
16

finite set is recursive. The complement of a recursive set is recursive; for the

complement of A is -*A. The union and intersection of two recursive sets is

recursive; for the union of A and B is A V B, and the intersection of A and B is A

& R

Recall that Vj means for ail x and 3ar means for some x. We call Va: a

universal quantifier and 3x an existential quantifier. As we shall see in §13,

these are not recursive symbols. We introduce some modified quantifiers, called

bounded quantifiers, which are recursive. We let (Vj < y)X(x) mean that X(x)

holds for all x less than y, and let (Bar < y)X(x) mean that X(x) holds for some x

less than y. To see that these are recursive, note that

(Vx < y)X(x) <-> μx(~>X(x) V x = y) = y,

(3x< y)X(x) *->μx(X(x) V x = y) < y.

To allow us to use bounded quantifiers with < instead of <, we agree that (Var <

y) means (Va: < y+l) and similarly for 3.

We summarize the results of this section. If a function or a relation has

an explicit definition or an inductive definition or a definition by cases in terms

of recursive symbols, then it is recursive. Recursive symbols include variables,

names of recursive functions and relations, μ, propositional connectives, and

bounded quantifiers. The recursive functions include the initial functions, +, ,

2̂ , -, and all constant total functions. The recursive relations include all finite

relations, <,>,<, >, and =.

7. Codes

Suppose that we wish to do computations with a class / other than ω as

our set of inputs and outputs. One approach is to assign to each member of / a

number, called the code of that member, so that different codes are assigned to

different members. Given some inputs in /, we first replace each input by its

code. We then do a computation with these numerical inputs to obtain a

17

numerical output. If this output is the code of a member of /, that member is

the final output of the computation.

We want the first and last steps of the above procedure to be performed

according to an algorithm. This means that we should do our coding so that

there is an algorithm by which we can find the code of a given member of /, and

an algorithm by which, given a number, we can decide if it is the code of a

member of / and, if it is, find that member. If this is the case, we say that the

coding is effective.

We shall now assign a code to every finite sequence of numbers. Let J?Q,

/?,, ... be the primes in increasing order. To the finite sequence JQ, ..., a?. , we

assign the code

(The empty sequence has the code 1.) The theorem on unique decomposition

into prime factors shows that different sequences have different codes. (Note

that this would not be true if we omitted the +Γs in the exponents.) Since

there is an algorithm for decomposing a number into prime factors, this coding is

effective.

We shall show that some functions and relations associated with this

coding are recursive. To do this, we give definitions of these functions and

relations which show, by the results of the last section, that they are recursive.

We always take our functions to be total, even when we are only interested in

them for certain arguments.

We want to define Div(x,y) to mean that x is divisible by y. The obvious

definition is Div(x,y) <-* 3z(x = y z). This does not show that Div is recursive,

since unbounded quantifiers are not recursive. We therefore seek a bound for z.

This leads to the definition:

Div(x,y) <-» (3z < x)(x = y z):

18

Next we define the set Pr of primes:

Pr(x) <-» x > I & (Vy < x}(y > I -» ^Di

We then define by induction

P0 = 2,

Pi+l = μx(Pr{x)kx> pj.

We define

exp(x,ί) = μy^Di^p^1) V * = 0),

so that eιρ(a:,i) is the exponent of p in the decomposition of x. (The clause V x

= 0 is there to make the function total; it makes exp(Q,i) = 0.)

For each k we define

*0+1 xk-\+l

<ab -'Vι>a=Ό ' -•**-!
Then <XQ,...,a:, ,> is the code of the sequence JQ,...,̂ .̂

Next we define

ft(ar) = μi(exp(x,i) = 0),

If x = <JQ,...,Z, ,>, then /Λ(a) = A; (a?) . = j for i < kr, and (x). = 0 for i > fc

Since z < p^for p > 1, exp(x,i) < x. It follows that

(1) x*Q*(x).<x,

and hence

(2) xi«xv...,xk>.

Since Div(x,p) implies i < p - < x for j > 0, the set Seq of codes of finite

sequences is defined by

Seq(x) «-» x# 0 & (Vt < x}(Div(x,p$ -» i < ίA(j)).

We define a:* y so that <Jlv..,arfc> * <2/1,...,j//> is

x * y is M56(K^) & lh(z) = /Λ(j)

(v < ftί*))(Wf. = wp & (Vi
As a first application of these codes, we show how to replace fc-ary

19

functions and relations by 1—ary functions and relations. If F is a fc-ary

function, we define a 1-ary function <F>, called the contraction of F, by

We can recover Ffrom <F> by the equation

F(xr...,xk) ~ <F>(<xv...,xk>).

These two equations are called the contraction equations. Considered as explicit

definitions, they show that F is recursive iff <F> is recursive. A similar

procedure holds for relations; we leave the details to the reader.

As a second application, we consider simultaneous definitions of functions

by induction. Suppose we define

F2(0,l) =

where Gp G2, H^ and #2 are total and recursive. This defines total functions

Fj and F2 by induction on y. We shall show that Fj and F2 are recursive. It

suffices to show that the function F defined by

is recursive; for Fj(y,l) = (F(y,ί))Q and F2(j/,l) = (F(y,t))Γ But F has the

recursive definition

As a third application, we introduce a more general form of definition by

induction in which the value of the function at y depends on all the previous

values. If F is a total (fc+l)-ary function, we define another total (fc+l)-ary

function Fby

Thus F^yJ;) codes a sequence which gives the values of fl(i,ϊ) for i < y. We

20

show that F is recursive iff F is recursive. We cannot use the preceding equation

as an explicit definition; for we cannot fill in ... until we know the value of the

argument y. However, we have the explicit definitions

) ~ μz(Seq(z) & Λ(z) = y & (Vi < y)((z). = ^i.3))),

Given a total function G, we may define a total function F by induction

on y as follows:

We shall show that if G is recursive, then F is recursive. By the above, it is

enough to show that Fis recursive. But Fhas the inductive definition

7(0,3) ~ <>,

7(rf 1,3) = 7(Λ3) * < G(%,x), ^ ,3) >.

An inductive definition of this sort is called a course-of— values inductive

definition.

8. Indices

We are now going to assign codes to some of the elements in the operation

of the basic machine. This will lead to some of the most important theorems of

recursion theory.

First, a general remark on coding. Suppose that we want to code the

members of /. We may be able to identify each member b of / with a finite

sequence αlv..,α,. of objects which have already been coded. We can then assign

to b the code <jp...,̂ >, where x is the code of a .

We begin by assigning codes to the instructions for the basic machine.

We assign the code <Q,i> to the instruction INCREASE ϊi; the code <l,i,n> to

the instruction DECREASE Iz>; and the code <2,n> to the instruction GO TO

n. If P is a program consisting of N instructions with codes £j,...,g^p we assign

the code <x^...,x*j> to P.

We define

