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SOLITON GEOMETRY, KAC-MOODY ALGEBRAS 

AND THE; YANG-BAXTER EQUATIONS 

Ivan Sterling 

!.INTRODUCTION AND EXAMPLES 

This note is based on joint work with D.Ferus, F. Pedit and U.Pinkall [1]. 

Soliton geometry has been successfully applied to the study of linear Weingarten 

surfaces (e.g. H-~, K=-1, smoke rings (tubular surfaces), minimal, flat) in three dimensional 

Riemannian and Lorentz.ian space forms, minimal surfaces in S4, minimal surfaces in the 

Lorentzian S4 (which are almost. in 1:1 correspondence with Willmore surfaces), harmonic 

maps in Lie groups (and symmetric spaces), isometric imbeddings Mn(k) ~ M2n-1(k'), etc. 

Since we will be discussing a quite general method which applies to all the above 

examples it is important to also consider a specific case in order to get a feel for the difficulties 

involved in "setting the dials on the machine". The case we'll consider is that of minimal 

surfaces in S4• For the sake of completeness we'll flrst review the classical cases to show how 

soliton PDE's arise natually in geometry. 

2, NICE SURFACES COME FROM SOLITON EQUATIONS 

Let H and K be the mean and Gauss cunratures. 

Iff: IR 2~ IR 3 has K= -1 and is parametrized by asymptotic lines with If~ I = lfyl = 1 and 

ro(x,y) is the angle between the asymptotic lines (i.e. arccos <fx,fy>), then w satisfies the sine-

Gordon equation coxy= sin ro. 

If f:IR 2~ IR 3 has H-i and is parametrized by cunrature lines with <fz,fz> = 0 (i.e. f is 

conformal) and ro (x,y) is lo glfx I, the Cl) satisfies the sinh-Gordon equation 

mzz + }sinh(2ro) = 0. 
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Conversely every solution to the sine or sinh-Gordon equation completely determines an 

associated family of K or H-surfaces. 

Similarly Willmore surfaces (critical points of the integral of H2) give rise to a Toda 

system and smoke rings give rise to the non-linear SchrOdinger equation. 

3. PICTURES 

Figure l Figure2 

Figure 1 is a K-torus, computed by Melko and the author, due to Enneper. Hilbert 

proved there are no complete non-singular K-surfaces in lR 3. An important open problem is if 

there are any complete isometric immersions of liP in lR 5. Figure 2 is one of Bryant's 

Willmore projetive planes. All Willmore S2 's and lRJP 2 's were classified by Bryant and are 

given by a WeierstraB forrnula. This JRIP2 has the smallest possible Willmore integral among 

JRJP 2's. Figure 3 is the famous Clifford torus. It is a long standing conjecture of Willmore 

that the Clifford torus minimizes the Willmore integral among tori. Figure 4 is one of 

Lawson's Willmore surfaces. This one, of genus 2, is the first in a sequence of peanut shaped 

Lawson surfaces of genus g. Kusner conjectures that the Lawson surfaces minimize the 

Willmore integral among surfaces of some fixed genus g. Figure 5 is a Platonic Willmore 

surface of genus three found by Karcher, Pinkall and the author. It has tetrahedral symmetry 

and is the first in a sequence of Platonic Willmore surfaces. So far these surfaces which are 



Figure 3 Figure4 

Figure5 Figure 6 

computed using a trick of Smyth's by solving a Plateau problem cannot yet be found using the 

soliton methods discussed here. We will be discussing surfaces like that shown in Figure 6. 

This particular torus is due to Ferus and Pedit. It is especially nice because it is embedded. 

The ODE's discussed here are in fact very explicit, can be plugged into a computer, solved 

using say Runga-Kutta and give nice pictures. 

4. MAIN THEOREM 

MAIN THEOREM. (Ferus,Pedit,Pinkall & Sterling) Classification of minimal tori in s4(1) 

and Willmore tori (of finite type) in R3• 
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The classication is divided roughly into three parts: 

(i) a recipe which constructs minimal surfaces, 

(ii) showing that all minimal tori come from the recipe, 

(iii) telling when the recipe yields tori. 

Parts (ii) and (iii) will not be discussed here. In general the recipe produces quasi­

periodic minimal surfaces and one needs to study the period matrix and Jacobian of the spectral 

curve associated to the surface in order to control periodicity properties. Part (ii) amonts to 

finding an explicit sequence of solutions to the Jacobi equation, an elliptic system of PDE 's on 

the surface. In the case of a compact torus, we can have only finitely many linearly 

independent solutions (in general if this is true we say the surface is of finite type) and this 

turns out to imply that the surface comes from the recipe. 

5. MINIMAL SURFACES IN S 4(1) 

Let f: lR 2 -~ S4(1) C lR 5. Then f is conformal if and only if <fz,fz> = 0 and a 

conformal f is minimal if and only if fzz = 0. 

Definition We say F(x,y) e S0(5) is an adapted moving frame off if f=Fe0 and Pel' Fe2 

span the tangent space to fwhere e0, .•• ,e4 is the canonical basis of 1R5• 

This gives the Frenet equations: Fz =FA, Fz: ==FA, A: 1R 2 ----? so(5,a::). 

And the integrability coRditions (the Maurer-Cartan equations): Az. -A,.,_ = { AA]_ 

In order to translate our geometric problem into an algebraic one we must sort out what 

is special about the A for an adapted moving frame of a minimal f. In order to do this we need 

to decompose so(S,a::) as follows: Let 

(

10000\ 
0 0 -1 0 0 

Q = . 0 1 0 0 0 .J e S0(5) , Q4 = I, 
0 0 0 -1 0 
0 0 0 0 -1 

Mk = {Y e S0(5,a::) I QYQ·1 = ikY}, k = 0, ... ,3. 

The Mk's are the eigenspaces of AdQ with eigenvalues ik. For example: 
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Mo_l\( ~ ~ -; ~ ~) x,y e I! )· 
0 0 0 0 -y 
0 0 0 y 0 

PROPOSITION 1. F is an adapted moving frame of a minimalfifand only if 

A: JR2-+ Mo (J) MI. 

Definition A: lR 2 -7 so(5,1!) is called admissible if 

A = A0 + A1 , Ak: lR 2 -7 Mk, 

A-z -Az = [A.A.] . 

Given an admissible A we solve the Frenet equations for F and the frrst component 

f=Fe0 will be a minimal surface. Furthermore we have 

PROPOSITION 2. (Enneper's associated family of minimal surfaces) If A is admissable, 

then so is 

We consider this entire associated family as a single object. A loop in so(5,J!). 

6. LOOP ALGEBRAS 

Let 9 = so(5,1!). 

8 

Letg' ={A.-7X(A.)= l: J..kXkiXke 9}. 
k=-8 

Let9'Q= {Xe g'!Xke Mk}. 

lR -
Andletg'Q= {Xe g'IX_k=Xk}. 

We can now give our recipe to construct minimal fin S4(1) by ODE's. 

8 

THEOREM 1. Choose any X0 = l: A,kXkE 9'Q with 8=:1 mod 4, then 
k=-8. 

(a) There is a unique X: JR2 -+ gQ such that 

xz =£X, i rtxo.1 + AXsJJ 

X(O,O) = X0. 

(b) A= i (tXo.1 + AXs) satisfies A-z -Az = [A,AJ. 
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7. R-MATRICES 

Theorem 1 is a special case of a general proposition (given below). We need to 

introduce two new ideas, R-matrices (i.e. solutions to the Yang-Baxter's equation) and ad-

invariant vector fields. 

Let 9 be any Lie algebra. 

Definition A linear map R:9 ~ 9 is called an R-matix if for some ae (I; 

R([RX,Y] + [X,RY]) - [RX,RY] = a[X,Y] for all X,Y e 9. 

Example 9 = g'Q , X = I: A kXk , RX = t L (sign k) A kxk. 

Note i(~X3_ 1 + AX3) = (R + t)(A1-3X). 

Definition A vector field Jon 9 is called ad-invariant if (Dis the directional derivative) 

Example Jx = A H>x. 

MAIN PROPOSITION. If R: 9 ~ 9 is an R-matrix, J} ad-invariant and Jl,!i e lX, then 

(a) The system 

is integrable (Xs1 = X 1s). 

X 8 ={X, (R + J1)lxl 

X1 = {X, (R + !iii xl 

(b) A= (R + J1)lx, A= (R + !i)Ix satisfy A-z -Az = [A,A]. 

By plugging our examples for Rand Jx into the Proposition one obtains Theorem 1. 

Thus Theorem 1 is proved as soon as the Proposition is. The proof of the Proposition is a 

direct calculation which falls out from the definitions. 
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