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Smooth Foliations Generated by
Functions of Least Gradient
by

William P. Ziemer

The work that is outlined below has been done jointly with Harold Parks,
Oregon State University.

Let QcR™ be a bounded open set and suppose u&BV(Q). The function is
said to be of least gradient with respect to § if for each wveBV(Q) such

that u = v outside some compact subset o6f §,
j]vul <I}vv| .
] Q

A function of least gradient need not be continuous. Indeed, for any subset
ACQ , the portion of the reduced boundary of A which lies in § is area
minimizing if and only if the characteristic function of A is of least
gradient.

In this work we consider the question of regularity of functions of least
gradient subject to boundary constraints. Thus, we consider an open, bounded
set NCRK that is uniformly convex. We also assume that { is smoothly
(Cw) bounded. Let ¢:bdry Q‘*Rl be smooth and consider the variational

problem

(1 - inf{jl%|:u=¢en bdry Q}
Q

where the infimum is taken over all Lipschitzian wu. It was shown in [PH1],

[PH2] that the variational problem (1) admits a unique extremal. The Euler-
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Lagrange equation associated with (1) is

div( —v—“)= 0.
| V]

Unfortunately, thiévequation is useless in investigating the regularity of

u for it falls outside the scope of the usual elliptic theory. In fact, the
following example shows that solutions to (1) are not smooth everywhere.

Let

Q= Rzn {(x,y):x2 + y2 <1}
and for (cos O, sin 6)e& bdry O , let

¢ (cos 6,sin 0) = cos (26)
The function u defined by

2x2-1 if x 2 1/2, y <1/~
u(x,y) =§ 0 if  x < 1/¥2, y < 1/v2

%

1-2y% if x <1/2, y 21/

is easily seen to be a solution to (1l). However, u is not smooth on § as

yu does not exist on
Qni(x,y) : |x| = 1/v2 oxr |y| = 1//2} .

However, we do obtain a result concerning the partial regularity of u .

IA

n <7 . If u is a solution of the variational

Theorem 1. Let 2

problem (1), then u is smooth on an open dense subset of .

The proof of Theorem 1 will be sketched below. The reason for the restric-

tion 2 <n £7 is that then it is known that for all but countably many ¢t



86

Loy

Q/\u—l(t) is a smooth area-minimizing hypersurface. If n>7, then QAN u
may admit singularities. An essential fact underlying the proof of Theorem 1
is that the behavior of Vu at one point of Qn u_l(t) determines the
behavior of Vu on-all of Qnu—l(t). Indeed, if Vu(xo) =0 for some
xoe Qf\u_l(t), then Vu(x) = 0 for all xe Qnu_l(t) . In this case we do
not know of any method to prove smoothness of u near QN u—l(t) . If,
instead, Vu(xol) =0 is not true, i.e., if Vu(xo) #0 or Vu(xo) does not
exist for some xo€ Q u-l(t) and hence for every xé€ Qnu_l(t), th‘en it is
possible to construct a solution of Jacobi's equation on Qnu—l(t) which
has a positive lower bound. Jacobi's equation is an elliptic equation which
a flow of minimal surfaces starting at Q4 u-l(t) must initially satisfy.
Once such a solution to Jacobi's equation is assured, then it follows that
minimal surfaces near Qﬂu—l(t) vary smoothly as a function of their
boundaries, i.e., the surfaces QN u_l(s) generate a smooth foliatiom, for
s close to t.
We now give a few details. Let T denote bdry . Consider a value of
t, say 0, such that QN u-'l(O) satisfies the following conditions:
(1) |8au )] =0, #"Fra¢72(0)] = 0; here H™ ' denotes Hausdorff
(n-1) -measure.

(ii) Vo(x) # 0 for all xel"nu_l(o)

(iii) Qn “—1(0) is connected

(iv) there exist xoe Q0 u_l(O) , a sequence {ti}->0 , and a sequence

{xi} with xie Qn u—l(ti) and lim ®, = %, such that

0 <lin inf JuGD-u(x)|
i ‘xi_ xo‘

R -1
For each xéeQNu 1(0), let N(x) denote the unit normal to fAu “(0) and
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let w (x) be that number such that
T
-1
x + wr(x)N(x)e Qau (r) .
If n is a test function on Ql\u_l(o), then the area of the surface
(2) X + (wr(X) + tn(x))N(x)

is minimized when t = 0 . A calculation of the first variation yields an

equation, when written in local coordinates, of the form
ij -
(3) Di(a (x,wr,Vwr)Djwr) erl(x,wr,Vwr) + Bz(x,Vwr) .

Because of the estimates in [AW] and [SL], the terms aij(x,wr,Vwr),
Bl(x,wr,Vwr) and Bz(x,Vwr) are uniformly bounded relative to r.

We now wish to investigate Jacobi's equation. By definition, it is the
second variafion of (2) or equivalently, the équation of variation of (3).
A straightforward calculation shows that Jacobi's equation is linear. If we
let

w =w_/r
T r/ ’

then Harnack's inequality applied to (3) along with (iv) above imply that on
each compact subset K of QA u-l(O), wr is uniformly bounded above for all
sufficiently small r >0. Appealing to Harnack's inequality again, we find
that W, is Ho6lder continuous of order o, where o 1is independent of r.
Therefore, it follows that, for a suitable subsequence, and for each compact
subset KC.Ql)u-l(O), w_~ converges uniformly to a function C. .Because the

extremal u to problem (1) is Lipschitz (with constant M) it follows that

t(x) >1/M>0
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1(0) . Moreover, we have already seen that wt’ and

for each xeQNu
therefore [, is bounded above on each compact subset of QA u_l(O).
The essential feature of [ is that it can be shown to be a solution

of Jacobi's equation. The fact that  is bounded above and away from O

is critical for it implies the following

Theorem 2. If T* is a solution of Jacobi's equation on Qn u_l(O)

with -1
gx|TNu 7(0) =0

then ¢* =0 .
Proof. Suppose there is a point xle Qﬂu_l(o) such that l;*(xl)> 0.

then there is ceR1 and xze Qn u_l(O) such that
cg*(x) < t(x)
-1
for all xeQ0u (0) and

cc*(xz) = E(xz) .

But then U - cC* >0 is a solution of Jacobi's equation that vanishes at

¥X_. Hence, Harnack's inequality implies that ¢ -cC#%* = (0 which is impossible

2
since
£>1/M and C*|Tnu (0) =0 .

This result along with assumption (ii) above now yield the following,
which is our main result. The proof follows essentially from [WB, 3.1]

or from an adaptation of the methods in [MC, 86.8.6].
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Theorem 3. There exists an open set WC ) with

anu toyew

such that u|W is smooth.

Corollary. There exists an open, dense subset Uec §! such that u|U is
smooth,
Proof. Let

bdry Q0 {x:V$(x) = 0},

=
]

Q0 {x:Vu(x) = 0} .

2
]

It follows from Sard's theorem that d)(Nl) has Lebesgue measure 0 and because
u is Lipschitz the co-area formula [FH, §3.2.12] can be applied to conclude
that

Hn_l[u-l(t)nNZ] =0 for a.e. t.

Let x¢§! and let BcQ be an open ball containing x. If u is comstant
on B, then of course u is smooth on B. If not, them u(B) dis an interval.
Choose te u(B) such that tk(b(N;l) and Hn_l[u—l(t)/lNZ] =0 . Then it
follows from Theorem 3 that there is an open set WtD Qﬂu_l(t) such that
Wtf\B # 0 and u'wt is smooth. The result now follows if U is defined as

the union of all such Wt and all open balls Bc§ such that uIB is comstant.
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