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FURTHER EXISTENCE RESULTS FOR 

TWO POINT BOUNDARY VALUE PROBLEMS 

ARISING IN ELECTRODIFFUSION 

H. B. Thompson 

1. INTRODUCTION. 
In [3] the author discusses a two-point boundary value problem which arises 

naturally in the study of biology as for example in the study of nerve conduction. 
The physical problem is basically the study of two ions with the same valency 
diffusing and migrating across a liquid junction such as a membrane. The junction 
separates two comparatively large electrically neutral reservoirs each containing 
electrolyte composed of ion species such as sodium and chloride. The reservoirs 
are stirred to maintain different but constant concentrations and the ions species 
have different diffusion constants. As the diffusion constant and the concentration 
gradient determine the rate of diffusion of a given ion species across the junction 
an electric field E results. This field varies in proportion to local concentration 
differences in the ion species. The electric field exerts a countervailing force on the 
ions. For large reservoirs, a steady state is reached in which macroscopically there 
is nett transfer of mass but not of charge and hence no electric current across the 
junction. Ion numbers are conserved. With two ion species this steady state model 
gives rise to a system of differential equations for the ionic concentrations and the 
electric field strength. Elimination of the ionic concentrations from the system leads 
to the following differential equation for the electric field: 

y11 = y{)l- (y(O?- y2 )/2 + [lA + (y(O?- y(l)2 )/2]x }-

[L\ + (y(O?- y(1)2 )/2]D, X E [0, 1], (1) 

where after scaling the liquid junction occupies the region 0 :::; x :::; 1. Here y is 
proportional to the electric field E and the parameters l, A and D are functions of 
the physical constants such as the diffusion constant. Electrical neutrality in the 
reservoirs yields the boundary conditions: 

y'(O) = 0 = y 1(1). (2) 

The parameter range of physical interest is l, A> 0, and -1 < D < 1. 
For detailed discussion of this model see Bass [1,2]. 
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2. EXISTENCE OF SOLUTIONS. 
For l, D, ,\ positive the author proved the following. 

COROLLARY 3.8 ([3]). If there is a positive m satis(ying 

m(>.- m 2 /2) -l>.D- m 2 D/2 > 0 (3) 

then there is a solution of problem (1) and (2) satisfying 0 < y < m. There is at 
most one solution in this range and it is strictly decreasing. 

The existence proof used upper and lower solutions together with the maximum 
principle to obtain the necessary a'priori bounds and Coincidence degree (see [4]); 
Coincidence degree requires 

m(l + l/2)- lD > 0, (4) 

however this follows from (3). The last part of Corollary 3.8 follows from the 
maximum principle; again the conditions required follow from (3). 

Also in Theorem 4.2 of [3] the author used shooting and the implicit function 
theorem to prove existence of solutions when at least one of l or D is small. 

Thus existence was established for a large range of the parameters of physical 
interest. 

Solutions can be shown to exist for a bigger range of values of l, D, ..\ > 0. 

THEOREM 1. Ifm is positive and satisfies, 

1 
mJ..- [l..\ + m 2(1- (l + l) 2 )/2]D ~ 0 (5) 

then problem (1) and (2) bas a strictly decreasing solution satis(ying 0 :=:; y :=:; m. 

We note that (5) holds iff 

This improved existence result derives from the following better a'priori bounds on 
solutions established by the maximum principle. 

THEOREM 2. Let l, D,). > 0. The boundary value problem (1) and (2) has no 
negative solutions and positive solutions are strictly decreasing and satisfy 

0 < y(l):::; y(O):::; (1 + l)y(l). (6) 

Also upper and lower solutions are used to modify the differential equation for 
values of y, y(O) and y(l) outside a certain region, in such a way that solutions 
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of the modified differential equation lie in the region where the equation was not 
modified. Schauder degree theory in a suitable domain is used to prove existence 
of solutions of the modified equation. 

Further application of the maximum principle shows that solutions y which change 
sign, if they do exist are bounded in terms of their boundary conditions. This 
information may be useful in a shooting argument applied to a modified equation 
since solutions of the initial value problems for the unmodified equation do not 
always exist. Using the above information and the maximum principle applied to 
the differentiated and twice differentiated equations shows that if large positive 
solutions exist they are asymptotically linear. 

3. SOLUTIONS BY SHOOTING. 
In [3] the author obtained the following existence results using shooting and the 

implicit function theorem. 

THEOREM 4.2 ([3]). Let l0 D0 = 0 and ,\0 > 0 then there is 8 > 0 such that for 
ll-lol + ID- Dol+ I.\- Aol < 8 there exists a solution of problem (l)and (2) with 
y(i) = y;(l,D,.\), ly(i)i < 8,i = 0, 1. 

THEOREM 4.3 ([3]). If l0 D0 =f. 0 and .\0 = 0 there is a solution of problem (1) 
and (2) with y(O) = y0 (y(1 ), l, D),,\ = .\(y(1 ), l, D) continuously differentiable in 
a neighborhood of (0, lo, Do), yo(O, lo, Do) = 0 = .\(0, lo, D0 ). Moreover this is the 
only solution in a neighborhood of (y(O), y(1), l, D, .\) = (0, 0, 10 , Do, 0). 

These solutions are positive for lorD small, .\, l, D > 0. 
The solutions obtained in Theorem 4.2 are >. = 0, y identically constant in a 

neighborhood of y(O) = y(1) = Ao = 0. Moreover,>.= O,y identically constant are 
the only solutions in a neighborhood of y(O) = c = y(1), >.0 = 0. 

As y identically constant are the only solutions of problem (1) and (2) which do 
not change sign additional solutions cannot be obtained by this approach. 

If ZD = 0, then y identically zero is the only solution of problem (1) and (2) which 
does not change sign and again additional positive solutions cannot be obtained by 
this approach. 

For lorD small enough (5) is satisfied and these solutions are those obtained in 
Theorem 1. 

If y is such a solution for l, D, >. > 0, then -y is a solution for l, -D, >.. 
It would be interesting to know if solutions exist for other parameter values of 

physical interest and if solutions are unique. 

4. IONS OF DIFFERENT VALENCIES. 
Leuchtag [5] extended the above model in two directions by allowing multiple 

ions and allowing different valencies; of course he allows ions of different mobilities. 
Our results extend to Leuchtag's case of two ions with different valencies. We 

very briefly derive the equations for this case. We follow the notation of Leuchtag 
[5]. Thus the liquid junction occupies the region 0 ::=; t ::=; 8, f denotes the dielectric 



238 

constant, k the Boltzmann constant, T the temperature, E the electric field, No an 
arbitary unit of ionic density, q0 the charge of a proton, q± the charge of the ions, 
N ± the their densities, u± their mobilities, and, according to the Einstein relations, 
D± = U±kT their diffusion coefficients. Set V± = q±fqo, n± = N±/No, the Debye 
length A= [(ekT)/(411'q5No)Jlf2 , p = [(qoA)j(kT)]E and n = n+ + n_. 

Integrating the steady state equations for the conservation of ions one obtains 
the Nernst-Planck equations 

n~ = v_pn_- c_ 

n~ = V+Pn+ - c+, 

(7) 
(8) 

where the current induced by the ions is given by J± = (q0~0 )v±D±c±. Set c = 

c+ + c_. Gauss's equation has the form 

(9) 

Adding (7) and (8), using (9) to substitute for p(v+n+ +v_n_) and integrating one 
obtains 

(10) 

This is the corrected equation (20) of Leuchtag [5]. Using (10) bo substitute for n+ 
in (9) one obtains 

Differentiating, using (7) to substitute for n'_, and (11) to substitute for rL one 
obtains 

Using no nett current in the junction one obtains v_D_c_ +v+D+c+ = 0, solve {1.0) 
for c when t = fJ and noting that stirring in the resevoirs results in n± constant at 0 
and fJ one·eliminates c from (12). Also electrical neutrality in the reservoirs together 

with (9) gives p'(O) = 0 = p'(1). Setting x = tfJ, D = J-v_v+ ~+- D_ , 
. v+ +-v_D_ 

n(1)- n(O) 2 ( ) v +v+ ~ · 
l = fJ (O) , A= -fJ v_v+n 0, X= V- andy= by-v_V+P one obtams 

n -~~ 

y" = XYY 1 + y{A- (y(0)2 - y2)/2 + [lA + (y(0) 2 - y(1)2)/2]x} 

- [lA + (y(O?- y(1) 2 )/2]D x E [0, 1]. 

Note that v+v- < 0 and in the case n(1) > n(O) and v_ = -v+ one obtains (1). 
The results for problem (1) and (2) carry over to this equation. 
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5. INTERPRETATION OF RESULTS. 
From Theorem 1 solutions exist i.f A 2: 21(1 - (l~/) 2 )D2 , that this, if 

( ) ( \ 8 n(l)-n(O) + (8 n(l)-n(O) )2 
82 (O)-.... ?{jn 1 -n 0;( D+ -D_ ? n(O) n(O) 

n :::::_ ~ n(O) 'v+D+- v_D_ {1 + 8n(l)-n(0))2 
' · n(O) 

Thus for 5 n(l)(o~(o) large enough, solutions exist if 2 n(i)~)~o) ( g+ :::D-D ) 2 < 1 
n 1 n V+ + v_ _ 

while for 5 n(l~(o)(Ql small enough, solutions exist if <1 (n(l~~,l~o)) 2 
( "+g! :::~_-D_ ) 2 < 1. 

It would be interesting to prove existence for the higher order systems arising 
in Leuchtag [5]. It would be interesting to consider the coupled system of partial 
differential differential equations •Nhich arise in the transient state and show whether 
or not there is uniqueness for the steady state problem, even for the two ion model. 
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