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Abstract. In this note we survey results in recent research papers
on the use of Lie groups in the study of partial di�erential equa-
tions. The focus will be on parabolic equations, and we will show
how the problems at hand have solutions that seem natural in the
context of Lie groups. The research is joint with D.W. Robinson,
as well as other researchers who are listed in the references.

1. Introduction

When the Hamiltonian of a quantum-mechanical system is related
to a Lie algebra, it is often possible to use the representation structure

of the Lie algebra to decompose the Hilbert space of the quantum-
mechanical system into simpler (irreducible) pieces. For example, if
a Hamiltonian commutes with the generators of a Lie algebra, the
Hilbert space of the system can be decomposed into irreducibles of the

Lie algebra, and the Lie algebra elements themselves can be used as
elements in a set of commuting observables.
We have aimed at making the present paper accessible to a wide

audience of non-specialists, stressing the general ideas and motivating
examples, as opposed to technical details.
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The class of such Hamiltonians is quite large: see [JoKl85] and
[Jor88]. In this introduction we will review those Hamiltonians H
whose interaction terms are polynomial in the position variables. Such

Hamiltonians are directly and naturally related to nilpotent Lie alge-
bras. The nilpotent case is studied in Section 2.
The spectrum of H is obtained by decomposing the physical space

on which the HamiltonianH acts into irreducible representations of the

underlying nilpotent group. Sometimes this decomposition is decisive,
as is the case with a particle in a constant magnetic �eld, where the
decomposition leads to a harmonic-oscillator Hamiltonian. Sometimes
the decomposition leads to a new Hamiltonian that requires further

analysis, as is the case with a particle in a curved magnetic �eld.
The time evolution of the system is obtained by solving the heat

equation of the underlying nilpotent Lie group. By writing the Hamil-
tonian as a quadratic sum of Lie-algebra elements and then using the
representation of these Lie-algebra elements arising from the regular

representation, it is possible to write e�tH as the convolution of a ker-
nel (which is a solution of the heat equation) with a representation
acting on the physical Hilbert space; see [Jor88].
The simplest case of this spectral picture is as follows: Consider a

nonrelativistic spinless particle of mass m in an external magnetic �eld
B (x). The Hamiltonian for such a system is given by

H =
1

2m

�
p�

e

c
A

�2
;(1.1)

where p = h
i
r and A is the vector potential satisfying B = r � A.

Consider the commutatorsh
pi �

e

c
ai; pj �

e

c
aj

i
= �

h

i

e

c
"ijkbk;h

pi �
e

c
ai; bj

i
=
h

i

@bj

@xi
�
h

i
bij;(1.2) h

pi �
e

c
ai; bjk

i
=
h

i

@bjk

@xi
�
h

i
bijk;

...
... ;

where A = (a1; a2; a3), B = (b1; b2; b3), x = (x1; x2; x3). If B is a
polynomial in x, eventually the derivatives of B will give zero, so that

the set of commutators closes. The resulting Lie algebra formed by real
linear combinations of the elements

pi �
e

c
ai; bi; bij; : : :(1.3)
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is therefore a nilpotent Lie algebra, and the Hamiltonian (1.1) is qua-

dratic in the �rst three Lie algebra elements Xi :=
�
pi �

e
c
ai
�
, i =

1; 2; 3, from the list (1.3). By general theory, e.g., [Rob91], this Lie
algebra is the Lie algebra g of some Lie group G, which we may take
to be simply connected.
We show further in [JoKl85] and [Jor88] that there is a unitary rep-

resentation U of G on L2 (R3) such that

2mH = dU

 
3X

i=1

�
pi �

e

c
ai

�2!
:

If there is a constant of motion for the Lie-algebra elements pi �
e
c
ai,

then U is a direct integral over a corresponding spectral parameter

�. We then get H =
R �

d� H(�) where H has absolutely continuous

spectrum, while each H(�) has purely discrete spectrum. If �0 (�) �

�1 (�) � � � � is the spectrum of H(�), then each � 7! �i (�) is real
analytic, and we get the following typical spectral picture.

�

�

�0(�)

�1(�)
�2(�)

In this paper we will focus attention on a more restricted case wherein
the coe�cients are periodic. As shown in Section 3, this case shares the

spectral band structure with the polynomial-magnetic-�eld case. We
show that in the periodic case the regularity of the coe�cients may be
relaxed, and in fact, our spectral-theoretic results will be valid when
the operator has L1-coe�cients.

2. Periodic operators

We begin by recalling some elementary de�nitions and facts about
strati�ed Lie groups from [FoSt82]. A real Lie algebra g is called
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strati�ed if it has a vector-space decomposition

g =

rM
k=1

g
(k);(2.1)

for some r, which we shall take �nite here, all but a �nite number of
the subspaces g(k) are nonzero,�

g
(k); g(l)

�
� g

(k+l)(2.2)

for all k; l 2 N , and g
(1) generates g as a Lie algebra. Thus a strati�ed

Lie algebra is automatically nilpotent, and if r is the largest integer
such that g(r) 6= 0, then g is said to be nilpotent of step r. A Lie group
is de�ned to be strati�ed if it is connected and simply connected and

its Lie algebra g is strati�ed.
Let G be a strati�ed Lie group and exp : g ! G the exponential

map. The Campbell{Baker{Hausdor� formula establishes that

exp (X) exp (Y ) = exp (H (X; Y )) ;

where H (X; Y ) = X + Y + [X; Y ] =2 + a �nite linear combination of
higher-order commutators in X and Y . Thus X; Y ! H (X; Y ) de�nes

a group multiplication law on the underlying vector space V of g which
makes V a Lie group whose Lie algebra is g and the exponential map
exp : g ! V is simply the identity. Then V with the group law is
di�eomorphic to G. Next let dk denote the dimension of g(k) and d
the dimension of g and for each k choose a vector-space basis X(k) =�
X

(k)
1 ; : : : ; X

(k)

dk

�
of g(k) such thatX1; : : : ; Xd = X

(1)

1 ; : : : ; X
(r)

dr
is a basis

of g. If �1; : : : ; �d is the dual basis for g�, i.e., if �k (Xl) = �k;l, de�ne

�k = �k � exp
�1. Then �1; : : : ; �d are a system of global coordinates for

G, and the product rule on G becomes

�k (xy) = �k (x) + �k (y) + Pk (x; y) ; x; y 2 G;

where Pk (x; y) is a �nite sum of monomials in �i (x), �i (y) for i < k
with degree between 2 and m. It follows that both left and right Haar
measure on G can be identi�ed with Lebesgue measure d�1 � � � d�d.

If Xi denotes one of the (abstract) Lie generators, we denote by Ai

the corresponding right-invariant vector �eld on G, i.e., Ai on a test

function  on G is given by A
(l)
i = dL (Xi), or more precisely,�

A
(l)
i  
�
(g) =

d

dt
 (exp (�tXi) g) jt=0; g 2 G;(2.3)

and similarly A
(r)
i = dR (Xi) given by�
A
(r)
i  

�
(g) =

d

dt
 (g exp (tXi)) jt=0:(2.4)
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Since we can pass from left to right with the adjoint representation,

the formulas may be written in one alone, and we will work with A
(l)
i ,

and denote it simply Ai.
If 1 � j � d1 we will need the functions yj on G de�ned by

yj

 
exp

 
dX

k=1

�kXk

!!
= �j:(2.5)

These functions satisfy the following system of di�erential equations:

�A
(l)
i yj = A

(r)
i yj = �i;j:(2.6)

It follows by the standard ODE existence theorem that the functions
yi on G are determined uniquely by (2.6) and the \initial" conditions
yi (e) = 0. Also note that (2.6) is consistent only for the di�erential
equations de�ned from a sub-basis A1; : : : ; Ad1 , and that they would
be overdetermined had we instead used a basis: hence the distinction

between subelliptic and elliptic.
In addition, we have given a discrete subgroup � in G such that

M = G=� is compact. It is well-known that it then has a unique (up
to normalization) [Jor88, Rob91] invariant measure �. The correspond-

ing Hilbert space is L2 (M;�), and the invariant operators on G pass
naturally to invariant operators on M ; see [BBJR95]. Let X1; : : : ; Xd1

be the generating Lie-algebra elements. Then the corresponding in-
variant vector �elds on G will be denoted A1; : : : ; Ad1 , and those on M

will be denoted B1; : : : ; Bd1. Functions ci;j 2 L
1 (G) are given, and we

form the quadratic form

h (f) =

d1X
i;j=1

hAif j ci;jAjfi :(2.7)

If further

ci;j (g
) = ci;j (g) for g 2 G; 
 2 �;(2.8)

then we have a corresponding form hM on M = G=�.

Introducing

c"i;j (x) = ci;j
�
"�1x

�
; " > 0;(2.9)

we get for each " a periodic problem corresponding to the period lattice
"�. To speak about "� for " 2 R+ , we must have an action of R+ on
G which generalizes the familiar one

" : (x1; : : : ; xd) 7�! ("x1; : : : ; "xd)

of Rd . It turns out that this can only be done if G is strati�ed, and so in
particular nilpotent; see [FoSt82], [Jor88]. In that case it is possible to
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construct a group of automorphisms f�"g"2R+ of G which is determined

by the di�erentiated action d�" on the Lie algebra g. If g is speci�ed

as in (2.1){(2.2), then

d�"
�
X(1)

�
= "X(1); X(1)

2 g
(1); " 2 R+ :(2.10)

Let H, respectively H", be the selfadjoint operators associated to the
period lattices � and "� (see [BBJR95] or [Rob91]), and let St = e�tH ,
S"
t = e�tH" .
We now turn to the homogenization analysis of the limit " ! 0

which leads to our comparison of the variable-coe�cient case to the
constant-coe�cient one. It should be stressed that in the Lie case, even
the \constant-coe�cient" operator

P
i;j Aiĉi;jAj is not really constant-

coe�cient, as the vector �elds Ai are variable-coe�cient.
Take even the simplest example where G is the three-dimensional

Heisenberg group of upper triangular matrices of the form

g =

0
@1 x z
0 1 y
0 0 1

1
A ; x; y; z 2 R:(2.11)

In this case, dimg
(1) = 2, and dim g

(2) = 1, with g
(2) spanned by the

central element in the Lie algebra. Di�erentiating matrix multiplication
(2.11) on the left as in (2.3), we get the following three identities:

A1 =
@

@x
+ y

@

@z
= �dL (X1) ;

A2 =
@

@y
= �dL (X2) ;

A3 =
@

@z
= �dL (X3) ;

where the �rst vector �eld is of course variable coe�cients.

We will use standard tools [ZKO94] (see also [Dau92], [Tho73],
[Wil78]) on homogenization.

Theorem 2.1. [BBJR95] Suppose the system ci;j 2 L1 is given and

assumed strongly elliptic. Then there is a C0-semigroup Ŝt on L
2 (G; dx)

with constant coe�cients, where dx is left Haar measure, such that

lim
"!0




�S"
t � Ŝt

�
f




2
= 0

for all f 2 L2 (G; dx) and t > 0.

The constant coe�cients of the limit operator ĉi;j may be determined
as follows: We show in [BBJR95] that if

ci;j (g) := h (gi � yi; gj � yj)(2.12)
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and if C (g) is the corresponding quadratic form, then the problem

inf
g
C (g) =: Ĉ(2.13)

has a unique solution, i.e., the in�mum is attained at f1; : : : ; fd1 such
that

C (f) = Ĉ:(2.14)

The order relation which is used in the in�mum consideration (2.13)

is the usual order on hermitian matrices: For every g, the matrix

C (g) := (ci;j (g))
d1
i;j=1

is hermitian, and the matrix inequality C (g) � Ĉ

may thus be spelled out as follows:X
i;j

�zici;j (g) zj �
X
i;j

�ziĉi;jzj for all z1; : : : ; zd1 2 C :

Solvability of this variational problem is part of the conclusion of our
analysis in [BBJR95], i.e., the existence of the minimizing functions

f1; : : : ; fd1 .
Then the coe�cients of the homogenized operator can also be com-

puted with the aid of the coordinates yi, i = 1; : : : ; d1, introduced in
(2.5) and (2.6). One has the representation

ĉi;j =

Z
Y

dy

d1X
k;l=1

(Ak (fi (y)� yi)) ck;l (y) (Al (fj (y)� yj))(2.15)

= hY (fi � yi; fj � yj) ;

where h denotes the sesquilinear form associated with H, and the sub-
script Y refers to the region of integration. Speci�cally, Y is a funda-

mental domain for the given lattice � in G. For example, we may take
Y to be de�ned by

Y =
\

2�

�
x 2 G ; jxj �

��x
�1��	 ;(2.16)

and j � j de�ned relative to a geodesic distance d, jxj := d (x; e), x 2 G.
Then

(i)
S


2� Y 
 = G, and

(ii) meas (Y 
1 \ Y 
2) = 0 whenever 
1 6= 
2 in �.

(These are the axioms for fundamental domains of given lattices, but

we stress that (2.16) is just one choice in a vast variety of possible
choices.)
The simplest case of the construction is G = R, and it was �rst

considered in [Dav93, Dav97] by Brian Davies. This is the simplest
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possible heat equation, and we then have the conductivity represented
by a periodic function c, say

c (x+ p0) = c (x) ; x 2 R;

where p0 is the period. Then H = �
d
dx
c (x) d

dx
, and it can be checked

that

ĉ =

�
1

p0

Z p0

0

dx

c (x)

��1
:

Theorem 2.2. [BBJR95] Adopt the assumptions of Theorem 2.1. Then

lim
t!1

tD=2 ess sup
jxj2+jyj2�at

���Kt (x ; y)� K̂t (x ; y)
��� = 0

for each a > 0 where jxj = dc (x ; e), and where

dc (x ; y) = sup

(
 (x)�  (y) ;  2 C1c (G) ;

d1X
i;j=1

ci;j (Ai ) (Aj ) � 1 pointwise

)

and Ai refers to the Lie action of the vector �eld Ai on  from (2.3).

It is our aim here only to sketch the ideas, and the reader is referred
to our papers for details, but we stress that the proof is based on
homogenization, see, e.g., [BLP78], [ZKON79], [Koz80], and [AvLi91]
The number D is the homogeneous degree de�ned from the given

grading, or strati�cation, g(i) of the nilpotent Lie algebra g. As spelled

out in [Jor88] and [FoSt82], there are numbers �i depending on the
Lie-structure coe�cients such that

D =
X
i

�i dim g
(i):

To be speci�c, the numbers �i are determined in such a way that we
get a group of scaling automorphisms f�"g"2R+ of g, and therefore on

G, and it is this group which is fundamental in the homogenization
analysis. Speci�cally, extending (2.10), �" : g! g is de�ned by

�"
�
X(i)

�
= "�iX(i); X(i)

2 g
(i);(2.17)

and then extended to g by linearity via (2.1), in such a way that

�" ([X; Y ]) = [�" (X) ; �" (Y )] ; X; Y 2 g; " 2 R+ :(2.18)

Hence if (2.2) holds, then it follows from (2.17) and (2.18) that �i = i
for i = 1; 2; : : : . In the case of the Heisenberg Lie algebra g, we have
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[X; Y ] = Z as the relation on the basis elements; Z is central. Then

g
(1) = span (X; Y ), g(2) = RZ, �1 = 1, �2 = 2, so D = 4.

Let Kt and K̂t be the respective integral kernels for the semigroups

St and Ŝt, and set

jjjKjjjp = ess
x2G

�Z
G

dy jK (x; y)j
p

�1=p

and

jjjKjjj
1
= ess

x;y2G
jK (x; y)j :

Then

Theorem 2.3. [BBJR95] Adopt the assumptions of Theorem 2.1. Then

lim
t!1

tD=2
���������Kt � K̂t

���������
1
= 0; lim

t!1

���������Kt � K̂t

���������
1
= 0:

3. G = R
d

The case G = R
d was considered in [BJR99], where we further

showed that the limit S"
t ! Ŝt then holds also in the spectral sense.

In that case, we scale by " = 1=n, n!1, and then identify the limit
operator as having absolutely continuous spectral type, and we prove

spectral asymptotics. (A general and classical reference for periodic
operators is [Eas73].)
Starting with an equation which is invariant under the Zd-transla-

tions, we then use the Zak transform [Dau92] to write St = e�tH as a

direct integral over Td (= R
d=Zd), viz.,

St =

Z �

Td

S
(z)
t ;(3.1)

and we establish continuity of z 7! S
(z)
t in the strong topology [BJR99,

Lemma 2.2]. Pick a positive C1-function � on Rd of integral one, and
set

c
(n)
i;j (x) = nd

Z
Rd

dy � (ny) ci;j (x� y) ;

and form the corresponding C0-semigroup

S
(n)
t = e�tH

(n)

;

where H(n) is de�ned from c
(n)
i;j . We then show in [BJR99] that S

(n)
t

approximates St, not only in the strong topology, but also in a spectral-
theoretic sense. Using this, we establish the following connection be-

tween St = e�tH and S
(z)
t = e�tH

(z)

in (3.1). Setting z =
�
ei�1 ; : : : ; ei�d

�
,

we get
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Theorem 3.1. If �n (z) denotes the eigenvalues of Hz then

(3.2) lim
N!1

�
N2�n (w) ; w

N = z; n = 0; 1; : : :
	

=
nD

(n� �) j Ĉ (n� �)
E
; n 2 Z

d
o
;

where the limit is in the sense of pointwise convergence of the ordered

sets, and where Ĉ = (ĉi;j) is the constant-coe�cient homogenized case.

The rate of convergence of the eigenvalues in (3.2) can be estimated
further by a trace norm estimate.
We refer the reader to [BJR99] for details of proof, but the argu-

ments in [BJR99] are based in part on the references [Aus96], [DaTr82],
[Eas73], and [ZKON79]. In addition, we mention the papers [Aus96],
[AMT98], and [TERo99], which contain results which are related, but
with a di�erent focus.

Finally, we mention that our result from [BJR99], Theorem 3.1, has
since been extended in several other directions: see, e.g., [Sob99] and
[She00].
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