A DIVISION ALGORITHM FOR THE
FREE LEFT DISTRIBUTIVE ALGEBRA

RICHARD LAVER!

In this paper we extend the normal form theorem, for the free algebra A on
one generator z satisfying the left distributive law a(bc) = (ab)(ac), which was
provedin [5]. As part of the proof that an algebra of elementary embeddings from
set theory is isomorphic to A, facts about A itself were established. Theorem
1 summarizes some known facts about A4, including P. Dehornoy’s independent
work on the subject. After that the main theorem, about putting members of
A into “division form,” will be proved with the help of versions of lemmas of [5]
and one of the normal forms of [5].

Let - denote the operation of 4. These forms take place not in A but in
a larger algebra P which involves additionally a composition operation o. Let
¥ be the set of laws {ao(boc) = (aob)oc, (aobd)c = a(be), a(boc) =
aboac, aob = aboa}. P is the free algebra on the generator z satisfying
3. ¥ implies the left distributive law, and ¥ is a conservative extension of the
left distributive law (if two terms in the language of A can be proved equal
using X, then they can be proved equal using just the left distributive law).
So we may identify A as a subalgebra of P restricted to -. If po,p1,... ,pn €
P, write pop; - - pn (respectively, pop; - - Pn—1 0 pn) for (((Pop1)p2) - - Pn—1)Pn
(respectively, (((Pop1)p2)-**Pn-1) © pn). Write w = pop1 +-*pn—1 * pn to mean
that either w = pop; -+ pn Or W = pPop; * - Pn—1 © pn. Make these conventions
also for other algebras on operations - and o.

For p € P let p! = p, p"*! = pop™; let p(® = p, p(*+t1) = pp(»), Then
p(*t1D) = p(Ip(™ for all i < n, by induction using the left distributive law.

For p,q € P let p < q if ¢ can be written as a term of length greater than
one in the operations - and o, involving members of P at least one of which is
p- Write p <, ¢ if p occurs on the left of such a product: ¢ = paga; -+ - an—1 *an
for some n > 0. Then <y and < are transitive. If a,b € A and a < b in the
sense of P, then a <, b in the sense of A; and similarly for <.

In [5] it was shown, via the existence of normal forms for the members of
P, that < linearly orders P and A. The proof of part of that theorem, that
< is irreflexive, used a large cardinal axiom (the existence, for each n, of an
n-huge cardinal). Dehornoy ([1], [2]) by a different method independently proved
in ZFC that for all a,b € A at least one of a <y, b, a = b, b <1, a holds. Recently
([3]) he has found a proof of the irreflexivity of <y in ZFC. This theorem has
the consequence that facts about P (Theorem 1 below (parts (v)—(viii)), and
the normal and division forms in [5] and this paper) which have previously been
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known from a large cardinal assumption (that is, from irreflexivity), are provable
in ZFC. A shorter proof of Dehornoy’s theorem was found by Larue ([8]).

For u, v terms in the language of - in the variable z, let u — v ([1]) mean that
u can be transformed into v by a finite number of substitutions, each consisting
of replacing a term of the form a(bc) by (abd)(ac).

For A a limit ordinal, let £, be the set of elementary embeddings j : (Vi,€) —
(Va,€), j not the identity. For j,k € €, let jk =J,c (kN Va) and let jok
be the composition of j and k. Then the existence of a A such that £y # 0 is a
large cardinal axiom. If j, k € &y, then jk, jok € &), and (&), -, 0) satisfies I.
For j € &) let A; be the closure of {j} under - and let P; be the closure of {;}
under - and o.

Some facts relating P to A, such as the conservativeness of ¥ over the left
distributive law, may be found in [5].

THEOREM 1. (i) Ifr <p s, thenpr < por < ps.
(ii) = < p for all p € P, <, is not well founded.
(iii) For all p,q € P there is an n with p(™ > q.
(iv) The rewriting rules for A are confluent, i.e., if u,v are terms in the language
of - in the variable z, and u = v via the left distributive law, then for some
w, u — w and v > w.
(v) <y is a linear ordering of A,P.
(vi) Forp,q,r € P,pg=pré&q=r,pg<ppr & q<rr.
(vii) The word problems for A and P are decidable.
(viii) <p=< on A,P.
(IX) For no ko,k],... ,’Cn € é&x (n > 0) is kg = koky -+ - kpn_1 * ky.
(x) Forallj € Ex, Aj = A, P; = P.

Remarks. (i)—(iii) are quickly proved; for (iii), it may be seen that p(™ >
z(™ and for sufficiently large n, (™) > q. (iv) is Dehornoy’s theorem in [2]. The
linear orderings of P and A both have order type w - (1 4+ 7). (v) immediately
implies (vi) and (vii). In [5], (viii) is derived from the normal form theorem;
McKenzie derived (viii) from (v). (ix) and (x) are proved in [5], (ix) plus (v)
yields (x).

Results connected with critical points of members of A; appear in [4], [6],
and [7].

For a,b € P, let the iterates I,(a,b) of (a,b) (n > 1) be defined by I1(a,b) =
a, Iz(a, b) = ab, I,,+2(a, b) = n+1(a, b)In(a, b)

Call a term bob; - - - bp—; * by, with each b; € P, prenormal (with respect to
a given ordering <) if by < by, b3 < boby, by < bobybg,... ,by <X boby - bp_z, and
in the case *x = o0 and n > 2, b, < bob; - - b,_;.

The main theorem is that for each p, ¢ € P, ¢ can be expressed in “p-division
form,” the natural fact suggested by the normal forms of [5]. For p € P the set

of p-division form representations of members of P, and its lexicographic linear
ordering, are defined as follows.
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LEMMA 2. For each p € P there is a unique set p-DF of terms in the
language of - and o, in the alphabet {q € P : q < p}, and a linear ordering <px
of p-DF, such that:

(i) For each ¢ <[, p, q (as a term of length one) is in p-DF, and for q,r <y, p,

g <vLex T ifand only if ¢ < r.

(ii) w € p-DF iff either w < p, or w = paja; - - - an—1 * a,, where each a; € p-

DF, is prenormal with respect to <pey.

(iii) For w € p-DF define the associated sequence of w to be (w) if w <r p, to
be (p,a0,a1,... ,a,) if w = paoa; - - - an, and, if w = paga; -+ - an_; 0 an, to
be (letting v = paga; - -+ an—1)

(pyao,a1,... ,8n-1,0n, U, Uln, UaRY, uanu(uay),... ),

that is, the sequence beyond a, is (Im(u,an) : m > 1). Then for w,v € p-
DF with associated sequences (w; : i < a), (vi : i < ) (a, S w), w <Lex v
iff either (w; : i < ) is a proper initial segment of (v; : ¢ < ) or there is a
least i with w; # v;, and w; <Lex V;.

Proof. As in [5, Lemma 8], one builds up p-DF and <pex by induction;
a term paga; +--an—1 0 @, is put in the set p-DF (and its lexicographic com-
parison with terms previously put in is established) only after all the iterates
In(pao - - - an-1,an), m > 1 have been put in the set.

Remarks. The members of p-DF are terms, and p-DF is closed under
subterms (for w <, p, w is the only subterm of w, and for w = paga; - - - ap—1*ay,
the subterms of w are w and the subterms of pag - - - an—1,a,). We will associate
these terms without comment with the members of P they stand for, when
no confusion should arise. If w € p-DF and u is a proper subterm of w, then
u <Lex w. Terms of the form (uvov)w or (uov)ow are never in p-DF. When using
phrases such as “uv € p-DF,” “uov € p-DF,” it is assumed that u = pag * - - ap—1,
v = a, are as in the definition of p-DF—isolated exceptions where uv or u o v
are <1 p and are to be considered as singleton terms, will be noted.

If uov € p-DF, then u o v is the <pex-supremum of {I,(u,v):n > 1}.

LEMMA 3. The transitivization of the relation {(u,v) : u,v € p-DF and
either u is a proper subterm of v, or v = aob and u is an Ix(a, b)} is a well-founded
partial ordering <P of p-DF.

Proof. Otherwise there would be a sequence (u, : n < w) with, for each n,
either 4,41 a proper subterm of u,, or up4; an iterate of (a,b) with u, =aob,
such that no proper subterm of uo begins such a sequence. Then ug = ros,
u, is an iterate of (r,s), and by the nature of such iterates, some u, must be a

subterm of r or of s, a contradiction.

LEMMA 4.

(i) If w,a,bg,b1,... ,bn € P, whoby -+ -bn_y * b, is prenormal with respect to
<L, and by < a, then wboby -+ - bp_1 * by <L wa.

(ii) For p € P, u,v € p-DF, u <pex v iff u <p v.
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Proof. (i) By induction on i we show wa >1 wboby -+ - b;—1 0 b;. For i =0,
it is Theorem 1(i). For i = k + 1, wa = (wbg - - bx—1 0 br)ug ** * Um—1 * Um 2L
wbo s bk-](bkﬂ(}) = ’u)bo ce bk_lbk(’wbo ce bk_xU.o) ZL ’wbo s bk..] bk (bk+1’f‘) for
some 7 (since bxt1 < whg - -br—1) > who - - - bk 0 bk41.

(ii) It suffices to show u <pex v = u <r v (the other direction follow-
ing from that, the linearity of <pex, and the irreflexivity of <z). By induc-
tion on ordinals a, suppose it has been proved for all pairs (u',v'), u',v' € p-
DF, such that u’' and v' have rank less than o with respect to <?. If ei-
ther of u,v is <y p, or if the associated sequence of u is a proper initial
segment of the associated sequence of v, the result is clear. So, passing to
a truncation p,ag,a,...,a, of u’s associated sequence if necessary, we have
U XLex PAG1 " Gn, ¥V = PAA] ** * Gpn—1VnUn41 """ Ym—1 * Vm, SOMe M > n, with
Un <Lex an (the reason why v cannot be pag - - a;—1 o a; for some : < n is that
@n <Lex Un would then hold). Thus u >, paga; - - a, (clear), v, <p an (by the
induction hypothesis), and for each 7, viy1 <r paea@i - ap_1Vn - - vi—1 (by the
induction hypothesis). Then apply part (i) of this lemma.

Thus, for p,q¢ € P, to determine which of ¢ <1 p, ¢ = p, p < ¢ holds,
lexicographically compare |¢|* and |p|*.

Write < for <pex below. “Prenormal,” below, will be with respect to <r.
For ¢,p € P, let |¢|P be the p-DF representation of g, if it exists.

Recall that the main theorem is that |g|? exists for all g, p € P. From Lemma
4, this may be stated as a type of division algorithm: if ¢,p € P and p <, g,
then there is a <p-greatest ap € P with pag <[ ¢, and if pag <, ¢, then there
is a <p-greatest a; € P with paga; <y g, etc., and for some n, paga; ---ap, = ¢
Or paga ***an—1 0 an = ¢. And, if this process is repeated for each a;, getting
either a; <y por a; = palal ---a™~! x a™, and then for each af, etc., then the
resulting tree is finite. The normal form theorems in [5] correspond to similar
algorithms—they were proved there just for p € A, and the present form has
their generalizations to all p € P as a corollary.

In certain cases on u,v € p-DF (when “u 17 v”), the existence of |uv|? and
|u o v|? can be proved directly. We define u 17 v by induction: suppose u' 2P w
has been defined for all proper subterms u' of u and all w € p-DF.

(1) fu<gp,thenu 2P viffu > vanduov < p.

(ii) p 27 v for all v.
(iii) pa 2P v iff v <p p or v = paga; - -+ ap—1 * ap with a 3P ag; poa I? v for all

v.

(iv) For n > 1, pagay - - - a, 1P v iff either v <y, pagay - --an—y or
V =pPaedy ***Qp—1 VpUn41 " Vi-1 ¥V

with a, 37 v, and a, o v, <[ paga; -+ ap—z.
(v) Forn > 1, paga; -+ an—10a, 3P v iff a, 3? v and a, ov < paga; -« - dn—2.

LEMMA 5. Ifu JP v, w € p-DF, and v > w, then u J° w.

Proof. By induction on u in p-DF.
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LEMMA 6. Ifu 3” v, then |uv|? and |u o v|? exist, and |uv|P 27 u.

Proof. Assume the lemma has been proved for all (v',w), w € p-DF and

u' a proper subterm of u, and for all (u,v'), v’ a proper subterm of v. Suppose
u 3P v,

(i) v <t p. Then uv <y uov < p, so uv and uov, as terms of length one, are

in p-DF, and uv o u = u o v, so similarly uv 237 u.

(ii) u = p. Then |pv|? = pv, |pov|P = pow, and pv 2I? p.
(ili) v = pa. Then if v <, p it is clear, so assume v = pbgb; - - - by_1 * b,,, where

a 3P by. The cases are:

(a) v = pb. Then |uv|? = p|ab|?, |[uov|? = p|aob|P, when |ab|?, |ao b|? exist
by induction. And since by induction |ab|? 3 a, we have |uv|P 3 u.

(b) v =pob. Then |uv|? = |pa(pob)|? = p|aocb|Ppop|abl’ by the induction
hypothesis and Theorem 1(i). Similarly |u o v|? = |pa o (p o b)|P =
polaob|?. To see [uv|P IP u, we have p|ab|P 1, pa, as |ab|? 3?7 a holds
by the induction hypothesis, and p(ab) o pa = p(ab o a) = p(a o b).

(c) v =pbeby - bp—1 * b, for n > 1. Then

|uv|? = pla o bo|[Pb:1|pabe|? - - - [pabu—1 | * |pab, [P

by the induction hypothesis and Theorem 1(i) and Lemma 4(ii). And
in the case x = -, luov|? = |uvou|P = plaoby|Pb|pabz|? - - - |paby|? o pa.
In the case x = o, [uov|? = [uvou|? = plao by |Pb|pabz|P - - - |paby_1|P 0
|pab,, o pal?, namely, |paby o pa|? = |pa o b,|P exists by induction and
is <, p(a 0 bg)b1(pabs)- - - (pabn-2) by by <r, pbo - - - bp—2 and Theorem
1(i). To see |uv|P 2P u, it is immediate if * = -, and if * = o, pab, J? pa
by induction, and pab, o pa = pao b, <p pa(pby-:-bp—2) = p(ao
bo )b1(pabe) - - - (pabp—2), as desired.
(iv) v = pagay ---an, n > 1. Then the case where the induction hypothesis
is used is where v = paga; ---apn—1bp -+ byn—1 * by, where a,, I? b, and
an 0 b, <p pagay - - an—2. The cases and computations are similar to (iii).
(v) u = pagaj ---apn—1 0 an, n > 1. Then a, 3J? v, so |a,v|?, |an o v|P exist,
and a,v <p apov <[ pag---an—2. Thus [uv|? = paga;-:-an_1|a,vl?, |uo
v|P = |pagay - - - an—1 0 |an o v|P|P which is pag - -+ ai—1 o [a; o v|P , where i <n is
greatest such that ¢ = 1 or a; ov < pag - --ai—1. And for |uv|P 37 u, we have
|anv|? 3P apn, and apv o a, = anov < pag - - an—2, as desired.

LEMMA 7. Suppose p,q € P, w € ¢-DF. Then
(1) |pw|?? exists, and |pw|P? 2P p.
(ii) If |[pw|P°? exists, then [pw|P°? 13P° p.

Proof. We check part (ii), part (i) being similar. Assume the lemma is
true for all proper components w' of w. If w < ¢, then pw < pow < pog
and, by pw o p = p o w, we have pw JP°? p. So assume the most general case
on w, w = ¢ag@ -*-Gn-1 © a,. Then pw = (po q)ag(pai)--: (pan-1) o (pas)
is prenormal, so if |pw|P°? exists, then by Lemma 4(i) and (ii) |[pw|P°? = (po
q)|ao|P°9|pa1|P°? - - - |pan—1/P°9 o |pa,|P°?. Then |pa,|P°? 3P°? p by the induction
assumption, and pa, op = poa, <L p(qao -+ an-2) = (poq)ac(pai) - - (pan-2).
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So |pw|P°? 3P°¢ p. The case n = 0 yields p(g 0 a) = p(gaogq) = (po g)ao(pg)
and is similarly checked, using that pg 37°7 p.

Note, for F a finite subset of P, the following induction principle: if S C P,
S # 0, then there is a w € S such that for all u, if pu < w for some p € F,
then u ¢ S. Otherwise some w € S would be > arbitrarily long compositions of
the form py 0 p; 0 -+ 0 p,, each p; € F. By Theorem 1(ii), some p € F would
occur at least m times in one of these compositions, where p™ > p(™ > w,
and applications of the a o b = ab o a law would give p™ < ppo---0p, < w, a
contradiction to Theorem 1(v) and (viii).

THEOREM. For all w,r € P, |w|" exists.

Proof. We show that T = {r € P : for all w € P, |w|" exists} contains

and is closed under - and o.

(i) z € T. Suppose, letting F = {z} in the induction principle, that |w|* does
not exist but |u|® exists for all u such that zu < w. Pick v < w such that
|v|* does not exist, and, subject to that, the (z,z)-normal form of v ([5],
Lemmas 25, 27, Theorem 28) has minimal length. The (z,z)-normal form
of v is a term zaga; - - ap—1 * an, which is prenormal, where ag is in the
normal form of [5] (see the corollary below), and for ¢ > 0, each a; is in
(z,z)-normal form. Then for i > 0, each |a;|® exists, and since zay < w,
|ao|* exists. Thus |v|* exists, [v]* = z|ag|® - - - |an-1|" * |an|*.

(i1) p,q € T implies pg € T. For u € p-DF, define the (p,q)-DF of u as fol-
lows. If u < p, the (p,q)-DF of u is u. If u = paga; - -an—1 * an, the
(p, q)-DF of u is plg@y - -+ @n—1 * Gn, where @g = |ao|? and for i > 0, a;
is the (p,q)-DF of a;. Then by assumption every r € P has a (p,q)-
DF representation. Pick v such that |v|?? does not exist, and subject to
that, the (p,q)-DF representation of v has minimal length. If v < pg,
we are done. So assume v’s (p, ¢)-DF representation is p(gapa; - - - ap—1 *
an)boby -+ - bp—1 * by, where the proof for n > 0 and the first * being o will
cover all cases. Then v = pg(pao)(pai)--- (Pan—1)(Panbo)by -+ bp—1 * byy.
Then |pag|P? - - - |pan—1|P9, |pan|P?, |bo|P? - - - |bm|P? all exist by the minimality
of v’s (p, q)-DF representation. And since by < p, |pa,|P? 2?7 by by Lemma
7(i), and |pa,bo|P? exists by Lemma 6. The sequence

(PQ), (paO) T (pan—l)7 (Panbo), bl te bn—l, bn
need not be prenormal. But we claim

Ip(gao - - - @n—1 0 an)[P? = pqlpao|”? - - - |[pan—1|P? o |pan [P 377 |bo|P?.

The equality is clear. For the 1?7 relation, we have |pa,|P? 377 |bo|P? and
panoby < papop =poa, < pg(pag)--- (pan—2) since an < pag - - - an—2, giv-
ing the claim. So by Lemma 6, |p(gao - - - an—10a5)bo[P? 377 |p(qaq - - - an—10
a,)|P? > by. By Lemma 5, |p(qao - -+ an—1 0 an)bo[P? 377 [by[P9. With this
as the first step, iterate Lemma 6 and Lemma 5, m times, to get that
|p(qao - - - @n—10an)boby - - - bn—1 * b [P exists.

(iii) p,q € T implies po g € T. Letting F = {q} in the induction principle,
suppose |w|P°? does not exist but |a]P°? exists for all a such that ga < w.
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Pick v < w such that |v[P°? does not exist and, subject to that, the (p, ¢)-DF
representation of v has minimal length. If v < po g, then again the cases
on the (p, ¢)-DF representation of v are covered by the proof where that
representation is p(gag - -+ @n—1 0 ap)bob1 - - - b1 * by,

Then v = (p o q)ao(pai) - (Pan—1)(panbo)bs -+ bym—1 * by,. As in case
(i1), |pa1|P°9,... , |pan—1|P°Y, |pan|P°9, [bo |P°9, . .. , |bm|P°? exist, and using Lemma
7(i1) and Lemma 6, |pa,bo|P°? exists. And since gag < v, |ao|?°? exists by the
induction principle. Thus |p(gao - - - an—1 0 ay)|P°? exists, and, as in case (ii), is
P°9 |bo [P°9. Then iterate Lemmas 6 and 5 as in case (ii) to obtain the existence
of |v|P°?. This completes the proof of the theorem.

For p € P, say that a term w in the alphabet {q: ¢ <z p} U {p( : i < w}
is in p-normal form (p-NF) if either w <z p is a term of length one, or w =
p(‘)aoal “++@n_1 * @, where each a; € p-NF, paga; ---apn_; * an is prenormal,
and agp <r p¥). Let |w|p be the p-NF representation of w if it exists. As in [5],
Lemmas 9 and 12, such a representation is unique. It is proved in [5] that for all
p € Aand w € P, |w|, exists. The DF theorem allows this to be extended to

pEP.
COROLLARY. Ifp,w € P, then |w|, exists.

Proof. By induction on w € p-DF'. If w <, p, we are done; so assume w is
the p-DF term paga; - - - Gn—1 *an. Then each |a;|, exists, and if ag <, p, we are
done. Also, if ag = p, then the p-NF expression for w is p(Va;|p - - - |an—1]p*|an|p-
Without loss of generality assume ag’s p-NF representation is p™bgby - - - by_; o
b. Then it is easily checked that |pag|, = p(™+[pb|, - - - [pbk—1]p © |[Pbk|p. Thus
w = p(™+(pby)- - (pbk—1)(pbkai)az -+ an—1 * an. In [4, Theorem 16}, a 3,
theorem is proved for p-NF (for p € A, but a similar result holds for all p € P).
We may use a version of it, and an analog of Lemma 7 above, as Lemmas 6 and
7 were used in Theorem 8, to obtain |pag|, Jp a1, and then iterate to get the
existence of |w|,. The details are left to the reader.
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