CHAPTER 5
THE ALLARD REGULARITY THEOREM

Here we discuss Allard's ([AW1l]) regularity theorem, which says roughly

that if the generalized mean curvature of a rectifiable n-varifold V = v(M,0)

L P . . o . .
is in Lloc(uv) in U, p>n, if 6= 1 M a.e. in U, if £ € spt VNI U ,

and if w;l p—n uv(Bp(E)) is sufficiently close to 1 for some sufficiently

small* o, then V is regular near V in the sense that spt V is a
1,1-n/p

C n-dimensional submanifold near §& .
A key idea of the proof is to show that V is well-approximated by the
graph of a harmonic function near & . The background results needed for this

are given in 8§20 (where it is shown that it is possible to approximate spt V
by the graph of a Lipschitz function) and in §21 (which gives the relevant
results about approximation by harmonic functions). The actual harmonic
approximation is made as a key step in proving the central "tilt-excess decay”

theorem in §22.

The idea of approximating by harmonic functions (in roughly the sense
used here) goes back to De Giorgib[DG] who proved a special case of the above
theorem (when k=1 and when V corresponds to the reduced boundary of a
set of least perimeter - see the previous discussion in 8§14 and the discussion
in §37 below. Almgren used analogous approximations in his work [Al] for
arbitrary k = 1 . Reifenberg [R1l, R2] used approximation by harmonic
functions in a rather different way in his work or regularity of minimal

surfaces.

*  Depending on [IH]|
L® (1)
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§20 LIPSCHITZ APPROXIMATION

In this section V = v(M,0) is a rectifiable n-varifold with generalized

mean curvature H in U (see 16.5), and we assume p > n , and
0 € spt Hy v BR(O) cu

20.1

A

< (1-n/p)T , TR

/

N 1/p
B, (0)

-1 _=-n _
6 =1, W, R uV(BR(O)) = 2(1-0) ,

where o € (0,1) . We also subsequently write u for uv , and
-n 2 1-n/p 2
eem [ e eplas [V
Bk(o)

(=p U-a.e. Xx) . Notice that then the first

where p =p , P. = D T M
X

\Y%
Rn X TX
term in the definition of E measures the "mean-square deviation" of TXV

away from R" over BR(O) . (This is called the "tilt-excess" of V over

BR(O) - see §22).

20.2 THEOREM Assuming 20.1, there is a constant Y = Y(n,a,k,p) € (0,1/2)

such that <f & € (0,11 then there is a Lipschitz function

_ 1 ky . n k .
£= (£7,...,£9 BYR(O) +~ R with
1
Lip £ = 2, supifl <c E2n+2 R
and
H™ (((graph £~ spt V) U (spt V~ graph £)) N BYR(O)) <2 g

where c¢ = c(n,a,k,p) .
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20.3 REMARK Notice that this is trivial (by setting £ = 0 and taking

-2n-
r12E

suitable ¢) wunless £ is small. 1In particular we may assume

+
E < 522n 2 , which § is as small as we please, so long as our eventual

choice of § depends only on n,k,a,p .
Proof of 20.2 By virtue of the above remark we can assume
(1) E=d

60 to be chosen depending only on n,k, 0, p . Set
1

- (872 2n+2
20—~(50 gl <1,

and take any two points X,y € BBR(O) 1 spt V with lq(x-y)l = !Loix—y] ’

!x-yl > BR/4 , where B€ (0,1/2) is for the moment arbitrary. By Lemma 19.5 we have

a

O () + By = (L+e® TRYE) (1-8) Pu R e, (0))

+c(2y® TR lp,pllan .

BR(O)

. . . o _2
Using Cauchy inequality ab = z2 +
1

b2 in the last term, together with

Q|

the assumption (in 20.1) that w; R U(BR(O)) < 2(1-a) , this gives

0" (u,x) + 0% (u,y) = 2(1+c(206)‘“/§)(1—6)'n(1—a)

o C -2n=-2
+ > + 5 (QOB) E .
. 2n+ -
Since %n2=6fﬁ and 0"(u,&) =1 V£ € spt VAU (by 17.8 and the
assumption that 6 =2 1 u=~-a.e.) this gives
P =T
2 < 2\l+060)(1—8) (1-0)
1 -2n-2

(x —
+-2—+c0L GOB
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which is clearly impossible if we take B = B(n,k,p,0) and 60 = 5O(n,k,B,P,d)

small enough. Thus for such a choice of B , 60 we have

1

E2n+2

(2) lax=n)| = ¢ R, %,y € spt WNBg (0) , |x-y|z Br/4,

where c¢ = c(n,k,p,2) , B = B(n,k,p,8) . (Formally we derived this subject

to assumption (1), but if (1) fails then (2) is trivial with c= 681;) Noting

the arbitrariness of x,y in (2) and noting also that 0€ spt Y and that

spt LN 9B (0) # @ (which follows for example by selecting suitable ¢ in 17.2),

Br/2
we conclude {after replacing B by B/4)
1
3) lae | =c 822 g, %€ By () Nspt V , B = B(n,k,p,) € (0,1) .

Next let 6,2 € (0,11 be arbitrary and assume
1-n/p 2 2n+2
(4) I'r =2 8

(which we can do by Remark 20.3, provided we eventually choose & = &§(n,k,qa,p)) .
set Ey(d,E) = O'HJ Ip_-pll°du(x) for any £ € sptV , B _(£) < B_(0) ,
B () % a R
g

and define

2n+2

G = {E€ spt VNB : Ey(0,8) =6% Y o€ (0,R/2)} .

gr/2%)

Notice that if & € spt V(]BBR(O) then by (4) and the monotonicity formula

17.6(1) (see Remark 17.9(2) to justify the application of 17.6(1))

<t o B E) = (e (1-B1R) u(B

(5)

(S

(I_B)R(E))

1

IA

-n - -1
(1+c8) (1-B) w "R U(BR(O))

2(1+c8) (1-8) " (1-a)

1A

1A

2(1-a/2) ,

for 6,8 small enough (depending on n,k,p,0) .
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Now let %,y € G . In view of (4), (5) we may now apply the previous

argument with o/2 , 6-1 x«y]/Z , ¥ in place of 0, R, 0 in order to deduce

from (3) that

1/ (2n+2
gt/ (2n )lx-yl, x,y€G , c=c(nk,p,a)

(6) lq(x—y)i = cl

n/on2 2 -
(because Eo(o,x)+-(rol DR 050 %F2 | 5 = g7l x-y|/2 , by virtue of (4)

and the fact that = € G )

1/ (2n+2)

Choosing & so that 26 (1+c) (n+k) <1 (cas in (6)), we thus

deduce

latx-y) | = gyfjgy |x-y| , =,y € ¢ , c¢=cink,p,o) .
since |x-y| = |a(x-y)| + |p(x-y)| , this implies

) 2
%) lae) -aw | = 57 e -pw)]
and so (by the extension theorem 5.1)
G < graph f ,

where £ 1is a Lipschitz function B (0) - Pk with Lip £ = £ . By virtue
1

BR/2

of (3) we can assume (by truncating £ if necessary) that suplfl < cE

2n+2R R

Next we note that (by definition of G ) £for each

g € (BBR/2(0)~'G ) N spt V we have 0(&) € (0,R/10) such that

2
22255 ()" < J pr-pHZdu(x)

BO(E)(E)

and by (5) we therefore have
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- -2n-2.-1 2
WEgy g, ©) = ot %7 | I, =2l 2a o

Bg(g)(i)

By definition the collection of balls {B (&)}

G (&) E€B (0)~G

BR/2

is

a cover

for BBR/Z(O) ~ G , and hence by the covering Theorem 3.3 we can select

points ‘51’52"" € BBR/z(O) ~ G spch that {BO.(EJ.)} is a disjoint

b
collection (cj=o(gj)) and {135

g
J
Then setting & = Ej and summing over Jj , we conclude
-2n=2,.-1 J 2
(8) M(Bgp /(@) ~G) = ¢ L S I, ~pll~du (x)

B (0)

Since @n(u,g) >1 for &€ spt VN U we have
If]((spt H~graph £) N B

(by Theorem 3.2(1)) and it thus remains only to prove

(9) H*((graph £~spt u) N B _Zn'zER" .

or/2(©) Scg

(Then the theorem will be established with vy = g/2.)

To check this, take any n € (graph £~ spt u) N BBR/4(O)

E =
g (0,BR/2) be such that Bg/z(n) N spt u ¢ and B30/4

(Such 0 exists because 0 € spt y .) Then the monotonicity formula 17.6(2)

(See Remark 17.9(2)) implies

,(Ej)} still covers BBR/Z(O)

BR/Z(O)) = U(BBR/Z(O)“'graph £)

~ G

and let

2
n -n K=
H(B M) sco jB yn (n)]x—nl p(TM)l[IX”IH ay
[0) ag/2
X-T 2
5°f |P Ml(_o—)l a
B, (T 0
X=T 2 2
ECU ‘p nl(T)l du+f Iy P
Bc(n) (R) BG(n) X R

(M) N sptu # 6 .
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2
du + u(BO(n)~F)

=c lp (E:Il)
Uch)ﬂF ®H©

2
+ I “P - P “ du] ?
Bo(n) TxM Rn

where F = graph £ , and where we used p ((x} = x-Pn {(x) for any subspace
pd

+k

3 K=
T c RC . Since |p 4

(——H <cl for =,y € ¥ Bc(n) (because

(Rn)l g

Lip £ = &) , this implies

B M) = c(mmo(m) + UB_(M~F) + [ e, ,-p uzau} :

B, (M) M Ry

Since we can take ¢ £ = 1/2 (notice again the validity of the theorem in

this case automatically implies its validity for larger values of £ € (0,1]) ,

we thus get

(10) HB,M) S cluB (N~F) + J( ey P J? du} g
B, "x R

where F = graph £ . Now since spt u N B (n) # # , the monotonicity (5)

30/4
implies p(Bg(n)) > % o , and hence (10) gives

(11) tscrT,

where T is the expression on the right of (10). Thus, writing n' = p n(n) .
r

we get

1A

L"Eg (') seT

A

Q) ~F)

n, ., xk
c[u((BG(n ) X R )ﬂBBR/2

+ j e .-p H2 du}
: . k T M :
(Bg M"IxXR )ﬂBBR/z(@) X Rn

Since we have this for each 1 € (graph £~spt y) N B (0)y , it follows

Br/4

from the Covering Theorem 3.3 in the usual way that
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n
L (pRn((graphfrvspt u)f]BSR/4(O)) <c u(BBR/2(0)~F)
+c I ey P I}Iz dau
BBR/Z(O) X R
sc PR by (8) .

Since Lip £ <1 , this gives (9) with B/4 in place of [ . Thus the

theorem is established for suitable Yy depending only on n,k,a,p .

§21. APPROXIMATION BY HARMONIC FUNCTIONS

The main result we shall need is given in the following lemma, which

is an almost trivial consequence of Rellich's theorem:

21.1 LEMMA  Given any € > 0 there is a constant § = §(n,e) > O such that

1,2

if £€w’'"(®) , BEZ Bl(O) = open unit ball in R", satisfies

A
-

J |grad f|2 =
B

A

[ J grad £ ¢ grad ¢ dLnl [ suplgrad g|
B

or any T € Cm(B) , then there is a harmonic funetion u on B such that
y (o]
J Igrad u]z =1
B

and

Proof Suppose the lemma is false. Then we can find € > 0 and a sequence

1,2

{fk} € W'°(B) such that



110

(1) | J grad fk- grad [ dLnI < k—lsuplgrad z]
B

for each [ € C:(B) , and
2
(2) J |grad glo=1.
B
but so that

2
(3) IB [£,-ul® > e

. . . . 2
whenever u is a harmonic function on B with j lgrad u| =1.
B

Let Xk = w;1 J fk dLn . Then by the Poincaré inequality (see e.g. [GT])
B
we have
2 2
(4) JB ]fk—xk[ <c jB | grad fk| sc,

and hence, by Rellich's theorem (see [GT]), we have a subsequence {k'} c {k}

such that fk,—)\k,—*w in L2(B) , where w € Wl’Z(B) with J( |grad w[zsl.

B
Also by (1) we evidently have
n
j grad wegrad ¢ dL” = 0
for each ¢ € C:(B) . Thus w is harmonic in B and J [fk,-w— Ak|12 + 0.

B

Since w + Kk' is harmonic, this contradicts (3).

We also recall the following standard estimates for harmonic functions
(which follow directly from the mean-value property - see e.g. [GT]): If u

is harmonic on B = Bl(O) , then

oY@ | = elull |

sup,
B%(O) L™ (B)

for each integer g = 1 , where c¢ = c(g,n) . 1Indeed applying this with

Du in place of u we get
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21.2 SUPL (0 [unl < cl|py|| ; (= c'|lpul} 5 )
3 L™ (B) L7 (B)

for g = 2 . Using an order 2 Taylor series expansion for u , we see that
this implies
21.3 sup [u-2]| = cnzllDuH

B_(0) - 2

n L7 (B)
for each mn € (0,1/2] , where c¢ = c(n) is independent of 1N and where £

is the affine function given by L(x) = u(0) + x e grad u(0)

§22. THE TILT-EXCESS DECAY LEMMA

We define tilt-excess E(£,p,T) (relative to the rectifiable n-varifold

V = v(M,0)) by

1 - 2
E(E,p/T)=3p nj IPT M-pTI aug *
Bp(E) X

+ . . +
whenever p > 0 , § € :Rn k and T is an n-dimensional subspace of r" k .

Thus E measures the mean-square deviation of the approximate tangent space

TXM away from the given subspace T . Notice that if we have T = R then
k .
: +
P . ~P is just 22 IVMxn 312 , so that in this case
T M n .
X R j=1
-n k nt+j2
22.1 E(£,0,T) = p J v dHy

B j=1
p(i) b

(VM = gradient operator on M as defined in §12.)

* IPT M“Plz denotes the inner product norm trace —p)2 ; this differs
X

(PT
x

from ”PT M-p]]2 by at most a constant factor depending on n+k.
x
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In this section we continue to assume V has generalized mean curvature

1 . s
HE Lloc(uv) in U, and we write u for uv .

We shall need the following simple lemma relating tilt-excess and height;

note that we do not need 6 = 1 for this.

22.2 LEMMA  Suppose Bp(g) c U . Then for any n-dimensional subspace

n+k
T C R we have

. 2
E(E,p/2,T) = c[p—n J M] a + 2™ j |1]? du:l )

[ :
Bp(i) Bp(E)

22.3 REMARK Note that in case p—nu(B (£)) = ¢, we can use the Holder

. . X 2 s
inequality to estimate the term |H| du , giving

JBp(«z) -

2
- 1 -
0? nJ IgIZdUSC[U lglpdu] /et n/p:] , p>2. Thus 22.2 gives
Bp(g) Bp(g)

. 2 1/p 2
s/ ol [ (SRS e ([ e o) ]
B (&)
P

[
Bp(E)

Proof of 22.2 It evidently suffices to prove the result with £ = 0 and
T =R". The proof simply involves making a suitable choice of X in the

formula of 16.5. In fact we take
p— 2 L | R—
XX—C (X)X s X = (0,x pese X )
+
for x = (xl,...,xn k) € U, where ( € Cz(U) will be chosen.
By the definition of divM (see §12) we have
n+k L.
ii

diva'= e , M-a.e. X €M,
i=n+1
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where (el]) is the matrix of the projection Prow (relative to the usual
be

+

orthonormal basis for Rn k) . Thus by the definition 16.5 of H we have

5 n+k ntk 14 5
(1) Jcc; du=J[—2C ) I xt e b+ xreplan

i=n+l =1 J

with

n+k . n+k

- i 1 i3 ij, 2 1 2

(2) o= et =3 1 e =5 p, 2 7

i=n+1l i, ¥=1 X R
where (Elj) = matrix of p n and where we used (elj)2 = (elJ) and

R

trace(elj) =n . We thus have for ¢ = 0

Jo 2 au = J(z/ﬂx'ngad clz+ x| |5]z;2)au ,

and hence (using abS-;'— a2+%b2)

JO 2;2 du = 4 J(|X'|2|grad C|2+ |x'! lg]gz)du y

The lemma now follows by choosing 7 = 1 in Bp/Z(O) , T = 0 outside Bp(O) ’
and [grad C.] = 3/p , and then noting that |x'] |g| = (p_1|x'l) (|§|p) =

1 =2 2.1 2

3o = [T+5 Ele” .

We are now ready to discuss the following tilt-excess decay theorem,
which is the main result concerning tilt-excess needed for the regularity
theorem of the next section. (The Lipschitz approximation result of the

previous section will play an important rdle in the proof.)

In order to state this result in a convenient manner, we let

€,0 € (0,1) , >0, p>n, and T , an n-dimensional subspace of JRMk ’

be fixed, and we shall consider the hypotheses
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1 =0 =2 1+ H-a.e. in U
u(B_(&))
22.4 { Ee€sptu,B (E)cUu, = 2(1-a) ,
p W pn
n

E, (£&,0,T) =€,

- 2/p
1 P -n/p
ere E*(g'p'T) = “‘ax{E(EIplT) r E [J |=H| du] 02(1 / )} B

B
p(E)

22.5 THEOREM For any o € (0,1) , p > n there are constants n,e € (0,1/2),

depending only on n, k, o, p , such that if hypotheses 22.4 hold, then

2(1-n/p)

E, (E.,np,8) =1 E,(E,0,T)

. . n+k
for some n-dimensional subspace S C R

22.6 REMARK  Notice that any such S automatically satisfies
) lp.-p,|° = c(ME, (€, 0,T)

s Tt = AR
Indeed we trivially have

n "E(E.0,T)

1A

- 2
(np) ™ JB (g)[pTgM-pTI au
ne

while by 22.5 we have

|%au = B, (5, 0T) ,

-n
(me) JB (g)[pTXM—pS

ne
and hence by adding these inequalities and using the fact that u(Bnp(g)) > cpn

(see 19.6) we get (*) as required.

Proof of Theorem 22.5 Throughout the proof, c¢ = c(n,k,0,p) . We can suppose
E=0, T= r" . By the Lipschitz approximation theorem 20.2 there is a
B = B(n,k,a,p) >0 and a Lipschitz function £ : ng(O) -> Rk with
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1 1
(1) Lip £ =1, supl|f| = ¢ Efn+2 < c EE;:E
and
(2) H™(((sptu ~ graph £) U (graph £~ spt u)) N ng(o)) < ¢ E*p? )
where B, = B, (0,0, %) [E max{p_n J E N AT
BQKO) ¥ R

- 2/P 5(1-
€ 1( f Ig[pdu] pz(l n/p)}] . Furthermore by the height estimate (3) in
B _(0) -

the proof of 20.2 we have

1 1
3j 2n+2 2n+2
(3) supy (0)Nspty [ I = C E, =c¢€ ‘
Bp
j=n+l,...,n+k . Let us agree that
_1
(4) c ™2 < gy (c as in (3)) .
Then (3) implies
3
(5) SUP5 (o) Nsptu |x7| < Bosa ,
Bp
so that
(6) B xB?  _(0)Nspt uNdB, (0) =9 .
Bp/2 Bp

Our aim now is to prove that each component of the approximating function

f is well-approximated by a harmonic function. Preparatory to this, note

that the defining identity for i (see 16.5), with X =T en+j , implies
M du=-|e . HCa ¢ ct)

M n+j C U = A n+j = C SO E_» 0 I
§ = Mo RV M= n+jy oM
j=1,...,k , where Vn+j en+j \ PTXM(en+j) VM (VMx )y oV
(VM = gradient operator for M as in §12) . Thus we can write

e
(7) J (VMxn 3y .M z dy = - J e .°H T du
: M m IS
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Since xn+J = EJ(X) on Ml = MN graph £ (where Ej is defined on 2Rn+k by

Ej(xl,...,xn+k) = fj(xl,...,xn) for x = (xl,...,xn+k) € Rn+k), we have by

the definition of V"' (see §12) that

(8) Mt 2 v Flix) poae. x € M, = MNgraph £ .

Hence (7) can be written

(

(VMEj)vagdu=~J (VMxn+j)-VMCdu—J e .cHL AU,
JMl MM m I =

and hence by (2), together with the fact that (by 22.4)

1/p i )
” I gl = U IEIPdU} (e, €N Pz eetalo™
By (8) B, (€)
we obtain
o o J (P8 « Pz an < oo™ sup|g|sup|gracc|e'E]
M .
1

c sup]gradc]s%Ei ’

A

for any smooth ¢ with spt ¢ < B, (0) .

Bp

Furthermore by (8), 22.1, we evidently have

(11) 0 |VM%j]2du <E, .

-n J
‘er]BBp(o)

Now suppose that Cl is an arbitrary C (B (0)) function, and note

Bp/2
that (by (6)) there is a function T € CC(BBD(O)) such that ¢ = Zl in some

n+k

neighbourhood of B (O)><I£ﬂ]spt urWBBp(O) where g;(xl,..,x = gl(xl,...xn).

Bp/2
Hence (10) holds with Ql in place of ¢ . Also, since p ngrad El= grad El
. . R
and p ngrad £ = grad £3 , we have
R
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(12) |VM'1:I3 o VME]_ - grad f:| ° grad 2;1|

o tgraa £ p  (gradaz))|

(TXM) (T M)

i

. RN
[lp o p (gradfj)] . {p op _(gradz.)||
(TXM)l r" (TXM)l ®" 1 J

. , g .
op |“|grad £°] |grad z.|
(TXM)'L =" 1

IA

|p

tA

2y oox3 >
IPT M- P n’ |grad £ ! [grad C1|
X R

H=a.e. on spt u N BBD(O) ;, and hence (10) implies

(13) Ip_n 4( grad £ grad El du | = c E%Ei suplgrad C,1| .
M : .

1

Also since (12) is valid with z;l = %J , we conclude from (11) that

(14) p‘n L\ |grad Ej[z du = cE, .
1B go

From (13), (14) and the area formula 8.5 we then have (using also (1),(2))

(15) [o™" J N grad £3. grad g, BoF J(F) aL™|
BBO(O)

= c E%Ei sup]grad Cll

and
(16) p-n j N |grad f:'|2 BoF J(F) al™ < ¢ E, ,
B (0
go ‘¥
where F : R"+ R'TF is defined by F(x) = (x,£(x)) , %€ B‘B‘D(O) , and where
J(F) is the Jaccbian (det((de)*o de))l/2 as in §8 . Since

1 =J(F) =1+ c[grad f[2 on ng(O) , as one checks by directly computing

. . +k. .
the matrix of dFX (relative to the usual orthonormal bases for :Rn B ]Rn ) in

terms of the partial derivatives of £, and since 1=6<1+€ , we conclude
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(17) ]p_n J n grad £, grad T, dLnl
Pgo %

< c(‘E%Ej‘:+ ep ™ J

|grad ijdLn sup|grad ;1l
(0

Bn
Bp/2

1A

c E%Ei suplgrad gll

by (16), because by (16) (and the fact that 6 =2 1 , J(F) = 1) we have

(18) p_n J n ) Igrad f3|2 a™ = ¢ E, -
B
Bp
Now (17), (18) and the harmonic approximation lemma 21.1 (with E;J‘;f:I

in place of £ ) we know that for any given & > 0 there is €9= €o(n,k,6)

such that, if the hypotheses 22.1 hold with ¢

. 1 k
functions u,...,u on

1A

EO , there are harmonic

B 0 such that
gp/2?
-n jr2 n
(19) [ 0 |grad u-]|“ al” < ¢ E,
B _(0)
19
and
(20) oTn2 j N |£9-uI|? at® < s &, ,
B _(0).
ag
where 0O = Bp/2 .
Using 21.3 we then conclude that
(21) (no) 72 J |£9-97]2 a® = ™2 5 g, +
B) (0)
no
+ cnzqwn J |grad uJ[2 aL™

n
B, (0)

-n- 2
= ™2 sk, +conE, (by (19) ,
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1

2n+2
E

where £7(x) = ul(0) + x-grad u?(0) . Notice that, since sup|f]| < ¢ -

(19), (20) in particular imply (using 21.3 again)
1 1

2n+2 2n+2
. sce

ko
(22) I 1@ scE
3=1

k
Now let & = (ll,...,l ) e IJ‘+»R# and let S be the n-dimensional

subspace graph (£4-2(0)). In view of (1), (2), (3)and (22) it is clear that

(21) implies

~-n-2 R 2 -
(23) (no) dist(x-T,8)."du =< cn n ZﬁE* + cn2 E, »
Bn0/2(r)
1
X 2n+2
where T = (0,2(0)) , provided ce <n/2 . Then by 22.3 we get

-n-2
E(T,n0/2,8) <cn " 28E, + cn’ E, .

If we in fact require
1

(24) (14c)e?P*2 < ¢ (c as in (22))

then B (0) c

no/4 ) (by (22)) and this gives

BﬂG/Z(T

-n-2
(25) B(0,n0/4,8) = cn "% E, + on’ E, .

The proof of the theorem is now completed as follows:

First select 1 so that cn2 =< %(nB/B)

2(1-n/p)

2(l—n/p) (with ¢ as in (25)),

then select § so that cn—n_26 < %KHB/S)

(c again as in (25)).
Then, provided the hypotheses 22.4 hold with € satisfying the conditions

required during the above argument (in particular (4), (24) must hold, and

e = Eo(n,k,é) ’ Eo(n,k,ﬁ) as in the discussion leading to (19)) we get

£(0,7p,5) = n2(1/Plg

%

12
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where a = nB/8 . Since we trivially have

1
(J l§lpdu] /P(ﬁp)l_n/p < ﬁl'n/P[j
Bﬁp (0)

we thus conclude that

- ~2 (]~
E,(0,7p,8) = 72 T™/Pg (0,0,7)

as required.

This completes the proof of 22.5 (with 71 in place of 7 ).

§23. MAIN REGULARITY THEOREM: FIRST VERSION

We here show that one useful form of Allard's theorem follows very directly

from the tilt-excess decay theorem 22.5 of the previous section.

23.1 THEOREM  Suppose o € (0,1) and p > n are given. There are constants

€ = €(n,k,0,p) , Y = Y(n,k,0,p) € (0,1) such that if hypotheses 22.4 hold

with T = R" and £ =0, then there 1s a Cl'lbn/p function

u = (ul,...,uk) : E?p(O) - Igg such that a(0) = 0 ,

(1) spt vV N BYD(O) = graph u N BYQ(O) ,
and
(2) p—lsuplu[ + sup]Du] + pl—n/Psup n ]x-y1_(1~n/p)|Du(x)—Du(y)[
,VE€B 0 '
X,y Yp( )
x#y

( i/p . _ 3
< CLE%(O,D,IJH + {J |§[Pd“} pl n/PJ

B (0
p( )
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Before giving the proof we make a couple of important remarks concerning

*

removability of the hypothesis 6 =< 14+€ in 22.4:

23.2 REMARKS

(1) The monotonicity formula in 17.6(1), together with Remark 17.9(1),

-1 p i-n/ 1
evidently implies that if {wn j .lgtde] o Poec 5 then, for
B. (&)
0<o<T< (1-B)p
(%) w o TB () = (tee)o T (B (D))
n [ - n T

_ ) 2 -1 _ -n

< (1+ce) w ((1-8)p) U(B(l_B)D(C))

< (1tee)’ (- ot 0 ue_ (@)

n P

provided C€ spt V N BBp(g) . Then the hypothesis w;lp—nu(Bp(E)) < 2(1-0)

(in 22.4) gives

1 -n

(%%) w "0 W(BL(Z)) = 2(1-0/2) , 0<G<p/2, TEspt VIl Bg,y (€)
provided R = B(n,k,qa,p) is sufficiently small. Thus letting 0 ¥+ 0 we

have

6(7) = 2(1-0/2) U-a.e. C € BBQ(E) .

If 6 is integer-valued (i.e. if V is an integer multiplicity n-varifold)
then this evidently implies 6 = 1 M-a.e. in BBp(g) . Thus, with B0 in
place of p , the hypothesis € £ 1+€ in 22.4 is automatically satisfied,
hence the conclusion of Theorem 23.1 holds with Rp in place of p , even

without the hypothesis 0 < 1+t

* J. Duggan in his Ph.D. thesis [DJ] has shown that in any case the hypothesis
< 1+e can be dropped entirely.
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(2) Quite generally, even if © is not necessarily integer-valued, we
note that if we make the stronger hypothesis w;l p_n u(Bp(g)) < 1+€ (instead

of m;ll o W(B,(E)) = 2(1-0)) , then (¥) above gives (taking B=e)

wr—llo‘nu(BO(C)) <l+ce , 0<0<p/2 , L€ Bep(é’;)ﬂsptv .

Thus again we can drop the restriction 6 =<1+€ in 22.4, provided we make the
assumption w;1 O—n u(Bp(g)) < 1+€ ; then Theorem 23.1 holds with €p in

place of p

Proof of 23.1 Throughout the proof c¢ = c(n,k,a,p) >0 . We are assuming
(1) 1<0<1+e U~-a.e. in B&OH}@tV

(€ to be chosen) and by Remark 23.2(1) (**) we can select e=¢(n,k,0,p)

and B = B(n,k,a,p) such that

(2) w:llo'nu(sc,(c)) <2(1-0/2) , 0<0<p/2, CEB 0 N spt v .

B

By (1), (2) and the tilt excess decay theorem 22.5 (with O in place of p ,
o/2 in place of o , ¢ in place of £ ) we then know that there are

€e=¢(n,k,a,p) , n = nink,a,p) so that, for o<p/2 , [€ spt B p(O)r]spt v,

8

2(1-n/p)

(3) E,(£,0,8) <€ = E.(g,n0,5)) <n E, (2,0,5,)

for suitable Sl . Notice that this can be repeated; by induction we prove

that if 7€ spt V[1B8p(0) , 0 < p/2 , and E*(C,G,SO) < ¢ , then there is

a sequence Sl's of n-dimensional subspaces such that

PR

-1

2(l_n/P)E*(C,nj O,Sj_

(4) E*w,,njo,sj) =n D =PRI (6,5 )

for each j Z 1, and (by Remark 22.6)
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n2 (1-n/p)J

(5) p. -p < ce, (c,n lo,s, ) =c E, (00,5, .

Next we note that E,(g,p/2,R") < 2" E (0,0, RY)
for ¢ ¢ Bp/Z(O) , and hence the above discussion shows that if 22.4 holds

with £=0, T==R and 2 ¢ in place of € (€ as above) then (4), (5)

hold with SO = ®r" and o = p/2 . Thus

2(1-n/p)j n2(1—n/p)j

(6) E(c,njp/z,sj) <n E,(C,0/2, R = ¢ E, (0,0, R%)

and

cn2 (1-n/p)j

(7) lp E,(0,p,RY)

for each j =2 1 (with S, = Rn) . Notice that (7) gives

2 2(1-n/p) j
12 = en? /P g (0,0, 87

for £ > 3= 0 . It evidently follows from (8) that there is S(f) such
that

2(1- .
(9) |2 (1-n/p)j

‘PS(c)”Ps‘ sen E,(0,p,R") .
J

In particular (setting 3j=0)

(10) ¢ E,(0,0,R) .

2
R

Now if r € (0,p) is arbitrary we can choose j = 0 such that

n p<r=np . Then (6) and (9) evidently imply

2(1-n/p)

(11) E, (2, %,S(3)) < c(r/p) E, (0.0, R")

for each [ €¢B p(O) I spt V and each O<r=<p . Notice also that (10), (11)

B
and (2), with o=r , imply

(12) . E,(5,r, RN = ¢ B (0,0, R)(s cg) .
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Hence for sufficiently small € we have from (12) that if G is as in the
1

proof of Theorem 20.2 (with £=¢2"3) then u(B

Bp'vG) =0 (B=RBin,k,a,p) ,

€ = g(n,k,0,p) sufficiently small). That is

(13) spt V() BBp(O) C graph £

for € = e(n,k,a,p) and B = B(n,k,0,p) sufficiently small, where £ is a

Lipschitz function BEO(O) -+ Rk with
1 1
(14) Lip £ = €2n+3 . sup[fi = c €2n+2 .

Now we claim that in fact

0) =
(15) spt V N BSQ( ) = graph £ BBQ(O)
Indeed otherwise by (13) we could choose [ € BED/Z(O) and 0<0<Bp/2
such that
(B2(2) x R)NB, (0) N spt v = ¢
¢ 9
(16)

) x Bns L(0) NspE v £ .

B

Then taking £, € (ﬁg(c) X :Rk)ﬂBBD(O) Nspt V and using (1), (13), (14), (16)
we would evidently have @n(u,g*)< 1 (if ¢ 1is sufficiently small). This

contradicts the fact that @n(u,c)z 1 Y € spt V(]Bp(O) .

Having established (15) we can now easily check (using the area formulae)
1 k n k
that for any linear subspace S = graph £ , where £ = (L7,...,L7): R > R

is linear and |grad 23[5 1 for each j , we have

k . ‘
(17) o ™ J . J |orad £7(x) - graa 2I1% al®x) = ¢ E(Z,0,9)
BO/Z(pRn(C)) =1

for ¢ € (0,Bp/2) (again provided € in (14) is sufficiently small). Using
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(17) and (11) we conclude that for each [ € BBO/Z(O) N spt V there is a

linear function Qg = (E,é, ...,SZ,IZ) : RO+ :Rk such that
n K j i) 2
(18) «r J . } |graa £7(x) - graa 22[ aL® (x)
Br(P n(C)) =1
R
< c(x/p) 2P 5 0,0, 8"

for 0<r<Bp/4 . It evidently follows from this, by letting r ¥ 0 in (18),

that grad fj (pRn(Z;)) = grad 22 for U-a.e. T € spt VﬂBBp/4(O) . Hence
using (18) again, we easily conclude Igrad £7 (xl) = 'grad £J (xz)l =

ce/0) Y £ 0,0, 8" for x /%, €B7(0) , and so
. . [, -x | 1-n/p
(19) lgraa £7(x)) - graa £l(x,)]| = c(—lp—3~} E*(o,p,Rn)é
n n . . . . .
for L -a.e. X%, € BBO/B(O) . Since f is Lipschitz it follows from
this that fect ' ™P Lith (19) holding for every x %, € ng/S(O) . The

theorem now follows with £ =u and Y = B/8 .

§24. MAIN REGULARITY THEOREM: SECOND VERSION

In this section we continue to assume V = g(M,e) is a rectifiable
n-varifold with generalized mean curvature H in U . With §€ (0,1/2) a

constant to be specified below, we consider the hypotheses:

1 <906 u-a.e. , 0¢€ sptvVv, Bp(O)cU

- /e ;.
w o TuB_(0)) = 146, U Igipdu] oI P < s
n ‘ P Bp(O)
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24.2 THEOREM If p > n <s arbitrary, then there are § = §(n,k,p) ,
Y = v(n,k,p) € (0,1) such that the hypotheses 24.1 <mply the existence of
a linear isometry q of B anda u = (ul, RN clri-n/p (ﬁf{lp(o) RS

with 0y =0, B = h B o) ,
with a(0) spt VN Yp(O) g(graph u) N YD( ) and

1—n/pSu 61/4n,

p lx=y |~ Y™} | pux)puty) | = e

o sup|u| + sup|pul+p )
XIYEBYQ(O)

x#y

¢ = cin,k,p)

Before giving the proof of 24.2, we shall need the following lemma.

24.3 LEMMA  Suppose 6 € (0,1/2) and that 24.1 holds. Then there is

B = B(n,k,p,8) € (0,1/2) such that

R ]
(1+c8) <wnlo (B (2)) < 1+e§ , 0<0=Bp , CE spt VN By, (0)

and such that, for any ¢ € spt VﬂBBp(O) , G€ (0,Bp) there s an

n-dimensional subspace T = T(L,0) with

O_lsup{dist(x,T) : x€ spt Vf]BO(C)} =< c61/4n .

Proof First note that by the monotonicity formulae of §17 (see in particular

23.2(1)(*)) we have, subject to 24.1, that

(1) (148 7t < w;lo'nu(acm) = 1+cd , 0<o<p/2,

C€ spt VﬂBBp(O) ; B = B8(nk,p,8) € (0,1/4) , so the first part of the lemma

is proved.

Now take any fixed ¢ ¢ (0,Bp) and suppose for convenience of notation

(by changing scale and translating the origin) that ©=1/2 and =0 . Then

by (1) and 17.6(1) (see in particular Remark 17.9(1)) we have
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2 2 -n-
(2) f le | == fj o -0 ]? et " Pan = o8
31/2(0) T, Bl(E) T
. 1 1
for ¢ € sptv B1/2(0) , where Tx = (TXM) . Next note that we can select
: -1/4
N points Cl,...,gNE spt Vlel/z(O) B51/4n(0) , N =cf , such that
) N
(3) spt Vf\Bl/z(O) ~ B§1/4n(0) c jgl B61/4n(cj)

(To achieve this, just take a maximal disjoint collection of balls of radius

61/4n

/4 centred in spt Vf1Bl (0) 0) .) Then by using (2) with

~ B (
/2 6l/4n

C = Cj we have

N
f ' I olp [t %aw = cén =62,
B T J

172000 =T,

so that for any given R =2 1 we have

N
(4) olp xto]®srét
=1 T J

/4
x

R4

except possibly for a set of x € Bl/Z(O) N spt V of u-measure =< c

/4

Taking R = R(n,k) sufficiently large and noting u(B 1/4n(0)) = cél (by
' §

(1)), we can therefore find XO ¢ spt VN B (0) such that

gl/4n
1/8 .
Ip l(XO_;j)I < csY/ ;3= 1,..0,N .
TX
0
Since lxol < gl/4n . we then have
1/4 .
(5) lp 1 C,[ = cé /4n ;3= 1l,...,N .
T J
X
0

s C are in the 061/4n neighbourhood of the

That is, all points C N

AR

subspace TX , and the required result now follows from (3).
0
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Proof of Theorem 24.2 Theorem 24.2 in fact now follows directly from
Theorem 23.1, because by combining Lemma 22.2 and the above lemma we see

2
that for any € > 0 there is 6=c€n(

c=c(n,k,p)) such that the
hypotheses 24.1 imply 22.4 with & = 0, 0 replaced by 8p and with

suitable T



