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DILATIONS PRESERVING A BOUND ON THE 

NORM OF AN OPERATOR 

Chandler Davis 

Given. Hilbert space opera tors A, B v C fY one see}:s an opera·toJ::- D 

st~ch t.h.:i t c) il ::; '.1 D 1: - for a pre-assigned bound ]J. In some con:tex.:ts 

only the exie,t.ence of D is called fox; in otherr::;li' o:ne mo.y ~m.nt ·to kno\v 

some·thi:n9 about those D 'iVl'lich vJor:k ~ Tbis paper gi;·ih~S an expos.i·tion of 

·the main theorems and of ·t1pJO of ·the rctany applicat.ions,. 

The probl(~~n is t.o choose t.he missing en·try .in the opera·tor-Dm.at.ri:g: 

rA 
tB so a.s. to sat:isfy a bound on the norm,. 1\SO\V for c)" / D li ;;, p it 

is obviou.sly necessary tha·t :£ ]1 and IICA Clli ::> P" Is t.his pair 

of n.ecessa:r.y condi·tions also sufficient? One is led t.o doubt~ i·t if one 

has·tily p:c,2Sl.U118S that the choice D = 0 is norm,=mi.nimizing., P1l though 

il (1 1) II s·till we canno·t complete the matrix to 

I' (1 d 1 ~)II = 
1+/5 

2 
OptjJ.nism is 

v 

:ce\ri\t·ed by the obser·vation that a differen·t choice of D does preserve 

the norrn~ II rl 1' II 
,, t,l -l)' 

EXISTENC:B THEOREI\1 

/2 

D such that 

This simple re1a·tiol1ship prevails in general'" 

:£ )1 and II (I, C) II :£ 11 , 

The example cC>:·.l.side]:-ed so far is s.._J simp:~a it. gives no basis for 

9U·2ssing t.o "":~i~:1.at extent t:he solution of ·the p:coble:rt is ~..:niqu~3 ~ Sticking to 

·\rer~r siro.ple -:::;;:.ses for i:he morc~en·t, 'iJIS can shed a little ligh-t on tb.is issue m 
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If A, B, c (hence al.so the desired D) are 1-dimensional, and if 

II(:) II = ll while II (A C) II ~ jl , then we write 

[: :] 
(cos e t sin 

el =ll I . 
lSJ.n e ? 

for some t with It! ~ 1 (the loss of generality in assuming A 

and B real is of no consequence). A little reflection reveals that 

the solution if still unique. On the other hand, the 1-dimensional 

case will not give uniqueness if both II(:) II and II (A C) II are 

strictly less ·than the imposed bound ll . Thus consider using the 

bound 2 in the original example (~ ~) The hypotheses 

II(:) II ~ 2 and II (A C) II ~ 2 are satisfied and some to spare. In 

order for the completed matrix 
( 1 ll l1 tj to have norm ~ 2 for real t, 

it is necessary and sufficient (one can verify directly) that 

- ~ ~ t ~ 1 . This should prepare the reader for ·the situation which is 
3 

encountered in general: if the given part of the matrix contains 

(perhaps after changing the coordinate system) a column of norm exactly 

equal to ·the bound imposed, some uniqueness will result; similarly if 

the given part of the matrix con'cains a row of norm exactly equal to 

the bound; otherwise, there will be some lee\<Jay in completing the matrix. 

I will describe two sorts of results concerning this. The first solves 

the following. 

CHARAC'I'ERIZATION PROBLEM Given A, B, c such that II (A C) II ~ ll 

and II (AB) II ~ " . find aU D such that II (A c) II < "' - B D · = 1l 
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The second selects one particular D which is optimal in a certain 

sense. The discussion will assume all operators given are compact; 

the reader who thinks of them as finite-dimensional will lose nothing 

essential. 

I will then proceed, however, ~co describe in Sections 2 and 

3 two of ·the applications of the theory, and these do involve infinite-

dimensional spaces. 

'I'he Existence Theorem was first discovered by W .M. Kahan 

and H.F. Weinbergerin 1973; the Characterization Problem was solved 

soon afterward in collaboration with me. The optimal solution ·was 

presented in [3] , but the other parts of the result were not published 

for several years, and in ~che meantime independent discoveries of 

the ideas were made by S. Parrott [7] , Gro Arsene & A. Ghondea [1] , 

and Yu.L. Shmul'yan and R.N. Yanovskaya [8]. Several different 

approaches to the proof may be found in these papers and in rrry survey [4]. 

The treatment in ~che following Sec·tion 1 is based on [ 5] , [ 3] • 

1. THE MAIN IDEAS 

The hypothesis II(!) II :£ )1 may equivalently be written 

A*A+B''B :£ )1 2 ; from this it. is not hard to see that it is also 

equivalent to the condition that N be expressible in the form B KW, 

where Q denotes (now and henceforth) the operator ()12 - A*A) 112 

and where K may be any contraction. Similarly, the hypothesis 

II (A C) II ;£ )1 is equivalen·t to c being expressible in the form 

c = Q*L ' 
where Q* means ()12 l'A*) 1/2 and L is any con·traction. 

No·te the dependence of Q and Q* upon )1. 
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In these terms it is easy to prove the Existence Theorem. 

Indeed, I will show that D = -KA*L is one solution to the problem. 

This is done by the factorization 

[~ Q,l [1 o'J 
-A* 0 L 

On the right, the first and 1as·t factors are contractions o The middle 

factor is fl times a unitary. To ve:r·ify this last assertion, 

left-multiply (A Q*) by its adjoint; the result must be shown 
Q -A* 

2 (1 to equal fl 0 ~) . The identity which will do it is Q*A AQ , 

for which see [9] or [6] • 

This discussion has provided all the ideas which go into the 

Characterization Problem. Here is the result. 

Given A, B = KQ, and c = Q*L with the definitions above, 

we wi U have II (: ~) II :S fl if and onZy if D is of the form 

D -KA*L + fl{l-KK*)l/ 2z(l-L*L)l/2 

for some contraction z. 

This may be proved by considering the factorization, valid when D 

is given by the stated expression, 

0 0 I 

K (1-KK*)!J 
r: _:: 
l 0 0 

0 

0 1 0 I 

0 L I 
0 (1-L*L)!J 1JZ 
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Let me give another numerical example, complex enough to show 

what sort of behaviour is found in general. Let 

A 

First, using fl 113 , the tightest bound we compute 

[: 
0 ) 

K = [: 0 l [~] ml 1 
Q Q* - , L 

6 
whence 

13/2 

3 ~ 
-l 

2178 
for It I ;;;; 1. D +--

4 6 

The reason the first component of D is fixed can be seen by 

looking at 

[: :] 
r 3 o 

l 

0 1 

2 0 

0 3 

The first column has norm exactly 113 = fl. If the norm of the 

whole is to be no more than fl , then the third column will have to 

(1) 
be orthogonal to this first, extremal, one. Indeed, in this case l8 
is certainly a right singular vector belonging to the singular value 

/13 plainly the associated left singular vector is (in its row form) 

(3 0 2 0) normalized; thus we need 
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r: 0 1 

1 1 
(3 0 2 0} (13 0 0} , 

2 0 dl 

0 3 d2 

forcing d1 

This does not happen if our bound is a little looser, say 

~ = 4. Then computing -KA*L by the same procedure we obtain 

(- * -~}T ; there is leeway in both components of D. (There 

has better be, else the present solution would not include those 

D found before, which satisfy a strictly stronger condition!) 

One piece of wisdom to be drawn from this comparison is that 

there is no very far-reaching significance to the "central" solution 

-KA*L for we saw it affected a good deal by a little change in our 

bound. (As ~ gets large, -KA*L goes to 0 as 
-2 

~ .) 

Returning again to the tight bound ~ = 113 once we have 

perceived that a definite value for d1 is required, we may assign 

it that value and then ask, not for all admissible values of d2 , 

but for one which will be most economical. What should we mean by 

this? A natural interpretation is the following. The first singular 

(AB CD) value of has now been fixed, and right and left singular 

vectors belonging to it. The remaining right singular vectors are 

constrained to be orthogonal to the one that was fixed, and likewise 

for left singular vectors. The effect is that the problem of choosing 

d2 is a problem (AB'' C?') where A' is 2xl So let us solve this 
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problem, not with the bound Jl ~ ma:d II(~) II, II (A C) II} inherited from 

the original problem, bu·t with the bound ]1' ~ max{ II(::) II, II (A' C • l II} 

appropriate to the new, smaller one. The result is Jl' ~ !iO , 

leading to the unique entry d 2 
1 
3 

The result of [3] is that ·this process always succeeds, giving 

with singular values which are lexicographically optimal; 

they may be estimated in tenus of ·those of (~) and (A C) 

Let us extract one final piece of wisdom. It is a li·ttle 

exaggerated to describe the problems treated here as the finding of 

dilations which minimize the nona. Whatever we compute depends upon 

11 ; if (as is often the case in applications) we have only an 

imprecise bound, this will lead to different: D from 1r1hat we would 

find given the best bound. As for the sequential optimizing procedure, 

it doesn't work at all except with exact bounds! It seems a reasonable 

project for future research to find a good analogue to it \ll'hich does 

no·t suffer from this limitation. 

2 . APPLICATION 'l'O HA..>i!KEL MATRICES 

z. Nehari proved that every Hankel opera·tor can be obtained 

as a compression (in the operator theorist's terminology) of a Laurent 

operator having the same norm. His proof, and most proofs, rely on 

the realization of the space where the operator is defined as a space 

of analytic functions. s. Parrott [7] noted that the theorem can be 

stated entirely in terms of infinite matrices considered as operators 

on £2 spaces, and he was led to the following ingenious "clean" 

proof. 

First the matrix formulation. Let H denote the Hilbert 

( " " > . h \, """ I " 12 l ! < 00 space of sequences s 0 ,s1 ,... w~t norm wn=O sn 

As usual, an operator A on H is called a Hankel operator if 
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it is given by a matrix whose entries are constant on all transverse 

diagonals, so that we can write the i-,th entry of A(i; 0 ,<;1 , ... ) as 

for coefficients Assuming we know a 

bound !!Ali ;; )1 upon the operator so defined, our object is to imbed 

H in 'che space H of !/, 
2 

bilateral sequences in the usual way, and 

to find an operator li. on 1'! such tha"t 

(i) it is a dilation of A, i.e., A = PHA\H; 

(ii) i"t is still given by a matrix ,,~hose en"tries are 

constant on all transverse diagonals, i.e., for new 

coefficients along with the old, we can 

write the i-th entry of A( ... ,t;_1 ,<; 0 ,t; 1 , ... ) as 

L.~ a. . <; . ; 
J=-00 1.+] J 

(iii) llii.ll ;; )1 • 

Now in filling in the matrix of A there are a good many 

places where we know what we have to pu'c, by the Hankel condition (ii) : 
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Below and to the right of the solid line is the matrix we begin with, 

all filled in, representing an operator A on H. Now look at the 

part below and to the right of the dotted line. It represents 

an operator A on H to H1 = span(H,e_1 ) , in which one entry 

remains to be filled in. This is the situation described in Section 1. 

The given A is playing the role of (A C) there. The role of 

(AB) of Section 1 is played by the matrix below and to the right of 

the dotted line except its first column; this is an operator on H8{e 0} 

to H1 , and since it has just the same matrix as A it has the same 

norm. Now the Existence Theorem assures us that there is a number 

a_1 which can be placed in the spot under the dotted lines so that 

A1 will satisfy IIA1 11 :> ]l • Then naturally we will place the same 

number above each in the array. 

But this process can be repeated indefinitely! The result 

is a definition of an operator A on all sequences in H having 

only finitely many non-zero components of negative index. But the 

set of such sequencs is dense; so the proof is finished in a standard 

way. 

3. APPLICATION TO OPTIMAL ERROR BOUNDS 

In this Section I will show how the,norm-preserving dilation 

problem expresses a certain sort of optimality problem in numerical 

analysis. Suppose we are trying to approximate a linear operator T 

which acts on a Hilbert space B to a Hilbert space S. For instance, 

the elements of B may be possible data in a boundary-value problem, 

and the solutions may be elements of S. Suppose we intend, for 

any w that may be given in B , to represent it by selecting a 

finite set of numerical information; let us say that this process consists 



12 

of mapping w to an element Nw of a Euclidean space E . 
n 

Next a 

linear computation T upon this will produce a new tuple of numbers 

~ 

TNw belonging to another Euclidean space E 
m 

Finally, these must 

be interpreted as an approximate solution; this may be by some linear 

injection M of E into 
m 

s. We hope that the result MTNw will not 

be far from the exact solution Tw. 

/' 

I want to focus on the optimal selection of the algorithm T. 

That is, I assume that the norms on B and S are appropriate to 

the needs of the problem, and that the procedures of discretization N 

and interpolation !4 have already been decided upon as well. In 

this case we can equivalently identify E with 
m MEm , a subspace of 

S , and use the norm it thereby gets from S ; and similarly vJe can 

identify E 
n 

with the subspace N*E 
n 

j_ 

null(N) of B using on it 

the norm of B. The result is to regard N and M* as orthoprojec·tors 

in spaces B and S respectively. (Notice that if N uses values 

of functions in B and (dually) if M is really an in~cerpolation 

process, then ·the norms in B and S can not be L 2 norms, bu'c must be 

such that point evaluation \vill be continuous.) 

Now IIT'w-MTN•III can not be bounded exclusbrely from the data 

so far discussed, for there is an iufi.nite-dimensional subspace of B 

whose elements give zero dat.a., namely null(N) . The most that can be 

hoped is to bound given an a priori bound upon -that 

is, to bound the opera'cor norm IIT-MTNII 

problem in no:r:1n·=preserving dilation.. That is" I lro'\"ill exhibit 

as an opera,tor of tche form (~ from a direc·t sum 

direct sum , wi .. ch the partial opera·tors A and 

B: and C: -;t.· ali be.ing prescribed TrJhile only "'che paJ:'tial 

operator D:: is lef·t for u.s ·to choose,. 
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Namely , here will be null(N) and will be range (M) . 

A 

Our choice is to consist only of specifying T this will have no 

effect on any '" ;,.;hich is annihilated by N , and it can not yield 

any output not in the range of M , but these are ·the only restrictions. 

We being by bounding the norms of the partial operators (A)- Tl 
- B - null (N) 

and (A C) = Prange (Ill]_) .L T , using our knowledge of the operator T 

under investiga-tion. Then if ]1 is a bound upon bo'ch of these norms, 

A 

the Existence 'I'heorem 'cells us that there is some linea:r· T on E 
n 

to such tha·t IIT-MTNII ;; ]1 , and the Characteriza-tion result 

pe:nai ts us 'co write one down,. 

This has tvm limitations in practice. I·t may be hard ·to find a 

good value for 11 ; and the formula obtained from the abstract theorem 

may be troublesome ·to convert in-to a fini'ce mx n matrix of numbers. 

The operator T whose approximation was treated in [6] was a very 

simple one: the operator of indefinite integration on an interval, 

regarded as acting betv1een cer-tain Hilbert spaces of differentiable 

func·i:ions. One of the optimizations done in that paper leads to a 

procedure in ¥1hich (to oversirnplify the situation slightly) the 

matrix for T agrees closely wit~h that for applying the trapezoidal 

rule, excep-t nea.r the main diagonal, where improvement is gained by 

depar-tures from that rule. In subsequent work, Weinberger [10] has 

sho~m how to make the improvement more attractive by retaining the 

simple trapezoidal rule exactly far from the main diagonal, so that 

only a rela.tively very small number of ·the mx n matrix entries 

need arduous computingo 
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