
Part D

The Number of Models

In the remainder of this book, we calculate the possible spectra for two
classes. If T is a countable superstable theory we will give the possible
functions /(Nα,S). If T is a countable u -stable theory we will give the
possible functions 7(Nα, AT). A number of the theorems extend to more
general classes of theories or to different classes of models. We have tried
to build a framework which handles these more general cases. Thus, there
are theorems and exercises referring to them. Some of the extensions we
touch on are 7(T, AΎK) for any uncountable /c, uncountable T, and small
countable superstable Γ.

The calculation proceeds by first classifying the theories and then com-
puting the spectra in each class. We begin with the fact, proved in Section
IX.6, that if T is not superstable then 7(/c, AT) = 2^'. (We gave the proof
only for regular /c). Although we did not prove it here, it is shown in Chap-
ter VII of [Shelah 1978], that 7(/c,S) = 2". This justifies our assumption
in the remainder of this book that T is superstable. Chapter XIV collects
some of the main tools used in the computation. In Chapter XV we dis-
tinguish the bounded from the unbounded, or multidimensional, theories.
We classify the spectra of bounded theories and compute a lower bound
for the spectrum of an unbounded theory. Thereafter, we need only ana-
lyze unbounded theories. We also introduce in Chapter XV the notion of
an eventually nonisolated type which is crucial for the study of countable
models.

In Chapter XVI we introduce a major dividing line, the dimensional or-
der property (DOP). We prove that if T has the dimensional order property
then T has 2* S-models in every power K > 2l τL We also find a flaw in our
classification of the classes of models to study. That is, we will prove that
a theory T has the DOP for all of the classes K introduced earlier or for
none of them. But there is another variant, the ENI-DOP which must be
investigated to deal with countable models.

In Chapter XVII, we see that if T does not have the dimensional order
property then every model can be decomposed into a tree of small models.
If for each model the tree is well-founded, T is called 'shallow'; then we are
able to assign invariants to the models in the manner suggested in Section
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I.I. If not the theory is called 'deep' and again the theory has the maximal
number of models.

Thus, we establish the 'main gap'. Either for all uncountable cardinals
K, I(κ,K) = 2* or for all a > 0, /(Nα, #) < ̂ (α). In Chapter XVIII we
undertake a more detailed analysis of ω-stable theories. We establish both
the Vaught and Morley conjectures for ω-stable T. That is, we show that
if T is α -stable then T has either countably many or 2**° countable models
and the spectrum function is increasing on uncountable cardinals. Shelah
extends the second result to all theories in [Shelah 198?].

These computations of the spectrum functions have an interesting side-
light. It is by no means evident that the spectrum function of a theory T
does not depend on the axioms for set theory. Indeed, for uncountable theo-
ries there are examples where it does so depend (cf. [Shelah 1978] Chapter
IX). However, we will establish in this book equivalences (for countable
theories) between various spectrum functions and certain 'syntactic' con-
ditions which are clearly absolute.

We restrict our attention to countable first order theories. For the case
of S-models this restriction is totally unnecessary. In order to extend the
results to arbitrary models of an uncountable theory, one must generalize
the notion of α -stability. Shelah has done this (by generalizing Morley's
definition via rank rather than the spectrum of stability) but we do not
deal with this generalization here.

Throughout Part D, K denotes an acceptable class. Unless expressly
asserted otherwise, we assume it admits stationary strongly regular types.
This assumption provides the obvious obstruction to extending the results
in Part D on countable α -stable theories to countable superstable theories.
Shelah surmounts this obstacle in [Shelah 198?].



Chapter XIV

The Construction of Many Nonisomorphic
Models

We describe in this chapter the methods by which we later construct many
nonisomorphic models of theories with certain specified properties. The
basic technique is to construct for each graph G from a large family of
graphs a model MQ in such a way that if MQ is isomorphic to MH then
G is isomorphic to H. The tool for this will be to encode the points of the
graph and the edges between them by the sizes of certain indiscernible sets.
In the first section of this chapter we review the construction of maximal
sets of pairwise nonisomorphic graphs. In the second section we discuss
how to identify the elements or, often, equivalence classes of elements that
we want to use as the points of a graph. That is, we show how to construct
models with the dimensions of types over certain base sets prescribed in
advance. The methods of Section 2 are, in general, unable to prescribe
dimensions below λ(I). In Section 3, we make this limitation more precise
and single out the exceptions to it.

1. Many Nonisomorphic Graphs

Many theorems showing that certain theories have many non-isomorphic
models will be established by coding certain well known complicated classes,
like the class of all graphs, into each theory satisfying a certain condition.
In this section we justify this procedure by showing that the classes of
graphs which we will interpret later do have many nonisomorphic models.
We begin by establishing some nomenclature.

1.1 Definition. A graph is a set with a symmetric binary relation. A di-
rected graph is a set with an asymmetric binary relation.

It is easy to construct 2λ non-isomorphic directed graphs of power λ.
For any X C λ, let GX be the disjoint union of copies of the a. G X and
use < as the binary relation. It is somewhat more difficult to construct 2λ
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symmetric graphs of power λ, although the basic strategy is the same. To
make it easier to identify the graph we impose one further condition.

1.2 Definition. A triangle in a graph G is a triple of points such that each
pair is connected by an edge.

We will define another notion of triangle in Chapter XV. It will be clear
from context which notion is meant.

1.3 Proposition. For every cardinal λ there are 2λ non-isomorphic sym-
metric graphs which contain no triangles.

Proof. (Fig. 1). The key to the proof is to construct for each ordinal α a
connected symmetric graph Ga which contains no triangles such that if
a / β then GaίfcGβ. The universe of Ga will contain

a U {aβ,Ί : β < 7 < a} U {b°β^ : β < 7 < <*} U {bl

βtΊ : β < 7 < <*}•

We will encode the usual ordering on a by means of the auxiliary elements.

o ov-* o v-> i

0,

j υ
β,γ β,γ

I

β<γ

β
Fig. 1. Encoding orders in graphs

Let R be the symmetric closure of the following relation:

{{/?, aβιΊ) : β < 7 < a} U {{7, tPβtΊ) : β < Ί < a}

Ί,<*βtΊ) ' β < Ί < <*}
, b1^) :β<Ί<a}.

It isn't hard to verify that Ga is as required.

1.4 Exercise. Show that there are 2λ nonisomorphic symmetric graphs of
cardinality λ which contain no triangles but each point is connected to at
least two others. (Hint: Put tails on the elements of the graph constructed
for Proposition 1.3.)

1.5 Historical Notes. These results are all well-known. There is an ele-
mentary exposition in [Manaster 1972].
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2. Models with Prescribed Dimensions

This section contains some of the most useful constructions in the entire
book. We show how to construct models with specified dimensions for cer-
tain families of regular types. These constructions will be applied repeatedly
to construct non-isomorphic models in the remainder of Part D.

The relation of orthogonality establishes a dichotomy on pairs of types.
Roughly, if two types are not orthogonal, they have the same dimension; if
they are orthogonal, their dimensions can vary arbitrarily. We devote this
section to making this intuition precise.

We begin by showing that if the ίί-strongly regular type p is orthogonal
to the ίf-strongly regular type q we can increase the dimension of p arbi-
trarily without increasing the dimension of q. Then we show that we can
increase the dimension of a fixed q without increasing the dimension of any
of a family of p's each orthogonal to q. In Theorem 2.4 we turn this argu-
ment on its head and show that we can fix the dimension of each type in
a family X while increasing the dimensions of all types orthogonal to each
p £ X. After some exercises illustrating these techniques, the remainder of
the section considers sufficient conditions for the dimension of two types to
be equal. Throughout this section we assume T is superstable.

2.1 Theorem. Let T be superstable.

i) Suppose p J_ q are K-strongly regular types which are each strongly
based on subsets ofM^K. Then for any K > max(|M|, \o(K)) there
is a model NEK with dim(p, N) = dim(p, M) and dim(g, N) > K.

ii) Further, let X be a collection of K-strongly regular types each strongly
based on a subset of M. Suppose q A. p for every p E X. For each
K > max(|M|,λo(^)) there is a model N with \N\ = K, such that
dim(g, N) = K and for each p E X, dim(p, N) = dim(p, M).

Proof. (Fig. 2). i) Let E be an independent set of K realizations of the
nonforking extension of q to S(M) and let N be if-prime over M U E.
By XII.4.4, dim(p,JV) = dim(p,M) + dim(pM,7V). But dim(pM,7V) = 0
by Theorem X.4.6. Assertion ii) is easily shown by an increasing chain
argument, repeatedly applying i).

2.2 Exercise. Prove Theorem 2.1H).

We now show how to combine these results to construct models with cer-
tain prescribed dimensions. The following definition codifies the situation
of Theorem 2.1H).

2.3 Definition, i) If S is a family of stationary ίί-strongly regular types,
the type q is irrelevant to S if p -L q for each p £ S.
Recall the following notation which is extremely useful to describe
families of types.

ii) Suppose p £ S(a U A) and t(b; A] = t(a',A). Then p^ denotes the

image of p under an automorphism which maps α to b and fixes A.
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N

M

Fig. 2. Theorem XIV.2.1

It would be reasonable in i) to say q is orthogonal to 5 (and indeed
Makkai in [Makkai 1984] does) but this seems to make the context bear
too much burden as to which of three meanings of orthogonal is meant.

2.4 Theorem. Let T be superstate. Let S be a family of pairwise orthog-
onal K-strongly regular stationary types over ACM. For any cardinal
K, > max(λo(K),κ(T), \M\) there is a model Mκ D M of T satisfying the
following conditions.

ii) If p € 5, dim(p,M,c) = dim(p, M).
iii) Suppose q is based on a subset of Mκ

dim(q,MK) is /c.
and q is irrelevant to S. Then

Proof. Let {<& : i < μ) enumerate the /f-strongly regular types which are
strongly based on a subset of M and are irrelevant to 5. Since T is super-
stable, μ<κ. Define (Mi :i < μ) by induction with MQ = M. Take unions at
limit ordinals and apply Theorem 2.1 ii) to choose M^+i with |M^+ι| = /c,
dim(<7i, Aft+i) = AC, and for each p € S, dim(p, Λfi+i) = dim(p, Mi). By in-
duction, dim(p, Mi) — dim(p, M) and by Theorem X.4.6 dim(pMi, M^+i) =
0. Let NQ = \Ji<μ Mi. Construct TV; for i < ω by iterating this procedure.
Then Mκ =\Ji<ωNi is the required model.

There are two uses of superstability in the preceding proof. The less
important arises from the need to have μ < K. For this, one can assume
that K, > \M\<K(TΪ and K — κ,<κ(τ\ (The second of these requirements is
needed for the iteration.) More essential for the application of the theorem
is restriction to K-strongly regular types. The crucial use of regularity is
to show (in the proof of Theorem 2.1) that

dim(p, TV) = dim(p, M) + dim(pM, N).

2.5 Exercise. Let S be a family of stationary /f-strongly regular types
with each p^ e S strongly based on α £ A and with p^ JL t(A - α ά).
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Choose for each p £ S, a cardinal Xp with A (I) < Xp < K. There is a model
Mκ such that i) dim(p, Mκ) = Xp if p G S and ii) dim(q,MK] = K if q is
irrelevant to 5. (Hint: Let Ep be a set of λp independent realizations of p
for each p G 5 and let B = A U \JpeS

EP' Now if PZΓ denotes the nonforking
extension of Pa to a U £p_, p -̂ _L £(£ — ά; α).)

The following exercise is easily proved by combining the techniques of
Theorems 2.1 and 2.4.

2.6 Exercise. Let S be a family of stationary X-strongly regular types
with each p^ £ 5 strongly based on a e A and with p^ J. t(A - α; α). If λp,
for each p G S, denotes dim(p, Mp) where Mp is K-prime over the finite set
on which p is strongly based and λp < /c, then there is a model Mκ such
that i) dim(p, Mκ) = Xp if p G S and ii) dim(<?, Mκ) = K if q is irrelevant to
S.

Now we determine when two strongly regular types have the same di-
mension in a model N. There are several steps to this procedure. First we
deal with an arbitrary pair of nonorthogonal ίί-strongly regular types over
M E K with M C N. Then we restrict the types to be two copies of a type
over an element 6. The relation between the dimensions of p^ and py are

seen to depend on properties of b and b . For this situation we deal first

with the case that b and b have the same strong type. Then we make the
further assumption that the type of 6 is I-isolated. With this assumption
we no longer have to require the type to be stationary.

2.7 Theorem. Suppose p,q € S(M), M,N E K, M C TV and the pairs
(pίPo)ί (QiQo) are K -strongly regular. I f p j ί q then dim(p, TV) = dim(#, TV).

Proof. Let E = (ea : a < K) be a basis for p(N). Define by induction models
TVα for α < K with TV0 = M and TVα+ι a submodel of TV which is K-
prime over TVα U ea. By Exercise X.1.21, for each α, Na Π E = Ea. By
Theorem XII.4.5 the nonforking extension of q to TVα is realized in TVα+1.
So dim (p, TV) < dim(g, TV). Reversing the roles of p and q we finish.

This previous proof used in an essential way the hypothesis that p and
q were types over /f -models. If we relax this hypothesis we must weaken
the conclusion somewhat. For cardinals /c μ, and λ, we write /c = μmod(λ)
if /c + λ = μ + λ.

2.8 Theorem. If p, q E S(A) are K -strongly regular and p / q then for
any NeK, dim(p, TV) = dim(<?,TV) mod(λ(I)).

Proo/. Let M -< TV be K-prime over Λ. By Theorem X.4.5 both dim(p, M)
and dim(<7,M) are less than or equal λ(I). By Theorem XII.4.1 and Theo-
rem XII.4.5 dim(p, TV) = dim(p, M) + dim(pM, TV) and similarly for q. But
dim(pM,TV) = dim(<7M,TV) by Theorem 2.7 so we finish.

We can remove the 'modλ(J)' if we tighten our control on the types p
and q.
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2.9 Lemma. Let p G S(A U b) be K-strongly regular and suppose p -fl A.

Then for all b realizing stp(b',A) and all M € K containing A U b U 6 ,
dim(p, M) = dim(p£', M).

Proof. (Fig. 3). Let p' denote p^> and choose N -< M to be a .if-prime

model over A U 6 U 6 . If 6 J^ 6 then {5, b } is a set of indiscernibles over

A. Thus, N is ίf-prime over A U 6 U b (Note the change in order of 6, b .)
and so dim(p,7V) — dim(p',7V). By Theorem 2.7 and Theorem XII.4.4, we
conclude dim(p, M) = dim(p', M).

M

Fig. 3. Theorem XIV.2.9

Even if (b /5 A), we can reduce to the previous case as follows. Choose c
realizing stp(b; A) with c I A M. Let q = pc and choose M' which is /f-prime

over M U c. Now let pM and p' be the nonforking extensions to 5(Af)
of p and p' respectively. Since p -fl A, Theorem VI.2.22 implies p / q and
p1 / q. By the transitivity of nonorthogonality on K-strongly regular types,

MpM / p1. By Theorem 2.7 dim(pM,M') = dim(pfM,M') and by the first
case dim(p, M') = dim(^, M1) = dim(p', M'). By Theorem XII.4.4, we have

dim(p, M1} = dim(p, M) + dim(pM, M')

and
dim(p', M'} = dim(p', M) + dim(p'M, M1).
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By Exercise X.I.21, each realization, α, of pM in M1 satisfies a 1M c. Thus,
dim(pM,M') < κ(T) = ω so we can subtract to conclude dim(p, M) =
dim(p',M).

In this situation we can strengthen the criterion for nonorthogonality of
Theorem VI.2.22.

2.10 Lemma. Let p G S(A U 6) be K-strongly regular and suppose p ~fi A.

For any b realizing stp(b', A), p^ Jί p^>.

Proof. By Lemma 2.9, for all M D A, dim(p^,M) = dim(p^/,M). By the
contrapositive of Theorem 2.1, we have the result.

If we add the requirement that ί(6;A) is I-isolated then we can weaken
—/ —

the requirement in Lemma 2.10 that 6 realize the same strong type as b to
the requirement that it realize the same type. We obtain this generalization
in Theorem 2.15. The following facts are needed in the argument.

2.11 Exercise. Show that if t(a;A) has finite multiplicity there is an E
in FE(A) such that ί(α; A) U£(z;ά) f- stp(a\ A).

2.12 Lemma. Let T be stable and suppose α, b G M \= T. Assume £(ZΓ^c; 0)
has finite multiplicity and £(c; α) is AT-isolated. If stp(a', 0) = stp(b', 0) then
there exists d G M with stp(a^c', 0) = stp(b^d; 0).

Proof. Choose E G FE($) such that £(α^c;0) U E(x,a^c) \~ sίp(α^c;0).
Let φ(y;a) \- t(c-,a). Since sίp(ά;0) = s£p(6;0), there is an e G Λl with
sίp(α^c;_0) = sίp(6^e;0). Thus, (3y)[0(y;6) Λ E(a~c,b~y)] is satisfiable.
Choose d in M to witness this formula.

The following Lemma does not hold for an arbitrary acceptable class and
I have not found an abstract formulation of a sufficient condition. Thus, I
remark that it holds in the cases we are most interested in.

2.13 Lemma. Let T be super stable and K = SorTbe ω-stable and K =
AT. Suppose p is I-isolated over A with \A\ < λ(I). For any b realizing p
and any M G K with A C M, sίp(6; A) is realized in M.

Proof. This is obvious for the class of S-models. When T is a countable
ω-stable theory we can use the fact that every type has finite multiplicity.
For, if p G S (A) is an isolated type with multiplicity n the type of n points
which realize p but realize different strong types over A is also isolated.

2.14 Exercise. Show that this result fails for an arbitrary acceptable class
by considering the theory REFω and letting K = AT.

2.15 Theorem. Let T be superstable and K = S or T be ω-stable and
— —/

K = AT. Let A C M G K and suppose 6,6 realize the I-isolated type, q,
over A. Letp£S(A\Jb) be K-strongly regular, letp' denote p^*, and suppose

pJLp'.ForanyM^AU {6,&'} with M G K, dim(p,M) = dirn^',M).
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Proof. Let N -< M be /f -prime over A U b and choose by Lemma 2.13

c £ N realizing stp(b A). Let r denote PC- By Lemma 2.9 and Lemma
2.10, dim(p', M) = dim(r, M) and pf / r. As N is also K-prime over A U c,
dim(p, ΛΓ) = dim(r, JV). By the transitivity of nonorthogonality on regular
types, p / r. Thus, dim(pN,M) = dimfV^M). By Theorem XII.4.4

dim(p, M) = dim(p, TV) + dim^, M)

and
dim(r, M) = dim(r, ΛΓ) + dim(τΛ M).

So dim(p', M) = dim(r, M) = dim(p, M) as required.

2.16 Historical Notes. These kinds of construction originate in [Shelah
1978]. However, the emphasis on types rather than indiscernible sets is due
to Lascar. Thus, the general outline of the first half of this section stems
from Lascar via [Makkai 1984]. Theorem 2.7 through Theorem 2.13 comes
fairly explicitly from [Bouscaren 1983] and [Bouscaren & Lascar 1983].

3. Tractable Types

We combine here the results of Section X.4 on the dimension of arbitrary in-
discernible sets in /f-prime models with the more refined results for strongly
regular types described in Section 2 of this chapter. If a type is orthogonal
to the empty set we are able to determine almost at will the dimension of
various copies of the type. In this section we make precise 'almost at will';
in the next chapter we begin to apply these constructions. We are trying
to develop a general framework to study both S-models and AT-models.
In the second case, nonisolated types play a special role because they can
have finite dimension.

3.1 Definition. We say the /f-strongly regular stationary type p over A is
(μ, K)-tractable if for any C with t(C', A) J_ p, if M is /C-prime over A U C
then dim(p, M) < μ + \A\.

This definition is introduced primarily so that the following two situ-
ations can be treated uniformly in constructions. Recall from Definition
VI.2.1 that a type p is unbounded if it orthogonal to the empty set.

3.2 Lemma. Let p E S(B) be stationary. Suppose further that B C A, and
p H 0. Regarded as a type over A,

i) p is (X(I)+,K)-tractable.
ii) If p is K-strongly regular and not l-isolated then p is ( λ ( ΐ ) , K ) -

tractable.

Proof, i) Let M be /ί-prime over A U C and E a maximal independent set of
realizations in M of p. By V.I.19 there is aaEQCE with \EQ\ < κ(T) + \A\
such that, letting E' denote E - EQ, Ef [B A and E1 is a set of indiscernibles



3. Tractable Types 291

over A. Now if e e E1', ί(e Λ) J. ί(C; A) so, applying Theorem VI.1.19,
t(E'\A) _L t(C', A). In particular, E1 [A C and so £' is a set of indiscernibles
over A U C. By Theorem X.4.5, \E'\ < λ(I). So |£| < λ(I) + ιc(Γ) + |A|.
Since /c(T) < λ(I), we have i).

ii) Note that e E E' implies e [B A U C. Thus, by the open mapping
theorem, £(e; A U C) is not I-isolated and so is not realized in M. That is,
E1 = 0. Since λ(I) > /c(Γ), |£| = \EQ\ < A (I) as required.

The following exercise is an immediate application of the lemma. Its
solution is contained in the proof of the more complicated application in
Theorem 3.5.

3.3 Exercise. Suppose pi E S(Ai) is H 0 (and not I-isolated), {Ai :i < K}
is an independent sequence of sets with each \Ai\ < A (I), and M is K-prime
over A = UΛ Then for each i, dim(p;,M) < λ(I)+ (dim(pt ,Af) < λ(I).)
(Hint: Apply Lemma 3.2 to each pi taking Ai for both A and B and ( L = £ t ^i
for C).

3.4 Exercise. Show that if T is a countable ω-stable theory then p € S(A)
is (No, AT)-tractable if and only if p is nonprincipal.

We will repeatedly appeal to the construction described in the following
theorem.

3.5 Theorem. Suppose K > mαz(λo(I),λ(I)). Fix a cardinal μ > κ(T).
Let Ai for i < A be an independent sequence of sets with \Ai\ < A (I). Let
Si be a set of (μ,K)-tractable types over Ai which are each orthogonal to
0. Then there is a model N such that:

i) \N\=κ.
ii) dim(p,N) <μifpeS= \Ji<χ Si.

uΐ) dim(<7, N) = K if q is over N and q is irrelevant to S.

Proof. Let M be ίC-prime over A = \Ji<χAi. If A1 denotes A — Ai, we
have Ai |0 Ai. This implies by Theorem VI.2.21 that p JL ί(Λ'; Ai) for each
i and each p € Si. Thus, by the definition of tractable, for each p G S,
dim(p, M) < μ. Now extend M to TV to satisfy i) and iii) while preserving
ii) by Theorem 2.4.

The following exercise indicates one way the sequence of independent
sets Ai in the hypothesis of Theorem 3.5 can be found when applying that
theorem.

3.6 Exercise. Let p G S(B) and p H 0. Suppose t(C\ B) J_ p, p _L q, q €
S (C}, and q H 0. Show that if E is an independent set of realizations
of q then p Lt(E\jC;B) and thus if M is ii-prime over B U C U £,
dim(p,Af) <λ(I).

3.7 Historical Notes. Of course these notions originate with Shelah [She-
lah 1978]. But this sort of construction is found more explicitly in [Makkai
1984] and [Bouscaren & Lascar 1983].




