
CHAPTER 5 

THE ALLARD REGULARITY THEOREM 

Here we discuss Allard's ([AWl]) regularity theorem, which says roughly 

t..l,a·t if the generalized mean curvature of a rectifiable n-varifold V = ~("1,8) 

is in Lioc(]lv) in u p > n ' 
if 8 > 1 ]lva.e. in u ' 

if l; E sp·t vn u 

and if 
-1 -n 

(Bp (~)) is sufficiently close for sufficiently w p to 1 30"1118 
11 

small* p, then V is regular near V in the sense tc'lat. spt V is a 

cl,l-n/p n-dirnensional submanifold near i; • 

A key idea of the proof is to show that V is >veil-approximated by the 

graph of a harmonic func·tion near i; The background resul·ts needed for ·this 

are given in §20 (where it is shown that it is possible ·to approximate spt V 

by t..'le graph of a Lipschitz function) and in §21 (which gives ·the relevant 

results about approximation by harmonic functions). The actual harmonic 

approximation is made as a key step in proving the central "tilt-excess decay" 

theorem in § 22. 

c~he idea of approximating by harmonic functions (in roughly ·the sense 

used here) goes back to De Giorgi [DG] who proved a special case of the above 

theorem (when k = 1 and when V corresponds to the reduced boundary of a 

set of least perimeter - see the previous discussion in §14 and the discussion 

in §37 below. Almgren used analogous approximations in his work [All for 

arbitrary k > 1 . Reifenberg [Rl, R2] used approximation by harmonic 

functions in a rather different way in his v10rk or regularity of minimal 

surfaces. 

* Depending on 111:!11 p 
L <llvl 
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§20 LIPSCHITZ APPROXIMATION 

In this section V = ~(M,8) is a rectifiable n-varifold with generalized 

mean curvature ~ in U (see 16.5) 1 and we assume p > n , and 

o E spt llv 

20.1 I ~~~p d]Jv r/p < 

BR(O) 
(1-n/p) r , fRl-n/p < 1/2 

8"::1, w~lR-n!lv(BR(O)) <2(1-a), 

111here a E (0,1) . We also subsequently write J1 for and 

where p = p 
En 

Px = PT v ( = PT M !l- a.e. x) • Notice t_hat then the first 

term in the definition of 

away from over 

BR(O) - see §22). 

X X 

E measures the "mean-square deviation" of 

(This is called the "tilt-excess" of v 

TV 
X 

over 

20.2 THEOREM Assuming 20 .1, there is a constant y = y(n,a 1k 1p) E (011/2) 

such that if !/_ E (011] then there is a Lipschitz function 

f = (£1 fO •• ,fk) Bn (0) 
yR 

->- Rk with 

1 

Lip f :S !/_ , supj fj :S c E2n+2 R 

and 

n -2n-2 
H ( ((graph f~ spt V) u (spt v~ graph f)) n ByR(O)) < cQ, E I 

where c = c(n,a,k,p) . 
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20.3 REMARK Notice that this is trivial (by setting f = 0 and taking 

suitable c) unless 2-2n-2E is small. In particular we may assume 

E ::: o22n+2 which 0 is as small as we please, so long as our eventual 

choice of 0 depends only on n, k, Cl., p 

Proof of 20.2 By virtue of the above remark we can assume 

(1) 

o0 to be chosen depending only on n, k, Cl., p Set 

1 

9-o = (o~2E) 2n+2 < 1 , 

and take any two points x,y E BSR(O) n spt v with jq(x-y)j ~ 2olx-yj , 

jx-yj ~ SR/4, where SE (0,1/2) is for the moment arbitrary. By Lemma 19.5 we have 

Using Cauchy inequality ab ::: % a 2 

..;1 
the assumption (in 20.1) that wn 

Since 

+ l b 2 in the last term, together with 
Cl. 

-n R ~(BR(O)) ::: 2(1-CI.) , this gives 

IJ t; E spt V n U (by 1 7 • 8 and the 

assumption that 8 ~ 1 Jl- a-.e.) thi:s gives 

-n 
2 ::: 2(1+co0) (1-Sl (1-a.) 
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which is clearly impossible if we take 6 6(n,k,p,a) and 80 

small enough. Thus for such a choice of 6 , 80 we have 

1 

(2) lq(x-y) I < cE2n+2 R , x,y E spt )l n s 6R (0) 

where c ; c(n,k,p,a) , 6 = 6(n,k,p,a) . (Formally we derived this subject 

-1 to assumption (1), but if (i~ fails then (2) is trivial with c; a0 .) Noting 

the arbitrariness of x,y in (2) and noting also tha·t 0 E spt )l and that 

spt ).! n ClB 0 1 ~ (0) t i1l (which follows for example by selecting suitable ¢ in 17. 2), 
tJR,L. 

we conclude {after replacing 6 by 6/4) 
1 

(3) lq (x) I::::: c ELn+2 R X E B6R (0) n spt v ' 6 6 (n,k,p,a) E (0,1) 0 

Next let 8,£ E (0,1] be arbitrary and assame 

(4) 

(which we can do by Remark 20.3, provided we eventually choose 8 = O(n,k,a,p)) 

Set E 0 (o,!;) =o-n f liP -p!J 2djl(x) for any s E spt V , 

Bo<sl x 
and define 

G {!; E spt V n B6R/2(0) \f o E ( 0, R/ 2) } • 

Notice that if s E spt vnB6R(O) then by (4) and the monotonicity formula 

17.6(1) (see Remark 17.9(2) to justify the application of 17.6(1)) 

(5) 
-1 -n 

(l+cO)Wn ((l-6)R) \l(B(l-6 )R(s)) 

-n -1 -n 
< (l+co) (1-BI wn R \l(BR(O)) 

::0: 2 ( l+cO) (1-6) -n ( 1-a) 

::::: 2 (1-a/2) , 

for o,B small enough (depending on n,k,p,al . 
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Now let X 1 Y E G In view of (4) 1 (5) we may now apply the previous 

argument with a/2 I s-1 1x-yj /2 , X in place of aIR I 0 in order to deduce 

from (3) that 

(6) 
11 (2n+2> I I jq(x-y)j:::c.VS x-y ,x,yEG 1 c=c(n,k,pla) 

(because E0 (o,x) + (ro1-n/p} 2:::zo£2n+Z , 0 

and the fact that x E G ) . 

s-1 1x-yl/2 1 by Virtue Of {4) 

Choosing o so that 2011 (2n+2 ) (l+c) (n+k) < 1 ( c as in (6)) , we thus 

deduce 

lq(x-y) I ::: 2 (n:k) jx-yl , x,y E G c = c(n,k,p,a) . 

Since lx-yl ::: lq(x-y)l + lp(x-y)l , this implies 

(7) 
.II, 

lq(x)- q(y) I ::: (n+k) lp(x)- p(y) I 

and so (by the extension theorem 5.1) 

G c graph f , 

where f is a Lipschitz function BSR/2 (0) + Rk with Lip f ::: .II, • By ~irtue 

of (3) we can assume (by truncating f if necessary) that suplfl ::: cE 2n+ 2R • 

Next we note that (by definition of G for each 

I; E (BSR/2 (0) ~ G l n spt V we have 0 (I';,) E (O,R/10) such that 

and by (5) we therefore have 
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By definition the collection of balls is a cover 

and hence by the covering Theorem 3.3 we can select 

points t;:l,E;2'''' E Bi3R/2 (0) ~ G such that {BG (i;:.)} 
j J 

is a disjoin·t 

collection (Gj= 0(i;:j)) and {i3so. <t;:jl} still covers Bi3R/2 (0) ~ G 

Then setting 

(8) 

t;: = I; ' 
J 

J 

and summing over j ' we conclude 

Since Gn(~,s) ~ 1 for E; E spt V n U we have 

If ( (spt ~ ~ graph f) n Bi3R/2 ( 0)) s ~ (Bi3R/2 (0) ~ graph f) 

(by Theorem 3.2(1)) and it thus remains only to prove 

(9) 
-2n-2 n 

S c £, ER 

(Then the theorem will be established with y = 13/2.) 

To check 

0 E (O,i3R/2) 

this, take any n E (graph f~ spt ~) n Bi3R/4 (0) 

be such that B012 cnl n spt ~ = ¢ and B3014 Cnl 

and let 

n spt ~ =f. {ll • 

(Such 0 exists because 0 E spt ~ .) Then the monotonicity formula 17.6(2) 

(See Remark 17.9(2)) implies 

s c J I P (x-n) 12 C4l 
B (n) (T M)l 0 

0 X 
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r 
+ J II II L. 1 PT M- p n djl ' 

(T]) X JR ' 

where p graph f and ;;ihere we used p I 
T-

(x) for any subspace 

1' c Since IP ::: ci for x.,y E F n (T[) (because 

Lip f < _Q,) , <th.is iittplies 

<nl l ::: c 

S:L"lce we can take c £ S 1/2 (notice again the validity of the theorem in 

this case automatically .implies its validity for larger ""v"alues of _\L ·~ (0; 1]) 

we thus get 

(10) 

where F = graph f . Nmv since spt fl n B3014 (T]) of 0 i:he monotonicity (5) 

implies and hence (10) gives 

(11) n 
0 < c T , 

where T is the expression on the right of {10). Thus, writing n' p 

we get 

Ln 50 (n'll < c T 

r n 
< cifl( (B- (T]') X 

\, 0 

r , 
+ I . IIPT, 1v1-p 1.,11

2 dfll 
j -IBn 'n 1 'l XJRK' nB . . J 

' 0 \ ' . ! I' BR/2(0) X JR 

Since \ve have this for each Tl E (graph f ~ spt fl) n BSR/4 (0) it follotvs 

from t.he Covering Theorem 3.3 in the usual 'ltJay that 
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Since Lip f ::: 1 , this gives (9) with S/4 in place of S . Thus the 

theorem is established for suitable y depending only on n, k , a, p • 

§21. APPROXIMATION BV HARMONIC FUNCTIONS 

The main result we shall need is given in the following lemma, \vhich 

is an almost trivial consequence of .Rellich's theorem: 

21.1 LEMMA Given any E > o there is a constant o = o(n,E) > o such that 

if f E w1 ' 2 (B) , B :=: B1 (OJ = open unit ball in Rn , satisfies 

for any 

and 

PI'OOf 

I J grad f. grads dLnl ::: 0 suplgrad sl 
B 

then there is a hox-monic function u on B such that 

Suppose the lemma is false. Then we can find E > 0 and a sequence 



llO 

(1) I I nl -1 I I B grad fk • grad I;; dL ::: k sup grad 1;; 

00 

for each ~ E Cc(B) , and 

(2) 

but so that 

(3) 

whenever u is a harmonic function on B with 1 . 

fk dLn . Then by the Poincare inequality (see e.g. [GT]) 

we have 

(4) ::: c I! 

and hence, by Rellich's theorem (see [GT]), we have a subsequence {k'} c {k} 

such that f -). .... w 
k 1 .K' in 

Also by (1) we evidently have 

L2 (B) where w E w1 ' 2 (B) 

J grad w • grad I;; dLn 0 

with f I grad w\ 2 ::: 1 . 
JB 

for each I;; E C00 (B) 
c Thus w is harmonic in B and J \ fk, - w- Ak, \ 2 ->- 0 . 

B 

Since w + Ak' is harmonic, this contradicts (3). 

We also recall the following standard estimates for harmonic functions 

(which follow directly from the mean-value property- see e.g. [GT]): If u 

is harmonic on B = B1 (0) , then 

cilull 1 
L (B) 

for each integer q::: 1 , where c = c(q,n) . Indeed applying this with 

Du in place of u we get 
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2L2 eli Dull 1 (::; c 'II Dull 2 ) 
L (B) L (B) 

for q ~ 2 . Using an order 2 Taylor series expansion for u , we see that 

this implies 

21.3 sup8 (O) lu-tl 
ll 

2 s en IIDuil 2 
L (B) 

for each 11 E (0,1/2] , where c = c(n) is independent of n and where .Q, 

is the affine function given by Jl,(x) = u(O) + x • grad u(O) 

§22. THE TILT-EXCESS DECAY LEMMA 

We define tilt-excess E(s,p,T) (relative to the rectifiable n-varifold 

V ;¥(M,6)) by 

whenever p > 0 , s E Rn+k and T is an n-dimensional subspace of Rn+k 

Thus E measures the mean-square deviation of the approximate tangent space 

T M 
X 

away from the given subspace T 
k . 2 

2 }' 1..-Mxn+J I , is just ~.. V 
j=l 

Notice that if we have T = Rn then 

so that in this case 

22.1 E(s, p,T) 
-n p 

(VM = gradient operator on M as defined in §12.) 

,, 2 lp -pi denotes the inner pr.oduct norm trace 
T M 

X 

2 
(p'l' -p) ; 

-X 
this differs 

from IIPT M-Pii 2 by at most a constant factor depending on n + k. 
X 
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In this section we continue to assume V has generalized mean curvature 

1 
ME L10c(~vl in u 1 and we write ~ for ~V • 

We shall need the following simple lemma relating tilt-excess and height; 

note that we do not need 8 ~ 1 for this. 

22.2 LEMMA Suppose Bp(~) c u . Then for any n-dimensional subspace 

T c Rn+k we have 

E(~ 1 p/2 1 T) 

22.3 REMARK Note tl1at in case p-n~(Bp(~)} ~ c , we can use the Holder 

inequality to estimate the term J 1~1 2 d~ 1 giving 
BpW 

P2-n J IMI 2~~c[rlf IMIPd~)l/p Pl-n/p]
2

, p > 2. Thus 22.2 gives 
Bp(~) Bp(~) 

p ~ 2 . 

Proof of 22.2 It evidently suffices to prove the result with ~ = 0 and 

T = Rn • The proof simply involves making a suitable choice of X in the 

formula of 16.5. In fact. we take 

X = z;; 2 (x)x' , x' 
X 

n+l n+k 
(O,x 1 ••• ,x } 

1 n+k oo 
for x = (x 1 ••• ,x } E U 1 where z;; E c0 (U} will be chosen. 

By the definition of divM (see §12) we have 

n+k 

I 
i=n+l 

ii e ~- a.e. X E M I 



113 

where (eij) is <the matrix of the projection pT M (relative to the usual 
X 

ort~onormal basis for Rn+k) . Thus by the definition 16.5 of ~ we have 

(1) 

with 

(2) (J -

where (Eij) 

trace(eij) = n 

n+k 

I 
i=n+l 

I ( -2~ n+k 

I 
i=n+l 

ii 
e 

1 n+k 

2 I 
i,j=l 

n+k 

I 
j=l 

i 
X 

matrix of p n and where we used 
R 

We thus have for ~ ~ 0 

and hence (using 

The lemma now follows by choosing ~ = 1 in Bp/ 2 (0) 

and !grad~~ S 3/p, and then noting that lx'l 1~1 

~ P-2 1x' 1 2 +~ <I~IP> 2 

and 

~ = 0 outside Bp(O) 

<P-1 Ix'l> <I~IP> s 

We are now ready to discuss the following tilt-excess decay theorem, 

which is the main result concerning tilt-excess needed for the regularity 

theorem of the next section. (The Lipschitz approximation result of the 

previous section will play an important role in the proof.) 

In order to state this result in a convenient manner, we let 

E,a E (0,1) , p > 0 , p > n , and T , ann-dimensional subspace of Rn+k, 

be fixed, and we shall consider the hypotheses 
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1 ::: e < 1+s 

s E spt Jl , B ( i;) c U , 
p 
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j1-a.e. in U 

2(1-a) , 

E.,(i;,p,T) SE:, 

where E.,(i;,p,T) max{E(i;,p,T) , E-l(JB (/;) J~\pdJ..!J2/pp2(1-n/p)} 
p 

22.5 THEOREM For any a E (0, 1) , p > n there are constants n,E E (0, 1/2) , 

depending only on n, k, a, p, such that if hypotheses 22.4 

for some n-dimensional subspace n+k s c JR 

22.6 REMARK Notice that any such S automatically satisfies 

(*) 

Indeed we trivially have 

-n 11 E(i;,p,T) , 

while by 22.5 we have 

hold, then 

and hence by adding these inequalities and using the fact that J..!(Bnp(i;)) ~ cpn 

(see 19.6) we get (*) as required. 

Proof of Theorem 22.5 Throughout the proof, c = c(n,k,a,p) . we can suppose 

0 T = F.n . By the Lipschitz approximation theorem 20.2 there is a 

6 6(n,k,a,p) > 0 and a Lipschitz function f : B~p(O) ->- F.k with 
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1 1 

(1) Lip f ~ 1 , supjfj 
2n+2 2n+2 

~ c E* p ~ c E p 

and 

(2) Hn(((spt)l ~graph f) u (graph f~spt Jl)) n BBP(O))::: c E*P~ I 

where E* == E* ( 0, p, Rn) ( = max{p -n J I pT M -p 12 d)l , 
B (0) X Rn 

p 

E-1( J ~~~pdJ1)2/pp2(1-n/p)}) Furthermore by the height estimate (3) in 
Bp (0) · 

the proof of 20.2 we have 

1 1 
2n+2 2n+2 

(3) ::: c E* p ::: c E p I 

j n+1, ••• ,n+k. Let us agree that 

1 

(4) c E2n+2 ::: 8/4 

Then (3) implies 

(5) 

so that 

(6) 

(c as in (3)) . 

Our aim now is to prove that eaCh component of the approximating function 

f is well-approximated by a harmonic function. Preparatory to this, note 

that the defining identity for IJ (see 16.5), with X= i;; e +' , 
n J 

implies 

j = 1, • • .,k 1 where 

-I e .•Hi;;d)l, 
n+J = 

M -M ....M +' M 
'Vn+J' = e .• v- = p (e .) • -r = w·xn J) • 'V 

n+J TXM n+J 

<vM = gradient operator for M as in §12) • Thus we can write 

(7) 
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on i'\ = Mn graph f is defined on 
n+k 

:R by 

1 n+k n+k (x , . o. ,x ) E JR ) , vJe have by 

the definition of VM (see §12) that 

(8) 

Hence(7) can be written 

and hence by (2), together with the fact that (by 22.4) 

(9) 

we obtain 

(10) 
~-n 

p 

for any smooth s with spt s c BSP(O) . 

Furthermore by (8), 22.1, we evidently have 

(11) 

1 n 
Now suppose that s1 is an arbitrary Cc(BSp/ 2 (0)) function, and note 

that (by (6)) there is a function s E c;(BSp(O)) such that s = ~ 1 in some 

n k - - 1 n+k _ 1 n 
neighbourhood of BSp/2 (0) X :R n spt jl n BSp (0) where sl (X ' •• ,x ) ::: s1 (x I •• • x ) 

Hence (10) holds with in place of 

and p grad fj = grad fj , we have 
JRn 

s . Also, since - -
p grad sl= grad sl 

JRn 
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(13) 
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- I [p 1 o p (gradfj)J' (p 1 o p . (grad~ 1 l)J I 
(T M) :Rn (T I"l)- Rn 

X X 

I .1
2 1 · -j I I - I :S PT 14 - p n' grad f grad ~;: 1 

X :R 

on spt ~ n BB (OJ ' .P 
and hence (10) implies 

Also since (12) is valid with 1:; 1 we conclude from (11) that 

(14) 

(15) 

and 

(16) 

w'here 

From (13), (14) and the area formula 8.5 we then have (using also (1),(2)) 

I p -n J grad fj • grad c; 1 8cF J(F) dL nl 

B~p(O) -

:S c E!E! supJgrad s1 1 

F , Rn-+ Rn+k is defined by n 
F(x) = (x,f(x)) , xE BSP(O) and where 

J(F) is the Jacobian (det((dFx)*o dFx)) 112 as in §8 Since 

1 :S J(F) :s 1+ cjgrad fJ 2 on B~p(O) , as one checks by directly computing 

the matrix of dF x (relative to the usual orthonormal bases for :Rn , JRn+kl in 

terms of the par-tial derivatives of f , and since 1 :S 8 :S l+E , we conclude 
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(17) fp-n J grad fj • grad 1;; 1 dLnf 

B~p (0) 

:S c(s1E!+ sp-n In fgrad fjjdLn)supfgrad sll 

BSp/2 (0) 

by (16), because by (16) (and t.l-te fact that 8 ::: 1 , J(F) ::: 1) we have 

(18) 
-n p 

Now (17), (18) and the harmonic approximation lemma 21.1 (with fj 

in place of f we know t,hat for any given 6 > 0 there is s 0 = s 0 (n,k,6) 

such that, if the hypotheses 22.1 hold with s :S s 0 , there are harmonic 

functions on BSp/ 2 (0) such that 

(19) 

and 

(20) 

Where o = Sp/2 . 

Using 21.3 we then conclude that 

(21) 

-n-2 2 
< 2fl 6 E* + Cfl E* (by ( 19) ) , 
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where Notice that, since 

(19), (20) in particular imply (using 21.3 again) 

k 

I 
1 1 

2n+2 2n+2 
:0: c E* p :0: c E p. 

j=l 

1 
2n+2 

:0: c E* p 

Now let R- (R-\ ••• ,R-k) : Rn-+ Rk and let 8 be then-dimensional 

subspace graph (R--R-(0)). In view of (1), (2), (3) and (22) it is clear that 

(21) implies 

-n-2 J 2 -n-2 2 (23) (no) dist (x-T, 8). djl :0: en 0 E* + en E* , 
8 ncr/2 (T) 

1 

where T = (O,R-(0)) , provided cE 2n+ 2 < n/2 Then by 22.3 we get 

E(T ,no/2,8) 

If we in fact require 

(24) (c as in (22)) . 

then (by (22)) and this gives 

(25) E(O,ncr/4,8) 

The proof of the theorem is now completed as follows: 

First select n so that 2 < }( 0 /S)2(1-n/p) en _ 2 n., (with c asin(25)), 

then select o so that 
-n-2 1 2(1-n/p) 

en o < 2(nS/8) (c again as in (25)). 

Then, provided the hypotheses 22.4 hold with E satisfying the conditions 

required during the above argument (in particular (4), (24) must hold, and 

E ::: E0 (n,k,o) , E0 (n,k,o) as in the discussion leading to (19)) we get 

E(o P ) < n-2(1-n/p)E ,n ,8 - * , 



120 

where n = nS/8 . Since we trivially have 

we thus conclude that 

as required. 

-This completes the proof of 22.5 (with n in place of n ) . 

§23. MAIN REGULARITY THEOREM: FIRST VERSION 

We here show that one useful form of Allard's theorem follows very directly 

from the tilt-excess decay theorem 22.5 of the previous section. 

23.1 THEOREM Suppose a E (0,1) and p > n are given. There are constants 

E = E(n,k,a,p) , y = y(n,k,a,p) E (0,1) such that if hypotheses 22.4 hold 

with T = Rn and E; = o , then there is a cl,l-n/p function 

u = (u1 , •.. ,uk) : Bn {0) + Rk such that u(O) = 0, 
yp 

(1) spt V n Byp(O) graph u n Byp{O) , 

and 

(2) P-1 supjuj + supjDuj + Pl-n/psup !x-yj-(l-n/p) jDu(x)-Du(y) I 
x,yEBn (0) 

yp 
x#y 

S c [E' (O,p,Rn) + (JB (0) ~~~pd]lr/ppl-n/p] 
p 
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Before giving the proof we make a couple of important remarks concerning 

removability of the hypothesis e < 1+€ in 22.4: * 

23. 2 REfvlARKS 

(1) The monotonicity formula Lll 17.6(1), together with Remark 17.9(1), 

evidently implies that if (w~ 1 r . I !:JI p c\1] l/p p l-n/p ::: € < % I then, for 
- • Bp (!;) 

0 < 0 < T < ( 1-[3 ) p 

(*) -1 -n 
(l+cs)w T ~(B (s)) 

n T 

? -1 -n 
< (l+cs)- wn ((1-S)p) ll(B(l-[3)p(S)) 

provided Then ~~e hypothesis 

(in 22.4) gives 

(**) 
-1 -n 

lun (J p(B(J (s)) ::: 2 (1-a/2) I 0 < 0 < p/2 ' s E spt v n BSP (f,) ' 

provided S [3(n,k,a,p) is sufficiently small. Thus letting o + 0 we 

have 

6<sl < 2(1-a/2) 

If 6 is integer-valued (i.e. if V is an integer multiplicity n-varifold) 

~--a.e. in BSP(f,) . Thus, with Sp 

place of p , the hypothesis 6 S l+E in 22.4 is automatically satisfied, 

then this evidently implies 8 1 

hence the conclusion of Theorem 23.1 holds with Sp i:1 place of p , even 

without ·the hypothesis 6 S l+E . 

in 

* J. Duggan in his Ph.D. thesis [DJ] has shown that in any case the hypothesis 
6 S l+E can be dropped entirely. 
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(2) Quite generally, even if 6 is not necessarily integer-valued, we 

note that if we make the stronger hypothesis w-1 p-n ]J(B (F~)) < l+s 
n p (instead 

of 
-1 -n 

p · ]J(Bp(Ol ::: 2(1-a)) , then (*) above gives (taking i3=s) 

Thus again we can drop the restriction 6::: l+E in 22.4, provided we make the 

assumption 

place of p 

Proof of 23.1 

(1) 

-l o-n ]J(B (sll < l+E ; then Theorem 23.1 holds with sp in 
p 

Throughout the proof c = c(n,k,a,p) > 0 • We are assuming 

1::: e::: 1+s ]J- a.e. in Bp (0) n spt V 

(E to be chosen) and by Remark 23.2(1) (**) we can select E=E(n,k,a,p) 

and 13 = (3(n,k,a,p) such that 

( 2) 
-1 -n 

wn 0 ]J(B0 (<;;))::: 2(1-a/2), 0< OS p/2, I;E Bi3p (0) n spt V • 

By (1), (2) and the tilt excess decay theorem 22.5 (with 0 in place of p, 

a/2 in place of a , 1; in place of s ) we then know that there are 

E = E (n,k,a,p) , n n(n,k,a,p) so that, for o< p/2 i;E spt Bi3p(O) n spt V , 

(3) 

for suitable s 1 . Notice that this can be repeated; by induction we prove 

that if 0 < p/2 ' then there is 

a sequence s 1 ,s2 ... of n-dimensiona1 subspaces such that 

for each j ~ 1 , and (by Remark 22.6) 
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(5) 

n n n 
Next we note that E*(i'; 1p/2 1R) S 2 E*(0 1P 1R) 

for l; E Bp/2(0) I and hence the above discussion shows that if 22.4 holds 

with l; = 0 1 T = Rn and -n 
2 E 

hold with s = Rn and a = p/2 
0 

(6) 

and 

j 
E(l;1ll p/21S .) 

J 

in place of E ( E as above) then (4) 1 (5) 

Thus 

(7) lp P 1 2 S Cll2(1-n/p)j E*(Oipi:Rn) 
s .- s. 

J J-1 

for each j ~ 1 (with Notice that (7) gives 

(8) 

for ~ ~ j ~ 0 . It evidently follows from (8) that there is S(i';) such 

that 

(9) I P 12 S cn2(1-n/p)j E*(Oipi:Rn) 
Ps<r;>- s. 

J 

In particular (setting j=O) 

Now if r E (0 1p) is arbitrary we can choose j ~ 0 such that 

j+1 j 
11 p<rSllP. Then (6) and (9) evidently imply 

{11) 

for each l; E BSP {0) n spt v 

and (2) I with a= r 1 imply 

(12) 

and each O<rsp. Notice also that (10) 1 (11) 
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Hence for sufficiently small E we have from (12) that if G is as in the 
1 

proof of Theorem 20.2 (with Q,= c 2n+3 ) then 0 ((3= (3(n,k,a,p) , 

E = E(n,k,a,p) sufficiently small). That is 

(13) spt vn BBp (0) c graph f 

for E = E(n,k,a,p) and B = (3(n,k,a,p) sufficiently small, where f is a 

I,ipschi tz funct.ion 

{14) Lip f 

l 
2n+3 

< c suplfl 

1 
2n+2 

S c E p 

Now we claim that Dl fact 

(15) spt v n (0) =graph f n BBP(O) . 

Indeed otherwise by (13) we could choose ~ E B~p/ 2 (0) and O< o< Sp/2 

such that 

(16) 

f<B~(<:;) X :Rk)nBBP(O) n spt v 

tB~(O X Rk)nBBP(O) n spt v f. Jl) • 

Then taking and using (1), (13), (14), (16) 

we would evidently have Gn(]J,~*) < 1 (if E is sufficiently small). This 

contradicts the fact that Gn(]J,~)::: 1 iJ ~ E spt V n B ( 0) . 
p 

Having established (15) we can now easily check (using the area formulae) 

that for any linear subspace 

is linear and I grad tj I Sl 

(17) 

graph Q, where t = (£\ ... ,S!.k) 
n s = ' : :R -;.JR 

for each j ' we have 

k 
L lgrad fj{x)- grad S!.jJ 2 dLn(x) < c E(~,o,S) 

j=1 

k 

for o E (0,(3p/2) (again provided E in (14) is sufficiently small). Using 
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(17} and (11} we conclude that for each l; E BSp/ 2 (0} n spt V there is a 

1 in ear function 

(18} 

for 0 < r < f3p/4 . It evidently follows from this, by letting r -1- 0 in (18}, 

that gradfj (pRn(l;}} =grad.Q.~ for ]1-a.e. l;E sptvnBSp/4 (0} Hence 

using (18} again, we easily conclude [grad fj(x1 } -·grad fj(x 2} I 5 

for Ln- a.e. x 1 ,x2 E B~p/8 (0} Since f is Lipschitz it follows from 

this that f E cl,l-n/p with (19} holding for The 

theorem now follows with f = u and y = S/8 

§24. MAIN REGULARITY THEOREM: SECOND VERSION 

In this section we continue to assume V = ~(M,6} is a rectifiable 

n-varifold with generalized mean curvature ~ in u . With oE (0,1/2} a 

constant to be specified below, we consider the hypotheses: 

]1-a.e., 0 E spt V , 

24.1 
8 • 
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24.2 THEOREM If p > n is arbitrary, then there are o = o(n,k,p) , 

y = y(n,k,p) E (0,1) such that the hypotheses 24.1 imply the existence of 

a linear isometry q of JRn+k and a u = (u1 uk) E cl,l-n/p(B11 (0) ·JRk) 
' ... ' . yp ' 

·with u (0) = o , sp-t vnBYP(O) = q(graph u) nBYP(O) , and 

c = c(n,k,p) . 

Before giving the proof of 24.2, we shall need the following lemma. 

Suppose o E (0,1/2) and that 24.1 holds. Then there is 

B = B(n,k,p,o) E (0,1/2) such that 

and such that, for any z;; E spt v n BBP (O) , a E (0, BPl 

n-dimensional subspace T = T(i;;,o) with 

Proof First note that by the monotonicity formulae of §17 (see in particular 

23.2(1) (*)) we have, subject to 24.1, that 

(1) 
-1 -1 -n 

(l+cO) < cun o p(B0 (L;)) s l+co , O< o< p/2 , 

B B<n,k,p,o) E (0,1/4) , so the first part of the lemma 

is proved. 

Now take any fixed o E (O,Sp) and suppose for convenience of notation 

(by changing scale and translating the origin) that 0= 1/2 and L; = 0 . Then 

by (1) and 17.6(1) (see in particular Remark 17.9(1)) we have 
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(2) 

for E spt V 11 B112 (0) where 
l (T ti)l s 

X 
Next note that we can select 

N points t: 1 , 0 0. ,t:N E spt v n B112 coJ B 1/ Ll (0) N < ccS-1/4 
' such that 

cS _n 

N 
(3) spt vnB 112 (0) ·~ B~ 1/ 4n(O) c U B 1 .4 (4.) 

u j=1 cS I n J 

(To achieve this, just take a rnaxirral disjoint collection of balls of radius 

61 /Lln /4 centred in spt V n B (0) ~ B (0) ) Then by using (2) with 
1/2 01/4n · 

we have 

S c cS N S c ' cS 1/ 2 , 

so that for any given R > 1 we have 

N 

(4) I 
j=l 

except possibly for a set of X E B1/2(0) n spt v of 
-1 1/4 

~-measure S c R cS 

Taking R = R(n,k) sufficiently large and noting "1/4 
~ (B l/Ll (0)) ?: Cu 

cS .n 

(1)), we can therefore find such that 

1, .. .,N • 

Since we then have 

(5) 
,1/4n 

::: co 1 j lf .. ~., ,N .. 

That is, all points 
,l/4n 

co neighbourhood of tl<e 

subspace T· 
X 

0 

and the required result now follows from (3). 

(by 
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Proof of Theorem 24.2 Theorem 24.2 in fact now follows directly from 

Theorem 23.1, because by combining Lemma 22.2 and the above lemma we see 

that for any E > 0 there is 
2n o = c E (c= c(n,k,p)) such that the 

hypotheses 24.1 imply 22.4 with ~ 0 , p replaced by Sp and with 

suitable T . 


