
1.7. Holomorphic Semigroups. 

Among the many semigroups which occur in applications 

one class is very common, the holomorphic semigroups. Roughly 

speaking these are the semigroups t ~ 0 ~ St E~(B) which 

can be continued holomorphically into a sector of the complex plane 

containing the positive axis. Among these semigroups one can also 

identify a subclass analogous to the M-bounded semigroups, i.e., 

the semigroups satisfying a bound of the form IIstll SM. This 

subclass consists of holomorphic semigroups which are uniformly 

bounded within appropriate sub sectors of the sector of holomorphy. 

For example if H is a positive self-adjoint operator on the 

Hilbert space Hand St = exp{-tH} is the corresponding semigroup 

then a E H ~ Sta E H extends to a vector valued function 

holomorphic in the right half plane satisfying 

for all z E ~ with Re z ~ o. Thus S is a bounded holomorphic 

semigroup with the right half plane as region of holomorphy. 

The general definition of these semigroups is as 

follows. 

DEFINITION 1.7.1. A Co-semigpoup S on the Banach space B is 

called a holomopphic semigpoup if fop some e E <0, n/2] one has 

the following ppopepties: 

1. t ~ 0 ~ St is the pestpiction to the positive peal 

axis of a holomopphic opepatop function 
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z E ~8 r+ SZ E~(B) where ~8 = {z IArg z I < 8} , 

2. 

3. Hm 
zE~El ,z-+o 

for aU a E B • 

If additionally S is unifo~ly bounded in ~8 
1 

for each 0 <81 < 8 then - S is caUed a bounded holomorphic 

semigroup. 

There are a variety of ways of characterizing 

holomorphic semigroups and the following theorem presents two 

characterizations in terms of the derivative of t r+ St and 

the derivatives of the powers (I+aH)-n of the resolvent 

(I+aH)-l . 

THEOREM 1. 7.2. 

Banach space B 

Let St = exp{-tH} be a co-semigroup on the 

The following conditions are equivalent: 

1. S is a (bounded) holomorphic semigroup, 

2. there is a C > 0 such that 

for all 0 < t ~ 1 (for all t ~ 0) , 



3. there is a C > 0 such that 

I/H(I+exH)-(n+l)11 ::: C(cm) 
-1 

for o < C( ::: 1 .. nC( ::: 1 3 and n = 1, 2, 0.0 

(f01~ ex > 0 and n = 1, 2, •• 0 . ) 

N.B. In the above formulation the parenthetic conditions should 

be read simultaneously to give a characterization of bounded 

holomorphic semigroups. Their omission covers the general case. 

Proof 0 1 ""' 2. Assume 8 has a holomorphic extension to 

t:,e = {z I Arg z I < e}. Since 8 is continuous it follows from 

the principle of uniform boundedness that there exists an Ml such 

that z E f1e n {z 
1 

where 

o < Sl < S. But by Cauchy's integral representation 

-1 J 8z 
= (2rri) C dz 2 

1 (z-t) 

{z Iz - tl 8in Slt} 0 Consequently 

for all 0 < t ::: 1. ~loreover if 118zl1 is uniformly bounded in 

t:,e the same argument establishes the estimate for all t > 0 . 
1 

2 => 3. 8ince 8 is a co-semigroup there exist constants 

M ~ 1 and w ~ 0 such that 
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(*) 

But 

H(I+aH)-(n+l) = ( 1)-1 Joo dt tne-tHsNt n. 0 u. 

and hence 

(1) -1 Joo n-l -1 -t(l-awl ) 
IIH(I+aH)- n+ II::: (n!) 0 dt t a C1 

= (~~J[l-~lr ' 
o < aWl < 1 

::: (~~) [l-:l/nr 

::: (~~) 1 
l-w 

1 

Where the second inequality follows from na::: 1 and the third 

follows because X 1-+ (l-w I rx 1 x 
is decreasing. 

Note that in the bounded case (*) is valid with 

WI = 0 and then the required bound follows for all a > 0 . 

3 => 2. It follows directly from Condition 3 and Remark 1.3.3 

that 

£im IIH(I+* Hrnll ::: Ct- l • 
n~ 

2 => 1. This implication can be established by a variety 

of arguments which begin with a power series definition. We will 



briefly sketch the sequence of ideas. 

First let z = t + is with lsi < t/Ce and 

Then one can define Sz by the norm convergent power 

series 

S 
z L 

n:::O 

Second one calculates that SzD(H) C D(H) and 

~ Sa 
dz z 

for all a E D(H). Thus 

and consequently 

£lm 
z+O 

-HS a z 

II (S -r}all z 

-S Ha z 

o 

for all a E D(H) . But then the same conclusion is valid for 

all a E B because D(H) is norm dense. 

Third if 0 < t ::: 1, a E D(H) , and 

zl' z2' zl + z2 are in the domain of definition of Sz' the 

foregoing identification of the derivative gives 

o . 

Thus integrating and using strong continuity at the origin 

one finds 
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But D(H) is norm dense and hence 

Finally one must extend the definition of Sz to the region 

Lle = {z Re z > 0 IArg zl < e} where Tan e = liCe This 

is achieved by first remarking that each zElle can be decomposed 

in the form 

Then one defines 

with 

S z 
n 

and 

There is, however, a problem of consistency since the 

Rez.~l. 
1 

decomposition of z is clearly not unique. But consistency 

is easily established by use of the semigroup property in the 

restricted region. The semigroup property for the larger region 

then follows by definition. 

In the bounded case this last argument is 

superfluous because S z can be defined for all zElle by the 

power series expansion and this also establishes that IIszli is 

uniformly bounded in Lle for each 0 < el < e . 
1 

There are alternative characterizations of 

o 

holomorphic semigroups in terms of spectral properties of the 

generator and resolvent bounds. Typically one has the following 



criterion for a bounded ho1omorphic semigroup. 

THEOREM 1. 7.3. Let exp{-tH} be a co-semigroup on the Banach 

space B. 

The following conditions are equivalent: 

1. S is a bounded 120 lomorphic s emigroup • 

2. there is a 8 > 0 such that 

Proof. 

{z 

a(H) c t; 
2!:.-8 
2 

{z I I 'IT 1 Arg z S"2- 8 J 

where a(R) deno-tea the spectrvm of H. Moreover 

for aU z E rr\KTI 3 where 0 S 81 < 8 ~ 
"2-81 

inf{lw-zl 

and M1 can depend on 81 , 

1 => 2. Suppose is ho1omorphic in the sector 

IArg zl < 8}. Next consider the Co-semigroups 

s~ exp{-t,-,rH} where w = exp{icd and 0 < lal < 8. The 

generator of SW is wH and hence a(wH) C {z; Re z ~ o} by 

Proposition 1.2.1. Therefore o(H) ~ {z; IArg zl S ~ - 8} 

Moreover, since there is an M1 such that IIS~II S M1 for 
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w E ~8 where 0 ~ 81 < 8 , one must have 
1 

whenever Re A < O. Consequently 

2 => L The detailed proof of this implication is rather 

protracted, although completely straightforward. Again we only 

sketch the outlines. 

First let r be a wedge shaped contour lying in the 

resolvent set r(H) of H with asymptotes Arg z + (~-8 ) - 2 2 

where o ~ 82 < 8 and for z E ~8 define S by 
1 

By Cauchy's theorem the integral is independent of the particular 

contour chosen and one can use this freedom of choice, together 

"i-th the resolvent bounds, to deduce that z E ~81--:+ Ilszll is 

uniformly bounded. 

Second one calculates that S satisfies the semigroup 

property by choosing outside and noting 

that 
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A (z +z ) 
= (2~i)-1 Ir dA e 1 2 (AI_H)-l 

Here we have used the obvious resolvent identity, Cauchy's theorem, 

and Fubini's theorem. 

Third one notes that if a E n(H) 

-1 I AZ -1 -1 = -(2~i) r dA e A (AI-H) Ha 

Z-+() ~ 0 

when the last conclusion follows from the resolvent bound and the 

Lebesgue dominated convergence theorem. 

Finally one identifies H as the generator of S by 

careful calculation of the derivative of S. This again requires 

Cauchy's theorem. o 
One simple explicit example of a bounded holomorphic 

semigroup is the semigroup S generated by the Laplacian on 

This semigroup is holomorphic in the sector ~~/2 and its 

action is given by 
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Note that if p = 2 then 

since s = exp{-zH} z where H is self-adjoint. 

has a boundary value as Re z + 0 because 

But if p = 1 

Jl.im lis .ta - e -itHall = 0 • 
s+O S+l 

Moreover S 

for Re z > 0 , and a similar result is true for p = 00. Thus 

in these latter cases IIszli + 00 as z approaches the imaginary 

axis, away from the origin, and S does not have a boundary value. 

Exerci ses 1. 7.1. 

1. Let S be a self-adjoint contraction semigroup on 

a Hilbert space H Prove that S is holomorphic for . Re z > 0 

and that lis II :so 1 in this sector. z 


