162

INVEXITY IN NONLINEAR PROGRAMS AND CONTROL PROBLEMS

I. Smart

ABSTRACT

Subject to certain regularity hypotheses, the Kuhn-Tucker conditions are
necessary for optimality in nonlinear programs. These conditions become
sufficient under assumptions of invexity. This paper presents some known
results and new observations on invexity, with extension to optimal control
problems.
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1. INTRODUCTION
Consider the general nonlinear program:
(P) Minimize f(x)
subject to g(x) € S
where f: C >R and g: C > Y, with C an open subset of the normed space X,
and S a polyhedral cone in the finite dimensional normed space Y.

For the sake of simplicity, it is assumed that X = Rn, Y = Rm, S=R
and f and g are Fréchet differentiable. Nevertheless, the ensuing results may
all be considered in a more abstract context (see, for example, Craven and
Glover [4]1).

Under certain regularity conditions, or constraint qualifications, such
as the Kuhn-Tucker, Arrow—Hurwicz—Uzawa{ or reverse convex constraint
qualification (Mangasarian [8]), the Kuhn-Tucker conditions are necessary for
optimality of (P). That is, if x* is optimal for (P), then there exists

A* € R" such that:

VE(x*) - V(¥ Tg(x*)) = 0
A*Tg(x*) =0
A* = 0.
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In general, these conditions are not sufficient for optimality. We will
present a recently discovered class of functions, called invex functions,
which yield sufficiency, and lead to the extension of duality results in a

variety of nonlinear programs.

2. INVEXITY
Let h: C > R be differentiable. Then h is:
a) convex if h(x) - h(u) = (x-u)' Vh(u) for all x, u € C;
b) quasi-convex if h(x) = h(u) = (x-w)T Vh(u) = 0;
c) pseudo-convex if (x-u)" Vh(u) = 0 = h(x) = h(u).

Note that convexity = pseudo-convexity = quasi-convexity. (Mangasarian [8]).

It is well established that the Kuhn-Tucker conditions at (x*,A*) are
sufficient for optimality at x* whenever x* is feasible for (P), and either:
1) (Kuhn-Tucker [7]) f convex, gi concave, i = 1,...,m; or
2) (Mangasarian [8]) f pseudo-convex, g, quasi-concave for all i € I,

where I = {ilgi(x*) = 0}; or
3) (Mond [101) f pseudo-convex, A*Tg quasi-concave. (2) = 3) as
quasi-concavity is not additive); or

4) (Mond [10]) £ - A*Tg pseudo-convex.

Hanson [6] noted that the convexity requirements could be weakened as
there was no explicit dependence on the 1linear term (x-u) in proving
sufficiency; the linear bounds imposed by the notions of convexity could be

replaced by arbitrary non-linear bounds.

DEFINITION 2.1
The differentiable function h:C - R 1is invex if there exists a vector

function 7:C x C = R® such that h(x) - h(u) = n(x,u)T Vh(u) for all x, u € C.
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The term invex stems from invariant convex (Craven [31) -: if ¢:R" > R
is differentiable and convex, and ¢:IRr 5> R® (r = n) is differentiable with
V¢ of rank n, then f = g o ¢ is invex. Indeed, f will be invex when g is
invex, but with respect to a different 7.

Further generalization is possible: h is quasi-invex if there exists
7:C x C > R" such that h(x) = h(u) = 'n(x,u)T Vh(u) = 0; and pseudo-invex if
there exists 7:C x C > R® such that

n(x,u)’ Vh(u) 2 0 5 h(x) = h(u).

This allows a restatement of the conditions sufficient for optimality at
a feasible x*, with (x*,2*) satisfying the Kuhn-Tucker conditions.
1) f and -gi invex with respect to the same n, i = 1,...,m
2) f pseudo-invex, g, quasi-invex for i € I, with respect to the same n;
3) f pseudo-invex, —A*Tg quasi-invex with respept to the same 7;

4) f - A*Tg pseudo-invex.

Invexity also allows the weakening of necessary conditions. The afore-
mentioned constraint qualifications require differentiability but not
convexity, while there are two other constraint qualifications which do not
require differentiability. These are -

Slater’s: there exists x e C such that gi(x°) >0, i=1,...,m
and Karlin’s: there exists no p € R", p =0, p# 0 such that pTg(X) = 0 for

all x € C.

By the generalized Gordan theorem, these conditions are equivalent when
the gi are concave, but an analogous theorem of the alternative 1is not
available for invex functions. However, both yield the Kuhn-Tucker conditions
if the -g, are invex. Ben-Israel and Mond [1] deal with the Slater

condition, and we prove here the corresponding result for Karlin’s condition.
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Theorem 2. 2. Let x* be optimal for (P), -8, invex with respect to the same 7
for i = 1,...,m, and assume Karlin’s constraint qualification 1is satisfied.
Then there exists A* e R" such that (x*,A*) satisfies the Kuhn-Tucker

conditions.

Proof. The Fritz-John conditions are satisfied at x*; that is, there exist
r; € R and r* € R" such that
r* VE(x*) - V(r*'g(x*)) = 0
r*Tg(x*) =0
t3 * * *
(ro,r ) =0, (ro,r ) = 0.
We need to show that rz > 0, so taking A* = r*/r; gives the result. Assume
that r* = 0.
0
Then V(r*'g(x*)) =0, r*'g(x*) =0, r* =0, r* = 0.
By invexity of the -g  and non-negativity of the r*, i =1,...,m,
1 1
% T R — %) T #T (% ; #*T
r*g(x) - r* g(x*) = n(x,x*) V(r* g(x*)) for all x e C. i.e. r*g(x) =0

for all x € C. This contradicts Karlin’s condition, and hence rz > 0. B

Martin [9] further relaxed invexity requirements through complementary
slackness and feasibility, and defined Kuhn-Tucker Ainvexity of the program
(P): there exists a function 7:C x C - R® such that if x, ueC, g(x) = 0,
g(u) = 0, then f(x) - f(u) = n(x,u)’ Vf(u) and g,(u) = 0 implies
n(x,u)TVgi(u) = 0.

This leads to the next result (Martin [9])

Theorem 2.3. Every Kuhn-Tucker point of (P) is a global minimizer if and

only if (P) is Kuhn-Tucker invex.
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In the unconstrained problem, this theorem leads to a corollary which
gives a characterization of invex functions which, at present, is the best way

of identifying such functions.

Corollary 2.4 (Craven and Glover [4]). Let h:C > R be differentiable. Then
h is invex if and only if every stationary point is a global minimizer.

It is édequate for the purposes of sufficiency, and later, duality, to
know that functions are invex without identifying an appropriate 7. However,
this corollary allows us to find an » when h is known to be invex; viz.

(h(x)-h(u))Vh(u)
n(x,u) = Yh(w)TVvh( uw)
0 if Vh(u) =0

if Vh(u) # 0

A pertinent question is how to distinguish invexity from the previous
generalizations to quasi- and pseudo-convexity. A partial answer Iis

available.

Lemma 2.5 (Crouzeix and Ferland [5]). Let h be a differentiable quasi-
convex function on an open convex set C c R®. Then h is pseudo-convex if and
only if h has a minimum at x € C whenever Vh(x) = O.

By the corollary, the last condition in this lemma is equivalent to
invexity. Thus, under the assumption of quasi-convexity, invexity and
pseudo-convexity coincide; so for an invex function not to be pseudo-convex,
it must also not be quasi-convex. Such functions do exist: see the examples
at the end of this section.

Another approach to characterization is through associated sets. The
epigraph of h is Eh= {(x,0) € R" x R|x € C, h(x) = «}, and the lower level
sets of h are given by L (a) = {x € R"|x € C, h(x) = «} for a € R.

Mangasarian [8] showed that h is convex if and only if Eh is convex in Rn+a
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and h is»quasi—convex iff Lh(a) is convex for each a € R. Before invex
functions came into general use, Zang, Choo and Avriel [13] had characterized
them in terms of the lower level sets.

If Lh(u) is non-empty, then it is strictly lower semi-continuous 1if for
all x € Lh(a) and sequences {ai} with @ o Lh(ai) non-empty, there exist
K € N, a sequence {xi}, x> X and B(x) € R, B(x) > 0, such that
x e Lla -Bx)x -x|), i=K K+1,...

It may then be shown (Zang, Choo and Avriel [13]) that h is invex if and
only if Lh(a) is strictly lower semi-continuous for all « satisfying Lh(a)

non-empty.

EXAMPLES
1) (Ben—-Israel and Mond [1]) h:R > R defined by h(x) = X is quasi-convex
since Lh(a) = (—w,3V&] for all o« € R, but is not invex since x = 0 is a

stationary point but not a global minimum.

2
-X

2) h:R® 3 R defined by h(x) = 1 + xj - e % is invex as the only
stationary point (0,0) is a global minimum. It is not quasi-convex since
for x = (1.12, 2.329), u = (1.31, 1.697) one has h(x) = h(u) but

T
(x~u)" Vh(u) > O.

3) (Ben-Israel and Mond [1]). Any function with no stationary points is

invex, such as m:R® 3 R defined by h(x) = xf + X - 10Xz - %, which is

also not quasi-convex.

The relationships between these notions of generalized convexity  of
differentiable functions defined on an open convex set may be represented

pictorially.
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(Ben-Israel and Mond [1] have observed that as every stationary point
of a pseudo-invex function is a global minimum, such a function is also invex.
However, this may not be with respect to the same m, although invex functions

are certainly pseudo-invex with respect to the same 7.)

PSEUDO-CONVEX

QUASIINVEX

Figure 1
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3.  DUALITY

The Wolfe dual for (P) when X = R®, ¥ = R", S = mf, and f and g are
differentiable is:

(D) Maximize flu) - ATg(u)

subject to: Vf(u) - v(ATg(u)) = 0

A= 0.
Weak duality (inf (P) = sup (D)) holds with either of the assumptions:
1) (Hanson [B]) f invex, -g invex with respect to same %, i = 1,...,m; or
1

2) f - ATg invex for all A e RT

Condition 2) is a weaker requirement, so we prove the result for this
case. Let x be feasible for (P), and (u,A) feasible for (D). Then, by
invexity of f - ATg,

£(x) - ATglx) - (Fw)-2"gw) = n(xw V(W) - vTgw))] = o.

But A = 0 and g(x) =z 0 give f(x) - ATg(x) = f(x), so that
f(x) = f(u) - ATg).

Martin [9] gave an invexity condition on (P) which is necessary and
sufficient for weak duality. The problem (P) is weak duality invex if there
exists n: C x C > R" such that for x, u € C, g(x) z 0, one has:

if there exists A € RT such that Vf(u) - V(ATg(u)) =0

then f(x) - f(u) = 7(x,u)"f(u)

and gi(u) + n(x,u)TVgi(u) =0, i=1,...,m
otherwise n(x,u)'Vf(u) < 0

and n(x,u)T Vgi(u) =0, i=1,...,m

Lemma 3.1. (Martin [8]). Weak duality holds for problems (P) and (D) if

and only if (P) is weak duality invex.
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Strong duality may be established as for convex programming: we require
the extra condition that a constraint qualification which guarantees necessity

of the Kuhn-Tucker conditions be satisfied.

Theorem 3.2 (Hanson [6]). Let x* be optimal for (P), and f and -8, be invex
with respect to the same n, I = 1,...,m. Assume one of the constraint
qualifications (Kuhn-Tucker, Arrow-Hurwicz-Uzawa, reverse convex, Slater,
Karlin) is satisfied. Then there exists A* such that (x*,A*) is optimal for
(D) and the respective objective functions are equal.

Strict converse duality readily follows.

Theorem 3.3 Let x* be optimal for (P), (x,A) optimal for (D), and assume a
constraint qualification is satisfied. If the invexity conditions of Theorem
3.2 hold, with f strictly invex at x, then x* = x.

[Here, f strictly invex at x means that

f(x) - £(x) > n(x,x)VF(x) for all x € C, x * x]

Proof. Assume that x* = x.
By Theorem 3.2, there exists A* such that (x*,A*) is optimal for (D);
thus f(x*) = f(x*) - A% g(x*) = f(3) - A'g(x) (1)

Now strict invexity of f at X gives

£(x*) - £(x) > n(x*, 0)VF(x), (2)
and invexity of —gi, i=1,...,m with 2= 0, gives
“aTg(x) + Ag(x) = —n(x*, 0V g(x) (3)

Adding (2) and (3) gives
F(x*)-£(x) - A g(x*) + A glx) > nlx*, ) (VF(x) - V(A g(x)))

=0 as (x,1) feasible for (D).
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But, from (1), this implies f(x*) - iTg(x*) > fx*) - A*Tg(x*), that is,
ATg(x*) < 0, which is a contradiction.

Therefore, x* = x. : ]

Further relaxation of invexity requirements for duality are achieved by

the use of a Mond-Weir dual (Mond and Weir [12]).

(MWD) Maximize f(u)
subject to: V£(u) - V(A"g(u)) = 0
ATg(u) =0
A=z 0.

The weak, strong and converse duality results previously stated will apply to
(P) and (MWD) under the assumptions that f is pseudo-invex and —ATg is quasi-
invex for all A = 0 with respect to the same 7. Strict invexity is replaced
by strict pseudo-invexity for converse duality, with f said to be strictly
pseudo-invex at x if for all x e C, x # }, we have

2, 0E(x) =0 5 f(x) > £(x).

4. OPTIMAL CONTROL PROBLEMS
We now consider a class of mathematical programs on an infinite

dimensional function space.

t

£
(CP) Minimize f £, x(t),u(t))dt
%
subject to: x(to) = XO,X(tf) = X, (fixed boundary conditions)
G(t,x(t),ul(t)) = x'(t) (state equations) (4)
R(t,x(t),u(t)) =z 0

where f:I xR xR >R, GI xR ' xR" >R, RI xR x R" >R are assumed

to be continuously differentiable with respect to x and u almost everywhere on
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I= [to’tf]; and x’(t) denotes derivative with respect to t.

x, the state variable, and u, the control variable, are assumed to be
piecewise smooth functions on I.

When a constraint qualification is satisfied, the necessary conditions
for (x*,u*) to be optimal for (CP) are (Berkovitz [2]):

there exist piecewise smooth multiplier functions A:I > Rn, u:l > R"

- T ’ T
such that F=f - A [G - x'] - uR
satisfies F = d/dt F ,
X X

F =0

u

[}
o
=

1]
-
N

“1Ri
almost everywhere on I (except that at t corresponding to discontinuities of
u*(t), F; = d/dt P;, holds for right and left hand limits.)

Here, F;, Fx and F; denote partial derivatives with respect to x, x’ and
u respectively.
In order to establish sufficiency and duality, the notion of invexity

needs to be extended to a class of functionals.

Definition 4.1 (Mond and Smart [11]). For a'scalar function
h(t,x(t),x'(t),u(t)), associate the functional

t
H(x,x',u) = J‘fh(t,x(t),x'(t),u(t))dt. H is said to be invex in x, x’ and u

t

)

on I if there exist functions n(t,x, x*,x’,x* ,u,u*) € R® (with » = 0 at t such
that x(t) = x*(t)) and Z(t,x,x*, x'x*',u,u*) e R" such that

H(x,x',u) - H(x*,x*',u*)

tf T d T
z J [n'h (t,x*, x* ,u*) + S0
¢ x dt

0

h, (t,x*,x** u*)

+ h (t,x*,x* ,u*)]dt
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t
(= ff[nT(h (t,x*, x*" u*) - d—t h (¢, x* x* u*))

‘t X X

0

+ cThu(t,X*,X*’,u*)]dt)
for all piecewise smooth x, x¥, u, u* defined on I.
Invex functionals have a similar characterization to invex functions. H

is invex if and only if every critical point is a global minimizer, where
(x*,u*) is a critical point if

hx(t,x*,x*',u*) = hx,(t,x*,x*',u*) a.e. on I

o &|Q.

and h (t,x*,x*  u*) a.e. on I.
u

The following theorem is proved in Mond and Smart [11].

Theorem 4.2. If there exists (x*,u*,A*, p*) satisfying the Berkovitz

t t
conditions, with (x*,u*) feasible for (CP), and Jff, Jf—A*T(G—X’) and
t t

t o 0
If~u*TR are all invex with respect to the same functions w and , then

t

0

(x*,u*) is optimal for (CP).

t t
Note that Jf—A*T(G—x’) is convex if and only if IF—A*TG is convex, but
t t
s} 0
t{‘ T |
with invexity it is necessary to include the linear term J'A* x".
t
0

As with static problems, a dual program can be formulated and conditions
for weak and strong duality obtained.

Denote by (CD) the Wolfe-type problem:
t

Maximize Jf[f(t,x,u) - P\(t)T(G(t,X,u) - x')- u(t)TR(t,x,u)]dt
o
subject to: X(to) = X X(tf) =X,
fx(t,x,u) - Gx(t,x,u)k(t) - Rx(t,x,u)u(t) = A" (1) (8)

fu(t,x,u) - Gu(t,x,u)x(t) - Ru(t,x,u)#(t) =0

p(t) = 0
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where x and u are piecewise smooth functions on I, with continuous derivatives
except perhaps at points of discontinuity of u, which has piecewise continuous
first and second derivatives. Constraints in (CP) and (CD) may fail at these
points of discontinuity, but (4) and (5) must hold for left and right hand
limits. -

The two subsequent results are proved in Mond and Smart [11]. -

t t t

Theorem 4.3 (Weak Duality). If Iff, If - AT(G-x*) and I‘—uTR for any
t t t
(o] 0 [o]

piecewise smooth A:J > R® and w:I > R with pu(t) = 0, are invex with respect

to the same functions m and {, then inf(CP) = sup(CD).

Theorem 4.4 (Strong Duality). Under the invexity conditions of Theorem 4.3,

if (x*,u*) is an optimal solution of (CP) and a constraint qualification is
satisfied, then there exist A:I > R® and pu:I » R® such that (x*,u*,A,pu) is
optimal for (CD), and the corresponding objective values are equal.

Strict invexity at (Q,G) occurs if there is strict inequality in the

definition of invexity whenever (x,u) # (x,u).

Theorem 4.5 (Strict converse duality) Let (Q,E,X,ﬁ) be optimal for (CD),

and (x*,u*) optimal for (CP). If a constraint qualification is satisfied,

t

the invexity conditions of Theorem 4.3 hold, and I r is strictly invex at
t
0

(x,u), then (x*,u*) = (x,u).

Proof. Assume (x*,u*) = (x,u).
By Theorem 4.4, there exist A*:I - R" and p*:I > R" such that

t t
I ff(t,x*,u"‘)dt = J‘f(f(t,x*,u*) - A*(t)T(G(t,x*,u*)—x*’)—u*(t)TR(t,x*,u*))dt
t t .

0o (o]
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t
= J ferct, xm) - ADTact, % u) - p(t) R(E, X, 0))dt
b
Write m for n(t,x*, x,x*',x’,u*,u) and L for C(t,x*,%,x*’,;(’,u*,ﬁ).
t
Strict invexity of Iff at (x,u) gives
t

[¢]

t t
ff(f(t,x*,u*) - £(t,%,u))dt > If(anx(t,},&) + chu(t,;—c,fz))dt
t t

0 o
t
Invexity of ff - 356 - %) implies that
%o
Yo o T Yoo T - - =
f ()T, x*, uk)-x* 1 )dt + I A()T(a(t, %, 0)-% )dt
t t
o 0

t
= If(—nTGx(t,}_r,fz) At) = ' A7 (8) - £G (t,%,u) A(t))dt
%o
Yoo 1
and invexity of I - MR implies that
t
s}

t t

ff - T R(t, x*,u*)dt + ff;l(t)T R(t, %, wdt
t t
] o]

t
> If(— 2" R (t,%0) w(t) - ¢ G (t,%0) p(t))dt
to .
Adding (7), (8) and (9), and using feasibility of (x,u,2,u) in (CD),

t

I‘"(f(t,x*,u*) - a)Tat, x*,u*) - x*) - pt)T R(t,x*,u*))dt
t
[o]

t

- jf(f(t,z?,a) - xTact,zu) - ¥) - m(t)T R(t, %, u))dt > 0.
t
(o]}

This implies, by (6), that

t

jf(i(t)"(c(t,x*,u*) - x* ) + p(t)T R(t,x*,u*))dt > O
t
0

But this is a contradiction since G(t,x*,u*) = x*/, u(t) = 0 and

R(t,x*,u*) 20 on I.

Hence (x*,u*) = (x,u).

(8)

(7)

(8)

(9)
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A Mond-Weir dual may be formulated by shifting the u(t)TR(t,X,u) term
from the objective of (CD), and inserting a new constraint:
p()T Rt x(8),u(t)) = 0.
The corresponding weak, strong, and strict converse duality»results may

T

t
then be established assuming pseudo-invexity of f ftr 2 2%6 - %)) and
t

o T °
quasi-invexity of J - uWR.

t

o

It is also possible to deal with control problems with free boundary
conditions; that is, X(to) and x(tf) unrestricted. The sufficiency and
duality theorems hold using a supplementary constraint from the transversality

conditions, namely A(to) = A(tf) = 0. (See Mond and Smart [11])
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