
8. GENERALIZATIONS

So far our results have been explicitly stated (and proved) only for theories of first

order arithmetic. But, as mentioned in the introduction, they hold, after suitable

reformulation, in a much more general setting. Needless to say, we are not going to

show this in every detail. In fact, we shall skip Chapters 3,5, 7 altogether and con-

centrate on some of the main results of Chapters 2,4, and 6. These examples should

enable the reader to generalize (most of) the results of the preceding chapters.

In this chapter he theories S, T, etc. are no longer arithmetical theories, but they

are still consistent and primitive recursive and we assume that the languages of

these theories are always finite. Lτ is the language of T. T is a pure extension of S if

SH T and Lτ = Ls. Lower case Greek letters are now used for formulas of Lτ as well

as for formulas of LA.

We assume that the reader can extend the definition of t: S < T to the present

more general setting. Let t~a(T) = {φ: Th t(φ)}. Then t-1(T)h ψ iff Th t(ψ). Since Ls is

finite, t is primitive recursive.

The following lemma is immediate.

Lemma 1. (a) t: S < T iff SH Γ^T).

(b) t: f XT) < T and so t-1(T) < T; in fact, t: t-1(T) ̂  T; it follows that t-1(T) is con-

sistent.

(c) t-\Ί+ t(φ))Hh Γ'CΓ) + φ.

§1. Incompleteness. Our first result, GodeΓs incompleteness theorem, is a straight-

forward generalization of Theorem 2.1; 6t(x,y) is a formula defining t as in Fact 2.

Theorem 1. Suppose t: Q < T. Let φ be such that

(Gt) Qh φ ̂  -3y(δt(φ,y) Λ Prτ(y)).

Then φ is a true Πj sentence such that TI/ t(φ). Hence if t~\Ί) is Σ1-sound, then also

Th - t(φ).

By Theorem 1, for each t: Q < T, there is a true Γ^ sentence φt such that Th t(φt). By

a similar generalization of Rosser's theorem, we obtain a Γ^ sentence θt such that

W t(θt) and TI/ - t(θt). This result can be improved by showing that there is a single

Πα sentence ψ such that W t(ψ) and W - t(ψ) for every t: Q < T:

Theorem 2. There is a (true) Γ^ sentence ψ, such that Q + ψ i T and Q + - ψ i T.
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Proof, {φ: Q + φ < T} is r.e. (Lemma 6.5) and monoconsistent with Q. Now use

Lemma 2.1.

Our next result, GόdeΓs second incompleteness theorem, is a generalization of

Theorem 2.4 (a). Since each t is primitive recursive, in PA we may use t as a func-

tion symbol.

Theorem 3. Suppose t: PA < T.

(a) Th t(Conτ).

(b) If τ(x) is any Σ^ numeration of T, then Th ^Cor^).

Proof. We prove (a); the proof of (b) is almost the same. Let φ be as in the proof of

Theorem 1. Then PAh ->φ -> PrT(t(φ)). Moreover, -ι<p being Σlf PAh -ιφ -» PrQ(- φ).

Since Q is finite, it follows, by Fact 12 (Chapter 6), that PAh PrQ(- φ) -» Prτ(-»t(φ)).

We may now conclude that PAh -ιφ —» -"Conτ and so Th t(Conτ) -> t(φ). But then,

by Theorem 1, Th t(Conτ), as desired.

We shall say that t is a reflexive interpretation of S in T, t: S <Γ T, if t: S < T and for

every k, Th t(Conτ (k). S is reflexively interpretable, S <Γ T, if there is a t such that t: S

<Γ T. t is an essentially reflexive interpretation of S in T, t: S <er T, if t: S <r T7 for every

pure extension T' of T. S is essentially reflexively interpretable, S <er T, if there is a t

such that t: S <er T.

As in Chapter 2, Theorem 3 has the following:

Corollary 1. If PA <Γ T, then T is not finitely axiomatizable.

Lsτ = {e} is the language of (first order) set theory. ZF is Zermelo-Fraenkel set the-

ory. Let ts be the standard interpretation of arithmetic in set theory.

Fact 13. ts: PA <er ZF.

Combining this with Corollary 1, we get (compare Corollary 2.1):

Corollary 2. No consistent pure extension of ZF is finitely axiomatizable.

This result will be strengthened in §§ 2 and 3 (Corollaries 3 and 7).

A nonreflexive interpretation of PA in ZF can be defined as follows. The theory

t~s(ZF) is Σ1-sound. Hence, by Corollary 6.9 (b), there is a faithful interpretation t':

PA < t^ZF). Let t = t/. Since ts: t^(ZF) ̂  ZF (Lemma 1 (b)), it follows that t: PA ̂

ZF. There is a finite subtheory ZF I k of ZF such that PAh ConZF (k -> ConPA. (This

follows from the fact that ts is a "natural" interpretation of PA in a finite subtheo-

ry of ZF.) Since PAh ConPA, it follows that PAh ConZF|k. Since t is faithful, this

implies that ZFh t(ConZF (k) and so t is not reflexive.
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§2. Axiomatizations. In this § we shall restrict ourselves to generalizing Theorem

4.2. We shall need the following generalization of part (a) of the fixed point lemma;

the proof is left to the reader.

Lemma 2. Suppose t: PA < T and let vn(x) := t(x = n). Let γ(x) be any formula of Lτ.

There is then a sentence φ such that

Thφ^3y(vφ(y)Aγ(y)).

We assume given a hierarchy H = (H0/ HI,...) of the formulas of Lτ satisfying clo-

sure conditions similar to those satisfied by the hierarchy (Σ0/ Σ-L,...). Thus, each Hk

is a primitive recursive set of formulas, Hk c Hk+1, and ̂ {Hk: ke N} is the set of

all formulas of T. Let Hk(x) be a PR binumeration of Hk.

We assume that for each k, there is an Hk partial truth-definition for Hk in T i.e.

an Hk formula Trk(x) such that for every Hk sentence φ,

(Trk) Thφ^3x(vφ(x)ATrk(x)).

We also assume that the formulas Trk(x) are mutatis mutandis as in Fact 10 (a).

A set X of sentences of T is said to be H-bounded if there is a k such that X £ Hk.

Let
RFN^= (Vx(t(Hk(x)) Λ t(Prs(x)) -> Trk(x)): keN}.

Theorem 4. Suppose t: PA < T, t^) c H0, and Th RFN^ If X is any H-bounded set

of sentences such that TH S + X, then S + X is inconsistent.

Proof. This proof is essentially the same as the proof of Theorem 4.2. Let n be such

that X c Hn. Let ψ be such that

(1) Th ψ ̂  3y(vψ(y) A Vxz(t(Hn(x)) A Trn(x) A t(z = (x->y)) -> -t(Prs(z)))).

By assumption, we have

(2) Th Vy(vψ(y) -> Vxz(t(Hn(x)) A t(z = (x->y)) A t(Prs(z)) -> (Trn(x) -> ψ))).

(1) and (2) imply that

(3) Th ψ.

Suppose TH S + X. By (3), there is then a conjunction θ of members of X such that

S + θh ψ. It follows that

(4) Th 3z(vθ^ψ(z) A t(Prs(z))):

Also, by (1) and (3),

S + Xh -3z(vθ^ψ(z) A t(Prs(z))).

But then, by (4), S + X is inconsistent.

Theorem 4 can be applied to set theory. We define Σ|.T and Π k

τ as follows. Let

Σ^ = Π^τ be the set of formulas of L$τ all of whose quantifiers are bounded, i.e. of

the form 3xe y or VXG y. Σ^^ and Π^ aι<e then the least sets closed under bound-

ed quantification such that Σ^τ c Π ,̂ and Π|τ c Σ ,̂ Σ^ is closed under exis-

tential quantification and Π ,̂̂  is closed under universal quantification. A set X of

sentences of Lsτ is bounded if X c Σ k

τ for some k. We then have the following:



122 8. Generalizations

Fact 14. The assumptions of Theorem 4 are satisfied when t = ts/ Hk = Σ 1̂7 T = ZF,

and S = 0.

From Theorem 4 and Fact 14, we get:

Corollary 3. There is no bounded and consistent set X of sentences of Lsτ such that

ZFHX.

§3. Interpretability. In this § we show that the relevant results of Chapter 6 gener-

alize quite easily to the present more general setting. In using results from Chapter

6 we shall take advantage of the fact that in these results the theories S, S0, etc. need

not be formalized in L^

Theorem 5. If t: PA <r T, then T < t~l(Ί) and so t^T) s T.

Proof. By assumption, Th t(Conτ | ]J for every k. It follows that t~α(T)h Conτ (k for

every k. But then, by Lemma 6.2, T < t"α(T).
Let us say that t: PA < T is optimal with respect to Γ sentences if for every t': PA <

T and every Γ sentence φ, if Th t'(φ), then Th t(φ).

Suppose t: PA < T. There is then a Σl (true Π2) sentence φ such that t-1(T) + φ <

t-1(T) and t'l(Ί)V φ (cf. Theorem 6.9 and the proof of Theorem 6.10). Let t7: Γα(T) +

φ < t-1(T) and set t" = tt'. Then t": PA + φ < T. Since TI/ t(φ), it follows that t is not

optimal with respect to Σ1 (true Π2) sentences. (If H(T) and φ are true, we can also

achieve that t'M(T) is true, since, by Corollary 6.9 (b), Γα(T) + φ ̂  t'̂ T).) In contrast

to this we have the following:

Corollary 4. If t: PA <* T, then t is optimal with respect to I!} sentences.

Proof. Suppose t': PA < T. tM(T) < T and, by Theorem 5, T < t^T). Thus, tM(T) <

Γ^T). But then, by Theorem 6.6, tM(T) Hπjt'^T).

Since PA + ConPA < ZF, the nonreflexive t: PA < ZF defined at the end of § 1 is

not optimal with respect to Γ^ sentences.

From Fact 13 (this chapter) and Corollary 4 we get:

Corollary 5. If T is a pure extension of ZF, then ts: PA < T is optimal with respect to

III sentences.

Corollary 5 can also be proved directly in the following way. Let T be as assumed.

For any t: PA < T and any model M of T, let M* be the model of PA defined in M by

t. In Mts induction holds for every formula of Lsτ. It follows that if t: PA < T, then

Mts is isomorphic to an initial segment of M* (compare the proof of Theorem 6.7)
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and so every Π^ sentence true in M* is true in Mts.

From Lemma 1 (b) and Theorem 6.1, we get:

Lemma 3. There is a Σ1 numeration τ'(x) of t'^T) such that PAh Conτ -» Cory.

Theorem 6.2 can now be generalized as follows:

Theorem 6. Suppose t: PA <r T. Then T + t(Conτ) ̂  T.

Proof. Suppose T + t(Conτ) < T. Then, by Lemma 1 (b) and (c), and Theorem 5,

Γ^T) + Conτ < T < Γ^T). Let τ'(x) be as in Lemma 3. It follows that f J(T) + Cory <
t"α(T), contradicting Theorem 6.2.

Corollary 6. If T is a pure extension of ZF, then T + ts(Conτ) g T.

Theorem 6.3 has the following generalization:

Theorem 7. Suppose PA <Γ T. Then T is not interpretable in any finite subtheory of

T.

Proof. Suppose T < T I m. Let t be such that t: PA <Γ T. By Theorem 6.1, there is a Σ^

numeration τ(x) of T such that PAh ConT (m -> Cory It follows that Th t(Conτ j m)

—» tίCorij). Also, by assumption, Th t(ConT|m). But then Th ^ConJ, contradicting

Theorem 3 (b).

Corollary 7. If T is a pure extension of ZF, then T is not interpretable in any finite

subtheory of T.

The Orey-Hajek lemma in the present setting reads as follows:

Lemma 4. Suppose t: PA <Γ T. Then S < T iff Th t(Cons (k) for every k.

Proof. By Lemma 6.2, S < Γ^T) iff Γ^T)!- Cons, k for every k.

As in Chapter 6 we get, from Lemma 4, the following version of Orey's com-

pactness theorem.

Theorem 8. Suppose PA <r T. Then S < T iff for every k, SI k < T.

Theorems 5 and 6.6 imply the following generalization of Theorem 6.6; we use A,

B for pure extensions of T.

Theorem 9. Suppose t: PA <er T. Then A < B iff Γ^A) < H(B) iff Γ1(A)HΠ Γ^B).
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We conclude by generalizing Theorems 6.8 and 6.9; the generalization of Theorem

6.10 is left to the reader.

Theorem 10. If t: PA <er T, then T + - t(Conτ) < T.

Proof. Let τ'(x) be as in Lemma 3. By Theorem 6.8, Γ^T) + --Cory < Γ^T). It fol-

lows that t-1(T) + -ιConτ < Γ^T). But then, by Lemma 1 (c) and Theorem 5, T +

-ιt(Conτ) < Γα(T + - t(Conτ)) < t-1(T) + - Conτ < t~l(Ί) < T and so T + - t(Conτ) < T,

as desired.

Theorem 11. Suppose t: PA <er T and X is r.e. and monoconsistent with T. There is

then a sentence φ such that T + φ < T and φg X; φ can be taken to be of the form t(ψ),

where ψ is Σ^.

Proof. Let Y = {θ: t(θ)εX}. Then Y is r.e. and monoconsistent with t-1(T). By

Theorem 6.9, there is a Σα sentence ψ such that Γ^T) + ψ < t'^T) and ψeY. By

Lemma 1 (c) and Theorem 5, T + t(ψ) < T. Clearly, t(ψ)<sX.

Theorem 11 has the following application, where GB is Godel-Bernays (finite)

set theory (compare Corollary 6.6).

Corollary 8. There is a ΣI sentence φ such that ZF + ts(φ) < ZF and GB + ts(φ) ̂  GB.

Notes for Chapter 8.

Theorems 1 and 3 are, of course, (essentially) due to Gδdel (1931), (1934) (cf. also

Feferman (I960)). Theorem 2 is due to Montague (1957), (1962) (compare Exercise

6.1). For a definition of the standard interpretation ts of arithmetic (theory of finite

ordinals) in set theory, see, for example, Mendelson (1987) or Cohen (1966). Fact 13

and Corollary 2 are due to Montague (1961). Fact 14 is due to Levy (1965). Theorem

4 and Corollary 3 are due to Kreisel and Levy (1968), improving earlier work of

Montague (1961). Corollaries 2 and 3 are given here as examples of applications of

the corresponding general results; for a detailed discussion of similar, more gener-

al, and stronger results, see Kreisel and Levy (1968). Lemma 4, Theorems 6, 7, 8, 9,

10, 11, and Corollary 8 are straightforward generalizations of the corresponding

results in Chapter 6. The question if there is a sentence φ such that GB + φ < GB and

ZF + φ ̂  ZF, raised in Hajek (1971), was answered affirmatively by Solovay; for this

and related results, cf. Hajek and Pudlak (1993).




