CHAPTER 1
PRELIMINARY MEASURE THEORY

In this chapter we briefly review the basic theory of outer measure
(with Caratheodory's definition of measurability). Hausdorff measure is
discussed, including the main results concerning n-dimensional densities
and the way in which they relate more general measures to Hausdorff
measures. The final section of the chapter gives the basic theory of
Radon measures (including the Riesz representation theorem and the

differentiation theory) .

Throughout the chapter X will denote a metric space with metric
d . In the last section X satisfies the additional requirements of

being locally compact and separable.

§1. BASIC NOTIONS

Recall that an outer measure (henceforth simply called a measure)
on X is a monotone subadditive function | : e [0,°] with p(¢py=0.

Thus M(¢) =0 and

oo

u(a.,) whenever A c U A,
1 J =1 J

u(a) =

Tews 8

J

with & , Al , A any countable collection of subsets of X . Of course

g T

this in particular implies U(A) = u(B) whenever A C B.
We adopt Caratheodory's notion of measurability

A subset A C X is said to be JU-measurable if



L{S) = p(s~a) + u(sna)

for each subset S ¢ X . Of course by subadditivity of U we only actually

have to check that
1.1 p(s) = u(s~a) + u(sna)

for each subset S C X with u(sS) < ® . One readily checks (see for
example [M] or [FH1]) that the collection S of all measurable subsets

forms a O-algebra; that is

(1) ¢, x¢€8

(2) If A ,A

1

oo
greee € Sthen U A, and N A, €S

=1
(3) If A€ S then X~A €S .

Furthermore all sets of U-measure zero are trivially u-measurable (because

1.1 holds trivially in case W(A) =0 ). If Ay, A are pairwise

PRAREE
fee) feel
disjoint J-measurable subsets of X , then u(,U1 Aj) = '21 u(Aj) . If
. i= =
<«
A, CA_ C .... are J-measurable then lim Uy(A.) = pu( U A.,) and if
1 2 . i j=1 1
i 1=
foed
Al 2 A2 > .... are U=measurable then 1lim u(Ai) = u( N A,) provided
. =1 i
<
H(A) © .

A measure U on X is said to be regular if for each subset A C X
there is a | -measurable subset B > A with u(B) = U(A) . One readily
[ee]
checks that for a regular measure | the relation 1lim u(Ai) = u( U Ai)
. i=

100

is valid provided A; € A Vi, even if the A, are not assumed to be

i+l
u-measurable.
A measure X is said to be Borel-regular if all Borel sets are

U-measurable and if for each subset A C X there is a Borel set B D A such

that u(B) = H(A). (Notice that this does not imply UW(B~A) = 0 unless A



is JU-measurable and U(a) < ®.)

Given any subset A C X and any measure | on X , we can define a

new measure pLA on X by
(uL a)(z) = u(nanz) , 2 c x .

One readily checks that all y-measurable subsets are also (pL A)-measurable
(even if A is not U-measurable). It is also easy to check that pLa is

Borel regular whenever | 1is, provided A is |-measurable.

The following theorem, due to Caratheodory, is particularly useful.

In the statement we use the notation

d(a,B) = dist(A,B) = inf{d(a,b) : a€ A , b€ B} .

1.2 THEOREM (caratheodory's Criterion) If U 18 a measure on X such

that
u(auB) = p(@a) + u(B)

whenever A, B are subsets of X with d(A,B) > 0, then all Borel sets

are u-measurable.

Proof Since the measurable sets form a O-algebra, it is enough to prove
that all closed sets are H-measurable, so that by 1.1 we have only to check

that
(1) u(s) = u(s~C) + u(snc)
whenever U(S) <« and C is closed.
Let Cj = {x€ X : dist(x,C) < 1/3} . Then d(S~Cj,SﬂC) > 0 , hence

u(s) = u((S~Cj) U (sficy) = U(S“Cj) + u(she)



and we will have (1) if we can show 1lim p(S~C.) = U(S~C) . To check this,
j—)oo 3
note that since C is closed we can write
(o]

s~C= (s~C.) U (U )
UL

where R, = {x€es : E%i < dist(x,C) =< %} . But then by subadditivity of U

we have

0

H(S~C3) = U(SSC) = H(S~Cy) + Z‘ u(Ry)

k=3

and hence we will have 1lim u(S~Cj) = H(S~C) as required, provided only that
oo J—)Oo

I URY <@ .
k=1 "

To check this we note that d(Ri,Rj) >0 if j = i+ 2 , and hence by
the hypothesis of the theorem and induction on N we have for each integer
N =1

g N
W(R, ) =u(U R ) =S u(s) <«
o1 2k k=1 2k

and

N

N
D uW@®R, ) =u(U R, ) Su(s) <«.
k=1 2k-1 X=1 2k-1

The following regularity properties of Borel-regular measures are of

basic importance.

1.3 THEOREM Suppose u <is a Borel-regular measure on X and X = U V., ,

where u(vj) <o agnd Vj is open for each 3 = 1,2,... . Then

(1) U(A) = inf (U)

U open,UDAu

for each subset A c X, and



(2) H(a) u{c)

= SUPe closed,Cca

for each u-measurable subset A C X .

1.4 REMARK 1In case the metric space X 1is locally compact and separable,

<0

the condition X = U V., with Vj open and U(Vj) <« is automatically
=1 ' ‘

satisfied provided U(K) < o for each compact K . Furthermore in this

case we have from 1.3(2) that

W (K)

uia) = supK compact, KCA

for each |~measurable subset A C X with U(A) < © , because under the above
(o]

conditions on X any closed set C «can be written C = U Ki , compact.
i=1

Proof of Theorem 1.3 First note that 1.3(2) follows quite easily from 1.3(1).
To prove 1.3(1), we assume first that u(X) < « . By Borel regularity of
-the measure | , it is enough to prove (1) in case A 1is a Borel set. Then

let
A = {Borel sets A : 1.3(1) holds} .

Trivially A contains all open sets and one readily checks that A is

closed under both countable unions and intersections; in particular A must
also contain the closed sets, because any closed set in X can be written

as a countable intersection of open sets. Thus if we let A ={ncA : xacA)
then ; is a O-algebra containing all thé closed sets, and hence K contains
all the Borel sets. Thus A contains all the Borel sets and 1.3(l) is proved

in case W(X) < ® |

In the general case (U(X) < ®) it still suffices to prove 1.3(1) when
A is a Borel set. For each j = 1,2,... apply the previous case to the

" measure 11Lig ;, 3=1,2,... . Then for each € > 0 we can select an open



Uj > A such that

j
UUV.'\'A'V, <g/2 ¢

so that
WUV~ A) < e/27 ,

and hence (summing over 3j )

o
p( U (u.Nv,) ~a) <eg.
=1
©o
Since 8] (ujﬂvj) is open and contains A , this completes the proof.
j=1

§2. HAUSDORFF MEASURE

If m is a non-negative real number, we define m—-dimensional Hausdorff
measure by
2.1 H%a) = lim H“(;(A) , AcX,
S+¥0

where for each § > 0 , H?(A) is defined by

. o diam C_\ ™
2.2 Hg(®) = inf j£1 Wy [——12 ]

(wm = volume of unit ball in W™ in case m is a positive integer; w, any
convenient constant > 0 otherwise), where the inf is taken over all countable

collections C1 , C
(o]

PAREE of subsets of X such that diam cj < 8§ and

Ac U cC. .
=1 7

Notice that the limit in 2.1 always exists (although it may be + ®)

because H?(A) is a decreasing function of ¢ ; thus H™a) = sup H?(A) .
0<§



2.3 REMARKS

(1) sSince diam Cj = diam Ej we can add the additional requirement

in definition 2.2 that the Cj be closed without changing the value of
H™ (a) ; indeed since for any € > 0 we can find an open set Uj > C,

J

with diam Uj < diam Cj + /29, we could also take the ¢y to be open ,

except in case m = 0 .

(2) Evidently H?(A) <o Ym=0, &§>0 in case A is a totally

bounded subset of X .
One easily checks from the definition of H? that
Hg(ale) = Hia) + Hi@®) if a@,B) > 28 ,
hence
H™(aUB) = H™(a) + H™(B) whenever d(a,B) > 0 ,

and therefore all Borel sets are H'-measurable by the Caratheodory criterion 1.2.
It follows from this and Remark 2.3(1) that each of the measures H" 4is

Borel-regular.

Note: It is not true in general that the Borel sets are Hg—measurable
for § > 0 ; for instance if n 2 2 then one easily checks that the half-

space {x= (xl,...,xn) em” : x > 0} is not Hé—measurable.

We will later show that for each integer n > 1 H® agrees with the

usual definition of n-dimensional volume measure on an n-dimensional C1
. n+k . n

submanifold of IR , k=0 . As a first step we want to prove that #

and LM (n-dimensional Lebesgue measure) agree on R™ . First recall one

of the standard definitions of L% :



If K denotes the collection of all "n-dimensional cubes"” I of the
form I = (al,al+2) X (az,a2+£)X ceo X (an,an+%) , where aié R and
2 >0, and if |I| = volume of I = 2", then
2.4 L"(a) = inf Z|1j]
3

where the inf 1is taken over all countable (or finite) collections

{11,1

2,...} c K with AcU Ij . One easily checks that L" is uniquely

J
characterized among measures on R" by the properties

L™(1) = |1] VieK , L"@) = inf %) va cm” .

A
U open
We can now show
(*) Hya) = LM(@) V8 > o0
as follows. Let € > 0 and choose 11,12,... € K so that A c U Ik and

k

2lrl = ") + e .
k

Now for each bounded open set U c®R" and each § > 0 we can select a pair-
oo

wise disjoint family of closed balls Bl’Bz"" with U B, ¢ U, diam

o J=1
Bj < §, and Ln(U ~ U Bj) = 0 . (To see this first decompose U as a
=1
foed
union U C. of closed cubes Cj of diameter <¢§ and with pairwise
=1

disjoint interiors, and for each j = 1 select a ball Bj C interior Cj

with diam Bj > 2 edge-length of Cj . Then Ln(Bj) > 8n Ln(Cj) ,

2
o0 N
n . n n n
Gn = wn/4 , and it follows [ (U ~ U Bj) < (1-8,)L°(u) . Thus L“(u~U Bj)
=1 =
. 3J N =1
< (1-6,) L (U) for suitable %}E (0,1) . Since U~ U Bj is open, we can
=1

repeat the argument inductively to obtain the required collection of balls.)

Then take U = I and such a collection of balls {Bj} . Since

Ln(Z) =0 = Hg(z) = 0 for each subset Z ¢ X (by definitions 2.2, 2.4) we



then have (writing pj = radius Bj)
Ha(z,) = Hi( U B < ] wop
§' "k 8 =1 3 =1 n"j
= n-=n :n =
= 1 ey =17 U By =10 = 5],
j=1 j=1

and hence

A

Hym) s HgU L) <) H§<11;> < [™@) +¢ .
K K

Thus 2.5 is established.
To prove the reverse inequality
(%%) ") = Hg(A) ¥V§ >0, acm®,

we are going to need the inequality

n diam A" n
2.5 L") =w [-——-———} Ya cm .
n 2
This is called the <sodiametric inequality ; it asserts that among all sets

A cR® with a given diameter p , the ball with diameter p has the largest
" measure. It is proved by Steiner symmetrization (see [HR] or [FH1] for

the details).

Now suppose 6 >0 , A c®r? , and let C_,C

1 be any countable

20T

collection with A < U Cj and diam Cj < § . Then
]

A

@) < Mw cy) = ! Ln(cj)
J ]

diam C O
§“’n[“"2_l] (by 2.5) .

IA

Taking the inf over all such collections {Cj} we have (*¥%).
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Thus we have proved:

2.6 THEOREM

"a) = H*(a) = Hg(a) for every A c®R'and & >0 .

§3. DENSITIES

Next we want to introduce the notion of n-dimensional density of a
measure U on X . For any measure | on X , any subset A C X , and
any point x € X , we define the n-dimensional upper and lower densities

*n n
] (W,A,x) , @*(UIArx) by
U(AﬂBp(x))

*D
© (4,A,x) = lim sup

p¥0 wnp

n

u(AﬂBp(x))

e*“(g,A,x) = lim inf ~

p¥0 w P

(where Bp(x) denotes the closed ball). In case A = X we simply write
*n . .
© (u,x) and @f(u,x) to denote these quantities, so that

%*
e wax =0 wlax , ofuax = oMulax .

3.1 REMARK one readily checks that if all Borel sets are J-measurable
then u(AﬂBp(X)) > 1lim sup u(AﬂBp(y)) for each fixed p > 0 , so that
u(AﬂBp(xi) is a Borezj;easurable function of x for each fixed p > 0 .
Hence e*n(u,A,x) and e:&u,A,x) are both Borel measurable (and hence

u-measurable) functions of x € X . Notice that it is not necessary that

A Dbe H-measurable.

*n
If © (4,A,x) = O;Ru,A,x) then the common value will be denoted

0™ (u,a,x) .
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Appropriate information about the upper density gives connections

between U and H . Specifically we have
3.2 THEOREM Let u be a Borel-regular measure on X and t = 0 .

n
(vy If A CA,CX and @* (H/B,,x) 2 ¢t for all =x € A s then

£ H“(Al) <u@,) .

(2) If Acx and O*n(u,A,x) =t forall x € A, then

p@ < 2% H'a) .

An important case of (1) is when A, = A

1 5 - Notice that we do not

assume A , A, , A2 are -measurable.

1

Of the two propositions-above, (2) 1is the more elementary and we could
prove it immediately. (1) requires a covering lemma, so we defer both

proofs until we have discussed this.

In the following covering theorem and its proof, we use the notation that

if B is a ball Bp(x) c X, then B = Bsp(x) .

3.3 THEOREM If B <s any family of closed balls in X with

R = sup{diam B : B€ B} < @ , then there is a pairwise disjoint subcollection

B* ¢ B such that

U Bc U B ;
BEB BEB!

in fact we can arrange the stronger property

(%) BE€B = Is€B with SNB#¢ and S OB .

Proof For 3j = 1,2,... let Bj = {B€¢ B : R/27 < diam Bf;R/ZJ—l} , so that
oo

B= U B. . Proceed to define B! c B. as follows:
=1 3 J J
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(i) Let Bi be any maximal pairwise disjoint subcollection of Bl .

(ii) Assuming j = 2 and that Bi P : are defined, let

j-1
B% be a maximal pairwise disjoint subcollection of {BE€ Bj : BNB' = ¢
j=1
whenever B' € U Bv}.
. i
i=1
Then evidently if j = 1 and B € Bj we must have
]
BNB'# ¢ for some B' € U B!
i=1
(otherwise we contradict maximality of 83) , and for such a pair B, B' we
have diam B < R/29} = 2r/27 < 2 diam B' , so that B C B' .
. [ee]
Thus we may take B' = U Bi .
i=1
In the following corollary we use the terminology that a subset A C X

is covered finely by a collection B of balls, meaning that for each x € A

and each € > 0 , there is a ball B € B with x € B and diam B < € .

3.4 COROLLARY If B s as in 3.3, i1f A <ig a subset of X covered finely

by B, and if B' ¢ B 1s as in 3.3, then

w >

1 A BEB'~{B ,...,B}

for each finite subcollection {Bl,...,B } < B .

N
N N
Proof 1f x€ A~ U B., since B covers A finely and since X ~ U Bj
j=1 N j=1
is open, we can then find B € B with BN (UB.,) =¢ and x € B, and

.)
=1 7
(by (%)) find s € B' with SNB# ¢ and S OB . Evidently then

s # Bj ¥§=1,...,N, and hence x € U § .
seB'~{B1, .. .,BN}

Proof of (1) of Theorem 3.2 We can assume u(Az) <o and t > 0, otherwise

the result is trivial. We can also assume the strict inequality
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O*n(p,A2,x) >t for x € A,

(because to obtain the conclusion of (1) for t equal to a given t1 >0,

it clearly suffices to prove it for each t < tl) .

.

For § > 0, let B (depending on. §) be the collection
{closed balls Bp(x) : X€ Al 0<p<é8/2 , u(AzﬂBp(x)) >t wnpn} . Evidently
B covers Al finely and hence there is a disjoint subcollection B' ¢ B

so that 3.3 (*) holds. Since u(A2 i B) > 0. for each B € B and since

u(Az) < ® it follows that B' is a countable collection {Bl,Bz,...} and
hence 3.4 implies
N o
A~ U B.c U B, VN > 1
=1 7 =1 I
N o0
Thus Al c (UB.)U ( U B.) and hence by the definition 2.2 of Hg we
3=1 J=N+1
have
n N a n o 0 diam B,
Hoea) = ) wp. + 5 ) wp.[p‘= ]
601 T oy M j=Ne1 03U 2
Since Bj € B, we have
o 1 [ee) _ [o's]
- -1
Jowpeist ] oummmy =t ] owla)e)
j=1 ] j=1 J j=1
[ee]
-1 -1
=t (MLA)(U B.) =t u@a,)) <o,
2 j=1 3 2

and hence letting' N =+ ®© we deduce
n -1
HSS(Al) =t U(Az)

Letting &6 ¥ 0 , we then have the required result.
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Proof of (2) of Theorem 3.2 We may assume that
0*™(u,A,x) <t for all x € A

because to prove the conclusion of (2) for a given t = tl >0, it is

clearly enough to prove it for each t > t, . Thus if

1

Ak = {x€Aa : u(AﬂBp(x) < twnpn Y0 < p < 1/k}

o]
then A = U Ak and Ak+1 > Ak , k=1,2,... . The Ak are not necessarily
n=1

0

H-measurable, but we still have 1lim u(Ak) =u{ U Ak) by virtue of the
koo k=1

regularity of | . Thus we will be finished if we can prove

na) s 2ntHn(Ak) Vk = 1 .

Let & € (0,1/2k) and let Cl,c ;... Dbe any countable cover for Ak with

2
diam Cj < § and Cj n a 7 ¢ Yj . For each j we can find an xj € AL
diam Cj

so that B j(xj) 2C5 pj = —

2p
definition of Ak that

. Then since 2pj < 1/k we have by

n n
M%)suw (%n:52W£j.

20.
©5
Hence

diam C_\"

n
@) =2t jgl wn[ 5

Taking inf over all such covers {Cj} we then have (by definition of
Hg) that u(Ak) < 2™t Hg(Ak) . Thus we have the required inequality by

letting § ¥ 0 .
As a corollary to Theorem 3.2 (1) we can easily prove the following.

3.5 THEOREM If wu  <s Borel regular, if A is a u-measurable subset of

X and if U(A) < », then
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O*n(u,A,x) =0 for H —ae. x€ X ~n .

REMARK  Of course p = H" is an important case.

Proof For t>0 let C_= {x€x~a: 0*™(u,a,x) = t} and if Hn(ct) >0

we can (by Theorem 1.3(2)) find a closed set E Cc A such that
(1) H(AE) < € H(C)) .

Since X ~ E 1is open and Ct C X~A C X~E we have
O*n(u,Aﬂ(XwE),x) = @*n(u,A,x) >t for x € Ce - Thus we can apply Theorem
3.2(1) with pbLa,c

, X~E in place of u,, A A to give

t 1772
t Hn(Ct) < W{A~E) , thus contradicting (1). Thus we conclude that

[es]
Hn(ct) =0 Yt >0 . In particular H (U c = 0 . Thus O*n(u,A,x) =0

)
=1 K

for H" - a.e. x € X~A .

We conclude this section with two important bounds for densities with

respect to Hausdorff measure.
3.6 THEOREM  Suppose A is any subset of X .
(1) I HY2) < , then o*MH ,a,x) <1 for H® — a.e. x € & .

(2) If Hg(A) < » for each 6§ > 0 (note this is automatic 1f A <is
a totally bounded subset of X ), then @*n(HZ,A,x) > 2" for H" - a.e.
x € B .

3.7 REMARK gince H" = Hg > Hz (by definitions 2.1, 2.2) this theorem

implies
2 < " H N a,x) =1 for H® - a.e. x €A

it HMa) <o .
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%
Proof of 3.6 To prove (1), let &, >0, let A = {x€A : 0O TR, a,%) = t}
and (using Theorem 1.3(1) with u = H®L A) choose an open set U D At such

that
Hhuna) < Hay) + e .

Since U is open and since Ay € U we have @*(Hn,AﬂU,x) > t for each
x € A, . Hence Theorem 3.2(1) (with Hnl.A,At,AﬂU in place of 1A ,A))

implies that
t @) s H@ano s H'@) + e .

We thus have Hn(At) =0 for each t > 1 . Since

fe)
{x: e a,x) > 1} = U At for any strictly decreasing sequence {tj}
. =1 =35
. . n #0,, 0 .
with 1lim tj =1, we thus have H {x : ©" (H ,A,x) > 1} = 0 , as required.
To prove (2), suppose for contradiction that @*n(Hgl.A,x)< 2™ for
each x in a set BO C A with Hn(BO) > 0 . Then for each x € BO (by
. &
definition) we can select 6x € (0,1) such that
n 1-6 n
Hoo(AﬂBp(x)) < wpe, 0<p< cSX .
(ee]
Therefore, since B, = U {x¢€ By : § > 1/3} and since
j=1

Hg(AIWBO(x)) = Hg(Af1Bp(x)) for any p < §/2 (by definition 2.2), we can

select 6 > 0 and B c B. with H™B) > 0 and

0
n 1-§ n
(1) H6(AnB(x))5——wp ;s 0<p<§/2, x€B.
o PUI
o
Now using 2.2 again, we can choose sets Cl’c2’°" with Bc U ¢C. ,
=1

CjﬂBaéinj. and

n 1 ,n .
(2) g W, (py/2)7 < TT5 Hg(B) , p, = diamcy .
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oo

Now take x4 € Cj NB, sothat Bcann (U Bp (Xj)) , and we conclude from
j=1 "3

(1), (2) that Hg(B) =0, hence H™@®) =0, contradicting our choice of

B .

§4. RADON MEASURES

In this section X is assumed to be locally compact and separable. On
such a space we say that U is a Radonm measure if | is Borel regular
and if u is finite on compact subsets of X . Notice that (by 1.3, 1.4)

such a measure | automatically has the properties

H(a) = infUDA ww A C X arbitrary
U open
and
u) = SUPe u(K) , A C X u-measurable.

K compact

The finiteness of Radon measures |I on compact subsets enables us to
integrate continuous functions with compact support. Indeed if H is a
Hilbert space with inner product (,) and if Kx,n) denotes
the space of continuous functions X > H with ccmpact
support, then associated with each Radon measure | and each u—measuraEIe
H-valued function Vv : X + H satisfying Ivl= l,u-a.e. , we have the

linear functional L : K(X,H) *IR defined by
L(f) = J (£,v)du .
X

The following Riessz representation theorem shows that - every linear

functional I : K(X,H) IR is obtained as above, provided
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(%) sup {L(f) : £€K(X,H) , |f] =1, spt £ cK} <o

for each compact K C X .

4.1 THEOREM ILet L be any linear functional on K(X,H) satisfying (x)
above. Then there is a Radon measure u on X and a u-measurable function

Vs X+ H such that |v(x)| =1 for p-a.e. x € X and

L(f) = J (£,V)du VE € K(x,H) .
X

4.2 REMARK nNotice that (as one readily checks by using Lusin's theorem to

exhaust p-almost all of X by an increasing sequence of compact sets on

which V 1is continuous), we have
sup{L(f) : £ € K(X,H) , || =1, spt £ cv}l=uw

for every open V C X , assuming U , V are as in the theorem. For this
reason the measure | is called the total variation measure associated

with the functional L .

Proof of 4.1 First define (V) on open sets V according to the

identity of 4.2 above, and then for an arbitrary subset A C X let

(1) u(a) = ian nv) .

Vv
V open

(0f course these definitions are not contradictory when A itself is open.)
To check that u is a Radon measure we proceed as follows. First, if

00
are open sets in X with v c U Vv, , and if w is any

j=1
element. of K(X,H) with supx|w| <1 and support w < V , then, by using

V,Vl,V2 P
the definition of U and a partition of unity of support ® subordinate to

to the sets V.r. we have
{ J}3=1,2,... ’
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lLw | s ] V)

=1
. (o]
Taking sup over all such w we thus get u(V) < Z u(vj) . Then by (1)
=1
we see that
B oo
u@ = ) ou@)
=1 7
fee]
whenever A, Al, A2,... are subsets of X with A c U Aj . Thus uy is a
j=1
measure on X . It is also clear from the definition of | that

U(VlLJVZ) = U(Vl) + U(Vz)

whenever V., , V

1 5 are open subsets of X with d(Vl,V2) > 0 . Then by (1)

we see that | satisfies the Caratheodory criterion, and hence all Borel
sets are measurable by Theorem 1.2. Thus we can conclude that Y is a Borel
regular measure and since it is evidently finite on compact sets (by (*)) it

is then a Radon measure.

Next let K(X)

K(XarR) and I<+(x) = {feK(x) : £ =0} .

Define

A(E) SUP| | < || . £eK x) .

weK (X, H)

Then by definition of U we have

supfeK+(x) A(f) = WU) V open U C X .

support f£cU
We in fact claim
(2) AE) = J fau , £ ¢ K+(X) .

To see this we first note that A(cf) = ¢ A(f) , c constant = 0 , £¢€ K+(X) .

Further we claim that A(f+g) = A(f) + A{g) V£,g¢€ K+(X) . Indeed the inequality
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A(f+g) = A(f) + A(g) is obvious, and we prove the reverse inequality as

follows. Let w € K(X,H) with |w| < f+g , and define w, , w, by

1
£ uif g0 2y if f+g >0
f+g - f+g

1 0 if f+g = 0 2 0  if f+g= 0

One easily checks that then w, , w, € K(X,H) . Then since W= w, + W and

1 1 2

|w1| =f, lw2| =g, we have IL(w)l < A£) + A(g) . Taking sup over
all such w we then have A(f+g) = A(f) + A(g) . To complete the proof that
(2) holds we let € > 0 and choose to = 0 < t1 < ... < tN B tN> sup £ , such

that ti -t < g and u(f'.l(tj)) =0 ¥V4=1,...,N . (This is of course

i-1
possible, because {ter : u(f_l(t)) >0} is clearly countable.) Write

.= s b, <E<t, ] = e .
U {xex £, <f tj}, 3= 1,...,N

Now, by definition of u , for each € > 0 we can choose hj € K+(X)

with support hj C Uj ; h. =1,

J
(3) A(hj) > u(Uj? - /N
and
(4) p(Uj~{x : hj(x) = 1}) < g/N .

Evidently (4) together with the definitions of A, yu implies

N N
ME-f ] h,) < sup|f|ulx : [ U,~{x : h (x)=1}}
=1 7 =1 * J
= sup|f| € 4
and it readily follows that
N N N
) ti_qH(UL) - 2€ sup|£| SA(f )} h,) SA(£)< A(E )} h,) +e sup|f]
521 3 3 551 3 58 3
N

= 'z]_ tju(Uj) + € suplf] .
=
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Since
) )
t., _u(U,) = J fdu = t. u(Uu.)
5=1 13 =1 I3
we then have Ik(f) - J fdul < 2€ suplfl , and hence (2).
To complete the proof of the theorem, let e € H with le[ =1, and

consider the linear functional Ae on K(X) defined by Ae(f) = T(fe) .

Evidently by (2) ,

@] = flfldu VE € K(X)
and hence Ae extends uniquely to a linear functional on Ll(u) . By the
Riesz Representation Theorem for Ll(u) functions (see e.g. [RH] for

details - the proof is based on the Radon-Nikodym theorem) we have a bounded

U-measurable (in fact Borel-measurable) function ve on X such that
L(fe) = J £ Vo dau VE € K(x) .

Taking el, cee s @) to be an orthonormal basis for H , and defining
n . .
v= J Ve, , vtz V_ s one then easily checks that L(g) = f(g,vyau for
j=1 J i
each g € K(X,H) , as required. Furthermore (Cf. Remark 4.2) for each open
U € X we have
(5) sup{L(g) : g€ K(x,H) , ]g}i 1, spt gCcuU} = f |v[du .
U
On the other hand the left side of (5) is u(U) Dby definition of | . Hence

(from the arbitraryness of U) we conclude {v] =1 u-a.e. This completes

the proof of Theorem 4.1.

4.3 REMARK Note that in case H =IR , Theorem 4.2 asserts that the linear

functional L can be represented
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L(f) = J £V du YF € K(X,R) ,
X

where Vv(x) = 1 for p-a.e. x € X . In the special case when L 1is
non-negative, i.e. L(f) 2 0 if £ = 0 , then one easily checks that
vV = +1 , so that the theorem gives

L(f)=J £ Ay
X

in this case., Thus we can identify the Radon measures on X with the non-

negative linear functionals on K(X,R). (Note (*) isautomatic if L is non-negative.)

Now for U C X with U open and U compact, let L; denote the set
of bounded (real-valued) linear functionals on KU(X) = {continuous functions
£ : X+R with spt £ C U} which are non-negative on K;(X)= {fEKU(X): £=0} .
The Banach-Alaoglu theorem (see e.g. [Royl) tells us that {A¢€ L;: Al =1}  is
weak* compact. That is, given a sequence {Ak} c L; with supkleAkH < o,
we can find a subsequence {Xk,} and A € L; such that lim Xk,(f) = A(£)
for each fixed £ ¢ K;(X) . Using the above Riesz Representation Theorem (and
in particular Remark 4.3) together with an exhaustion of X by an increasing
sequence {Ui} of open sets with ﬁi compact Yi , this evidently implies

the following assertion concerning sequences of Radon measures on X .

4.4 THEOREM  Suppose {uk} 18 a sequence of Radon measures on X with
sup, _; W (V) < for each open U C X with U compact. Then there is a
subsequence {uk,} which converges to a Radon measure u on X 1in the

sense that
lim uk,(f) = u(f) for each £ € K(x) ,

where K(x)-= {f : £ <8 a real-valued continuous function with compact .

support on X} . Here we used the notation

u(f) = J £ au .
X
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Now let U be any Radon measure on X . We say that X has the
symmetric Vitali property relative to u if for every collection B of
balls which covers its set of centres A = {x : Bp(x) € B for some p > 0O}
finely (i.e. for each x € A we have inf {p : Bp(x) € B} = 0), there is

a countable pairwise disjoint subcollection B' ¢ B covering u-almost all

of A , provided u(a) < » ,

4.5 REMARKS

(1) It is easy to see (from Corollary 3.4) that the locally compact
separable metric space X has this property with respect to U , provided
u(Bsp(x)) =c u(Bp(x)) whenever Bp(x) C X, where c¢ is a fixed constant

independent of x and p .

(2) Most importantly, in the special case when X =]Rn ;, we have the

symmetric Vitali property with respect to U for any Radon measure | .

To justify this last remark we need first to recall the following

Besicoviteh covering lemma (see [FH1] or [HR] for a proof).

4.6 LEMMA  Suppose B is a collection of closed balls in ®R" , Llet A
be the set of centres, and suppose the set of all radii of balls in B <s a

B. ¢ B (N=N(n)) such

bounded set. Then there are sub-collections Bl’ -e- 0 By

N
that each Bj is a patrwise disjoint (or empty) collection, and U Bj
N j=1
still covers A : A2 c U (U B) .
j=1 BEBj

We emphasize that N is a certain fixed constant depending only on n .

Using this lemma we can easily justify Remark 4.5(2) : For a given Radon
measure U in ®" and for a given collection of balls B covering its own

set of centres A finely, we first choose (from the set {B€ B: radius B=<1})
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pairwise disjoint collections B BN < B such that

N
ceey B. .
17 'E 3 covers A

j=1
Then for at least cne j € {1,...,N} we get

pa~ U  B) = (1-1/N)u(a)

BEB,
J
and hence taking a suitable finite subcollection {Bl, ces s BQ} c Bj .
Q
u@a~ U By = (1-1/20)u(a) .
k=1
Q
Since B covers A finely, and since U Bk is closed, the collection
k=1 ~
Q 0
B=1{BeB :BN (U B, ) = ¢} covers A~ B, finely. Thus we can repeat
k=1 k=1 0
the argument with B in place of B and A~ U B, in place of A in
~ k=1
order to select new balls BQ+1' oo By € B such that

P 1 Q
wa ~ 21 B) = (1 -0 w@a~ 21 B,)

1A

1.2
(1 - Eﬁﬁ u(ay .

Continuing (inductively) in this way, we conclude that if u(A) < © there is

a pairwise disjoint sequence B of balls in B such that

17 By -ee
oe

H(a ~ U Bk) =0 .

k=1

Thus Remark 4.5(2) is established.

4.7 THEOREM Suppose Uy s W, are Radon measures on X , where X has

the symmetric Vitali property with respect to My - Then

My (B ()
D, U, (X) = lim —————
e SPSTHENEY

exists ul-almost everywhere and is ul—measurable. Furthermore for any

Borel set A C X
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(1) u,(a) = J (Du Ho)dd, + ui(a)
A 1
where
UE = Uz Lz,
where 2 1s a Borel set of W, -measure zero (z independent of A ).
In case X also has the symmetric Vitali property with respect to U,

then Du M, also exists uz—almost everywhere and
1

*

(2). H,

i

u, L {x : Duluz(x) = 4o}

(i.e. we may take 2 = {x : DU Hy(x) = +0 } in this case.)
1

4.8 REMARKS

(1) Of course by Remark 4.5(2), we always have 4.7(2) if X =]Rn .

(2) ur

5 is called the singular part of uz with respect to ul . One

readily checks that u; = 0 if and only if all sets of ul—measure Zero
also have uz—measure zero. In this case we say that uz is absolutely

continuous with respect to My - 4.7(1) then simply says

(*) UZ(A) = J (Du uz)dul , ACX , A a Borel set.
A 1

Proof wWe can of course assume Wj(X) <« , U, (X) <« since u, , W, are

Radon measures and X is locally compact and separable.

First consider the case when all sets of Y, -measure zero also have
H,-measure zero. In this case we want to prove (*) , and we have that X

also has the symmetric Vitali property relative to 5 .

Let X=X - {x : M (B (x)) = 0 for some 0 > 0} . Evidently X is

closed and (by separability) ul(X~§) =0, Wy = ul L X . Let QU u2 and
1
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D W, be defined on X by

1
b L) = lim ne 20
“Hy 2 040 ul(Bp(X))
- U, (B, (x))
D up(x) = lim sup —=—r——r
Ky 040 ul(Bp(X))

and define D ;, D =z on X ~ § . Notice that D and D
wHa v By Ho u M2 20
1 1 1 1
are Borel measurable.

Hy

We first prove that if o € (0,®) then for any Borel set A C X ,

(1) ac{xeX: 9u1“2(x) <ol = u,A) =a @)

(2) A c {x€ex : Duluz(x) >a} = H,(a) z o (a) .

To prove (1) we simply note that if A c {x€X : QU u2(x)> o} , then
: 1
for any open V > A the collection B = {Bp(x) : X€A, Bp(x)c:v ,

pz(Bp(x)) < a ul(Bp(x))} covers A finely, so there is a countable disjoint

subcollection {BI'B ... }cB which covers u,-almost all of A (and

21

hence uz—almost all of A ).

Then
oo (o] o«
) su,( U BY) = } op, B sa } u (Bl
2 2 =1 3j 5=1 2 =1 173
[os]
=au, (U By sau .
=1

Taking inf over all such V , by (1.31) we have (1) as required.

The proof of (2) is almost identical and is left to the reader.

Notice particularly that if we let o + © in (1) and use
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ul(x~§) = 0 , then we deduce

(3) ul{xé X : BU by(x) = +0} =0 .
1

Now let a <b and A= {x€X : D U.(x) <a<b<DbD W (x)} . Then
-ul2 “12
by (1), (2) above we have

Hy(B) = a ul(A) and also b ul(A) = “2(A) ’

which implies that ul(A) = UZ(A) = 0 . Thus, by (3) together with the fact

X s <D =
that {x€X : D uluz(x) DMlUZ(X)}
U {x ¢ § : DU uz(x) <a<b<]3u uz(x)} , we have that
a,b rational,a<b 1 1

Dy Hy(®¥) =D U (x) (=D

) ”1 uz(x)) < o for Ul almost all x € X .

My

Next, to establish (*) we proceed as follows. For any Borel set

A CX let
v(a) = J (D H,)dau
a M2t
and for any subset A ¢ X let v(a) = infBDA V(B) .
B Borel
Then Vv is evidently a Radon measure and
t, U, (A ) = @ ) =t u (A )
171 tl't2 tl,t2 271 tl,t2
I = : < <
for any 0 < £ = t2 , Atl,t2 {xen tl Duluz(x) t2} , A any Borel
set. By then by (1), (2) we have
t t2
— u,(a ) 2 v(a ) = u,a )
t2 2 tl,t2 tllt2 1 tl't2

and it readily follows that v = uz . Thus (*) is established.

In the general case (when it may be that uz(A) > 0 when ul(A) = 0)
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select a Borel set B from the collection A = {AcX : A is Borel, ul(X~A) = 0}
<o
such that u.,(B) = inf u.{a) . (rake B = [} A, , where A, € A,
2 2 j=1 * i
‘llm uz(Ai) = lanEA uZ(A).) Now if A <€ B with ul(A) = 0 then we must

A€A

have u2(A) = 0 alsc, otherwise we contradict the minimality of uZ(B). Then

we can apply the previous argument to the measure ﬂz = u2 L B, thus giving

uz(AﬂB) = JA (Duluz)du1 V Borel set A C X .

Thus 4.7(2) holds with u; =, L (x~B) .

Finally, in case X also has the symmetric Vitali property with respect

to Wy s the first part of the argument above establishes that Du H, exists
1
u2—almost everywhere (as well as ul—almost everywhere) in X and (1)

o]
shows that if A c {x€X : D U (x) <=} (= U {x€X:D_ u_(x)<n}) and if
M2 n=1 My 2
ul(A) = 0 , then also uz(A) = 0 . We can therefore apply the above argument
to ﬁz =pu. L {x€X : D p.(x) < ©}. Since we trivially have D H_(x) =
2 H1 2 Ul
for W,-a.e. x € X ~X , we then deduce 4.7(1) with u; as in 4.7(2).

2



