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INVEXITY IN NONLINEAR PROGRAMS AND CONTROL PROBLEMS 

I. Smart 

ABSTRACT 

Subject to certain regularity hypotheses, the Kuhn-Tucker conditions are 

necessary for optimality in nonlinear programs. These conditions become 

sufficient under assumptions of invexity. This paper presents some known 

results and new observations on invexity, with extension to optimal control 

problems. 

1980 Amer.Math.Soc. Classification (1985 revision) 
90C30 (Secondary 90C48). 

1. INTRODUCTION 

Consider the general nonlinear program: 

(P) Hinimize f(x) 

subject to g(x) E S 

where f: C--> IR and g: C--> Y, Hith C an open subset of the normed space X, 

and S a polyhedral cone in the finite dimensional normed space Y. 

For the sake of simplicity, it is assumed that X= IRn, 

and f and g are Frechet differentiable. Nevertheless, the ensuing results may 

all be considered in a more abstract context (see, for example, Craven and 

Glover [4]). 

Unde;~ certain regularity conditions, or constraint qualifications, such 

as the Kuhn-Tucker, Arrow-Hurwicz-Uzawa, or reverse convex constraint 

qualification (Mangasarian [8]), the Kuhn-Tucker conditions are necessary for 

optimality of (P). That is, if x* is optimal for (P), then there exists 

A* E IRm such that: 

~f(x*) - ~(A*Tg(x*)) 0 

A*Tg(x*) 0 

A* 2: 0. 
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In general, these conditions are not sufficient for optimality. We will 

present a recently discovered class of functions, called invex functions, 

which yield sufficiency, and lead to the extension of duality results in a 

variety of nonlinear programs. 

2. INVEXITY 

Let h: C ~ ~ be differentiable. Then h is: 

a) convex if h(x) - h(u) ~ (x-u)T vh(u) for all x, u E C; 

b) quasi-convex if h(x) ~ h(u) ~ (x-u)T Vh(u) ~ 0; 

c) pseudo-convex if (x-u)T Vh(u) ~ 0 ~ h(x) ~ h(u). 

Note that convexity~ pseudo-convexity~ quasi-convexity. (Mangasarian [8]). 

It is well established that the Kuhn-Tucker conditions at (x*,A*) are 

sufficient for optimality at x* whenever x* is feasible for (P), and either: 

1) (Kuhn-Tucker [7]) f convex, g 1 concave, i = 1, ... ,m; or 

2) (l1angasarian [8]) f pseudo-convex, g 1 quasi-concave for all i E I, 

where I Ulg.Cx*) = 0}; or 
1 

3) (Hond [10]) f pseudo-convex, A*Tg quasi-concave. (2) ~ 3) as 

quasi-concavity is not additive); or 

4) (Mond [10]) f- A*Tg pseudo-convex. 

Hanson [6] noted that the convexity requirements could be weakened as 

there was no explicit dependence on the linear term (x-u) in proving 

sufficiency; the linear bounds imposed by the notions of convexity could be 

replaced by arbitrary non-linear bounds. 

DEFINITION 2. 1 

The differentiable function h:C ~ ~ is invex if there exists a vector 

function ~:C x C ~ ~n such that h(x) - h(u) ~ ~(x,u)T ~h(u) for all x, u E C. 
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The term invex stems from invariant convex (Craven [3]) -: if q:~n ~ ~ 

is differentiable and convex, and lj):~r ~ IRn (r 2o: n) is differentiable with 

V~ of rank n, then f q o ~ is invex. Indeed, f will be invex when q is 

invex, but 'Hi th respect to a different iJ. 

Further generalization is possible: h is quasi-invex if there exists 

l):C x C ~ ~n such that h(x) :s: h(u) ""TJ(x,u)T '1/h(u) :s: 0; and pseudo-invex if 

there exists l):C x C ~ ~n such that 

ij(X,U)T '1/h(u) ~ 0 "" h(x) ~ h(u). 

This allows a restatement of the conditions sufficient for optimality at 

a feasible x* with (x*,A.*) satisfying the Kuhn-Tucker conditions. 

1) f and -g. in vex with respect to the same i), i = 1, ... ~ m; 
1 

2) f pseudo- i nvex, -g. quasi-invex for i E I, with respect to the same 1); 
l 

3) f pseudo-invex, -A.*Tg quasi-invex h'l th respect to the same l'); 

Invexity also allows the weakening of necessary conditions. The afore-

mentioned constraint qualifications require differentiability but not 

convexity, while there are tvm other constraint qualifications Hhich do not 

require differentiability. These are -

Slater's: 
0 

there exists x E C such that g_(x 0
) > 0, i 1, .. 0, m; 

1 

and Karlin's: there exists no p E ~m, p ~ 0, p * 0 such that pTg(x) ~ 0 for 

all X E C. 

By the generalized Gordan theorem, these conditions are equivalent when 

the g_ are concave, but an analogous theorem of the alternative is not 
1 

available for invex functions. However, both yield the Kuhn-Tucker conditions 

if the -g_ 
1 

are invex. Ben-Israel and Mond [1] deal with the Slater 

condition, and we prove here the corresponding result for Karlin's condition. 
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Theorem 2.2. Let x* be optimal for (P), -g_ invex with respect to the same il 
1 

for i = 1, ... ,m, and assume Karlin's constraint qualification is satisfied. 

Then there exists A'' E IRm such that (x*,A*) satisfies the Kuhn-Tucker 

conditions. 

The Fritz-John conditions are satisfied at x*; that is, there exist 

r* E IR and r* E IRm such that 
0 

T 
r~ \lf(x*) - ll(r* g(x*)) 0 

r*Tg(x*) = 0 

(r~,r*) ~ 0, (r~,r*) * 0. 

We need to show that r* > 0, 
0 

so taking A* 

that r* 0. 
0 

r*/r~ gives the result. Assume 

Then ll(r*Tg(x*)) = 0, r*Tg(x*) = 0, r* ~ 0, r* * 0. 

By invexi ty of the -g. and non-negativity of the r~, i = 1, ... , m, 
1 1 

for all x E C. This contradicts Karlin's condition, and hence r~ > 0. ~ 

Martin [9] further relaxed invexity requirements through complementary 

slackness and feasibility, and defined Kuhn-Tucker invexity of the program 

(P): there exists a function ~:C x C ~ IRn such that if x, u E C, g(x) ~ 0, 

g(u) ~ 0, then f(x) - f(u) ~ T/(x,u)T llf(u) and g1(u) = 0 implies 

~(x,u)Tilg.(u) ~ 0. 
1 

This leads to the next result (Martin [9]) 

Theorem 2.3. Every Kuhn-Tucker point of (P) is a global minimizer if and 

only if (P) is Kuhn-Tucker invex. 
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In the unconstrained problem, this theorem leads to a corollary which 

gives a characterization of invex functions which, at present, is the best way 

of identifying such functions. 

Corollary 2.4 (Craven and Glover [4]). Let h:C 7 ~ be differentiable. Then 

h is invex if and only if every stationary point is a global minimizer. 

It is adequate for the purposes of sufficiency, and later, duality, to 

know that functions are invex without identifying an appropriate ~- However, 

this corollary allows us to find an ~ when h is kno;m to be invex; viz. 

~(x,u) r 
(h(x)-h(u))Vh(u) 

Vh(u)T\Jh( u) 

0 

if llh(u) * 0 

if Vh(u) 0 

A pertinent question is how to distinguish invexity from the previous 

generalizations to quasi- and pseudo-convexity. A partial answer is 

available. 

Lemma 2.5 (Crouzeix and Ferland [5]). Let h be a differentiable quasi-

convex function on an open convex set C c ~n. Then h is pseudo-convex if and 

only if h has a minimum at x e C VJhenever 'ilh(x) = 0. 

By the corollary, the last condition in this lemma is equivalent to 

invexity. Thus, under the assumption of quasi-convexity, invexity and 

pseudo-convexity coincide; so for an invex function not to be pseudo-convex, 

it must also not be quasi-convex. Such functions do exist: see the examples 

at the end of this section. 

Another approach to characterization is through associated sets. The 

epigraph of h is Eh= { (x, a) E ~n x ~ lx E C, h(x) ~ a}, and the lower level 

sets of h are given by Lh (a) = {x E IRnjx e C, h(x) ~ a} for a E IR. 

Mangasarian [8] showed that h is convex if and only if Eh is convex in IRn+l, 
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and h is quasi-convex iff L (a) is convex for each a E ~­
h 

Before invex 

functions came into general use, Zang, Chao and Avriel [13] had characterized 

them in terms of the lower level sets. 

If L (a) is non-empty, then it is strictly lower semi-continuous if for 
h 

all x E (a) and sequences Hith a 1 -7 a, Lh (a1 ) non-empty, there exist 

K E IN, a sequence {x1}, x1 -7 x, and (3(x) E IR, {3(x) > 0, such that 

x E Lh [ a. - {3 ( x) II x. - x Ill , i = K, K + 1 , ... 
i 1 1 

It may then be shown (Zang, Choo and Avriel [ 13]) that h is invex if and 

only if Lh (a) is strictly lower semi-continuous for all a satisfying Lh (a) 

non-empty. 

EXAMPLES 

1) (Ben-Israel and Mond [1]) h:IR ~ IR defined by h(x) = x 3 is quasi-convex 

2) 

since L (a) = (-oo, 3 ·v'Ci:J for all ct E IR, but is not invex since x = 0 is a 
h 

stationary point but not a global minimum. 
2 

-X 

1 + x2 - e 2 
1 

defined by h(x) is invex as the only 

stationary point (0,0) is a global minimum. It is not quasi-convex since 

for x = (1.12, 2.329), u = (1.31, 1.697) one has h(x) ::; h(u) but 

(x-u)T Vh(u) > 0. 

3) (Ben-Israel and Mond [1]). Any function with no stationary points is 

invex, such as h:~2 7 ~ defined by h(x) = x3 + x 
1 1 

also not quasi-convex. 

The relationships between these notions of generalized convexity of 

differentiable functions defined on an open convex set may be represented 

pictorially. 
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(Ben-Israel and Mond [1] have observed that as every stationary point 

o1 a pseudo-invex function is a global minimum, such a function is also invex. 

However, this may not be with respect to the same ~. although invex functions 

are certainly pseudo-invex with respect to the same ~-) 

PSEUDD-CONVEX 

Figure 1 
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3. DUALITY 

The Holfe dual for (P) when X = IR", Y IR"', S ~m' and f and g are 
+ 

differentiable is: 

(D l i'laximize f(u) - 1\Tg(u) 

subject to: ~f(u) - ~(7\.Tg(u)) = 0 

It 2: 0. 

~ieak duality (inf (P) 2: sup (D)) holds with either of the assumptions: 

1) (Hanson [6]) f invex, -g_ invex with respect to same ru, i = l, ... ,m; or 

2) f - 1\Tg invex for all 

l 

A E IRm . 
+ 

Condition 2) is a Heaker requirement, so we prove the result for this 

case. Let x be feasible for (P), and (u,lt) feasible for (D). Then, by 

f(x) - 1\Tg(x) - (I(u)-7\.Tg(u)) 2: Tj(X,U)T[~f(u) - vp,Tg(u))] 0. 

But i\ 2: 0 and g(x) 2: 0 give f(x) - 7\.Tg(x) ~ f(x), so that 

f(x) 2: f(u) - AT g(u). 

Hartin [9] gave an invexity condition on (P) Hhich is necessary and 

sufficient for Heak duality. The problem (P) is 1veak duality invex if there 

exists 11: C x C -'7 IRn such that for x, u E C, g(x) 2: 0, one has: 

if there exists 1\ E IRm such that vf(u) - 17(A.Tg(u)) = 0 
+ 

then f(x) - f(u) 2: Tj(x,u)T\7f(u) 

and g_ (u] + l?(X, u) Tv g. (u) 2:: 0, 1 1 ~ ... , m; 
1 1 

other.rise 1)( x, u) TV'f( u) < 0 

and 
T 

Tf(X,U) \7g_(u) 2:: 0, i 1, ... , m. 
1 

Lemma 3. 1. (Martin [9]). Weak duality holds for problems (P) and (D) if 

and only if (P) is Heak duality invex. 
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Strong duality may be established as for convex programming: we require 

the extra condition that a constraint qualification which guarantees necessity 

of the Kuhn-Tucker conditions be satisfied. 

Theorem 3.2 (Hanson [6]). Let x* be optimal for (P), and f and -g. be invex 
1 

with respect to the same 11. i = l, ... ,m. Assume one of the constraint 

qualifications (Kuhn-Tucker, Arrow-Hurwicz-Uzawa, reverse convex, Slater, 

Karlin) is satisfied. Then there exists A* such that (x*,A*) is optimal for 

(D) and the respective objective functions are equal. 

Strict converse duality readily follows. 

Theorem 3.3 Let x* be optimal for (P), (x,~) optimal for (D), and assume a 

constraint qualification is satisfied. If the invexity conditions of Theorem 

3.2 hold, with f strictly invex at x, then x* = x. 
[Here, f strictly invex at x means that 

f(x) - f(x) > 1j(X,x)T~f(x) for all X e C, X* x] 

Proof. Assume that x* * x. 

By Theorem 3.2, there exists A* such that (x*,A*) is optimal for (D); 

thus f(x*) = f(x*) - A*Tg(x*) = f(x) - ~Tg(x) ( 1) 

Now strict invexity of fat x gives 

(2) 

and invexity of -g;, i l, ... ,m, with A~ 0, gives 

(3) 

Adding (2) and (3) gives 

= 0 as (x,~) feasible for (D). 
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But, from (1), this implies f(x'')- ;\Tg(x*) > f(x*)- A,;rg(x*), that is, 

5?g(x*) < 0, which is a contradiction. 

Therefore, x''' = x. 

Further relaxation of invexity requirements for duality are achieved by 

the use of a Mond-1,/eir dual (Mond and l~eir [ 12]). 

(1>!1rill) Maximize f(u) 

subject to: Vf(u) - V(ATg(u)) 0 

A. <: 0. 

The weak, strong and converse duality results previously stated will apply to 

(P) and (lvJ\.IJJ) under the assumptions that f is pseudo-invex and -;>,Tg is quasi-

invex for all A 2: 0 with respect to the same 1). Strict invexity is replaced 

by strict pseudo-invexity for converse duality, Hith f said to be strictly 

pseudo-invex at x if for all x E C, x * x, 1o1e have 

4. OPTIMAL CONTROL PROBLEMS 

lde now consider a class of mathematical programs on an infinite 

dimensional function space. 

t 
£ 

(CP) ~1inimize J f(t,x(t),u(t))dt 
t 

0 

G(t,x(t),u(t)) x'(t) 

R(t,x(t),u(t)) ~ 0 

(fixed boundary conditions) 

(state equations) (4) 

to be continuously differentiable with respect to x and u almost everywhere on 
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I [ t 0 , t f]; and x' ( t) denotes derivative with respect to t. 

x, the state variable, and u, the control variable, are assumed to be 

piecewise smooth functions on I. 

When a constraint qualification is satisfied, the necessary conditions 

for (x*,u*) to be optimal for (CP) are (Berkovitz [2]): 

there exist piecewise smooth multiplier functions i\: I -7 1Ft, w'I -7 II{ 

such that F = f - i\T[G- x'] - 1/R 

satisfies F dldt F 
' X X 

F 0 
u 

IJ.;R; = 0, i = 1 ~ .. ,, r 

almost everywhere on I (except that at t corresponding to discontinuities of 

u"(t), F = dldt F, holds for right and left hand limits.) 
X X 

Here, F , F and F denote partial derivatives with respect to x, x' and 
X X U 

u respectively. 

In order to establish sufficiency and duality, the notion of invexity 

needs to be extended to a class of functionals. 

Definition 4.1 (Mond and Smart [11]). For a'scalar function 

h(t, x(t), x' (t), u(t)), associate the functional 
t 

H(x,x',u) = J rh(t,x(t),x'(t),u(t))dt. His said to be invex in x, x' and u 
t 

0 

on I if there exist functions "'l)(t,x,x*,x',x*',u,u*) E rRn (with 1) 0 at t such 

that x( t l x*(t)] and <Ct,x,x*,x'x*' ,u,u*) E rRm such that 

H(x,x' ,u) - H(x*,x*' ,u*) 
t Jf T 

<:: [ 1) h x ( t, x*, x*' , u*) + 
t 

0 

+ 

T 

~ h ,(t,x*,x*' ,u*) 
dt X 

<T h (t,x*,x*' ,u*)]dt 
u 



(= (11 ( t~ x~:~ ~ x~~:~, u"':~) -
X 
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for all piecewise smooth x, x*, u, u* defined on I. 

Invex functionals have a similar characterization to irrvex functions. fl 

is i:tTve:x if and only if ever"y critical point is a global minirnizer, 1·Ihere 

[x•,u•) is a critical point if 

t, x* 3 x''~<-" , u~f ) 

and 

d 
([f 

0 a. e. on I" 

The follm•ing theorem is pro'Jed in Hond and Smart [11]. 

'"fheorem 4. 2. If there exists (x~~,u;'*,A~!"~J..~*) satisf'ying the Beckovitz 

conditions, Hith (x'',u*) feasible for· (CP), and 
t 

0 

(G-x') and 

are ali invex '•li th respect to the same functions 'I) and (, then 
t 

0 

(x•,u• is optimal for (CPl. 

Note that 
t 

0 

Hith invexity it is necessary to include the linear term 
t 

0 

is convex, but 

As ;,yith static problems, a dual program can be formulated and conditions 

for •,.reak and strong duality obtained. 

Denote by (CD) the \.Jolfe-type problem: 

Haximize 

subject to: 

t 
0 

[f(t,x,u) - ~(t)T(G(t,x,u) - x')- M(t) 

X 
f 

t,x,u)]dt 

f (t,x,u) - G (t,x,u)~(t) - R (t,x,u)~(t) = ~'(t) (5) 
X X X 

f (t,x,u) - G (t,x,u)~(t) - R (t,x,u)~(t) 0 
u u u 

IJ.(t) "' 0 
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where x and u are piecewise smooth functions on I, with continuous derivatives 

except perhaps at points of discontinuity of u, which has piecewise continuous 

first and second derivatives. Constraints in (CP) and (CD) may fail at these 

points of discontinuity, but (4] and (5) must hold for left and right hand 

limits. 

The two subsequent results are proved in Mond and Smart [11]. 

Theorem 4. 3 (\~eak Duality). 
t t t 

If Jrt, Jf- A.T(G-x') and Jr-,?R for any 
t t t 

0 0 0 

piecewise smooth A.: I~ ~n and M:I ~ ~r with ~(t) ~ 0, are invex with respect 

to the same functions~ and(, then inf(CP) ~ sup(CD). 

Theorem 4.Ll. (Strong Duality). Under the invexity conditions of Theorem 4.3, 

if (x*,u*) is an optimal solution of (CP) and a constraint qualification is 

satisfied, then there exist A: I~ ~n and ~:I~ ~r such that (x*,u*,A,~) is 

optimal for (CD), and the corresponding objective values are equal. 

Strict invexity at [x,u) occurs if there is strict inequality in the 

definition of invexi ty whenever (X, u) "' (X, u). 

Theorem 4.5 (Strict converse duality) Let (x,U:,~.~l be optimal for (CD), 

and (x*,u'~l optimal for (CP). If a constraint qualification is satisfied, 
t 

the invexi ty conditions of Theorem 4. 3 hold, and J f f is strictly invex at 
t 

eX, u)' then (x"' u*) c x-. U:J. 

Proof. Assume (x*,u"l * (x,u). 

By Theorem 
t J ff(t,x*,u*)dt 
t 

0 

404, there exist 
t J f(f(t,x*,u*) 
t 

0 

0 

A.*: I ~ ~n and ~":I -7 IRr such that 

- A*(t)T(G(t,x*,u*)-x*' )-M*(t)TR(t,x*,u*))dt 
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J,t f - -
(f(t,x,u) -

t 

T - --
t) ( G( t, X, u) -

T - -
t) R(t,x,u))dt 

0 

l.Jrite 11 Zor ??(t,x*,X~x~1u ,X" ,u*,U) an.d <:for (Ct~x;;~:,X,x>i'ff ,X.~ ~u*·,li). 
rt 

Strict invexity of J ff at (x,ul gives 
t 

0 

t 
J r(f(t,x*,u*) - fU,x, 

t 
0 

Invexity of 
t 

0 

- 7?tc- x'l implies that 

t 
0 

(t J~tf-,,,T -
G(t,x'',u*)-x*']dt + AUJ (C(t,x, 

t 

)dt 

0 

-nTG Ct,x,~) ~(tJ- nT ~'ttl -
t 

0 

X 

and invexity of J\ - jlTR implies that 

ct,x,u) 'ActJ)dt 
u 

to 
t If - jl(t)T 

t 

R(t,x'',u")dt + {'ilctJT R(t,x,u)dt 
t 

0 0 

t, x, iiJ "P-Ct)Jdt 

Adding (7), (8) and (9), and using feasibility of [x,u,A,Jl) in (CD), 
t f f(f( ,_ * *) ... t;~ X _, U -

t 

t) T ( G( t, x*, u'') - x*' ) -- T 
t) R(t,x*,u*))dt 

0 

ftr(f(t,x,u) - ~(t)Tccct,x,u) - x') - M(t)T R(t,x,u))dt > o. 
t 

0 

This implies, by (6), that 
t J £(7\.(t)\G(t,x*,u*) - x*') +'Met/ R(t,x*,u*))dt > 0 
t 

0 

But this is a contradiction since G(t,x*,u*) x*', P.Ct) "= 0 and 

R(t,x*,u*) 2: 0 on I. 

Hence (x*,u*l = (x,~). 

(6) 

(7) 

(8) 

(9) 
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A Mond-Weir dual may be formulated by shifting the ~(t)TR(t,x,u) term 

from the objective of (CD), and inserting a new constraint: 

M(t)T R(t,x(t),u(t)) ~ 0. 

The corresponding weak, strong, and strict converse duality results may 

t 

then be established assuming pseudo-invexity of J f(f- AT(G- x')) and 
t 

0 
t 

.. ·t fff TR quas1-1nvex1 .y o - 11 • 
t 

0 

It is also possible to deal with control problems with free boundary 

conditions; that is, x(t0 ) and x(tf) unrestricted. The sufficiency and 

duality theorems hold using a supplementary constraint from the transversality 

conditions, namely i\(t0 ) /t ( t ) = 0. (See Mond and Smart [ 11] ) . 
f 
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