
ON α i-COMPLETE FILTERS

HANS-DIETER BONDER

Let us start with a definition. For an uncountable cardinal K set

μ(/c) =min{|#| | H is a set of ω\-complete uniform filters on K and

VA C K IF € H(A e F or K - A € F)}

Clearly, 1 < μ(/c) < 2K.

A classical result of Ulam says that K must be very large, if μ(/c) = 1. On
the other hand, by definition we have that μ(κ) = 1 if /c is bigger than some
strongly compact cardinal. Only recently (see [3]) Gitik has shown that μ(/c) < ω
implies that μ(/c) = 1.

Can μ(/c) be small for small cardinals /c? Using a huge cardinal, Magi dor
showed in [4] that μ(ωa) < ω$ is consistent. Shelah constructed a model of
μ(ωχ) = ω\ starting with many supercompact cardinals (see [6]). With an almost
huge cardinal Woodin produced a model where μ(ωι) = ω\ is witnessed by
normal filters. It seems to be an open problem whether μ(^ι) = u>ι is consistent.

In this note we treat the following question. Is there always some /c such that
μ(/c) < AC? Prikry showed in [5] that μ(ω\) > ω\ is consistent. Jensen showed
later that the appropriate combinatorial principle holds in L which implies that
μ(ωι) > ω\ is true in L. We shall show:

THEOREM 1. Assume V = L. Then μ(/c) > K for all regular κ> ω.

To prove this we reduce the problem to a purely combinatorial question. So
let us introduce the following principle. Let AC > ω be regular. Then Qκ denotes
the following property:

There is some G C {/ | / : /c -> 2} such that \G\ > K and for all
G* C G such that \G*\ > K there is a countable G C G* such that
{α < K I V/, g 6 G, /(<*) = #(<*)} is nonstationary.

This principle is closely related to some properties discussed in [7]. So the
interested reader might also consult that paper. Now we have:

LEMMA 1. Let K > ω be regular and assume that Qκ holds. Then μ(κ) > K.

Proof. Assume not. Let μ(/c) < AC be given by H. By a result of Taylor
(see [8]) we may assume that all F G H contain the club filter on AC. Let
Qκ be given by G. For each / € G choose Ff G H and if < 2 such that
{α < K I /(α) = if} G ί>. Then there are G* C G, i < 2, F € H such that
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|G*| > K and Ff = F, if = i for all / E G*. Choose some countable G C G*
as in Qκ. Then f|{α < « | V f € G/(α) = i} € F by u>ι-completeness and is
nonstationary. This is a contradiction. D

So in order to prove Theorem 1 we only need to show:

PROPOSITION 1. Assume V = L. Then Qκ holds for all regular κ> ω.

Proof. We shall use the natural (/c, l)-morass and the natural Doo-sequence
in L. The reader should look at [1] for the basic definitions. We use the standard
notations. So for example S = {v \ v > ω, v p.r. closed, v singular}, (Cv \ v 6
S) is the Doo-sequence, -< is the morass tree, π^ are the morass maps. Set
E = {v G 5 Π /c+ I Cv = 0}. So we have

(1) (a) E is stationary in /c+

(b) for all singular r, E Π τ is not stationary in τ

(c) if v -< i/, F 6 .£7 and πpv is cofinal, then v £ E.

Set EO = {^ < * I ̂  € S+ Π J5, ι/ is minimal in -<<}. We also need:

(2) There is a sequence (Xη \ η £ Eg) such that

(a) otp(Xη) = ω, Xη C 77 is cofinal in η

(b) for all unbounded X C /c~*~ there are v £ Sκ and η £ EQ such that 77 -< i/
and TV "X,, C X.

The proof of this is very similar to the argument used in §3 of [1]. So we
only give a sketch. We define (Xη \ η £ EQ) by recursion. Given η 6 EQ let
Zη be the <χ,-least unbounded subset of η such that there are no v E Sαη and
T £ EQ such that r -< v and πrv"Xr C Z,,. Then choose Xη C Z^ such that
otp(-X"^) = ω and sup-X"^ = η. Note that every element of EQ has cofinality ω.
This will do it.

Now using (1) we easily get:

(3) For α < /c and μ < α+ there is a function /ι£ : μ —> 2 such that for all
z/ £ 5α Π μ, ry ^ z/, r/ G £?o we have that /ιg f πηv"Xη is not eventually
constant.

Now let i/ G 5K. Set A,/ = {αr | r -< i/}. We define a function fv:Av—>κ
such that /ι/(α) < α"1" as follows. Let τ -< v, α = αr and TT = πrι/. Here we
regard π as a map from LT to Lv. Set 17 = {X C α | Jf € £T j α ^ π( ̂ )}
Define a sequence (r, | i < 7) as follows. Set TO = α -f 1. If r, > r, then set 7 = 1
and stop. If r, < r, then let TJ+I be the least ordinal Θ such that U Π LTi ζ LQ.
If λ is a limit ordinal, set r, = sup{τj | i < λ}. Because we are in L it is easy to
see that 7 < ω + 1. Set /ι/(α) = r7.

We are now ready to define the set of functions G which will give us Qκ. It
suffices that every element of G is defined on a club subset of /c. So let v G Sκ. We
define gv : Av -> 2 by #,/(α) = Λ£(τ) where μ = /„(<*) and r is the unique r -< v
such that α = αr. Then set G = {gv \ v € 5K}. Finally, we show that G satisfies
Qκ. So let X C Sκ be unbounded. By (2)(b) choose ι/0,ι/ι G Sκ,ηQ,ηι € £o
such that ι/o < z/i and τ/, X Vi,πηiviUXη C X for i < 2. Set Y; = πηtVi

uXηi

and y = FO U FI. It suffices to show that there is a club C C /c such that for
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all a e C there are TO,TI 6 Y such that Fro(α) = 0 and /TI(«) = 1. For this
let α 6 Aί/o Π An be sufficiently large. Let r, X v± such that αΓ|. = a. Set
τr, = πrίl/ί. Then TΓQ C ττι. Looking at the definition of the functions /„ we see
that the sequence (fv(ot) \ v £ FO) or the sequence (fv(ot) \ v € YI) is eventually
constant. So (3) gives us what we need. D

We conjecture that μ(/c) < K implies that there is an inner model with
a measurable cardinal. Let us mention that in Theorem 1 we can replace the
assumption V = L by V = K, where K denotes the Dodd-Jensen core model.
We now indicate a proof of a very special case of our conjecture.

THEOREM 2. Assume μ(ωχ) = ω\. Then there is an inner model with a
measurable cardinal.

For this we use a result of Taylor (see [8]). He showed that μ(ω\) > ω\ is true
if every ω\-complete filter on ω\ containing the club filter possesses an almost
disjoint family of sets of positive F-measure of size ω^. Now let {/„ | v < ω^) be
the sequence of canonical functions for ω\. By Taylor's result Theorem 2 follows
from the following proposition.

PROPOSITION 2. Let F be an ω\-complete filter on ω\ which contains every
club subset of ω\. Assume that for every f : ω\ —* ω\ there is some v < ω%
such that {α < ω\ \ f(ot) < /„(<*)} £ F. Then there is an inner model with a
measurable cardinal.

Proof. This just uses the method applied in the proof of Theorem 2 in
[2]. So we build the same system of embeddings as there. It is well known
that we may assume that for all v G E and α £ Cv that fv(θί) = vα. So
by our assumption on F for all / : ω\ —> ω\ there is some v 6 E such that
{θί € Cv I /(α) < f a } G F. So we can easily construct X C E such that
otp(X) = ω2 and Svr = {α \ [ι/tt, τα] Πlα ί 0} € F for all ι/, r € X, i/ < r. Then
5 = f]{Svτ I i/, T G X, v < r] 6 F. So 5 is stationary. Now we argue exactly as
in [2]. D
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