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M. S. Sambridge 

The earth is continuous!.y be:lng subjected to both internal and 

external stresses of varying magnitudes. If the stresses are not too 

large, elastic or plastic deformation may occur. However if in some 

region of the earth they are allowed to accumulate O'ler a period of time 

to the point exceeding the strength of the material, then according to 

Reid's elastic rebound theory (1911) this will rapidly lead to fracture. 

Fracture inside the earth involves the sudden release of elastic strain 

energy; such an event is commonly !mown as an earthquake. An earthquake 

generates shear and compressional kinetic energy which both radiate from 

the source and travel through the earth as elastic (or seismic) waves. 

This energy may be detected by a seismic network of receivers at the 

earth's surface which record the ground motion caused by the passage of 

these waves. A major problem in seismology is to deduce the earthquake 

source parameters and seismic properties of the earth from a set of 

observations at the surface. 

In the hypocentral location problem one wishes to determine only 

the four hypocentral parameters of an earthquake xk k = 1. .. 4, i.e. 

the three spatial coordinates and the origin time of the event. [Note 

we essentially neglect the detailed structure of the source region and 

consider a point solution]. The data for the problem consists of the 

observed first arrival times at a network of seismic stations of 
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identifiable seismic phases tOi' i 

see later discussion). 

l ... N (usually body wave phases, 

The inversion of seismic data for hypocentral parameters is 

actually an underdetermined problem. This is due to our lack of 

knowledge of the real earth and hence the infinite number of parameters 

upon which the arrival times of seismic waves depend. Nevertheless in 

practice most earthquake location procedures commonly used today treat 

the nonlinear hypocentral location problem as an overdetermined one. 

This is achieved by assuming knowledge of the compressional and shear 

wave velocity structure of the earth in the form of a fixed seismic 

velocity model, and thereby reducing the number of unknowns in the 

problem to the four hypocentral parameters of the event. 

Location of these parameters is still a difficult problem, being 

both nonlinear and ill-conditioned. The nonlinearity a.rises due to the 

nonlinear dependence of the travel times of seismic waves on both tl1e 

hypocentral and the velocity model parameters. The ill-conditioning 

arises due to measurements being made over a restricted network on tl1e 

surface and therefore being poorly placed to resolve trade-offs between 

the depth and time location parameters, or to resolve the location of 

events outside the network. 

The objective of this paper is to introduce the hypocentral 

location problem as an inverse problem, describe some commonly used 

approaches to its solution and the problems associated with them, and to 

suggest some possible alternatives that have, at least initially, proved 

fruitful. {The paper by P. R. Williamson in this Proceedings contains a 
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discassion of the related ill-posed problem of determining the velocity 

model :tYarameters from seisndc. data" 

Before "Ne can attempt to solve this inverse problem~ however, v;re 

need first to gain some understanding of the forward problem, i.e. of 

the propagation process of elastic waves in the earth 9 rnore 

precisely, in our lirrd ted approxirr.ation of the earth}. 

A full treatment of elastic ·i11ave propagation in both homogeneous 

and heterogeneous media may be found in Keller and Karal (1959). For 

our purposes Wte need only be able to calculate the travel times between 

source and receiver of a few 'easily observed' phases. This :i.s usually 

achieved by making a high frequency approximation, i.e. we assume that 

the velocities cvi th which seismic waves propagate through a medium vary 

on a distance scale which is much larger thail their wavelength. We may 

then appeal to ray theory in which it is assumed that seismic energy 

propagates along rays (which are always normal to wave fronts). The ray 

equations (2.1) may then be solved to determine the travel time and ray 

path between two fixed endpoints through a given earth model. 

~s [~ ~] - ~x [~] 0 

(2.1) ~s [~ ~~] - ~y [~] 0 

d [1 dz l d [1] 
ds v ds _, - dz :;:; 0 
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Here v = v(x,y,z) is the local seismic velocity at a point in the 

medium, and ds is a~ element along a ray path. 

Note that (2.1) is given in a Cartesian coordinate system. In 

microearthquake studies this coordinate system is appropriate since the 

space under consideration is small. However, in regional network 

studies, such as those of South--Eastern Australia, it is usual to 

perform some type of transformation of latitude and longitude 

co-ordinates onto a rectangular plane, e.g. the transfer fi!ercator 

projection. 

The derivation of the ray equations is quite straight forward and 

will not be treated here. They may be derived from Fermat's principle 

together with the use of Euler's equation for the extrernals of in 

the calculus of variations. Fermat's principle states tb.at the travel 

time T 

(2.2) T v(x,y,z) 
ds 

for a physical ray path between two fixed end points A and B is 

extremised. An outline of this derivation is given in Lee & Stewart 

(1981). 

Several different techniques have been developed to solve the ray 

equations numerically in a three dimensional heterogeneous structure, 

including Julian & Gubbins ( 1977) and Pereyra et. aL (1980). However, 

in practice, for routine earthquake locations one is usually confined to 

a rather simplistic one dimensional model, i.e. one in wh:ich we specify 
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a variation of velocity with depth only, so that v = v(z). This is due 

to the fact that we are usually rather ignorant of lateral velocity 

variations beneath a seismic network, and also because three-dimensional 

ray-tracing schemes are computationally very expensive. 

If we consider the two-point seismic ray tracing problem in the xz 

plane with velocity as a function of depth only, the ray equations 

reduce to 

(a) 
1 dx 

v(z) ds 
canst 

(2.3) 

(b) d [ 1 dz] -1 dv 
ds v(z) ds 2 dz 

v 

By definition, the direction cosines of the ray are 

(2.4) cos a cos 13 ~ 
ds cos '"Y 

dz 
ds 

If 9 is the angle the ray makes with the z axis (defined as positive 

downwards) then in the planar example 

cos a sin 8 , cos '"Y cos 8 . 

Then (2.3) (a) becomes, 

(2.5) sinS 
v(z) = const p 

which is just Snell's law. p is a constant along any ray and is known 

as the ray parameter. (2.3) (b) now reduces to (see Officer 1958} 



(2.6) 
dB 
ds 

100 

dv 
Pdz 

This equation simply states that the curvature of the ray path 

is directly proportional to the velocity gradient 
dv 
dz 

Using these 

dB 
ds 

equations for any continuous velocity profile one may trace rays from 

entrance point to exit point and evaluate the travel time from 2). 

The most common type of velocity profile used in these models are 

layered profiles with the velocity constant across a layer, i.e. 

v 

or changing linearly, with 

v 

for a layer between z0 and z 1 . 

Most velocity models used to locate earthquakes are made up of a 

combinat:i.on of constant and/or linear layers, with a discontinuity in 

the profile at the crust/mantle boundary (usually near the base of the 

model at a depth of approximately 30-50 :k:m). Note that the integral 

(2.2) reduces to a simple expression for either of these types of 

velocity profiles. 

The discontinuity in velocity at the crust/nillmtle boundary (the 

Moho) causes a variety of different phases to be generated. The only 

one seen usually on seismograms from a regional network is the so-called 

headwave (often called Ph). This is due to a critically refracted ray 
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from the :Moho which travels along the interface for a large proportion 

of its travel time. Including the discontinuity in the velocity model 

allows derivation of a simple expression for the travel-time of the ray 

in term of the source and receiver co-ordinates and the velocities at 

either side of the discontinuity (see Appendix). 

Thus with ray theory and our simple velocity model we m-:J.y,, consider 

the forward problem to be solved. Howeve1', this is only true if the 

observed phEtses can really be interpreted in the simple manner 

described, and, more importm1.tly, if our model earth together with the 

travel times \'te generate from it are representative of the real earth to 

within observational e1·ror. 

The source/receiver separation for a regional network va:cies from a 

few kilometres to several hundred kilometres. Over these distances only 

a few phases are clearly visible on a seismogram. One may usually 

identify the direct longi tudiual P wave (lmmm as P } and the 
g 

corresponding shear or transverse wave (known asS). At larger 
g 

source/receiver separations the headwave phase (k:novrn as Ph) arrives 

before the direct P wave, and it is this which is observed as the 
g 

initial P wave. Generally the S wave is more difficult to 

distinguish from the preceeding wavetrain. Consequently S waves are 

observed at approximately only one ~~lf of the receiver stations. The 

P wave itself may also be difficult to pick accurately if one is faced 

with a high level of background noise. For a regional seismic network 

observational errors of the order of 0.3-0.8 sec are typical for these 
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phases. We must be cautious in using arrival times of later phases, 

such as S or Ph for locating earthquakes as they may easily be 

misidentified on the seismograms and their theoretical arrival times may 

be difficult to model. In particular the S wave velocity structure is 

usually less well known than that of the P wave. 

The data then consist of the initial arrival times of the first 

observed P and sometimes S , waves at approxim<:ttely 10--100 seismic 

stations in the network, depending on the magnitude and position of the 

event. 

4. The inversion of seismic data 

The earthquake location problem has in recent times been solved 

using Geiyer' s method (1912), or variations of it. This is simply a 

Gauss-Newton type method and may be summarized as follows. 

Given an initial guess for the h:~rpocentral para'Ileters xk , 

k = L ... ,4 and some previously determin.ed velocity model of the earth, 

one may calculate theoretical arrival times of the first P and S 

waves tci (x) , i = 1, ... ,N (where x represents a vet; tor of 

hy-pocentral parameters) at a set of seismic stations whose positions are 

known. These N arrival times may be compared with the corresponding 

observed times t 0 i(x) , i = l, ... ,N, and so some measure of the 

suitability of the initial guess at the hypocentre may be gained by 

defining a residual function F(x) 

( 4.1) F(x) 
N 
I 

i=l 
[r. (x) 

l 
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where r. is the ith data :residual 
1 

(x} 

This rfl::ly be revrr it ten as 

t . - tc1. (x) 
0:1 

r i (x) t . -· 
01 

i l, ... ,N . 

(x) + 

where is the vector of hypocentral parameters, X 4 

is the origin time parameter, and T0 i(x) is the travel time of the ray 

to the ith station. 

We may consider the residuals ri(x) as components of a vector in 

N-dimensional Euclidean space and write 

If the adjustment vector ox is defined as 

then the least squares minimization of (4.1) yields 

(4.2) 
T -1 T ox= -[A A] A r 

where A is the (nx4) Jacobian matrix 
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arl arl arl arl 

axl ax2 ax3 
. ax 

4 

A 
ar2 ar2 ar2 

ox2 llx 8xLJ 3 ~ 

ar ar or 
n n n 

axl ax2 ax4 

Due to the nonlineari of the travel. time expressions A 

position, The problem is therefore solved iteratively, with each stage 

providing an improvement to the existing vector, ]'he stab:Ili ty problems 

associated with this local li:nearization procedun"' are well. known, A 

damped least squares (or approach is often used, so 

that, 

(4.3) ox 

where A is a step control parameter. 

The entries of the Jacobian matrix A describe the way in which 

the travel times are related to the hypocentral parameters. The various 

forms of the entries of A for a few simple velocJ.ty models may be 

found in the Appendix. More precisely, they are only an estimation 

this relationship, since A is entirely a function of our assumed 

velocity model. In any case the matrix ATA can st:Ul become rank 

defective when events are poorly constrained. by the seismic network. For 

example, if an event occurs outside the network of stations then 

geometrical considerations imply that some columns of A may become 

nearly proportional to one another and so cause it to become rani( 
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defective. Another problem is the trade-off between depth and origin 

time of an event. Since most receivers are located on the surface of 

the earth and most earthquakes occur at some depth, the depth parameter 

is usually rather poorly constrained. 

If can be easily shown {see Buland 1976) that the least squares 

optimization of {4.1) is equivalent to assuming a Guassian probability 

distribution for the observational errors on the arrival times with no 

cross-correlation of errors, i.e. the error distribution is proportional 

to 

where is the standard deviation of the ith data being treated as a 

random variable with mean at the 'true' value of the data. However we 

defined this allegedly 'true' value by our calculated arrival time t . 
Cl 

which is itself likely to be erroneous. In fact in this approach all 

errors in our theoretical arrival times are inherently being treated as 

errors in our observations. So we are actually assuming a Gaussian 

probability distribution for the velocity model errors with respect to 

the real earth. This assumption is very unlikely to be justified in 

practice, with the result that the solution obtained from the inversion 

will be dependent on the velocity model used. 

Attempts to use other statistics or combinations of error 

distributions are very uncommon. Jeffreys {1932) put forward an 

alternative to the straightforward Gaussian distribution which he noted 

to be representative of teleseismic travel time residuals. The 
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corresponding objective function for optimization becomes 

(3.4) F(r) { (1-f) [-r~ ] log · l/2 exp --2 + 
.ai (21T) 2ai 

·~f exp[2-Iv.22i.]l . 
v(21T)l/2 - J 

This error distribution is basically a superposition of two Gaussians. 

The constant f determines the relative scale of the distributions of 

the errors at each observation, which have standard deviation 

, i=l, 0 0. ,N , and the smaller, and broader background. distribution 

which has standard deviation v The distribution is known to be more 

robust than the Gaussian; i.e. if we seek the hypocentral parameters 

which minimize this objective function then they are less biased by the 

occasional outlying :residual. By this we mean a residual which is large 

compared to the standard deviation of observational errors. This may be 

due to a misidentification of a phase (large observational or a 

region of strong lateral heterogeniety which is not accounted for in the 

simple velocity model (large theoretical error). These and other 

distributions are discussed in Anderson (1982). 

A greater understanding of the effect of velocity model errors on 

the soluUon of the inversion would seem to be required. The current 

use of a Gaussian statistic is rather misleading in that little account 

is taken of systematic errors occurring at the forward modelling stage. 

A relatively simple scheme has been produced by Sambridge and 

Kennett (1986) which is both independent of the type of residual 

function minimized and velocity model used. Essentially this 

independence is achieved by eliminating the need for any derivative 
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information at the expense of function evaluations. The algorithm 

belongs to the class of grid search methods. Due to the special form of 

the hypocentral location problem such methods are computationally 

feasible as only a small number of parameters are to be determined. The 

algorithm performs a search on a three-dimensional spatial grid for the 

minimum of the residual function at a particular origin time, t . If 

this minimum is denoted by 

where (x1 ,x2 ,x3 ,t) , then we must find the value of t for 

which 

min F(x) 
X 

i.e. the global minimum. By determining P(xt,t) for any desired t , 

we essentially reduce the problem to a one-dimensional optimization 

problem which maybe solved by a variety of means. The technique 

employed here is based on the Golden Section Search (~~ittle (1971)). 

Essentially we consider values of P(xt,t) at initial upper and lower 

estimates of the origin time, say t 1 and t 2 , and then generate 

progressively decreasing upper and lower estimates by comparing the 

corresponding spatial minima F(xt,t) . The iteration is considered to 

heave converged when the variation of the two estimates is less than some 

preset tolerance level. 

This procedure essentially identifies a region of parameter space 

within which the solution lies. We may then sample a rather larger 
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region surrounding the estimated solution and determine a nonlinear 

confidence region based on an estimated level of observational and 

theoretical error. We are thus not restricted to estimating ellipsoidal 

confidence regions as is the usual case when applying direct matrix 

inversion methods. Full details of this algorithm may be found in 

Sambridge and Kennett (1986). 

An obvious point raised by the use of a grid search algorithm is 

whether such an approach can be made computationally efficient. An 

important point to remember is that when we search for local spatial 

minima of P(xt,t) over varying values of t , we do so on an invariant 

spatial lattice. Thus when any lattice point is encountered for the 

second or later time the travel times of the rays to the stations need 

not be recalculated. This permits the residuals and hence the objective 

function (3.1) to be recomputed with very little computational effort 

compared to that required originally to trace rays through the velocity 

structure. In fact if we prescribe in advance the size of spatial 

lattice we require, then all ray tracing may be done beforehand. That 

is travel times and rays from each lattice point to each seismic station 

through any velocity model, even one incorporating strong lateral 

velocity gradients, may be calculated at the beginning and stored in a 

travel time table. In this way routine earthquake locations may be 

performed using the most detailed velocity model available for any 

particular region. 

In this work an attempt has been made to remove the dependence of 

earthquake locations on both the particular velocity model employed and 

the assumptions made as to the appropriate error statistics involved. 
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This has been achieved by producing an algorithm which is independent of 

both, and so allows one to vary them at wilL The algorithm is thus a 

useful tool in investigating the effect on earthquake locations of 

introducing realistic velocity models and more robust error 

distributions. 

Appendix 

The Appendix presents the travel time e1c'Pressions derived from the 

ray equations (1. for a few simple laterally homogeneous velocity 

models. 

Suppose that v = v0 , a constant independent of depth. If the 

earthquaJ;;:e source is at point A with co-ordinates (xA.yA.zA) and a 

receiver is at B with co-ordinates (xB,yB,zB) then the travel time 

is given by: 

(Al) T 

where S is the path length of the straight line ray between A and 

B , i.e. 

The spatial derivatives of travel time at the source in this case are 

simply, 
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(A2) aT I 
, 8y B 

-(yB-yA) arl 
v0S ' 8z A 

2. Continuous Veloc:i. ty B(ooel 

Referring to Fig Aland using equations (1.4), (1.6}, the travel 

time T from point A to B is 

T 

(A.3) 

fl ds 
JA v(z} 

For a simple linear velocity gradient 

(AA) 

from (2.6) we have 

const , 

Thus the curvature along a ray path is constant, so the rays are arcs of 

a circle with radius 
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z dx 

Fig A 1. 

Geometry of ray tracing in the xz plane, with v=v(z). 
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c D 

Fig A 2. 

Diagram of refracted path for velocity model of a layer over a half space. 
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The travel time is given by (A.3) and may be integrated with the use of 

.5) and (2. 

5) T 

to give 

rBB dS 
j 8 v 1sinB 

A 

and spatial derivatives of T at the source are 

aT! 
ax I A 

sinS A 

12 A 

3. Head wave phase (critically refracted 

A simple illustration of this type of ray is g:iv0n in Fig A2. In 

this case we consider only a single layer of thicl:ness h and velocity 

v 1 over a half space with velocity v2 . 

The travel time of the refracted ray 

and using Snell's law at the boundary gives 

(A.7) sin e 

T 
r 

Tr may be written in the more convenient form 

(A.S) T 
r 

alvng is given by 
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where 11 is the epicentral distance AB i.e. 

9) 

A full derivation of 8} may be found in Officer (1958). 

The extension of 8) for a source at depth z is simply 

(A.lO) T 
r 

!_ + (2h-z)cosl9 

v2 vl 

From equations 8) and (A.9) the spatial derivatives of travel times 

at the source are 

:riA -("B - xA) 

il.v2 

(A.ll) :riA -(yB- YA) 

il.vl 

:riA -(v2 _ v2)1/2 
2 1 

v2v1 

Travel time au1d derivative expressions for multi-layer velocity models 

may be found in Lee and Stewart (1981). 
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