding.)

4. Extensions of Embeddings into the Degrees

More information about the structure of 3 is extracted from the extension
theorems proved in this section. In particular, we show that there is no greatest
lower bound operation which would transform 3°U into a lattice. Some results of
this section are used in later chapters to obtain information about the decidability
of classes of sentences of

4.1 Definition. Let i f = <L, ^ L > and Jί = <M, ^ M > be posets. We say that i f is a
subposet of Jί (write i f c Jί) if L ^ M and for all a,beL, a ^Lb<^>a ^Mb.

All theorems proved in this section are extension theorems, that is, they have the
following form. We start with a poset Jί = <M, ^ M >, a subposet i f = <L, ^ L> of
Jt, and an embedding/: <£ cz+3. We then extend / t o an embedding g: Jί cz» Q)
(i.e., for all x e L , g(x) = f(x)). The theorems thus assert that the following diagram
commutes:

Fig. 4.1

4.2 Definition. Let Jί = <M, ^ M> be a poset. A chain of Jί is a subset C of M such
that any two elements of C are comparable, i.e., if α, ft e C, then a^Mbovb^Ma.
An antichain of Jί is & subset A of M such that any two elements of A are
incomparable (i.e., not comparable). A maximal chain (antichain resp.) C of ^ is
one which is not contained in a strictly larger chain (antichain resp.) of Jί.

We begin by studying the sizes of maximal chains and antichains of Q).

4.3Theorem. Let Cbea countable chain oj"3. Then there isaάeΌsuch that d > cfor
all c e C .

Proof. Let C = {q: ieN} and let Cx be a set of degree q for all ieN. Define 5 c N2

by letting 2?[i] = C, for all /eTV. Then Cι^τBfor all /eN. Since every set recursive
in B is of the form ΦB

e for some e e TV, there are only countably many such sets. As
there are continuum many subsets of TV, there must be a set D c TV which is not
recursive in B. Let d be the degree of B © D. (A degree d satisfying the conclusion of
the theorem can also be obtained from Remark 2.16.) D

4.4 Corollary. Every maximal chain of degrees has cardinality K^

Proof. By Theorem 4.3, every maximal chain of 3) has cardinality ^ K^ As in the
proof of Theorem 4.3, we note that every degree has only countably many
predecessors, hence no chain of degrees can have cardinality > K^ I
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Having determined the size of maximal chains of 9, we turn our attention to
maximal antichains of 9. Note that {0} is an antichain of 2 which we call the trivial
antichain. The following theorem is the key result for extending antichains.

4.5 Theorem. Let A be a countable non-trivial antichain of 3. Then there is abeΌ
such that A U {b} is an antichain of 9 and b φ A.

Proof Let A = {a^ is I ^ N} be a non-trivial countable antichain of 9. For each
is /, fix a set A{ of degree ai. We construct a set B of degree b such that bφ A and
A U {b} is an antichain of 9. If A = 0, choose b to be any non-zero degree.
Otherwise, it suffices to have B satisfy the following requirements for all is I and
eeN:

We use <5Ί, ̂  > as our notion of forcing. We say that σ \ \- Qβi if one of the
following conditions holds:

(1)

(2) 3x(ΦHx)l Φ

We say that σ | |- Rei if one of the following conditions holds:

(3) 3xVτ=>σ(Φ:(x)ΐ);

(4) MΦσ

e(x)l Φ Ai(x)).

For each requirement R as above, let CR = {σe6^2: σ\\- R} and let V = {CR:
^ = Qe,i or R = Rei for some ZG/and eeN}. We first prove the Density Lemma.
Fix CR e (€. Suppose that R — QeJ for some / e / and e s N. Fix σ e £f2 and the least x
such that σ(x)l If Φf (x)T, then by (1), σ \ \- Qei. Otherwise, Φf (JC)|, in which case
we define τ 3 σ such that lh(τ) = lh(σ) + 1 and Φ^{x) Φ τ(x). By (2), τ\\- QeΛ.
Hence CR is dense. Next suppose that R = Rei for some z'e/and eeN. Fix
We may assume that

(5)

else by (3), it is immediate that σ 11- Rei. If there is a τ 2 σ such that

(6) 3x(Φτ

e(x)i Φ Aix))

then by (4), τ\\-ReΛ. Suppose that no τ satisfying (6) exists. We obtain a
contradiction by showing that At is recursive. To compute At(x), search for τ 2 σ
such that Φτ

e(x)\. Such a τ must exist by (5). But then by the assumed falsity of (6),
Φτ

e{x) = Ai(x). Since this procedure is recursive, we have the desired contradic-
tion.
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Since CR is dense for every requirement R, we may fix a ^-generic set G. Let
B = \JG. The Satisfaction Lemma is easily verified. 0

4.6 Corollary. Let A be a non-trivial maximal antichain ofΌ). Then |A| ^ K^ (In fact,
|A| = 2*°.)

Proof. Let A be a non-trivial maximal antichain of 2. It is immediate from Theorem
4.5 that A is uncountable, so |A| > Xi [In Chap. V.2, we show that there is a set M
which consists of 2*° minimal degrees. (A degree d is minimal if d # 0 and
(0,d) = 0.) Since every degree has only countably many predecessors, if |A| < 2No

then there must be a degree d e M such that d £̂ a for all aeA. Fix such a degree d.
Since d is minimal, d | a for every a e A . Hence AU{d} is an antichain properly
extending A, contradicting the maximality of A.] D

The proof of Theorem 4.5 can be modified to show that every maximal
independent set of degrees is uncountable. We leave the proof of this fact to the
reader (Exercise 4.13). After proving this fact, Sacks [1961a] asked whether every
maximal independent set of degrees has cardinality 2Ko. Groszek and Slaman
[1983] have shown that the answer is dependent on the model of Set Theory chosen.

The next theorem will be used to show that the degrees do not form a lattice. It is
also used in Chap. VIII.3 to help determine the degree of T\ι(β). We first need a
definition.

4.7 Definition. Let % = <ί/, ^ , v> be a usl. An ideal of % is a subset / Φ 0 of U
which satisfies:

(i) Va,b

(ii) Va,bel(a v be I).

4.8 Exact Pair Theorem. Let 1 be a countable ideal of Q). Then there are a0, aj e D
such that for all c e D

{a0,2ί\} is called an exact pair for the ideal I.

Proof (It will follow from the proof of Corollary 4.10 that we cannot always replace
an exact pair by a single degree in the conclusion of this theorem.) Let I = {Ci: / e N}
be a countable ideal of 2. For each ieN, fix a set C{ of degree q. We construct sets
Aj c N2 for j = 0,1 and let aj be the degree of Aj. (Since Λf2 is a space, we
recursively identify N2 with N and occasionally treat Aj as a subset of TV.) It suffices
to show that Ao and Ax satisfy the following requirements for all e,keN and
7 = 0,1:

QeJ: Ce^τAj.

Rey. If Φ °̂ = Φ^1 and both are total, then Φf° ^ τ Ct for some ieN.

The notion of forcing which we use here has domain F, where Fis the subset of
{<0oA>: Θj'. N2 -• N} which satisfies conditions (7)-(9) below for j = 0,1. F is
ordered by 3 , which is coordinatewise extension for partial functions.
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(7) {/: dom(βy]) Φ 0} is finite.

(8) V/e7V(dom(^i]) is either finite or is equal to N).

(9) VieN(dom(θψ) = N^{x: θψ(x) Φ Ct (x)} is finite).

Wesaythat <0o,0i>ll-βejif

(10) {x: θ[f\x)i} = N& {x: θf(x) Φ Ce(x)} is finite.

(Although (9) and (10) seem to serve the same purpose, both are necessary. Without
(9), it would not be possible to prove the Density Lemma for the requirements Qej.
And without (10), QeJ might fail to be satisfied, as a generic set could be built from
conditions each of which forces only finitely much of A[f\ hence (9) could fail with
A in place of 0.) We say that <0O,0i> |f- Re,k if one of the following conditions
holds:

(11) 3xeN(Φθ

e°(x)lΦΦθ

k

ι(x)l).

(12) V<ίo,ξ i>6/ ; l («o, ί i>2<θo,θi )^( l l ) fails for

<ξo,£i>inplaceof <0o,0i».

For each requirement Re{QeJ\ eeN&j = 0,1} U {Rey.e,keN}, let CR =
{<0O,0i > e F: <0O,0i > I \- R}, and let <g be the set of all such sets CR. We first prove
the Density Lemma. Suppose first that R = QeJ for some e e N andy = 0,1, and let
<00,0i> GFbe given. By (9), if dom^f 1) = ΛΓthen <00,0!> | \- R. Otherwise, by (8),
dom(0je]) is finite, so we can define <£0>£i> ^ <0o5^i> such that {ξo,ζi}^F,
dom(ξjel) = TV, and {x: ξf(x) Φ Ce(x)} is finite. By (10), <£0, ξi> Ih K so CR is
dense. Next suppose that R = Rek for some e,keN, and let <00,0i> eFbe given. If
there is no <£0, ίi> eFsuch that <£0, ξι) 3 <00,0i> and (11) holds for <£0, £i> in
place of <00,0i>, then (12) holds. Hence there is a (ξ0, ξx> ^ <00,0i> such that
<^o?^i> Ih ^ so again CR is seen to be dense.

By the Density Lemma, there exists a ^-generic set G. Let (Ao, Aγy = UG. We
complete the proof of the theorem by verifying the Satisfaction Lemma. The
satisfaction ofQej for e e TVandy = 0,1 follows immediately from (10). Fix e,keN,
and assume that Φf° = Φ^1 and both are total. Then by the Enumeration Theorem,
there is a <0 o ,0i>eF which satisfies (12) such that <0o,0i> ^ <Λ0,^i> Hence

(13) Vσ, τ e 5^ V c G N(σ compatible with 0O & τ compatible with 0X &

Φσ

e{x)[ & Φτ

k(x)l - Φσ

e(x) = Φ\(x) = Φf°(x)).

Given xeN, Φf°(x) is computed as follows. Search for σ compatible with 0O such
that Φσ

e(x)[. σ will exist since Φf° is total. Then Φf°(x) = Φσ

e(x), and σ can be found
recursively from any oracle which can decide whether a given string τ is compatible
with 0O. By (7)-(9), the C oracle is such an oracle, where C = @ {Cc.
dom(0^]) = N}. Since I is an ideal, C e l , so there is an reN such that C =τCr.
Hence Φf° ^ τ Cr, so Rek is satisfied. 0
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4.9 Definition. A lattice (L, ̂ , v, Λ>isausl<£, ^ , v> together with a function Λ:
L2 -> L (write x Λ y = z for Λ(X, >>) = z) satisfying:

(i) Vx,jeL(.x Λ y ^x&x Λ y ^ y);

(ii) Vx,y,zeL(z < x&z^j>->z < x Λ

(i.e., every pair of elements of L has a greatest lower bound under ̂ ) .

4.10 Corollary. Q) is not a lattice.

Proof. Iterating Theorem 4.3, we get a set of degrees {dji ieN} such that for all
i,jeN, i <7=>di < dj. Let I = {deD: 3ieN(ά < dj)}. It is easily verified that I is a
countable ideal of Q). Choose a0, a t as in Theorem 4.8 for I. If Q) were a lattice, then
a0 and a! would have a greatest lower bound deD. Since d ̂  a 0 and d < a1 ? del.
Hence d ̂  di for some ieN. But then d < di + 1 < a 0 and d < d i + 1 ̂  aj which is
impossible since d = a 0 n a t . Thus a0 π 2ί\ cannot exist. D

Note that the proof of Corollary 4.10 shows that no strictly increasing sequence
of degrees can have a least upper bound.

The final extension theorem of this section gives a sufficient condition for
determining whether, given finite posets 3tf = <//, ^H} c <M, ^ M > = Jί and an
isomorphic copy 2Γ of J f which is a subposet of®, it is always possible to extend 2Γ
to Ψ' = <V, ̂ v} c ® so that the following diagram commutes.

The theorem states that such an extension can always be found if <//, ^ H, vH> is a
usl, the embedding of J f into Jί preserves least upper bounds, and if for all
aeM — H and beH, a^Mb, i.e., no new elements are placed below any old
elements. It will follow from results proved in Chap. VII that without these
conditions, an extension as in Fig. 4.2 will sometimes fail to exist. These two results
will enable us to produce an algorithm which decides Th(®) Π V2.

4.11 Theorem. Let <//, ^ H , vH> be a finite usl and let Jί = <M, ^ M > be a finite
poset which extends J f = <//, < #>. Let ?Γ ̂  & bean isomorphic copy ofjtf. Assume
that:

(i) VmeMV/7,^e//(/7 ^Mm&q ^Mm^>p vHq

(ii) MaeM -H\fbeH(a^Mb).

Then there is a poset Ψ~ c Qι for which Fig. 4.2 is a commuting diagram.

Proof. Let H = {/?,-:/ < n} and let M - H= {mt: i < r}. Let / : H-> T be an
isomorphism of ̂ f with 3Γ = <T, ^ Γ>, and for all / < n, let f(pt) = dj and let Dt be
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a set of degree dj. We will use the method of forcing to construct a set
A c [0, r) x N. For each / < r, let i* < n be determined by letting/?;* be the greatest
element of H such that/?/* ^ M ^ / And for each / < r, let G{•= {k < r: mk ^ M w j .
We will extend/to an isomorphism g taking M into D by defining g{ΐ) to be the
degree cs of the set Cf = AίGi] © /)/*. By (i), g is well-defined, and the fact that g is an
isomorphism follows easily from (ii) once we show that the following requirements
are satisfied for all eeN,i,k < r and j <n\

(14) Rl^

(15) Rl-r.

(16) R 2

e i J :

(17) Rfy.

(18) Rfk:

It follows from the definition of C, that for all i,k < r and j < n, Rfj and Rfk are
satisfied.

We take as the domain F of our notion of forcing {Θ ̂  Nr: V7 < r(dom(0[i l) is
finite)}. These forcing conditions are ordered by 2 defined coordinate wise.
Forcing of requirements is defined as follows: We say that 0 | | - /?°.fc if either
mk^M rrii or one of the following conditions holds, where, for θeF,we define θ*(i)
t o b e 0 [ G ' ] Θ A * :

(19)

(20)

We

(21)

We

(22)

say

say

3xeN(Φ

ixeNVξ

that 0 | | -

3xeN(Φ

that 0 | h

Φf; total

θ

e

U)

lei

K
θ*(l)

(x)i Φ θlk\x)i).

f j if either p} < j

.u i f

3xeN(Φζ>(x)Φ

c)t).

w Wj or (20) holds or

θli]Ml).

For each requirement R just mentioned, let CR = {θeF: θ\\- R), and let ^ be the
collection of all such sets CR. We will show that each CRe%>is dense. Assuming that
this has been shown, let G be a ^-generic set and let A = UG. Note that Aίi] ^ Γ C, so
for any set 5, if A[ι] ^TS then Cj ^ Γ 51. The Satisfaction Lemma now follows easily
from the Enumeration Theorem.

We complete the proof of the theorem by showing that each CR e ^ is dense. Let
R = R°ik and fix ηeF and the least xeN such that ^y[k](x)T We suppose that
mk ^Mmh else η \\- R. If there are ξ ^ ^ and >>eA/" such that Φf(i\x)l = y, then
since kφ Gh we can find ΘEF such that 0 ^ η and ^ ( x ) ^ ^ J and so satisfy (19).
Otherwise, letting θ = η, we see that (20) is satisfied. Hence CR is dense.

Next let R = i?* .̂  and fix 0 e F. We suppose t h a t / ^ M W , else 0 | h Λ If it is not
the case that
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(23) VxeN3ξeF(ξ => θ&Φf{i\x)l),

then (20) is satisfied, so θ | f- R. If it is not the case that

(24) Vx,yeFVτeF(τ^θ& Φτ*{i)(x)l = y^y = Dj(x)),

then (21) will be satisfied by some τ Ώ.Θ and for such τ,τ\\- R. Hence CR is dense
unless both (23) and (24) hold, which we assume to be the case in order to obtain a
contradiction. Under this assumption, given x e N we can compute Dj(x) by finding
σ e ^ and ξeFsuch that σ <= ξ*(i) and Φσ

e(x)i; then Φσ

e(x) = Dj(x). By (23) and
(24), such σ and ξ exist and can be found recursively in /),*. Hence Dj ̂  T /),*. Since/
is an isomorphism, p} ^MPi* ^M^I SO R\ i } was forced earlier by θ.

Finally, let R = R2

ei .. Fix η EF and the least x such that ^ I l ] (x) | . Suppose that
ΦfJ is total. Then we can find θeF such that θ^η and 0 [ l l(x) | # ΦfJ(x). It now
follows from (22) that CR is dense. 0

Although restrictions (i) and (ii) in Theorem 4.11 are necessary, the condition
that H and M be finite is unnecessary. Only minor modifications are needed to
prove a version of this theorem if//and M — //are countable if we also assume that
for all meM — //, {peH: p <Mm} has a greatest element. This latter theorem
follows easily from results of Kleene and Post [1954]. A more complicated proof
presented in Sacks [1961a] will prove the theorem without this added assumption.
In fact, Sacks [1961a] proves such an extension theorem in the case where \H\ < 2No

and M — H is countable. This latter result is the key to obtaining the embedding
results attributed to Sacks in the previous section.

4.12 Remarks. Kleene and Post [1954] introduced most of the methods used in this
section, and proved Theorems 4.3, 4.5, and 4.11, and Corollary 4.10. Shoenfield
[1960] proved Corollary 4.6. Theorem 4.8 was proved by Spector [1956].

4.13-4.16 Exercises

4.13 Show that every maximal independent subset of 2 is uncountable.

4.14 Let d e D be given, and let A be a countable antichain of <2) such that for all
a e A, d < a. Show that there is a b e D such that b > d, b<£A, and AU {b} is an
antichain of 3f.

4.15 Prove Theorem 4.11 under the modified assumption that H and M — H axe
countable and that for all meM — //, {peH: p <Mm} has a greatest element.

4.16 Prove Theorem 4.11 under the assumption that Hand M — //are countable.
{Hint: Construct each Ct directly, coding into Ct those sets Dj such that p} ^ M rat

and those sets Ck such that mk




