ON w,;-COMPLETE FILTERS

HANS-DIETER DONDER

Let us start with a definition. For an uncountable cardinal k set
(k) =min{|H| | H is a set of w;-complete uniform filters on k and
VACkIFcHA€eFork— A€ F)}
Clearly, 1 < p(k) < 2.

A classical result of Ulam says that « must be very large, if y(k) = 1. On
the other hand, by definition we have that u(x) = 1 if ¥ is bigger than some
strongly compact cardinal. Only recently (see [3]) Gitik has shown that (k) < w
implies that u(x) = 1.

Can p(x) be small for small cardinals k? Using a huge cardinal, Magidor
showed in [4] that p(ws) < w; is consistent. Shelah constructed a model of
p(wy) = wy starting with many supercompact cardinals (see [6]). With an almost
huge cardinal Woodin produced a model where p(w;i) = w; is witnessed by
normal filters. It seems to be an open problem whether p(w;) = ws is consistent.

In this note we treat the following question. Is there always some & such that
p(k) < k7 Prikry showed in [5] that p(w;) > w; is consistent. Jensen showed
later that the appropriate combinatorial principle holds in L which implies that
#(w1) > wy is true in L. We shall show:

THEOREM 1. Assume V = L. Then u(x) > « for all regular k > w.

To prove this we reduce the problem to a purely combinatorial question. So
let us introduce the following principle. Let £ > w be regular. Then @, denotes
the following property:

There is some G C {f | f : kK — 2} such that |G| > « and for all
G* C G such that |G*| > « there is a countable G C G* such that
{a < k|Vf,g€G,f(a) = g(a)} is nonstationary.

This principle is closely related to some properties discussed in [7]. So the
interested reader might also consult that paper. Now we have:

LEMMA 1. Let & > w be regular and assume that Q. holds. Then u(x) > &.

Proof. Assume not. Let (k) < k be given by H. By a result of Taylor
(see [8]) we may assume that all F € H contain the club filter on . Let
Qx be given by G. For each f € G choose Fy € H and iy < 2 such that
{a < & | f(a) = if} € Fs. Then there are G* C G, i < 2, F € H such that
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|G*| > k and Fy = F, iy =1 for all f € G*. Choose some countable GCG
as in Q«x. Then N{a < k| Vf € Gf(a) = i} € F by w;-completeness and is
nonstationary. This is a contradiction. (J

So in order to prove Theorem 1 we only need to show:
PROPOSITION 1. Assume V = L. Then Q. holds for all regular k > w.

Proof. We shall use the natural (k,1)-morass and the natural [, -sequence
in L. The reader should look at [1] for the basic definitions. We use the standard
notations. So for example S = {v | ¥ > w, v p.r. closed, v singular}, (C, | v €
S) is the O -sequence, < is the morass tree, 75, are the morass maps. Set
E={veSnk*|C, =0}. So we have
(1) (a) E is stationary in kt

(b) for all singular 7, E N 7 is not stationary in 7

(¢) f v < v, € E and 7y, is cofinal, then v € E.

Set Ey = {v <k |v € StNE, v is minimal in <}. We also need:

(2) There is a sequence (X, | n € Eg) such that
(a) otp(X,) =w, Xy C 7 is cofinal in 7
(b) for all unbounded X C «* there are v € S and n € Ey such that n < v

and mp, “X, C X.

The proof of this is very similar to the argument used in §3 of [1]. So we
only give a sketch. We define (X, | n € Ej) by recursion. Given n € Ey let
Z, be the <p-least unbounded subset of 7 such that there are no v € S,, and
T € Eg such that 7 < v and 7,,“X, C Z,. Then choose X, C Z, such that
otp(X,) = w and sup X;, = 1. Note that every element of Ey has cofinality w.
This will do it.

Now using (1) we easily get:

(8) For @ < « and p < at there is a function k% : u — 2 such that for all
v € SaeNu,n <v,n € Ey we have that hh | m,,“X, is not eventually
constant.

Now let v € Si. Set A, = {ar | 7 < v}. We define a function f, : A, — &
such that f,(a) < at as follows. Let 1 < v, @ = a, and 7 = 7,,. Here we
regard m as a map from L, to L,. Set U = {X C a | X € L., a € n(X)}.
Define a sequence (7; | i < ) as follows. Set 7o = a+1. If ; > 7, thenset y =1
and stop. If ; < 7, then let 7i4+; be the least ordinal © such that UNL,, € Le.
If X is a limit ordinal, set 7; = sup{7; | £ < A}. Because we are in L it is easy to
see that v <w + 1. Set f,(a) = 7.

We are now ready to define the set of functions G which will give us Q. It
suffices that every element of G is defined on a club subset of . Solet v € S. We
define g, : A, — 2 by g,(a) = h%(7) where p = f,(a) and 7 is the unique 7 < v
such that @ = a,. Then set G = {g, | v € S}. Finally, we show that G satisfies
Q«. Solet X C S be unbounded. By (2)(b) choose vp,11 € Sk,m0,m € Ep
such that vy < vy and n; < Vi, Tg, “Xy C X for ¢ < 2. Set Y = mp,, “Xy,
and Y = Yy UY;. It suffices to show that there is a club C C & such that for
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all a € C there are 79,71 € Y such that Fr,(a) = 0 and fr (a) = 1. For this
let « € A,, N A;, be sufficiently large. Let 7; < v; such that a,, = a. Set
m; = Trp;. Then mp C m;. Looking at the definition of the functions f, we see
that the sequence (f,(a) | v € Yy) or the sequence (f,(a) | v € Y7) is eventually
constant. So (3) gives us what we need. [

We conjecture that p(x) < & implies that there is an inner model with
a measurable cardinal. Let us mention that in Theorem 1 we can replace the
assumption V = L by V = K, where K denotes the Dodd-Jensen core model.
We now indicate a proof of a very special case of our conjecture.

THEOREM 2. Assume p(w;) = wy. Then there is an inner model with a
measurable cardinal.

For this we use a result of Taylor (see [8]). He showed that y(w;1) > w, is true
if every wji-complete filter on w; containing the club filter possesses an almost
disjoint family of sets of positive F-measure of size w;. Now let (f, | ¥ < w;) be
the sequence of canonical functions for w;. By Taylor’s result Theorem 2 follows
from the following proposition.

PROPOSITION 2. Let F be an w;-complete filter on wy which contains every
club subset of w,. Assume that for every f : wy — w; there is some v < wy

such that {a < wy | f(«) < fu(a)} € F. Then there is an inner model with a
measurable cardinal.

Proof. This just uses the method applied in the proof of Theorem 2 in
[2]. So we build the same system of embeddings as there. It is well known
that we may assume that for all v € E and a € C, that f,(a) = v4. So
by our assumption on F for all f : w; — w; there is some v € E such that
{a € Cy | f(a) < va} € F. So we can easily construct X C E such that
otp(X) = w? and Sur = {a | [Va,Ta]NIa # 0} € Fforallv, 7 € X, v < 7. Then
S=(W{Svr|v,7 € X,v <1} €F. So S is stationary. Now we argue exactly as
in [2]. O
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