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Introduction

In an impressive seriés of papers, Meeks and Yau [MYi, 1 < i < 5],
Meeks, Simon and Yau [MSY], Freedman, Hass and Scott [FHS], Scott [S], and -
Meeks and Scott [MS] introduced and used least area surfaces in the
investigation of topological problems about 3-manifolds. This has lead to the
solution of many outstanding questions in the topology of 3-manifolds. An
example is the positive solution of the Smith conjecture (see [SC]), in which

the results of Meeks and Yau [MY5] played an important role.

In [JR1], we used least weight normal surfaces to obtain the
equivariant decomposition theorems of 3-manifolds in [MYi,bl < i‘< 5] and
[MsY]. Thesé least weight normal sﬁrfaces share many of the same useful
properties as least area surfaces. However since the Meeks-Yau exchange and
roundoff trick cannot be directly applied to normal surfaces, we were unable
to recapture the more difficult applications and properties of least area

surfaces in [S], [MS] and [FHS], by using least weight normal surfaces.

Here we develop the idea of least weight normal surfaces to obtain
piece-wise linear (PL) minimal surfaces in 3—ﬁanifolds. This theory has
several advantages over the classical area of analytic minimal surfaces,
especially with regard‘to the study of the topology of 3-manifolds. Firstly,
to establish existence of PL minimal surfaces, there 1s no necessity to appeal
to deeﬁ results from partial differential equations and geometric measure
theory, as in the analytic case. (See Hass-Scott [HS] for a new uniform
treatment of existence theory for least area surfaceé, using only Morrey's
solution of Plateau's problem in Riemannian 3-manifolds). For PL minimal
surfaces, it suffices to use the short classical PL technique of Kneser [K],

plus a little elementary. analysis.
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Next, PL minimal surfaces are explicitly computable, by the method of"
Haken [H] for normal surfaces. By contrast, precise descriptions of analytic
minimal surfaces are usually rather difficult to obtain. Finally there is a
local uniqueness property for PL minimal surfaces (see Theorem 2). There is
no analogous result in the analytic case. This local uniqueness leads to a
local version for PL minimal surfaces of the propertie# of least area surfaces
established in tFHS]. InAparticular, PL minimal surfaces have the smallest

number of self-intersections and intersections in normal homotopy classes. .

PL miniﬁal surfaces are defined by choosing a nice Riemannian metric
on the 2-skeleton ﬂ‘(z) of a given triangulation I of some 3-manifold M. The
idea of putting'such a metric onﬁﬂiz) arose from the.analysis in [JR1] of the
intersections of least weight normai surfaces as spanniné arcs croséing in-
2-simplices of tﬁe 2-skeleton. For details of the results in this paper, see

[Jr2].

Normal and PL minimal surfaces.

A surface f in a 3—man1fold M will alwa?s refer to a proper immefsion
£: (¥, 3F) » (M, M), where 3 denotes boundary and possibly J3F and 3M are
empty. There are seven properly embeddéd disks in a 3-simplex called Qiffi_
types. These consist of four triangular disks, which separate a vertex from
its opposite face and three disks with quaﬂrilateral boun&aries,‘whicﬁ
separate a pair of opposite edges of the 3-simplex. A normal surface £ in M
intersects eacﬁ 3-simplex of T in a finite set of such disk typeé.

Let ﬂii) denqte the i-skeleton of J. The weight of f is the number of points
in £ gDy,
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Remark. A normal surface can be thought of as a minimal surface if all the

area 1s concentrated nearfr(l), by choosing a suitable Riemannian metric on M.

A normal homotopy is just a ﬁomotopy through normal surfaces. Then -

any normal surface f determines a normal homotopy class which is denoted {f).

To intfoduce the concept of PL minimal surfaces, we now construct a
Riemannian metric on Uiz), by identifying each 2-simplex with an ideal
hypefbolic 2-simplex in the hyperbolic plane. The 2-simplices can then have
' common edges identified by isometries. If 'a group G of simplicial
homeomorphisms is given, such that the fixed set of any member of G is a
subcomplex, then we can choose thé metric on ﬂiz) S0 that‘G acts -

isometrically.

Given a normal surface f: F + M, we define its length £ to be the
total length of all the arcs in which £(F) meets the 2-simplices of :#2), We'

will call these the arcs of f. The FL area of f is defined to be the

‘pair (w, 2), lexicographically ordered. Finally £ is PL minimal if its
length & is stationary for small variations of f. Let fs: F + M be a smooth
family of (normal) surfaces, where s € (~§, §) and fo = f, Then f is PL
minimal if the derivative of the function l(fs) is always zero.

A normal surface f: F + M 1s called PL least area if f has smallest PL
area amongst all normal surfaceshomotopic to £f. This will be most useful in

the following cases:

f is called n]—injective if both the maps f.: nl(F) > wl(M) and
f#é wl(F, 9F) - nl(M, M) are one-to-one, with nl(F) # {1}. If F is a disk or

2-gphere then f is essential if either f: (D, 3D) » (M, 3M) is non-zero
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in NZ(M, M) or f: S2 + M is non-trivial in nZ(M) or f: S2 + M is an embedding

with £(52) bounding a fake 3-ball, but not a 3-ball in M.

We call a 3-manifold M Pz—irreducible 1f any embedded 2-sphere bounds

a 3-ball and there are no embedded two-sided projective planes in M. A

surface is called two-sided if it has a trivial normal bundle in M.

The energy E of a normal surface £ is definedvas the sum of the |
squares of the lengths of the arcs of f. Energy hasvthe‘niée property that it
is a convex function on A(E) andvthis implies the uniqueness of PL minimal )
surfacgs in normal ﬁomotopy classes. We would like to ;hank Bill Thurston for

bringing energy to our attention.

Finally we describe the mean curvature field H of a normal surface

fo Let a be an arc of f and let B be a component of f_l(a). If y € intB and
x = £(y) then we define H(y) = VTT(x), where V is hyperbolic covariant
differentiation and T is the tangent vector field a's We assume without loss

of generality that |T| = 1. Ify ¢ f"lcr‘l)), let @ , =.e, G be the arcs of
1 k

]

f with y € f—l(ai), 1 < i< k. We can suppose that £(y) = x
: k

“1(0)’

for 1 € 1 € k, and can define H(y) = X <Ti’ V> V, where T
‘ i7h
at X.

a unit vector tangent to the edge in

T
i ui(O) and V is

Properties of PL minimal surfaces

A linking 2-sphere is the normal surface which is the boundary of a
©) ‘

small regular neighbourhood of a vertex in &

’

Theorem 1. For any normal surface f which is not a linking 2-sphere, there is

a PL minimal surface inA(f).
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Next we consider first and second variation of length and energy for
normal surfaces. Let fS: F + M be a small variation of normal surfaces,

where s € (=8, 8) and £, = f. Let 2(s) = l(fs). We will denote the arcs

0
of fS by as, 1 <€4i<m, with ag'denoted by o . By transversality, since § is
small, m is independent of s. Let '1‘i = ai and assume lTil = 1. Also let

v = (a)a( )

s=0

be the variation vector field and let 21 denote k(ai). Then the first
variation formula is:
.om L nifli_. :
2°(0) = § <v,, T,> - V., V. T >dt.
e T T
This shows immediately that £ is PL minimal if and only if the mean curvature

H is zero. Also if E(s) = E(fs), then E'(0) = 2'(0).

To obtain a nice expression for second variation, we can assume

that Vi at an edge e of ﬂil) is a unit tangent vector field to e.

Hence Vv Vi =0 along:r(l). Also the Gaussian curvature of the hyperbolic
i

metric is ~-1. Consequently second variation of length and energybare:
i m zi 2 : 9
2'(0) = 121 IO (|VT1V1| vy x| - ey, 1) Hae

© = ] I£i<|v v |2+ |V, xT,
a E"(0) = + x t.
an . LR i 1

Since E is convex, it has a unique minimum in#%f). This establishes:
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Theorem 2. There is precisely one PL minimal surface in #(f), for any normal

surface f which is not a linking 2-sphere.

The local behaviour at a point x of "common tangency” of two PL
-minimal surfaces f1 and fz ﬁan be analysed, as in the analytic case (cf. e.g.
[B]). If x is 1115‘1), we obtain a generalised saddle picture. If x is
in ’J‘(z) but not in tl'( 1), tangency should be interpreted more widely since we
are working in a PL setting. In this case we‘obtain_that the arcs of
fl and f2 through x‘coincide. The behaviour of fl and f2 in.ﬂ‘3) - 5&2) is
not of interest. (PL\ﬁinimal surfaces are.really defined onl&Aby their points

111542)). Also barriers for PL minimal surfaces, such as convex boundaries,

can be constructed as in e.g. [MY3].

The eichange and roundoff trick (cf. [MY1l] and lemma 1.2 of [FHS})

works in the PL case. We have for example:

~ Lemma. Suppose f;, f, are embedded PL least area surfaces in their homotopy
classes and fl meets f, transversely, with fl(Fl) n fz(Fz) transverse to .
Then there are no broduct regions R x [0, 1]¢ M, where R x {0} < fl(El)band

’R_ x {1} U 8R x [0, 1] < fz(FZ)'

Often, the exchange and roundoff trick must be applied
~where f1 and f2 may not be transverse, or their in;ersection may crossJ non
transversely. To avoid this we’can use the Meeks-=Yau trick (cf. [MY1l] and
lemma 1.5 of [FHS]). The idea is to perturb £y to f¥%, increasing 1engtb
by €, so that ft and f2 have the desired transversality proberties."lf there |

are product regions, then at least 2e in length is saved by exchange and

roundoff, a contradiction.
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Applications of PL minimal surfaces

The basic existence result for PL least area surfaces is:

Theorem 3 (cf. Theorems 3.1 and 7.2 of [FHS]). Let M be a 3-manifold which
covers a compact 3-manifold.

(1) Suppose M is Pz—irreducible and let f: F + M be a n,-Injective surface.

1
Then thepe exists a PL least area surface in the homotopy class of f.
(2) Suppose ﬂz(M, M) # {1} (or nz(M) # {1}, respectively). Then there

exists an essential PL minimal disk (or non-contractible 2-sphere) which

has smallest PL area amongst all such disks (or 2-spheres respectively).

Then we can obtain the results of [MYi, 1 < i < 5], [FHS], [S] and [MS]
using PL least area surfaces. Finally to obtain the main applicatioﬁ of
[MSY], i.e. that any covering of a Pz—irreducible 3-manifold is
Pz—irreducible, we need to show that PL least area essential 2-spheres can>be 

found if nz(M) = {1} but M contains fake balls. This follows from:

Theorem 4. Let M be a compact 3-manifold. Suppose f and £' are normal
- surfaces and g, g' are the PL minimal surfaces inoH(£), M(£*) respectively.’
Then the number of self-intersections of g is smallest for surfaces inJV(f)

and the number of intersections of g and g' is the least for pairs of surfaces

inAE) and MEY).

Remarks. 1. For a precise description of how to count intersections and
self-intersections, the reader is referred to [JR2] and [FHS].
2. Note that it is not necessary to include any homotopy

assumptions about f and f'. In [FHS], the hypotheses are that the surfaces
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are nl—injective and two-sided for the analogous theorems.

Corollary 1. Suppose f is an embedding. Then g is either an embedding or a
doubie cover of an embedded surface. In the latter case, the image of £
bounds a twisted I-bundle over a non—orientable surface isotopic to the image

of g.

Corollary 2. Assume £ and £' have disjoint images. Then g and g' havevimages
which are either disjoint or the same. In the latter case, g and g' are

covets of embeddings.
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