
CHAPTER 1 

PRELIMINARY MEASURE THEORY 

In this chapter we briefly review the basic theory of outer measure 

(with Caratheodory's definition of measurability). Hausdorff measure is 

discussed, including the main results concerning n-dimensional densities 

and the way in which they relate more general measures to Hausdorff 

measures. The final section of the chapter gives the basic theory of 

Radon measures (including the Riesz representation theorem and the 

differentiation theory) • 

Throughout the chapter .x will denote a metric space with metric 

d • In the last section X satisfies the additional requirements of 

being locally compact and separable. 

§1. BASIC NOTIONS 

Recall that an outer measure (henceforth simply called a measure) 

on X is a monotone subadditive function Jl : 2X + [0, 00 ] with ]l (cjl} = 0. 

Thus Jl(cjl) = ·o and 

]l(A) S 
00 

I 
j=l 

]l (A.) 
J 

whenever A c u 
j=l 

A. 
J 

with A, A1 , A2 , ..• any countable collection of subsets of X. Of course 

this in particular implies ]l (A) ::: ]l (B) whenever A c B • 

We adopt Caratheodory's notion of measurability 

A subset A c X is said to be ]1-measurable if 



for each subset s c X 0 Of course by subadditivity of ~ we only actually 

have to check that 

Ll 

for each subset S c X with ~ (S) < oo o One readily checks (see for 

exampla [llll] or [FI-!1]) tha·t -the collection S of all measurable subsets 

forms a a-algebra; that is 

( 1) ¢ ' X E s 
oc 

( 2) If Al' A2 ,. o. E S then u A. and n A. E S 
j~l J j=l J 

( 3) If A E s then X~ A E s 

Furthermore all sets of ~-measure zero are trivially ~-measurable (because 

1.1 holds trivially in case ~(A) = 0 ) • If A 1 , A 2 , are pairwise 

disjoint ~-measurable subsets of X ' 

are ~-measurable then 

are ~~measurable then 

00 

then ~( U A.) = ) ~(A ) 
j=l J j~l j . 

If 

00 

lim ~(A.) = ~ ( U Ai) 
i-)<JO l i=l 

and if 

lim ~(A.) 
. l l-)<JO 

~< n A. l 
i=l l 

provided 

A measure ~ on X is said to be regular if for each subset A c X 

there is a ~-measurable subset B ~A with ~(B) ~(A) • One readily 
00 

checks that for a regular measure ~ the relation lim~(A·)=~(U Ai) 
i-)<JO l i=l 

is valid provided Ai c Ai+l I:J i , 

~-measurable. 

even if the A. are not assumed to be 
l 

A measure X is said to be Borel-regular if all Borel sets are 

~-measurable and if for each subset A c X there is a Borel set B ~ A such 

that W(B) ~ ~(A). (Notice that this does not imply ~(B-A) = 0 unless A 
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is ~-measurable and ~(A) < oo.) 

Given any subset A c X and any measure ~ on X, we can. define a 

new measure ~ L A on X by 

(~LA)(Z) ~<Anz> , z c x 

One readily checks that all ~-measurable subsets are also (~LA)-measurable 

(even if A is not ~-measurable). It is also easy to check that ~LA is 

Borel regular whenever ~ is, provided A is ~-measurable. 

The following theorem, due to Caratheodory, is particularly useful. 

In the statement we use the notation 

d(A,B) dist(A,B) inf{d(a,b) aE A , bE.B} 

1. 2 THEOREM (Caratheodory' s Criterion) If ~ is a measure on X suah 

that 

~(AUB) ~(A) + ~(B) 

whenever A, B are subsets of x with d(A,B) > 0 , then all Borel sets 

are ~-measurable. 

Proof Since the measurable sets form a a-algebra, it is enough to prove 

that all closed sets are ~-measurable, so that by 1.1 we have only to check 

that 

(1) ~<s> ~ ~<s-c> + ~<snc> 

whenever ~(S) < 00 and C is closed. 

Let {xE X dist(x,C) s 1/j} . 

~(S) ~ ~< <s-c .l u <snc> > 
J 

Then d(s-c. ,snc> > o , 
J 

~<s-c.> + ~<snc> , 
J 

hence 
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and we will have (1) if we can show lim p (S~C . ) 
j-+CO J 

To check this, 

note that since C is closed we can write 

co 

s ~ c = (s~c.) u ( u ~l 
J k=j 

where ~ {x E S < dist(x,C) ::: ~} But then by subadditivity of ]1 

we have 

00 

+ )' ,_, 
k=j 

and hence we will have lim ]J(S~C .) 
j-teo J 

as required, provided only that 

To check this we note that d(R.,R.) > 0 if j:: i+ 2 , and hence by 
l J 

the hypothesis of the theorem and induction on N we have for each integer 

N > 1 

and 

N 

p( U R2k) S ]J(S) < oo 

k=l 

N 

]J( U R2k-1) :0: ]J(S) < oo • 

k=1 

The following regularity properties of Bore1-regu1ar measures are of 

basic importance. 

1.3 THEOREM Suppose jJ is a Bore'L-reguZar meo.sure on X and X u 
j=l 

where Jl (V j) < 00 and v. is open for each j = 1, 2, ••. Then 
J 

(1) ]J(A) infu open,U=>A]J(U) 

fol' each sUbset A c X , and 

v. 
J 
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(2) ~(A) = supc closed,CCA~(C) 

for each ~-measurable subset A c X • 

1.4 REMARK In case the metric space X is locally compact and separable, 
00 

the condition X= u V. with v. open and ~(Vj) 
j=1 J J 

satisfied provided ]..I(K) < 00 for each compact K 

case we have from 1.3(2) that 

~{A) = supK compact, KCA~ {K) 

for each ~-measurable subset A c X with ~(A) < oo 

conditions on X any closed set c can be written 

< 

. 

c 

00 is automatically 

Furthermore in this 

because under the above 
00 

u 
i=1 

K. 
1. 

compact. 

Proof of Theorem 1.3 First note that 1.3(2) follows quite easily from 1.3(1). 

To prove 1.3(1), we assume first that ~(X) < 00 • By Borel regularity of 

·the measure ]..1 , it is enough to prove (1} in case A is a Borel set. Then 

let 

A {Borel sets A 1.3 (1) holds} . 

Trivially A contains all open sets and one readily checks that A is 

closed under both countable unions and intersections; in particular, A must 

also contain the closed sets, because any closed set in X can be written 

as a countable intersection of open sets. Thus if we let A = {A E A x-AE A} 

then A is a a-algebra containing all the closed sets, and hence A contains 

all the Borel sets. Thus A contains all the Borel sets and 1.3(1) is proved 

in case ~(X) < oo • 

In the general case (]..!(X) ~ 00) it still suffices to prove 1.3(1) when 

A is a Borel set. For each j 1,2, ••. apply the previous case to the 

measure ]..1 L V. 
J 

j 1,2, .••. Then for each E > 0 we can select an open 
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such that 

)l(U.nv. ~ AnV.) <s/2j, 
J J J 

so that 

and hence (summing over j ) 

co 

1..1 ( u 
j=l 

(u.nv.J ~ Al < c • 
J J 

Since U (UJ.nvj) is open and contains A , this completes the proof. 
j=l 

§2. HAUSDORFF MEASURE 

If m is a non-negative real number, we define m-dimensional Hausdorff 

measure by 

2.1 tfi(A) A c X , 

where for each 8 > 0 , H~(A) is defined by 

2.2 inf 
I w (diam c .)m 
j=l m 2 

(w = volume of unit ball in JRm in case m is a positive integer; w any 
m m 

convenient constant > 0 otherwise), where the inf is taken over all countable 

collections cl ' c2 ' of subsets of X such that diam C. < o and 
J 

A c 
00 

u 
j=l 

c. 
J 

Notice that the limit in 2.1 always exists (although it may be + 00 ) 

because H~(A) is a decreasing function of 8 ; thus Hrn(A) = sup H~(A) 
0<8 
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2,3 REMARKS 

(1) Since eve can add the additional requirement 

in definition 2,2 that the c. 
J 

be closed 111ithout changing the value of 

Hm(A) indeed since for any s > 0 we can find an open set u. ::> c. 
J J 

with diam u. < dia.m c. + F {")j 
I \lie could also take the cj to be open ' J J 

_, ~ 

except in case m= 0 

(2) Evidently 1-/~(A) < 00 Vm :::: 0 , o > 0 in case A is a totally 

bounded subset of X • 

One easily checks from the definition of 

1-/~(ALIB) H~<Al + H~(Bl if d(A,Bl > 2o , 

hence 

1-/m(A) + Hm(B) whenever d(A,B) > 0 , 

and therefore all Borel sets are lim-measurable by the Caratheodory criterion 1. 2. 

It follows f:t-om this and Remark 2. 3 ( 1) ·that each of the measures Hm is 

BoreZ.-regu.Z.ar. 

Note: It is not true in general that the Borel sets are H~-measurable 

for o > 0 for instance if n :::: 2 then one easily checks ·that the half-

space is not 
l 

1-10-measurable. 

We will later show tl1at for each integer n :::: 1 Hn agrees ••i·th the 

usual definition of n-dimensional volume measure on an n-dimensional c1 

submanifold of JRn+k , k =::: 0 . As a first step"we want to prove that Hn 

and Ln (n-dimensional Lebesgue measure) agree on JRn First recall one 

of ~~e standard definitions of Ln : 
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If denotes ·the collec·tion of all "n-dimensional cubes" I of the 

form I 

t > 0 , and if jii = volume of I = tn , then 

2.4 Ln(A) = inf 41Ijl 
J 

where a . E IR and 
l. 

where the inf is taken over all countable (or finite) collections 

;.1ith A c U One easily checks ·that . • 1 
lS u.m.que vy 

j 
characterized among measures on lRn by the properties 

inf 
U:JA 
U open 

We can now show 

(*) 

as follows. Let E > 0 and choose I 1 ,I 2 , ••• E K 

I Irk! s Ln(A) + E • 
k 

so that A c U Ik and 
k 

Now for each bounded open set U cJRn and each 6 > 0 we can select a pair­
cc 

wise disjoint family of closed balls with B. c U , 
J 

diam 

B. < 6 ' and Ln(U ~ U B.) = 0 
J j=l J 

00 

(To see this first decompose U as a 

union lJ C. of closed cubes c. 
j=l J J 

of diameter < 6 and with pairwise 

disjoint interiors, and for each j ::: 1 select a ball B. c interior 
J 

c. 
J 

with diam 

8 
n 

Then Ln(B.) > 8 Ln(C.) 
J n J 

B. > ]: 
J 2 

edge-length of 

and it follows Ln(U ~ lJ Bj) < (l-8n)Ln(U) . 
j=l 

Thus 

for suitable 8 E (0,1); Since 
n 

N 
is open, we can 

repeat the argument inductively to obtain the required collection of balls.) 

Then take and such a collection of balls Since 

H~(Z) = 0 for each subset z c X (by definitions 2.2, 2.4) we 
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then have (writing pj = radius Bj) 

co 

Hn(I ) Hn( u B~) I n 
:5 wnpj 0 k 0 

j=l J j=l 

00 00 

I Ln(Bjl L n ( u B") Ln(Ik) Irk I ' j=l j=l 
j 

and hence 

H'~(A) :5 1-'n. u Ik) < I H~(Ik) < Ln(A) + E ·a'· 
k k 

Thus 2.5 is established. 

To prove the reverse inequality 

(**) 

we are going ·to need the inequality 

2.5 

This is called ·the isod1:ametric inequality ; it asserts that among all sets 

A c :IR11 \vith a_ given diameter p , ·the ball with diameter p has the largest 

Ln measure. I·t is proved by Steine1a symmetrization (see [HR] or [FHl] for 

the details) . 

Now suppose o > 0 , A c lRn , and let c1 ,c2 , . . . be any countable 

collection with A c U cJ. 
j 

and diam C. < o . 
J 

Then 

Ln(A) :5 Ln(U Cj) :5 I L n(C .) 
j j J 

I 
[diam C.)n 

:5 w ]I (by 2.5) 
j 

n 2 

Till~ing the inf over all such collections {cj} we have (**) . 
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Thus we have proved: 

2o6 THEOREM 

Ln(A) H~ (A) for every A c IRn and o > o . 

§3. DENSITIES 

Next we want to introduce the notion of n-dimensional density of a 

measure v on X For any measure V on X , any subset A c X , and 

any point x E X , we define the n-dimensional upper and lower densities 

(where B (x) 
p 

*n 
8 (]J,A,x) lim sup 

p+O 

lim inf 
p-1-0 

denotes the closed ball). 

11 (AnB (X)) p 

Jl(AnB (x)) p 

In case A= X we simply write 

*n 
8 (]J,x) and 8~(]J,x) to denote these quantities, so that 

*n *n n n L 8 (].l,A,x) = 8 (]J LA, X) I 8* (jl,A,x) = e,. (]J A,x) • 

3.1 REMARK One readily checks that if all Borel sets are p-measurable 

then !-dAnB (x)) ":: lim sup ].l (AnB (y)) for each fixed p > 0 , so that 
. p y+x p 

]J(AnB (x)) is a Borel-measurable function of x for each fixed p > 0 
p 

*n 
Hence 8 (]J,A,x) and 8 n(v,A,x) 

* 
are both Borel measurable (and hence 

]J-measurable) functions of x E X Notice that it is not necessary that 

A be ]J-measurable. 

*n 
If 8 (]J,A,x) 8 n(]J,A,x) then the common value will be denoted 

* 
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Appropriate information about the upper density gives connections 

beh~een ]1 and l-In • Specifically \lle have 

3. 2 THEOREfvl Let ]1 be a: Bore~-I'egular measure on X and t ::: 0 • 

*n 
(1) If A 1 c A 2 c X and 0 (1J,A2 ,x) ::: t f01n aU x E A 1 "' then 

t Hn(A1 ) S ]1(A2) 

(2) If A c X and 
~~n 

8 (]l,A,x) < t for aU x E A , then 

./l,n impo:ctant case of (1) is when A1 A2 . No·tice that we do not 

assurt1e A , A1 , A2 are jl-measurable. 

Of the tvm propositions above, (2) is the more elementary and '"e could 

prove it immediately. (1) requires a covering lemma, so '"e defer both 

proofs until we have discussed this. 

In the following covering theorem and its proof, we use the notation that 

if B is a ball B (x) c X , then B 
p 

3. 3 THEORB~ If B is any family of closed balls in X with 

R = sup{diam B : BE B} < ro , then there is a pairwise disjoint suhaollec-tion 

B• c B suah that 

U B c U B 
BEB BEB' 

in faat we aan ar1oange the stronger property 

B E B 3 s E B' with S n B r ¢ and 
~ 

S ::J B • 

Proof For j = 1, 2, ... let Bj = {BE B R/2J < diam B S R/2j-l} 
' 

so that 

co 

B = u Bj Proceed to define B~ c Bj as follows: 
j=l J 
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(i) Let Bi be any maximal pairwise disjoint subcollection of B1 • 

B~ 
J 

(ii) Assuming j ~ 2 and that Bi , ... ,Bj_1 are defined, let 

be a m~~imal pairwise disjoint subcollection of 
j-1 

{BE B. : B n B • 
J 

whenever B ' E U B '. } 
i=l l 

Then evidently if j ::: 1 and B E B. 
J 

B n B' # ¢ for some B' E 

we must have 

j 
u 

i=l 
B! 

l 

(otherwise ~~e contradict maximality of Bjl , and for such a pair B, B' we 

have diam B ~ R/2j-l 

Thus we may take 

2R/2j ~ 2 diam B' 

00 

u 
i=l 

B~ 
l. 

~ 

so that B c B' 

In the following corollary we use the terminology that a subset A c X 

is covered t~neZy by a collection B of balls, meaning that for each x E A 

and each s > 0 , there is a ball B E B with x E B and diam B < s 

3.4 COROLLARY If B is as in 3.3, if A is a subset of X covered finely 

by B, and if B' c B is as in 3.3, then 

A-
N 

u 
j=l 

B. c 
J 

u 
BEB'-{Bl, ••• ,BN} 

for each finite subcollection {B1 , ... ,BN} c B' . 

N 

B 

Proof If x E A - U Bj , since B 
j=l 

covers A finely and since 
N 

is open, we can then find B E B with B n ( U B.) 
j=l J 

¢ and x E B 

X 

(by (*)) find S E B• with S n B ¥ ¢ and S ~ B • Evidently then 

s 1 Bj Vj = 1, .•• ,N ' and hence x € U S • 
s-B• { B ' t - B 1' ••• ' Nj 

N 

U Bj 
j=1 

and 

Proof of (1) of Theorem 3.2 We can assume ~(A2 ) < oo and t > 0, otherwise 

the result is trivial. We can also assume the strict inequality 
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(because to obtain the conclusion of (1) for t equal to a given t 1 > 0 

it clearly suffices to prove it: for each t < t 1 ) 

For 0 > 0 let B (depending on ol be the collection 

{closed balls (x) ' xE Al ' 
o<p<o/2 

' f!(A 2nBp (x)) ::: t w pn} Evidently 
n 

B covers finely and hence there is a disjoint subcollection B' c B 

' 
so tha·t 3,3 (*) holds. Since ll n B) > 0 for each B E B and since 

]1 (A2 ) < co it follows that B' is a coun'cable collection {B 1 ,B 2 , .•. } and 

hence 3.4 implies 

N co 

B. c 
J 

Thus A 1 c ( U B . ) lJ ( lJ B . ) 
j=l J j=N+l J 

have 

N 

::: I 
j=l 

Since B. E B, we have 
J 

n 
uJnpj 

co 

+ 

u 
j=N+l 

B 
j 

1 . 

and hence by the def ini·tion 2. 2 of 

sn I n 
wrpj 

j=N+l 

diam B .1 
_2 _ _lJ 

< t-1 I ]1 (A .. JlB.) 
~ J 

-1 t - I (]JLA2)(Bj) 
j=l j=l 

and hence letting N + oo we deduce 

Letting 6 + 0 , we then have the required result. 

we 
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Proof of (2) of Theorem 3.2 we may assume that 

because to prove the conclusion of {2} for a given t = t 1 > 0 , it is 

clearly enough to prove it for each t > t 1 Thus if 

{xE A itO < p < 1/k} 

00 

then A= u Ak and ]\"k+l :J l'"k ' k= 1,2, ••• . The '\ are no·t necessarily 
n=l 00 

Jl-measurable, but we s·till have lim jl(~) = jl ( u ~) by virtue of the 
k""""' k=l 

regularity of jl Thus we will be finished if we can prove 

Vk ::: 1 • 

Let 8 E (O,l/2k) and let c1 ,c2 , ••• be any countable cover for ~ with 

diam C.< 8 and 
J 

Cj n Ak 1 ~ i!j • For each j we can find an xj E ~ 

diam Cj 
so that B 2p. (xjl 

J 
definition of Ak 

Hence 

:J Cj , 

that 

Then since 2p. < 1/k we have by 
2 J 

Taking inf over all such covers {cj} we then have (by definition of 

letting 

Jl(Akl s 2nt H~(~) • 

0 + 0 . 

Thus we have the required inequality by 

As a corollary to Theorem 3.2 (1) we can easily prove the following. 

3.5 THEOREM If 11 is Borel regular, if A is a ]l-measurable subset of 

X and if Jl(A) < oo, then 
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REf•lARK Of course ]l Hn is an h~portant case. 

Proof 

we can (by Theorem 1.3 (2)) find a closed set E c P. such t.hat 

(1) 

Since X~ E is open and c c x-A c x~E 
t 

we have 

'I'hus we can apply Theorem 

thus contradicting (1). Thus >~e conclude that 
00 

0 ~I+ > u- • I t" 1 I~ ( U C ) 0 , ·~ n par_ J.cu ar ., l/k = 
k=l 

We conclude this section with two important bounds for densi·ties with 

respect. to Hausdorff measure. 

3. 6 THEORH1 Suppose A is any subset of X 

( 2) If Hll.IJl) 0 't :l < co for each 8 > 0 (note this is automatic if A is 

a totally bounded subset of X ), then 

X E A 

REr~ARK Since l.,n 
::: 16 ::: (by definitions 2.1, 2.2) this theorem 

implies 

0 
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Proof of 3.6 To prove (1), let E:,t > 0, let At= {xE A: e*n(l{n,A,x) ::::t} 

and (using Theorem 1.3 (1) with ]l = Hnl A) choose an open set U :::> At such 

that 

Since u is open and since At c u we have e*(Hn,Anu,x) :::: t for each 

implies that 

We thus have Hn(A ) = 0 for each t > 1 Since 
t 

G*n(Hn,A,x) 
00 

{x : > 1} = u A for any strictly decreasing sequence { t.} 
t. J j=1 J 

with lim t. 
J 

0 , as required. 

To prove (2), suppose for contradiction that G*n(H~l A,x) < 2-n for 

each x in a set B0 c A with Hn(B 0 ) > 0 . Then for each x E B0 (by 

definition) 

Therefore, 

we can se·1ect ox E (0,1) such that 

00 

since B = u 
0 

j=1 

1-cS 
X 

<--

2n 

{x E B0 0 > 1/j} and since 
X 

n H~(A n Bp (x)) H0 (AnBP(x)) - for any p < o/2 (by definition 2.2), 

select 8 > 0 and B c B0 with Hn(B) > 0 and 

(1) n 1-o n 
H 0 (An B p (x) ) :S ~ wnp o < P < o/2 , x E B . 

2 

Now using 2.2 again, we can choose sets 

C. n B f ¢ ~j , and 
J 

(2) 

with 

diam C. 
J 

B c 

we can 

00 

u cj , 
j=l 
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(1), (2) that HS(B) 

B • 

§4. RADON MEASURES 

so that 
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00 

B c A n < u B <x . > > , 
j=l pj J 

and we conclude from 

0 , contradicting our choice of 

In this section X is assumed to be locally compact and separable. On 

such a space we say that ~ is a Radon measure if ~ is Borel regular 

and if ~ is finite on compact subsets of X • Notice that (by 1.3, 1.4) 

such a measure ~ automatically has the properties 

]..l(A) ~(U) I A c X arbitrary 

and 

]..l(A) supKCA ~(K) I A c X ]..1-measurable. 

K compact 

The finiteness of Radon measures ]..1 on compact subsets enables us to 

integrate continuous. functions with compact support. Indeed if H is a 

Hilbert space with inner product (,) and if K(X,H) denotes 

the space of continuous functions X+ H with compact 

support, then associated with each Radon measure ]..1 and each ]..1-measurabie 

H-valued function V X+ H satisfying Jvl = 1, ]..1- a.e. we have the 

linear functional L K(X,H) +m. defined by 

The following Riesz representation theorem shows that .every linear 

functional L : K(X,H) +lR is obtained as above, provided 
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sup {L(f) fEK(X,H), ltj ::;1, sptf CK} <oo 

for each compact K c X . 

4.1 THEOREM Let L be any linear functional on K(X,H) satisfying (*) 

above. Then there is a Radon measure ~ on x and a ~-measurable function 

v x -+ H such troat lv(x) I = 1 for 11- a.e. x E x and 

L(f) J~ (f,V)d~ 
X 

iff E K(X,H) • 

4.2 REMARK Notice that (as one readily checks by using Lusin's theorem to 

exhaust ~-almost all of X by an increasing sequence of compact sets on 

which v is continuous), we have 

sup{L (f) f E K (X, H) , I f I ::: 1 , spt f c V} ~(V) 

for every open V c X , assuming ~ , v are as in the theorem. For this 

reason the measure ~ is called the total variation measure associated 

with the functional L 

Proof of 4.1 First define ~(V) on open sets V according to the 

identity of 4.2 above, and then for an arbitrary subset A c X let 

( 1) ~(A) in£ 
ACV 
V open 

~(V) • 

(Of course these definitions are not contradictory when A itself is open.) 

To check that ~ is a Radon measure we proceed as follows. First, if 
00 

v,v1 ,v2 , ..... are open sets in X with v c u v. , and if w is any 
j=l J 

element. of K (X, H) with supxlwl ::: 1 and support w c v , then, by using 

the definition of ~ and a partition of unity of support w subordinate to 

to the sets {v.}. , 
J J=l, 2' ... 

we have 



IL(W) I s 
oc 
I"' 

L 
j=l 

19 

]l (V . ) • 
J 

00 

T~cing sup over all such w we thus get ]l(V) < L ]l(Vj) . Then by (1) 
j=l 

>ve see that 

whenever A, 

00 

]l(A) s I 
j=l 

]l (A . ) 
] 

00 

are subsets of X with A c U Aj 
j=l 

Thus ]l is a 

measure on X It: is also clear from the defini·tion of ]l that 

~tJhenever V 1 , V 2 are open subsets of X with d(V1 ,v2) > 0 • Then by (1) 

we see that 11 satisfies the Caratheodm:y criterion,. and hence all Borel 

sets are measurable by Theorem 1. 2. Thus >qe can conclude that ].1 is a Borel 

regular measure 2u1d since i·t is eviden·tly finite on compact sets (by ( 1')) it 

is then a Radon measure. 

Next le·t K (X) {f E {((X) f ::: 0} 

Define 

A.(f) supl I - jL(tu) I , f E K+(X) . w :::;:t 
wE/((X,H) 

Then by definition of ].1 we have 

supfEK (X) 
+ 

support feU 

iile in fact claim 

A (f) )l(U) '1 open U c X . 

(2) A.(f) f f d)l , f E K +(X) • 

To see this we first note t.'1.at A(cf) = c A(f), c constant":: 0, fE/(+(X). 

Further we claim that i,(f+g) = A{f) + A(g) 'Vf,gE {(+(X) . Indeed the inequality 
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A(f+g) ~ A(f) + A(g) is obvious, and we prove the reverse inequality as 

follows. Let wE K(X,H) with lwl ~ f+g , and define w1 , w2 by 

f+g = 0 
w = 2 l f!g w if 

0. if 

f+g > 0 l f! w if 
w = g 

1 0 if 

f+g > ·0 

f+g = 0 

One easily checks that then w1 , w2 E K(X,H) • Then since w = w1 + w2 and 

lw1 1 ~ f, lw2 1 ~ g, we have IL<w>l ~ A(f) + A(g) • Taking sup over 

all such w we then have A(f+g) = A(f) + A(g) • To complete the proof that 

(2) holds we let E > 0 and choose t 0 = 0 < t 1 < ••• < tN , tN> sup f , such 

that t.- t. 1 < E and ~(f-1 (t.)) 0 Vj = l, ••• ,N. (This is of course 
. ~ ~- J 

possible, because {tElR : ~(f-1 {t)) > O} is clearly countable.) Write 

U. = {x E X : t. l < f < t.} , j = 1, ••• ,N • 
J J- J 

Now, by definition of ~ , for each E > 0 we can choose hj E K+{X) 

with support hj c Uj , h. ~ 1 , 
J 

{3) 

and 

(4) 

Evidently (4) 

N 

t.<f-f I h.> 
j=1 J 

~{u.- {x: h.{x) = 1}) < E/N • 
J J 

together with 

~ supjfj E , 

the definitions of A, ~ 
N 

I U. - {x : h. {x) = 1}} 
i=l ~ J 

and it readily follows that 

implies 

N N N 

I tj_1~ {Oj)- 2E sup I fl ~ A(f I h.)::: /.(f)~ A(f I h.)+ E supj fj 
j=l j=l J j=l J 

N 

~ I 
j=l 

t.~(U.) + t supjfj 
J J 
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Since 

N 

I t . l]l (U.) :::: 
j=l J- J 

we then have IA(f) - J fd]ll < 2E suplfl , and hence (2). 

To complete the proof of the theorem, let e E H with I e I = 1 , and 

consider the linear functional Ae on K(X) defined by Ae(f) = T(fe) 

Evidently by (2) , 

't/f E K (X) 

and hence A extends uniquely to a linear functional on L 1 {\.!) 
e 

By ·the 

Riesz Representation Theorem for L1 (Jl) functions (see e.g. [RH] for 

details - the proof is based on the Radon-Nikodym theorem) we have a bounded 

]l-measurable (in fact Borel-measurable) function \) 
e on X such that 

Taking el ' ... 
n 

Vje. v = I ' 
j=l J 

each g E K(X,H) 

u c X we have 

(5) sup{L(g) 

I e 
n 

vi 

' 

L(fe) = J f ve d]l 't/f E K (X) • 

to be an orthonormal basis for H , and defining 

- V one then easily checks that L(g) = J<g,v)d]l for 
e. 

l 

as required. Furthermore (Cf. Remark 4.2) for each open 

gE K(X,H), lgj::: l, spt gc u} = J lvldJl . 
u 

On the other hand the left side of (5) is Jl(U) by definition of ]l . Hence 

(from the arbitraryness of U) \<Je conclude Jvl = 1 ]l- a.e. This completes 

the proof of Theorem 4.1. 

4.3 REMARK Note that in case H = JR , Theorem 4. 2 asserts that the linear 

functional L can be represented 
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L(f) f \) d]..! 'r/F E {((X,:R) , 

where \!(X) = ± 1 for ]..!-a. e. x E X In the special case when L is 

non--negative, Le. L(f) ::: 0 if f::: 0 , then one easily checks that 

\! - +1 , so that the t~eorem gives 

L(f) 

in this case. Thus we can identify the Radon measux>es on X with the non-

negative linear functionals on /((X,:R). (Note(*) is automatic if Lis non-negative.) 

Now for U c X with U open and U compact, let denote the set 

of bounded (real-valued) linear functionals on KU(X) = {continuous functions 

f : X +JR ·with spt f c u} which are non-negative on {(~(X)= {fEKU(X) : f::: 0} 

The Banach-Alaoglu theorem (see e.g. [RoYJ) tells us that {AE L~: ll:\ll s 1} is 

weak* compact. That is, given a sequence supk>li!Akll < co 

we can find a subsequence and such that lim Ak, (f) = A (f) 

for each fixed f E K~(X) Using the above Riesz Representation Theorem (and 

in particular Remark 4.3) together with an exhaustion of X by an increasing 

sequence {u.} 
]_ 

of open sets with U, 
l. 

compact 'r/i , this evidently implies 

the following assertion concerning sequences of Radon measures on x· 

4.4 THEOREM Suppose {]..lk} is a sequence of Radon measures on x with 

< 00 for each open U c X with compact. Then there is a 

subsequence {~k'} which converges to a Radon measure ll on x in the 

sense that 

~(f) for each f E K(x) , 

whePe K(X) = {f : f is a Peal-valued continuous function with compact 

support on X} . Here we used the notation 

ll (f) = t f d]..l • 
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Now let V be any Radon measure on X . We say that X has the 

syrrrmetric Vitali property relative to v if for every collection B of 

balls \~hich covers its set of centres A :: {x : B (x) E B for some p > o} 
p 

finely (i.e. for each x E A '"e have inf {p Bp (x) E B} = 0 ) , there is 

a countable pain1ise disjoint suhcollection B' c B covering v-almos·t all 

of A , provided V(A) < 00 • 

LL 5 REI~ARKS 

(1) It is easy to see (from Corollary 3.4) that the locally compact 

separable metric space X has this property wi·th respect to 11 , provided 

whenever B (x) c X , where c is a fixed constant 
p 

independent of x and p 

( 2) Most. importantly, in the special case v1hen X = IRn we have the 

symmetric Vital·i pl~oper-ty with respect to 11 for any Radon measure V 

To jus·tify this last remark we need first to recall the follm1ing 

Besicovitch covering lemma (see [FHl] or [HR] for a proof). 

4. 6 LEfv1MA Suppose B ·is a collection of closed balls in IRn let A 

be the set of centres, and suppose the set of all radii of balls in B is a 

bounded set. 

that each B. 
J 

still covers 

Then there are svh-collections B1 , ••• , BN c B (N=N (n)) 

N 

is a pw:H.Jise disjoint (or empty) collection, and 
N 

u 
j=l 

A : A c U 
j=l 

( U B) 

BEB. 
J 

such 

B. 
J 

We emphasize that N is a certain fixed constant depending only on n . 

Using this lem_rna we can easily justify Remark 4.5(2) : For a given Radon 

measure ]J in IRn and for a given collec-tion of balls B covering its mvn 

set of centres ·A finely, we first choose (from the set {BE B: radius B :"" 1}) 
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pairwise disjoint collections such that 
N 
u 

j=l 
B. covers A • 

J 

Then for at least one j E {l, •.• ,N} we get 

\l(A~ U B) S (1- 1/N)\l(A) 

BEB. 
J 

and hence taking a suitable finite subcollection {B 1 , ... , BQ} c Bj , 

Q 
\l(A~ U Bk) S (l-l/2N)].l(A) 

k=l 
Q 

Since B covers A finely, and since U Bk 
k=l 

is closed, the collection 

Q 
B = {BE B : B n ( U Bk) 

k=l 
¢} 

Q 
covers A ~ U Bk finely. Thus we can repeat 

the argument with B in place of B 

k=l 

and 
Q 

A ~ U Bk 
k=l 

order to select new balls BQ+l' ••• , BP E B such that 

p 

\l(A ~ U B ) 
k=l k 

1 2 
S (1- 2N) ].!(A) 

in place of A in 

Continuing (inductively) in this way, we conclude that if ].!(A) < 00 there is 

a pairwise disjoint sequence B1 , B2 , of balls in B such that 

00 

Thus Remark 4.5(2) is established. 

4. 7 THEOREM Suppose ]..1 1 , ]..1 2 are Radon measures on X , where x has 

the symmetric VitaZi property with respect to 11 1 Then 

exists ]..1 1-aZmost everywhere and is ]..1 1-measurabZe. Furthermore for any 

BoreZ set A c x 
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where 

where z 

fl* 2 
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'7 
u I 

is a Borel set of f1 1-measw'e zero (z independent of A). 

In case X also has the syrronetl'ic Vitali property with respect to fl 2 

then also exists )1 2-almost eve.r>ywhere and 

(2) * )12 

(i.e. we may take Z {x + 00 } in this case.) 

4.8 REMARKS 

(1) Of course by Remark 4.5(2), we always have 4.7(2) if X =IRn. 

(2) * v 2 is called the singular part of )1 2 with respect to )ll . One 

readily checks ·that if and only if all sets of vl-measure zero 

also have )1 2-measure zero. In this case we say that v 2 is absolutely 

continuous with respect t.o fll. 4. 7 (1) then simply says 

(*) A a Borel set. 

Proof we can of course assume J-l1 (X) < oo , )12 (X) < oo since are 

Radon measures and X is locally compact and separable. 

First consider the case when all sets of )1 1 -measure zero also have 

)1 2-measure zero. In this case we want to prove (*) , and we have that X 

also has the symmetric Vitali proper-ty relative to ]1 2 

Let X = X - {x : Jll (Be (x)) = 0 for some 0 > o} Evidently X is 

closed and (by separability) )1 1 cx-x) = 0 )11 )11 L X Let !2)1_ )12 and 
l. 



D p be defined on X by 
pl 2 

and define 

are Borel measurable. 

lim inf 
p-1-0 

lim sup 
p-1-0 

on 
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1J2 (Bp (x)) 

)Jl (Bp (x)) 

)J 2 (Bp (x)) 

]Jl (Bp (x)) 

Notice that and 

We first prove that if a E (0, 00 ) then for any Borel set A c X , 

(1) A c {x E X D )J 2 (x) < 
-111 

a} => )J2 (A) :S a ll 1 (A) 

(2) A c {x E X D p 2 (x) 
111 

> a} "" ]..12 (A) ::: a 11 1 (A) 

To prove (1) we simply note that if A c {x E X : D u 2 (x) > a} , 
-111 

for any open the collection B = {Bp(x) : x E A , B (x) c V , 
p 

then 

p 2 (BP(x)) Sa ]..J 1 (Bp(x))} covers A finely, so there is a countable disjoint 

subcollection {B 1 ,B 2 , ••• } c B which covers ]..1 1-almost all of A (and 

hence p 2-almost all of A ) • 

Then 

00 

00 

00 

I 112 (Bj) 
j=l 

= a ]..1 1 ( U Bj) s a ]..J 1 (V) 
j=l 

00 

Taking inf over all such V , by ·(1.31) we have (1) as required. 

The proof of (2) is almost identical and is left to the reader. 

Notice particularly that if we let a + oo in (1) and use 
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0 , then we deduce 

(3) i5 ]J 2 (x) + 00 } 0 
l-ll 

{x E X D l-! 2 (x) < a < b < iS ]1 2 (x)} Then 
-jll lll 

Now let a < b and A 

by (1), (2) above we have 

and also b ]ll (A) ::: p 2 (A) , 

which implies that 11 1 (A) = l-! 2 (A) = 0 Thus, by (3) together with the fact 

that {x EX D 

u we have that 

a,b rational,a < b 

for almost all X E X • 

Next, ·to establish (*) we proceed as follows. For any Borel set 

A c X let 

\!(A) 

and for any subset A c X let V(A) infB=>A \!(B) • 

B Borel 

Then \! is evidently a Radon measure and 

< ll (At t ) < 
1' 2 

for any 0 < t 1 ::: t 2 , A. = {x E A 
'Cl,t2 

set. By then by (1), (2) we have 

and it readily follows that v = Thus (*) 

A any Borel 

is established. 

In the general case (when it may be that ]J 2 (A) > 0 when ]J1 (A) 0) 
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select a Borel set B from the collection A= {AC X A is Borel, lll (X~A) o} 
00 

such that ll2 (B) = infAEA l-12 (A) (Take B n A. where A. E A I 

i=l ~ ~ 

lim l-1 2 (Ai) = infAEA l-12 (A) . ) Now if A c B with lll (A) = 0 then we must 

have l1 2 (A) = 0 also, otherwise we contradict the minimality of l1 2 (B). Then 

we can apply the previous argument to the measure ~ 2 = ll 2 L B , thus giving 

* Thus 4.7(2) holds with l-1 2 

V Borel set A c X . 

Finally, in case X also has the symmetric Vitali property with respect 

to l-1 2 , the first part of the argument above establishes that Dll ll 2 exists 
1 

l-1 2-almost everywhere (as well as l-1 1-almost everywhere) in X and (1) 

shows that if A c {x E X : D ll 2 (x) 
lll 

l-1 1 (A) = 0 , then also l1 2 (A) = 0 • 

00 

< oo} (= U {xEx: D l-1 2 (x) < n}) and if 
n=l lll 

We can therefore apply the above argument 

Since we trivially have D ll 2 (x) = oo 

lll 
for X E X - X I we then deduce 4. 7 ( 1) with as in 4. 7(2). 


