
AN INTUITIONISTIC THEORY OF LAWLIKE,
CHOICE AND LAWLESS SEQUENCES

JOAN RAND MoscπovAKis1

Dedicated to Stephen Cole Kleene

Abstract
In [12] we defined an extensional notion of relative lawlessness and gave

a classical model for a theory of lawlike, arbitrary choice, and lawless se-

quences. Here we introduce a corresponding intuitionistic theory and give a
realizability interpretation for it. Like the earlier classical model, this realiz-
ability model depends on the (classically consistent) set theoretic assumption
that a particular Δf well ordered subclass of Baire space is countable.

§1. Introduction.

1.1. Background. Infinitely proceeding sequences of natural numbers are the
fundamental objects of L. E. J. Brouwer's intuitionistic theory of the continuum.
Choice sequences are generated by more or less freely choosing one integer after
another; at each stage, the chooser may also specify restrictions on future choices
(compatible with previous restrictions, if any, and with the indefinite continuation
of the process).

Brouwer called "lawlike" or ua sharp arrow" any sequence all of whose values
are completely determined (restricted) according to some fixed law at some finite
stage in the generation of the sequence. G. Kreisel [9] called "lawless" any sequence
for which (i) "the simplest kind of restriction on restrictions is made, namely
some finite initial segment of values is prescribed, and beyond this, no restriction
is to be made." Kreisel and A. S. Troelstra developed a theory of lawlike and
mtensionally lawless sequences, based on (i), for which they were able to prove
that every formula without free lawless variables is equivalent to one without any
lawless variables and hence "it is possible to regard lawless sequences as a 'figure
of speech'."2

Alternatively a sequence could be called lawless if (ii) it successfully evades
description by any fixed law. The assumption that lawless sequences are real

*I wish to thank Yiannis Moschovakis, Anne Troelstra and Dirk van Dalen for constructive
comments on earlier drafts of this paper, Occidental College for sabbatical support, and UCLA
and MSRI for their generous hospitality in 1989-90 when much of this work was done.

2[15, p. 639]. Kreisel [9, p. 225] asserts however that the equivalence result is not to be
interpreted in this way, but rather as "a complete analysis of all known properties of lawless
sequences in the given context."
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objects of the intuitionistic continuum, whose properties are determined by their
relationship to the lawlike sequences as suggested by (ii), leads to an entirely
extensional theory of lawlike, general choice, and lawless sequences reminiscent of

the theory of generic real numbers.3 A classical model for such a theory appears in
[12], under the classically consistent assumption that a particular ΔJ well ordered
subclass of Baire space is countable. The class of "definably lawless sequences"
studied there satisfies KreisePs Axiom of Open Data (suggested by (i) above) and
a strong continuity principle (but not bar induction) and is a comeager subset

of the continuum. In another paper (now in preparation) we show that it has
classical measure zero and is simply definable in terms of a notion of forcing.

This paper introduces intuitionistic theories of definably lawless sequences
incorporating S. C. Kleene's fundamental axiomatization FIM [8] of Brouwer's
theory of the continuum and extends Kleene's function realizability interpretation
of FIM to the new systems under the set-theoretic assumption appealed to in [12].

Whenever possible the reasoning used is constructive; however the realizability of
some of the new axioms will be established only classically.

1.2. Motivation. Before discussing lawless sequences in context (ii) we need
to know something about the lawlike ones. According to [6] Kleene did not in-
troduce a special type of lawlike sequences because the class of general recursive
functions was adequate for his purposes and was definable in his theory. Here we
need a broader interpretation of "lawlike" which we shall try to motivate construc-
tively.

What assumptions can reasonably be made about all lawlike sequences? We
propose the following:

1. If P(x,y) is a definite property of ordered pairs of natural numbers such

that for each x there is exactly one y which makes P(x,y) true, then there is a
lawlike function φ such that for all x,y :

φ(x) = y if and only if P(x, y).

2. The class of all lawlike sequences is countably infinite in the classical sense,
but has no lawlike enumeration.

For (1) we accept as "definite" only properties P all of whose sequence pa-
rameters are lawlike, and whose constructive and classical meanings essentially
coincide modulo Markov's Principle. Subject to this restriction P may involve
quantification over all choice sequences and over all lawlike sequences, as well as
over the natural numbers.

As in [12] we next define a notion of "lawless" relative to any given notion
of "lawlike" satisfying (1) and (2). One possibility would be to adopt (ii) as the

definition, so a sequence α is lawless if for no lawlike sequence φ and for no natural
number x is it the case that \t α(x -f t) is φ] however then α might be lawless
even though e.g. λt α(2t) was lawlike. This objection suggests something like "α
is lawless if and only if for each lawlike injection φ, αo φ satisfies (ii)." What we

3The context of this theory is somewhat wider than Kreisel and Troelstra's since it includes
arbitrary choice sequences as well as lawlike and lawless ones; however, some of the axioms
concerning properties specific to lawless sequences will be restricted to the narrower context.
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seem to need for the proofs is a stronger notion of "lawless" whose definition and
key properties appear in Section 3.

1.3. Sources. This paper is intended to be a direct sequel to Kleene and
Vesley's [8] and may be read independently of all other sources. However anyone
interested in the subject should surely read Kreisel's [9] and consult Kreisel and
Troelstra's [10]. One may also wish to consult [12], although there the viewpoint
was classical, the formalization cumbersome, and the presentation uneven.

Especially since the publication twenty-five years ago of Kleene's and R. E.
Vesley's metamathematical investigation [8], much effort has been devoted to ax-
iomatizing parts of intuitionistic mathematics beyond number theory. Troelstra's
and D. van Dalen's two recent volumes [15], taken together with Vesley's address
[16] to the 1979 Kleene Symposium, provide an excellent guide to the history and
current state of this work. In particular, Chapters 4 and 12 of [15] give the back-
ground of Kreisel and Troelstra's work on lawlike and lawless sequences; Chapter
12 also describes other special classes of choice sequences which have recently been
studied by Troelstra, van Dalen, G. F. van der Hoeven, and others.

§2. The formal theories.

2.1. The basic theory BD. This will be an extension of Kleene's basic formal
system B for the common portion of intuitionistic and classical analysis [8, Sections
4-6]. The main syntactic difference is that BD has two sorts of variables for
functions, i.e., choice sequences of natural numbers; in the intended interpretation,

one sort ranges over lawlike (or definable) sequences and the other over arbitrary
choice sequences.4 We use the letters a, b, c, d, e, g, h (with or without subscripts)
to denote variables over lawlike sequences, and i, j, k, 1, m, . . . ,i1? . . . as number
variables. As in [12, 8] α,/?,7, ... , a1?... denote variables over arbitrary choice
sequences.

The language includes the numerical equality constant = , Church's λ, a

finite list f0, fα , . . . , ίp of constants for primitive recursive functions, and the logical

constants &, V, -», D, V, 3 . Each f t expresses a function /t (#ι, . . . , x*., α^, . . . , α/.)
which, considered as a function of x l 9 . . . , z*., is primitive recursive uniformly in
α1? . . . , c*/.. In particular, /0 is 0, fι is ' , /2 is + , and /3 is see [8] and [7] for a

suitable list.
Terms and functors are defined as in [8] except that now a, b, c, d, e, g, h,

a1? . . . (as well as α, /?,... , α1? . . . ) are functors while i, j, . . . , i1? . . . are terms.
Thus f^tj,. . . , tj.., u 1 ?... ,u/.) is a term if t, are terms and MJ are functors. If
fct = 1 and /t = 0 then f t is a functor. If u is a functor and t is a term, (u)(t)
is a term. If x is a number variable and s is a term, λx(s) is a functor. A term
t (functor u) is a D-term (D-functor) if it contains no occurrences of arbitrary

function variables.
Prime formulas are of the form s = t where s, t are terms. Formulas

are built up from these using the propositional connectives, and the quanti-

4While retaining Kleene's view of the primary importance of arbitrary choice sequences, we
follow Kreisel [9] in adopting the notion of lawlike sequence as an additional primitive concept.



194 J. R. MOSCHOVAKIS

fiers Vx,3x,Va,3a,Vα,3α over all three sorts of variables. A D-formula is one
having free no arbitrary function variables. If u, v are functors, "u = v" ab-
breviates Vxu(x) = v(x) where x is not free in u or v. For any formulas A
and B, "A ~ B" abbreviates (A 3 B) k (B D A). "3!yA(y)" abbreviates
3yA(y) & VyVz(A(y) & A(z) D y = z) and similarly for 3!aA(a) and 3!α A(α).

The substitution lemma (Lemma 3.1 of [8, p. 12]) has to be restated to al-
low substitution of D-functors (but not arbitrary functors) for definable function
variables. In particular, if D-functors are substituted for all function variables
occurring free in a term (functor) [formula], the result is a D-term (D-functor)

[D-formula].
Lemma 3.3 of [8] has the following restatement: Let s be a term (u be a func-

tor) [P be a prime formula] containing free no variables but x1?... , xfc, a1?... , a/,

<*!?••• >αm Then under the intended interpretation s (u(y) where y is another
number variable) [P] expresses, as the ambiguous value, a function of x1 ?... ,x^,
α 1 ? . . . , αh α1 ?... , αm (function of x^... , xk, y, α 1 ?... , αh α1 ?... , αm) [predicate
of x l 9 . . . , Zfc, α α , . . . , α/, <*!,... , αm] primitive recursive uniformly in α 1 ?... , αh

<*!,••• ,<*m

The new logical rules and axiom schemata needed are

9D. C D A(a) / C D VaA(a).

10D. VaA(a) D A(g).

11D. A(g) D 3aA(a).

12D. A(a) D C / 3aA(a) D C.

For 9D and 12D, a is not free in C. For 10D and 11D, g is any D-functor free for
a in A(a).

Using these we can easily derive, for all formulas C, A(α) such that a is not
free in C D A(α), α is not free in C, and a is free for α in A(α) :

C D A(α) / C D VaA(a) and A(α) D C / 3aA(a) D C.
Notice also that Va3αVx a(x) = α(x) is a formal theorem.

As in [12] we follow Kleene's conventions for coding finite sequences of num-
bers and functions, although our notation differs somewhat from his.5 Here

( X Q , . . . ,**_!) abbreviates Yli<kP?+l and (z0, ,s*-ι) is Ui<hPT where pt is
the (i + l)st prime; (ra)t is the exponent of p, in the prime factorization of
m; (α0,... .α^ is \t (α0(t),... ,<*/_!(*)) (similarly with ( ) instead of ( ));
and (α); is λ<(α(t))t . We follow Kleene in writing α(x) for the standard code
(α(0),... , α(x — 1)) for the sequence of the first x values of α.6

If w codes a finite sequence, its length is the number lh(w) of non-zero expo-
nents in the prime factorization of w and for each t < lh(w) the (i + l)st term of
the sequence is («;), — 1. The code for the concatenation of finite sequences with
codes u and v is u * υ, and u * α is the infinite sequence defined by

5Kleene uses (), [ ] where we use (), () respectively. Here [ ] will be given a different meaning.
6The notation α(x) for (α(0),... , α(x - 1)) is seldom used.
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Seq(w) is an almost negative formula expressing the primitive recursive predicate
Seq(w), "w is the code of a finite sequence of numbers," and a 6 w abbrevi-
ates α(lh(w)) = w. The primitive recursive coding functions are among the initial
functions /0,... , fp and their properties are assumed formally. For future applica-
tions we assume the characteristic functions of the primitive recursive predicates
T(e, α, α, x, y), Γ^e, w, z, x, y) and U(y) are among the initial functions.7

We adapt the number-theoretic postulates and recursion equations for the
initial functions f{ of [8, pp. 14, 19ff.] to the current situation by writing x, y, z in
place of a, b, c. Similarly with Kleene's postulates concerning functions:

-0.1. {λx r(x)}(t) = r(t).
xl.l. x = y D α(x) = α(y).
X2.1. Vx3αA(x,α) D 3αVxA(x, λyα((x, y))).

For X0.1, r(x), t are terms such that t is free for x in r(x). For xl.l and X2.1, x
and y are distinct number variables and x is free for α in A(x, α).

A formula is almost negative if it contains no V and no 3 except in parts of
the form 3xP, 3aP, 3αP with P prime, and 3aVx a(x) = t where t is a term not
containing a free. Note that 3!yB(y), 3!aB(a) and 3!αB(α) are almost negative if
B is prime, and then Vx3!yB(x, y) is almost negative as well.

For each almost negative D-formula A(x, y) in which a and x are free for y
we take as an axiom
X2.2!DΓ Vx3!yA(x, y) D 3aVxA(x, a(x)).

For any almost negative D-formula A(x, a) in which x is free for a it follows that8

*2.1!D.- Vx3!aA(x, a) D 3aVxA(x,λy a((x, y))).

The Replacement Theorem (Lemma 4.2 of [8]) now holds with "x1?... ,xn,
a x,... , am, αα,... , α/" in place of "x1?... , xn, a1?... , am" in the version for for-

mulas. As in Lemma 4.3 of [8] each term, functor and formula has a normal form
(without superfluous λs).

Lemmas 5.3 and 5.5 of [8] now have additional lawlike parts. Thus for Lemma
5.3, if y, z are distinct number variables, a is any lawlike function variable, and

p(y), q, r(y, z), and r(z) are D-terms not containing a free, with a and y free for z

in r(y, z) and r(z), then

(a) h 3aVy a(y) = p(y).

(b) h 3a[a(0) = q fc Vy a(y') = r(y, a(y))].

(c) h 3aVy a(y) = r(a(y)) and h ΞaVy a(y) = r(a(y)).

Lemma 5.5 extends to allow definitions of lawlike functions by cases, combined
with primitive or course-of-values recursion, provided the case descriptions are

almost negative D-formulas. As an example, for almost negative D-formulas Q1? Q2

not containing a free and D-terms r l 9r2:

7See [5] and [7] for details. T(e, α, α, z, y) expresses "y is the Gδdel number of a proof of
{e}(α, α, x) = u for some u," and then U(y) is the u.

8Formal theorems *n are distinguished notationally from axioms xm.
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Vw[Seq(w) D (Q^w) V Q2(w)) & -(Q^w) & Q2(w))] h

The last axiom schema of BD is the "Bar Theorem" in Kleene's form
X26.3. VαΞ!xR(α(x)) & Vw[Seq(w) & R(w) 3 A(w)]]

& Vw[Seq(w) fc VsA(w * (s)) D A(w)] D A(l).

Here A(w) and R(w) may be any formulas satisfying the obvious restrictions on
the variables α, x, w, s. Observe that R is assumed to "bar" all choice sequences,
not just the lawlike ones.

2.2. The theory BDLS~. We now extend BD by adding axioms for lawless
sequences. Here "DLS(α)" abbreviates a specific almost negative formula of the
language of BD having free only the arbitrary function variable α; this formula will
be given explicitly in the next section. (We purposely leave open the possibility of
later interpreting "DLS(α)" as primitive, or as an abbreviation for another formula
of this or an expanded language.) As in [12], [α, β] is the sequence defined by

[α, 0(24) = α(fc), [α,β](2k+l) = β(k).

Similarly [α1? . . . , αn] is the sequence obtained by meshing α1? . . . , αn. For future
reference we introduce also the projection functions

for 0 < i < k. These notions have the obvious formal equivalents.
The class of restricted formulas is defined by induction as follows. Prime

formulas are restricted. If A, B are restricted, x is a number variable, and a is a
definable function variable then A & B, A VB, -»A, A D B, VxA(x), 3xA(x), VaA(a)
and ΞaA(a) are all restricted. If A(^,71? . . . ,7n) is restricted and contains free
no arbitrary function variables but /?,71?... ,7n then V^[DLS([/?,71? . . . ,7n]) D
A(/3,7ι, - ,7»)1 and Ξ/?[DLS([/3,7l, . . . ,7n]) & A(/?,7ι, . . . ,7n)l are restricted.

The axioms for lawless sequences are then

*DLS1.- Vw[Seq(w) D -Λfa-.(DLS(α) & α(lh(w)) = w)].

*DLS2.- Vα[DLS(α) D Vw[Seq(w) D - V)9-ι(DLS([α,/9]) & ?(lh(w))= w)]].
XDLS3.- Vα[DLS(α) & A(α) D BxV/^x) = α(x) & DLS(£) D A(/8)]].

"DLS4.- Vα[DLS(α) D 5xA(α,x)] D 3eVα[DLS(α) D 3!y e(α(y)) > 0 &
Vy(e(α(y))>θDA(α,e(ά(y))-l))].

For XDLS3~ A(α) is restricted and almost negative and contains free no arbitrary
function variables but α. For XDLS4~ A(α, x) satisfies the same conditions and in
addition e, α,y are free for x in A(α,x).

2.3. The intuitionistic theory IDLS~ . Kleene's basic theory B and his in-
tuitionistic theory FIM differed only by a single continuity axiom, "Brouwer's
Principle for Functions" [8, X27.1]. Similarly, but with an important difference:
IDLS- comes from BDLS~ by adjoining the axiom schema we call "Kleene's
Principle for Functions" :
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XKL1. Vα[A(o) D 3βB(a,β)] D 3rVα[A(α) D Vx3!y τ({x) * α(y)) > 0 &
V/?[Vx3y r({x) * ά(y)) = β(x) + 1 D B(α, /?)]],

for all almost negative formulas A(α) and all formulas B(α, β) where α, β must
be distinct arbitrary choice sequence variables.9 An immediate consequence is
"Kleene's Principle for Numbers" for A almost negative and τ, y, a free for x in
B(o,x):

-KL2. Vα[A(α) D 3xB(α,x)] D 3τVα[A(α) D 3yτ(α(y)) > 0 &
Vy[τ(α(y)) > 0 D B(α,r(ά(y)) - 1)]].

Kleene observed in [8, p. 74] that the special case *27.4 of XKL1 in which A(α)
is Vx σ(α(x)) = 0, with the additional assumption that σ is a spread-law [8, p. 56],
follows from Brouwer's Principle for Functions; he also showed [8, p. 80, *27.16]
that *KL2 (hence XKL1) fails if A(α) is not required to be almost negative.

Two important consequences of XKL1 are

*KL3. Va3/3B(a,/?) D 3rVa[VxΞ!yr((x) * a(y)) > 0 &
V/?[VxΞyτ((:r} * a(y)) = β(x) + I D B(a, /?)]]

and the corresponding consequence *KL4 of *KL2, both proved by taking the
almost negative formula Ξa(a = α) as the A(α). Since DLS(α) will be almost
negative also, we conclude that in IDLS~ every function completely defined on
either the species of all lawlike functions or the species of all lawless functions is
continuous on that domain, though it may have no continuous extension to B.10

Since XKL1 is Kleene function-realizable it can consistently replace X27.1 in
FIM. It is obvious, but worth emphasizing, that Kleene's formal systems B and
FIM are subsystems of BD (a fortiori BDLS") and IDLS~ respectively.

2.4- Strengthening the density axioms. The theories BDLS and IDLS are

extensions of BDLS~ and IDLS~ respectively, obtained by replacing XDLS1" and
XDLS2~ by
XDLS1. Vw[Seq(w) D 3α(DLS(α) & α(lh(w)) = w )],
XDLS2. Vα[DLS(α) D Vw[Seq(w) D 3β(ΌLS([a, β]) & ?(lh(w)) = w)]].

Because of the "almost negativity" condition on XDLS3~~ and XDLS4~, even
IDLS is not an entirely satisfactory intuitionistic theory of lawlike, choice and
lawless sequences, yet it is the strongest system whose consistency will be es-
tablished in this paper. The condition can in fact be relaxed somewhat without
strengthening the axioms.

2.5. Sidestepping almost negativity. A formula is mildly assertive if it is
almost negative or obtainable from almost negative formulas using only disjunction
and existential quantification over number and definable function variables; feebly
assertive if only disjunction and existential number quantification are allowed. In
IDLS- we can prove the extension *DLS5 of XDLS3" to restricted mildly assertive

9This extension of Brouwer's Principle is called the "Generalized Continuity Principle" by
Troelstra [14] who has used it to characterize Kleene's realizability. Brouwer's Principle follows
trivially from it when A(α) is 0 = 0.

10A similar situation arises in the theory of constructive real numbers, where local continuity
holds but uniform continuity on [0,1] (Brouwer's "Fan Theorem") may fail.



198 J. R. MOSCHOVAKIS

A(α) and the extension *DLS6 of XDLS4~ to restricted feebly assertive A(α,x),
always assuming no arbitrary choice sequence variables but α are free in A.

A formula is assertive if it is almost negative or obtainable from almost
negative formulas using only disjunction and existential quantification. In IDLS
we can prove the extension *DLS7 of XDLS3~ to restricted assertive formulas A(α)
containing free no arbitrary function variables but α.

XKL1 cannot consistently be similarly extended. For a counterexample let
A(α) be Vxα(x) = 0 V -Vxα(x) = 0 and B(α,/3) be (β(0) = 0 D Vxα(x) =
0) & (β(0) φ 0 D -Vxα(x) = 0).

§3. Lawlessness relative to D.

3.1. The informal notion. Let JV be {0,1,2,...} and B be Baire space NN.
Assume D is a given subclass of B which is closed under relative recursion; we
think of D as the class of lawlike sequences.

If β G B maps sequence numbers to sequence numbers, β is called a predic-
tor. If 7, δ G B and

c/ \ _ J 0 if 7(m) φ n for all m,
^ ' ~~ \ μm(7(m) = n) + 1 otherwise

then 6 is called the converse of 7. A sequence 7 is strongly lawlike if both 7
and its converse are lawlike.

A sequence a £ B will be called lawless (relative to D) if for each lawlike
predictor π and each strongly lawlike injection 7, there is an x so that

α o 7 G (α~cΓγ)(a;) * π((α~(Γγ)(;r)).

Here α o 7 can be thought of as a subpermutation of α, so a is lawless if and
only if every lawlike predictor is eventually correct (and hence very often wrong)
on every strongly lawlike subpermutation of α.11

Note added in proof: A simpler, but equivalent, definition of "lawless (relative
to D)" appears in [13].

A finite list of sequences α0,... ,α^j is independent if [α0,... ,dk-\] ιs

lawless. This convention, which was also used by Michael Fourman in [4], is
incompatible with Kreisel and Troelstra's strongly intensional treatment of lawless
sequences; however, it greatly simplifies the extensional theory.

All the lemmas of Section 1 of [12] hold for the present notion. We summarize
them here, providing constructive proofs (modulo Markov's Principle, for the finite
injury priority argument for Lemma 4) of the density lemmas.12

LEMMA 1. (Technical Lemma.) Every strongly lawlike subpermutation of a
lawless sequence is lawless. In particular:

(a) If [α0,... , oik-i] is lawless, so is [ασ(o)> »ασ(fc-ι)l where σ is any permu-
tation of {0,... , fc- l} .

11 Every strongly lawlike 7 is lawlike with lawlike range, and conversely; thus this definition of
"lawless relative to D" is equivalent to the one in [12].

12The proofs in [12] of the Technical and Uniformity Lemmas were already effective.
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(b) If α0,... , ak_ι is an independent list, then each αt is lawless, and if
0 < i < j < k then α, and GLJ are independent. Ifα is lawless so is *[<*],- for eaci
k e N and each 0 < i < k.

(c) Ifα is lawless, so is \y α((x, y)) for each x G N.

(d) If w is any sequence number and α is lawless then w * α is lawless.13

LEMMA 2. (First Density Lemma.) Assume D is countable and let L be the
class of all sequences lawless relative to D. Then L is dense in B.

PROOF. By Lemma l(d) we need only produce one lawless sequence β. Let T
= {TO, TI? ... } be an enumeration of D3 which is recursive in the given enumeration
of D. Call a triple τ = ((r)0, (r)α, (r)2) good if (r)0 is a predictor and (r)j is a
strongly lawlike injection with converse (τ)2.

Call a triple T nice at w for n when both w and (r)0(w) are sequence numbers
and if

p = lh(w * (τ)0(w)) and m = max (n, max {(τ)^) : 0 < i < p}) + 1

then for each 0<i<j<p:

and for each 0 < j < m :

if 0 < ( r ) 2 ( j ) then (r)1((r)2(j) - 1) = j.

Observe that niceness (unlike goodness) is effectively decidable, and r is good if
and only if r is nice at every sequence number w for every n.

By induction on k we define xk,wk,nk (with n0 < nα < ) and β(nk) as
follows. For convenience set n_! = 0. In general, let xk be the least x > 0 such

that for all 0 < j < nk_λ^ ( τ k ) 2 ( j ) < %• (In particular, x0

 = 0.) Let wk be the
sequence number of length xk such that for each i < xk :

I otherwise.

If τk is not nice at wk for nΛ-1, let nk = nk^ + 1 and β(nk — 1) = 0. Otherwise,

let pk = xk + lh((rk)0(wk)) and nk = mαx(nΛ_1,mαx{(rΛ)1(t) : 0 < i < pk}) + 1,

and for each nk_ι < j < nk define

The reader may verify that if τk is nice at wk for nk^ then (β o (r^^fak) =

wk * (ι~k)o(wk)ι so β ιs lawless

LEMMA 3. (Uniformity Lemma.) Ifα is lawless, π is a lawlike predictor, and

7 is a strongly lawlike injection, then for each x0 G N there is some x > x0 such

that
α o 7 e (α~ό~j)(x) * 7r((α~o~7)(z)).

13Troelstra's distinction between lawless and protolawless sequences is lost here.
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LEMMA 4. (Second Density Lemma.) If D is countable and α is lawless then
the class of all β such that [α, β] is lawless is dense in B.

PROOF. Assume α is lawless relative to D, and let T be as in the proof
of Lemma 2. Call a triple r α-nice at w for n if r is nice at w for n, and if
i < lh(w * (T)Q(W)) and (T)^) = 2q then (w * (τ)0(w;))t = α(q) + 1. We define β

in stages. __
Stage 0. Let n0 = 0 so β(n0) = { ) = !. For notational convenience set

n_x = 0.
In general, at the conclusion of stage m we have n0 < HI < < nm and

values β(nm). For k < m we say β(nk) is permanent at m if for each j < k either
(i) for some sequence number w < ra, TJ is not nice at w; for m, or

(ii) for some s < m, if w = [a,β(nk) * λί 0] o (^^(θ) and p = lh(w* (TJ)Q(W))
then TJ is α-nice at tϋ for m and for each i < p: if (τj)ι(i) = 2<? + 1 then
q < nk and (w; * (Tj)0(w))t = /?(<?) + 1. Observe that in this case w * (TJ)O(W) =

[a,J(nk) * 7] o (r^p) for every 7 G £.
Sίαt e ra-f-1: Consider the least k < m-f 1 such that β(nk) is not permanent at

m. Case ./. If for some s < m rk is a-nice at w = [a,β(nk_ι) * λt 0] o (τjb)1(s) for
njt-ι? let wk De the least such w; and (re)define nk = max(nk_ι,max{q : (τjk)1(i) =
2q -j- 1 for some 0 < i < pk}) + 1 where pk = lh(wk * (τ^)o(^jk)). For nk_ι < j < nk

(re) define

If nfc < m + 1, (re)define nfc+t = nfc + i and β(nk^) = 0 for i = 1, . . . , m -f 1 — fc.
Observe that β(nk) is permanent at m -h 1 in this case. Case 2. Otherwise, set
ttm+ι = nm + 1 and /3(nm) = 0.

Relative to α and T the construction is effective and for each k < m one
can decide effectively whether β(nk) is permanent at m. By Markov's Principle
with Lemma 3 and the lawlessness of α, for each k there is a stage at which β(nk)
becomes permanent, and if τk is good then wk * (τk)Q(wk) = [&,β\ o (r^^piς); so
[α, β] is lawless. If u is any sequence number then [α, u * β] is lawless by Lemma
1 , and the proof is complete.

3.2. The formal predicate. In the language of IDLS (or IDLS~) we may
express "α is lawless relative to D" by the almost negative formula

DLS(α) = VbVcVd[Pred(b) & Inv(c, d) D 3x α o c € (cΓcΓc)(x) * b((αlΓc)(x))]

where

Pred(b) = Vw[Seq(w) D Seq(b(w))]

and

Inv(c, d) = VxVy[c(x) = y ~ d(y) = x + 1]."

The assumption "D is countable" may be expressed formally by 3£ED(ί) where

ED(ί) = Vn3a(a = (ί)n) & Va3n(a = (ί)n).

14Note that 3d Inv(c,d) economically expresses "c is a strongly lawlike injection."
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We do not assume this formally. Eventually we will consider the weaker assertive
assumption 3£ED~(<$) ("D is weakly countable") where

ED'(ί) = Vn3a(a = (ί)n) & Va-Vn-(a = (£)n).

3.3. Consistency questions. By [12], under the assumption of a certain (clas-
sically consistent) set-theoretic axiom there is a classical model, with countably
many lawlike sequences, for a theory DLS of which the current BDLS is (modulo
notation) a proper subsystem.15 Thus BDLS + 3£ED(£) is classically consistent.

To verify the constructive content as well as the consistency of IDLS~ and
IDLS it is natural to look for realizability interpretations analogous to the one
developed by Kleene in [8] for FIM. The next section provides a classical function-
realizability interpretation for each of the new systems, relative to a defined class
D of "lawlike" sequences, under the assumption that D is countable.

§4. The realizability interpretations.

4.1. Definition of D. Let E0(x,y),E1(x,y),... be an enumeration of all
almost negative D-formulas having free no number variables except the distinct
variables x and y; in particular let E0(x, y) = a(x) = y. For each i let

F, = Vx3!yE,.(x, y).

The primitive recursive function symbols λ, 0,' ,+,•,... ,fp, = will have their stan-
dard interpretations.

If ao,... , a,k_l is the (possibly empty) list of the distinct variables occur-
ring free in Ft in order of first free occurrence, and if A C B and φ G B and

ΨQT ιΨk-ι € ^> we sav that EI defines φ over A from ^o» iΨk-i if and
only if, when number variables range over JV, definable function variables over
A, and arbitrary function variables over B and a0,... , afc_α are interpreted by

V>0, " ,Ψk-l

(i) FJ is true classically, and

(ii) for x, y G N: φ(x) = y if and only if Et (x, y) is true.
We say Et defines ψ uniformly over A if and only if for all 00,... , ̂ _ι G

A, Et defines φ[φQ,... ,Ψk-ι] — Ψ over A from ^>0,... , ψfc-i Observe that E0

defines φ uniformly over A, where φ[φ] = φ.
Now let Def(A) be the class of all φ € B which are definable over A by some

Ei? from some 00,... , φk_λ G A. Let

DO = 0, Art-i = Def(A,),

and for limit ordinals λ :

D, = U DC
C<λ

We want this induction to close off at a countable ordinal. The key is to observe

that UCGOΛ A; nas a natural definable well-ordering.

15DLS omits the "!" in X2.2!D and the requirements of almost negativity from all axioms,
strengthens the present XDLS4~ and asserts the countable axiom of choice for the class of lawlike
functions. The classical model naturally fails to satisfy XKL1.
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In general, if -< well-orders A, and φ,φ e Def(A), set φ -<* ψ if and only if
either

(i) φ, ψ € A and φ -< ,̂ or
(ii) <^ € A and ι/> ^ A, or
(in) <£ ^ A,ψ φ A, and ΔΛ(^) < Δ^(^), where ΔΛ(<£) is the smallest tuple

(i, ψ0, . . . , V>fc-ι) in the lexicographic well-ordering < of N U U*>o(^ x Ak) deter-
mined by < on N and X on A such that Et defines φ over A from ^0? ? V^-i

Now let

^o = 0, Λ+i = K)*>

and for limit ordinals λ :

^= U ^c
C<λ

Clearly -<η well-orders Dη for each ordinal η. Since each Dη C Dη+l C B, by
cardinality considerations there is a least ordinal ζ such that D^ = -D^+i; for this
ί let

jD = Dξ and -< = x^ .

Then X is a definable well-ordering of D. In fact, both D and -< are ΔJ definable
over B. If Ej defines φ[ψQ, . . . , Φk-ι] uniformly over D we naturally call λΦ φ a
definable operator on D.

4.2. The countability assumption. We now assume that D is countable, in
accord with Brouwer's assertion [1] (see also [3]) that every well-ordered species
is countable and with the discussion in Section 1.2 above. Levy [11] proved the
classical consistency with ZFC (relative to ZF) of the assumption that every
definably well-ordered subclass of Baire space is countable; hence our assumption
is classically consistent as well as constructively plausible.

No enumerating function can itself be lawlike, since D is closed under recursive
operations and if δ enumerates D then for no n € TV is Xt((δ(t))t + 1) = (δ)n. All
we are assuming is that some enumerating function exists (i.e., that 3δ ED(£) is
classically true) so the conclusions of the density lemmas hold.

4.S. Realizability/D and readability //D. Following Kleene, if r,α € B we
say {τ}[a\ is properly defined if and only if ( t ) ( E \ y ) τ ( ( t ) * a ( y ) ) > 0, and then

[ τ } [ a ] ( t ) ~ τ((t) * a(μyτ((t) * α(t/)) > 0)) - 1.

If x e N then {τ}[x} ~ {τ}[\t z]; and {r} - {r}[0]. If xl9...9xk 6 N and
αα,... ,αm G B then

{T}[XI,... ,z fc, «!,... jαJj-ίrHfo,. . . ,0^,0?!,... ,αm)].

As in [8], if y>[Θ,α] is partial recursive then there is a primitive recursive
functional Λα <£>[θ,α] such that

and if φ[Q, a] is completely defined then {Λα y>[θ, α]}[α] is properly defined. Also
Λx φ[θ,x] = Λα <p[θ,α(0)] and Λ φ[θ] = Λx φ[θ], so {Λx v?[Θ,x]}[x] c±
and {Λ
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Kleene's Λ thus incorporates the meaning of his Sm theorem. There is an
obvious relativized notion Λφα for functional recursive in Φ, where Φ is any list
of functions from B.

An appropriate interpretation of a list α0,... , ak, a^,... , am, XQ, ... , ̂
of variables of the types indicated is any choice of functions α0,... , ak € B,
Φoi - »Φm € £>, and numbers x0,... , xn. We now define when π € B realizes-
Φ a formula E all of whose distinct free variables are interpreted appropriately
by the functions and numbers Φ. The reader acquainted with Kleene's function-
realizability interpretations need look only at the new Clauses 8 and 9.

1. 7Γ realizes-Φ a prime formula P, if P is true-Φ.
2. 7Γ realizes-Φ A & B, if (π)0 realizes-Φ A and (π^ realizes-Φ B.
3. 7Γ realizes-Φ A V B, if (τr(0))0 = 0 and (π^ realizes-Φ A, or (τr(0))0 φ 0

and (τr)α realizes-Φ B.
4. 7Γ realizes-Φ A D B, if, if σ realizes-Φ A, then {τr}[σ] (is properly defined

and) realizes-Φ B.
5. 7Γ realizes-Φ -ιA, if π realizes-Φ A D 1 = 0.
6. 7Γ realizes-Φ VxA(x), if, for each x £ N, {τr}[x] realizes-Φ, x A(x).
7. 7Γ realizes-Φ 5xA(x), if (π)ι realizes-Φ, (τr(0)0) A(x).
8. π realizes-Φ VaA(a), if, for each φ € D, {ττ}[<^] is completely defined and

realizes-Φ, φ A(a).
9. 7Γ realizes-Φ ΞaA(a), if {(π)0} € D and (π)x realizes-Φ, {(π)0} A(a).
10. 7Γ realizes-Φ VαA(α), if, for each α € β, {τr}[α] is completely defined

and realizes-Φ, a A(α).
11. π realizes-Φ 3αA(α), if ({(π)0} is properly defined and) (π)ί realizes-

Φ,{(π)0}A(α).
We say a closed formula E is realizable/^ [realizable//^], if a function π

general recursive in finitely many functions of [and finitely many definable oper-
ators on] D realizes E. An open formula is realizable/^, [realizable//^] if and
only if its closure is.

Note that a formula E all of whose free variables occur among Φ is realizable/^,
[realizable//D] if and only if there is a function φ partial recursive in finitely many
functions of [and definable operators on] D such that, for each appropriate Φ,
</?[Φ] is completely defined and realizes-Φ E. Such a φ is called a realization/D

[realization//^] function for E.

LEMMA 5. Let Φ be any list of variables and let Φj be those of Φ which
occur free in E. For each ε and each appropriate interpretation of the variables: ε
realizes-Φ\ E if and only ifε realizes-*!/ E.

LEMMA 6. For each assertive formula E containing free only the variables Φ

and each appropriate Φ:
(i) IfE is realized-*!/ by some function ε then E is true-Φ.

To each almost negative formula E containing free only the variables Φ there is
a partial recursive function εE[Φ] = λtεE(Φ,t) such that for each appropriate
interpretation Φ of the free variables:

(ίi) IfE is true-Φ then ε^[*S/] is completely defined and realizes-*!/ E.



204 J. R. MOSCHOVAKIS

The proof is like that of Lemma 8.4 of [8], with three new cases for (ii). If E
is VaA(a) then εE[Φ] is Λ<£eA(a)[Φ, φ]. If E is 3aA(a) where A(a) is prime and Φ is

0,c, x then εE[Φ] is (Λ λt(μs[Seq(s) b TΪ'\J(lh(s)),ς(Ih(s)),s,n,x)])t - l,λ*0),
where n is a Gδdel number of the primitive recursive predicate P(φ, β, ς, x) ex-
pressed by A(a). And if E is 3aVx(a(x) = t) where t = t[Φ,x] is a term containing
only Φ,x free, representing the primitive recursive function ί[Φ,x], then e£[Φ] is
(Λ λx *[Φ,z],ΛzλsO).

Since the predicate DLS(α) is almost negative, in particular a is lawless rel-
ative to D if and only if DLS(α) is realized-α by some function ε, if and only if
εrjLS(α)[α] realizes-a DLS(a). This fact will be crucial to the proof of the main
theorem.

LEMMA 7. Lemma 8.5 of [8] on numeralwise representability (expressibility)
of general recursive functions (predicates) is true for all the formal systems here,
as are Lemmas 8.7 and 8.8 on formal decidability of the representing predicates.
Hence D is closed under recursion.

LEMMA 8. Lemmas 9.1 and 9.2 of [8] on substitution of terms and functors
carry over, with the new part for Lemma 9.1:

(c) If g[Φι,a] is a D-functor, free for a in A(a) and containing free only the
definable function and number variables Φ 1 ?a where Φα C Φ, then g represents a
primitive recursive function </[Φι,^], and ε realizes- Φ,#[Φι,<^] A (a) if and only if
ε realizes-Φ, φ A(g).

4-4- The consistency of IDLS~.

THEOREM 1. ί/Γ h E in IDLS- and the formulas Γ are all realizable// D

then E is realizable// D.

PROOF. For each axiom E of IDLS which is "new" (in the sense that it is not
an axiom of FIM extended to the language of IDLS~) we give a realization//^
function φ = λΦ <^>[Φ] where y?[Φ] = λfy>(Φ,ί); and assuming that such a </?'[Φ'] ex-
ists for each premise of a new rule of inference, we give a y?[Φ] for the conclusion.16

10D. VaA(a) D A(g) where g is a D-functor free for a in A(a). Let </?[Φ] be
Λσ {σl^Φj, φ]] where #[Φl5 φ] is the interpretation of gfΦj, a] and φ interprets a
in Φ.

11D. A(g) D 3aA(a) with the same conditions on g. Define y>[Φ] to be Λσ

Rule 9D. C D A(a) / C D VaA(a) where a is not free in C. If p'[Φ, φ] realizes-
Φ,<£ C D A(a) for each φ € D, let <p[Φ] be ΛσΛ^{<p'[Ψ,$}[σ].

Rule 12D. A(a) D C / 3aA(a) D C. If y>'[Φ, φ] realizes-Φ, φ A(a) D C for each
φeD, let φ(V] be Λσ V[Φ, {(σ).}}}^),}.

X2.2!D.~ Vx3!yA(x, y) D 3aVxA(x, a(x)) where A(x, y) is almost negative and
all the free variables Φ are lawlike function or number variables. If σ realizes-Φ
the hypothesis then Vx3!yA(x, y) is true-Φ (using Lemma 6), so A(x, y) defines

16In the proof of Kleene's corresponding theorem for FIM (Theorem 9.3 of [8]), recursive
realization functions were provided for all the "old" axioms and rules.
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φ = λz({σ}[#](0))oo over D from Φ, so φ e D. The axiom is realized//^ by
φ[9] = Λσ(Λ λx({σ}[a;](0))0,o,Λx({σ}[x])0ιl).

XDLS1 and XDLS2 are almost negative, and true by the density lemmas
with the countability assumption, so Lemma 6 provides recursive realization func-
tions for them.

XDLS3~. Vα[DLS(α) & A(α) D 3xV/3[β(x) = α(x) kΌLS(β) D A(/?)]], where
A(α) is restricted and almost negative and contains free no arbitrary sequence
variables but α. For convenience denote the almost negative subformula Vβ[β(x) =
α(x) & DLS(0) D A(/3)] by F(α(x)), so the axiom E[Φ] is Vα[DLS(α) & A(α) D
3xF(α(x))]. By Lemma 6, there is a partial recursive function ep[$,a,2;] which
realizes- Φ, α, x F(α(x)) if and only if F(α(x)) is true. By induction on the logical
form of A(α), we provide a function £(Φ,α,σ) partial recursive in functions from
and definable operators on D so that if σ realizes-Φ,α DLS(α) & A(α), then
£(Φ,α,σ) is defined and F(α(x)) is true-Φ, α,ξ(Φ,α,σ) and hence /9[Φ,α,σ] =
(λ*£(Φ,α,σ),εF[Φ,c*,£(Φ,α,σ)]) realizes-Φ,α 3xF(α(x)). Then y?[Φ] = .ΛαΛσ
/9[Φ,α,σ] realizes-Φ the axiom.

1. A(α) is s = t, where s expresses s(Φ,α) and t expresses ί(Φ,α) and Φ
consists only of numbers z0, . . . , z\_^ and elements ψQ, » Φk-ι °f O Since s and
t are primitive recursive the (representing function of the) predicate s = t has a
Gόdel number e from Φ,α. Let

If σ realizes-Φ, α DLS(α) &; s = t then α € L and s(Φ,α) = ί(Φ,α) is true, so
£(Φ,α,σ) is defined and has an appropriate value.

2. A(α) is B(α) & C(α). By the induction hypothesis there are realization///}
functions XB» Xc f°Γ ^ne instances of XDLS3~" with B(α), C(α) respectively as the
A(α). If σ realizes-Φ, α DLS(α) & A(α), then ι/β = ((σ)o> (σ)ι,o) realizes-Φ,α
DLS(α) & B(α) and ι/c = ((σjo^σjn) realizes-Φ,α DLS(α) & C(α), so take

ί(»,α,σ) to be the larger of ({{χB[«]}W}[*u](0)o) and ({{χc[Φ]}W}[t/C](0)o).
4. A(α) is -«B(α). By the induction hypothesis there is a realization //# func-

tion XB for the instance of XDLS3~~ for B(α). Recall that 1 is the smallest sequence
number, coding the empty sequence { }. Consider the almost negative predicates

D(w,v) = (Seq(w) D Seq(v)) & (v = 1 D Vβ[β € w & ΏLS(β) D -B(/?)])
& (v > 1 D Vβ[β e w * v & DLS(/?) D B(/?)]),

E(w,v) = D(w,v) & Vu(u < v D -ιD(w,u)).

Classically, Vw3!vE(w,v) is true-Φ, by the following argument. If w is a sequence
number and DLS(7) fc 6(7) is true-Φ, 7 for some 7 with 7 € w then by Lemma
6 some ε recursive _in Φ,7 realizes-Φ, 7 DLS(7) & 6(7). Hence {{χβ[Φ]}[7]}W
realizes-Φ, 7 3xV^[/3(x) = ψ(x) & DLS(/?) D B(/3)], so this feebly assertive formula
is true-Φ, 7 and there is a nontrivial sequence number v for which V/?[/3 € w * v
& DLS(/3) D B(/?)] is true-Φ. So E(w,v) defines a function φ uniformly from Φ € D,
so φ e D. Since φ is a lawlike predictor, for each α making DLS(α) true there is
some x for which a € a(x) * <^(α(x)), so if - B(α) is true-Φ then φ(a(x)) = 1. Let

, α, σ) ~ μx a € α(x) * <^(α(x)).
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5. A(α) is B(α) D C(α). Similarly, consider the almost negative predicates

G(w,v) = (Seq(w) D Seq(v)) & (v = 1 D Vβ[β € w & DLS(/3) D (B(/3) D C(/3))])
& (v > 1 D Vβ[β e w * v & DLS(/?) D B(/3) & -C(/3)]),

H(w,v) = G(w,v) & Vu(u < v D - G(w,u)).

By Cases 2 and 4 (already established) with the induction hypothesis on B and
C, classically H(w,v) defines a lawlike predictor φ uniformly from Φ € D. Define
£ from φ as in Case 4.

6. A(α) is VxB(α, x), where B(α,x) is almost negative. Consider the almost
negative predicates

J(w, v, x) = (v = 1 D Mβ\β € w & ΌLS(β) D VxB(/?,x)])
& (v > 1 D V/ϊ[/? G w * v b DLS(/J) D -.B(0, x)]),

K(w,v) = (Seq(w) D Seq(v))

& -.Vx- J(w, v, x) & Vy(y < v & Seq(y) D Vx-«J(w, y, x)).

Classically, by Case 4 and the induction hypothesis on B, K(w,v) defines a lawlike
predictor φ uniformly from Φ G D. Define £ from φ as in the preceding two cases.

7. A(α) is 3xB(α, x) where B(α,x) is prime. Let / be a Gδdel number of the
(representing function of the) primitive recursive predicate expressed by B(α,x),
and suppose Φ consists of k lawlike function variables and / number variables. Let

ί (Φ, α, σ) ~ μx

If σ realizes-Φ,α DLS(α) & 3xB(α,x) then B(α,x) is true-Φ,α, ((σ)^))^ so
ί(Φ,α, σ) is defined and F(α(x)) is true-Φ,α,£(Φ,α,σ).

8. A(α) is VaB(α,a). Similar to Case 6.
9. A(α) is 3aB(α, a) where B(α, a) is prime or of the form Vx(a(x) = t(α,x))

for a term t not containing a free. The induction hypothesis gives a realization// £>
function XB for the instance of XDLS3~ with B(α, a) as the A(α). If σ realizes-Φ, α
DLS(α) & 3aB(α, a) then {(σ)α 0} G D and ί/B = ((σ)0, (σ)λ τ ) realizes-Φ, {(σ^ 0}

DLS(α) & B(α,a) so ζ(9,a,σ) - ({{χB[«,{(σ)1|0}]}[α]}[^](0))o.
10. A(α) is V7[DLS([α,7]) D B(α,7)]. By Case 4 with the induction hy-

pothesis there is a realization//^ function φ[9] for V7[DLS(7) fc -^B(2[7]0,
2 [7)1) D

3xVί[J(x) = 7(x) & DLS(ί) D - B(2[ί]0,
2 [<5]α)]]. Consider the almost negative pred-

icates

L(w,v) = (Seq(w) D Seq(v))

& (v = 1 D Vβ[β 6 w & DLS(/?) D V7[DLS([^,7]) 3 B(/3,7)]])
& (v > 1 3 V/3[/3 G w * v & DLS(/3) D -V7[DLS([/3,7]) 3 B(/9,7)]]),

M(w,v) = L(w,v) & Vy (y < v D -«L(w,y)).

Then Vw3!vM(w,v) is true-Φ so M(w,v) uniformly defines a φ € D from which ξ
is determined as before.

Since A(c*) is restricted and almost negative, no other cases can occur.
XDLS4.~ Vα[DLS(α) D ΞxA(α,x)] D ΞeB(e) where B(e) = Vα[DLS(α) D

3!y e(ά(y)) > 0 & Vy(e(α(y)) > 0 D A(α,e(ά(y)) - 1))] and A(α,x) is restricted
and almost negative with no free function variables but α, so B(e) is almost neg-
ative also. Consider the almost negative predicates
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P(w, x) ΞE (Seq(w) D Sβq((x)0))
& ((x)0 > 1 D Vα[DLS(α) & α G w * (x)0 D A(α, (x)^])

& ((x)0 = 1 D Vα[DLS(α) fc α e w D Vy- A(α,y)]),
Q(w, x) = P(w,x) & Vu < x- P(w,u).

Classically Vw3!xQ(w, x) is true-Φ by Lemma 6 with the readability of XDLS3~,
just established, so Q(w, x) defines uniformly from Φ some φ = V>[Φ] in D. Define
X from ψ by

0/Ή)ι + 1 if Seq(w) and (0M)o > 1.
0 otherwise,

Then x = χ[Φ] G D, uniformly in Φ, and Λσ(Λ χ,eB(e)[χ]) is a realization//D

function for the axiom.
XKL1. A realization//^ function is Λσ(Λ τ, ΛαΛ/0 (εvx3!yτ((x)*α(y))>o> *"))> where

r = Aα{({{σ}[α]}[eA(β,l)o} and π = ({MM}^,]),.
This completes the proof of the theorem.

4.5. The consistency of IDLS. Suppose 6 enumerates the class D defined
in Section 4.1 so δ classically satisfies ED(ί). The consistency of IDLS is an easy
corollary of Theorem 1.

THEOREM 2. flT h E in IDLS and the formulas Γ are all realizable//D(J{δ}

then E is realizable//Du{δy.

PROOF. Realization//DU{S} functions must be provided for the axioms, and
for the conclusions of the rules of inference (given realization//£)u^j functions for
the hypotheses). Since we have not altered the definition of "ε realizes-Φ E,"
lawlike function variables still range over D so by Theorem 1 we need only check
the rules of inference and the new axioms. The rules present no problems, and the
new axioms can be handled with the help of the density lemmas.

XDLS1. ψ = ΛwΛσ(Λ ^[wM^DLSiajfaMwlh^t 0)) realizes the axiom, where
ψl is recursive in 8 by the proof of the first density lemma.

XDLS2. φ = ΛαΛσΛwΛ/>(Λ 02W»(eDLs([α^])[α,02W],At 0)) realizes the
axiom, where ψ2 is recursive in δ by the proof of the second density lemma.

4.6. Remarks. No function can realize ΞίED(ί), since there is no continuous
way of obtaining from an arbitrary φ G D an n for which φ = (δ)n. Thus ->3£ED(£)
is realizable (and hence realizable//^^}) though false in our interpretation, while
- 5d ED(d) is provable in BDLS. On the other hand 3δEΌ~(δ) is realizable//Du{δ}
(but not realizable///^).

As usual Markov's Principle for decidable formulas is (classically) realizable//^
and realizable//jDu^j, as is -'Va-^a = u) D Ξa(a = u) for u any functor not con-
taining a free. The Bar Theorem for lawless sequences and Troelstra's Extension
Principle fail in IDLS; for counterexamples see [12].

Some of the anomalies of intuitionistic analysis are smoothed out by the
lawless subspecies. For example, if B(α) is Vxα(x) = 0 V ->Vxα(x) = 0 then
IDLS h -πVαB(α) and IDLS h - VaB(a) but BDLS h Vα[DLS(α) D B(α)]. How-
ever V/?[DLS(/?) D λ(β) V ~Ά(/?)] is not in general realizable//^ even for A(/J)
almost negative; for a trivial counterexample let λ(β) be Vx(a(x) = 0).
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The general form V/?3α(A(/?) ~ 3xα(x) = 0) of Kripke's Schema conflicts
with XKL1, even for A(/3) = Vx/9(x) = 0. However, if A(/3) is almost negative and
contains free no arbitrary function variables but β then V/?[DLS(/?) D 3α(A(/3) ~
3xα(x) = 0)] is realizable//D and hence (using Lemma 6)_true under the inter-
pretation. In fact, for such A(β): 3aV£[DLS(/?) D (3x a(/?(x)) = 0 - λ(β))] is
realizable//D and hence true.
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