
0. INTRODUCTION

Let T be a sufficiently strong theory formalized in the language LA of (first order)

arithmetic. Following Godel, we want to show that there is a sentence φ of LA

which is true (of the natural numbers) but not provable in T. GδdeΓs idea was to

achieve this by constructing φ in such a way that

(*) φ is true if and only if φ is not provable in T.

Then, assuming (for simplicity) that all theorems of T are true, we are done. For,

suppose φ is provable in T. Then, by (*), φ is not true and so, by hypothesis, φ is not

provable in T. Thus, φ is not provable in T But then, by (*), φ is true.

One way to achieve (*) is to find a sentence φ which, in some sense, "says" of

itself that it is not provable in T. There are then three major difficulties. First of all,

the sentences of LA deal with natural numbers, they do not deal with syntactical

objects such as sentences (of a formal language), proofs, etc. Secondly, even if some

of the sentences of LA can, somehow, be understood as dealing with syntactical

objects, it is not clear that it is possible to "say" anything about provability (in T)

using only the means of expression available in LA. And, finally, even if this is pos-

sible, there may be no sentence which "says" of itself that it isn't provable.

Godel, however, was able to overcome these difficulties. The first problem is

solved by assigning natural numbers to syntactical expressions in a certain sys-

tematic way. This is sometimes called a Godel numbering, and the number

assigned to an expression, the Godel number of that expression. Thus, the numer-

al of the number assigned to an expression can be regarded as a name of that

expression and certain number theoretic statements can be regarded as statements

about syntactical objects. (In what follows "φ is a formula", "p is a proof", etc. are

short for "φ is the Godel number of a formula", "p is the Godel number of a proof",

etc.)
To overcome the second difficulty Godel (re)invented the primitive recursive

functions (sets, relations). He showed that a number of crucial properties of (Godel

numbers of) expressions, such as that of being a (well-formed) formula, are prim-

itive recursive. In particular, Godel showed that, if the set of axioms of T is primi-

tive recursive, this is also true of the relation PRFτ(φ,p): p is a proof of the sentence

φ in T φ is provable in T, PRτ(φ), if and only if ΞpPRFτ(φ,p). This property, how-

ever, is not (primitive) recursive.

Godel then went on to prove that all primitive recursive functions (sets, rela-

tions) are definable in LA. Thus, in particular, there is a formula Prfτ(x,y) of LA

defining PRFT(k,m). But then Prτ(x) := 5yPrfτ(x,y) defines PRT(k). (In what follows

we write Th φ for PRτ(φ) )

Godel, however, proved more and this is crucial: for every sentence φ, Th φ if

and only if Th Prτ(φ). (This is the first time we use the assumption that T is suffi-

ciently strong; but, of course, if T isn't, T is incomplete for that reason.)
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This takes care of the second difficulty. So now there remains only the problem

of finding a formal sentence which "says" of itself that it is not provable in T. Gδdel

solved this problem in the following way.

Consider the substitution function SBST(k,m) defined by:

SBST(k,m) = the formula obtained from the formula m by replacing the

free variable "x" by the numeral of the number k, if m is a formula,

= 0 otherwise.

This function is primitive recursive and so is defined in T by a formula Subst(x,y,z)

in the sense that for any formula δ(x) and any number k,

Th Vz(Subst(k,δ,z) <-> z = δ(k));

in other words, for all k, δ(x), T proves that: "z satisfies Subst(k,δ,z) if and only if z

is the formula δ(k)". Now consider the formula

5y(Subst(x,x,y) Λ -Prτ(y)),

call it γ(x). Let θ be γ(γ). Intuitively, θ "says" that the result of replacing the variable

"x" by the numeral for the number γ in the formula γ(x) is not provable in T. But

this result, γ(γ), is θ itself. Thus, θ "says" that θ is not provable in T.

Formalizing this argument we obtain:

(**) Th θ ̂  -Prτ(θ).

(This is an instance of the very important fixed point lemma; Lemma 1, Chapter 1.)

And now GδdeΓs proof can be completed as follows. First we show that

(***) Th θ.

Suppose Th θ. Then Th Prτ(θ). But then, by (**), Th - θ and so T is inconsistent

(whence Th 1, where _L := ->0 = 0), contrary to assumption.

Thus, (***) holds. But this is exactly what - Prτ(θ) "says". So -ιPrτ(θ) is true and

consequently, by (**), θ is true.

Let Conτ be the sentence ->Prτ(_L). Conτ is then a natural formalization of "T is

consistent". In proving (***) we actually proved that if Thθ then Th_L and so that if

T is consistent (Th_L), then Thθ. It turns out that this proof can be formalized in T

provided that T is sufficiently strong. Thus, Th Conτ -» -πPrτ(θ) and so, by (**),
Th Conτ -> θ.

But then, since Th θ, it follows that Th Conτ; in other words, T cannot prove its

own consistency. This is GόdeΓs second incompleteness theorem.

This, in brief, is what Gδdel accomplished (restricted to theories in LA; general-

izations to other theories containing arithmetic, for exampel set theory, are straight-

forward). In GδdeΓs original proofs it is assumed that the set of axioms is primi-

tive recursive. Subsequently, when the (general) recursive functions had been

defined, it turned out, however, that this assumption could, without altering the

structure of the proofs, be replaced by the weaker assumption that the set of

axioms is recursive. In fact, it became clear that GόdeΓs first incompleteness theo-

rem holds for all formal systems, in the most general sense, and is actually a result

belonging to recursion theory: the set of true (Π1) sentences of LA is not recursive-
ly enumerable.
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In (the above sketch of) GδdeΓs proof, and in virtually all proofs in the follow-

ing chapters, the method of arithmetizing metamathematics, i.e. translating meta-

mathematical concepts, statements, etc. into arithmetic, plays a central role. This

method is based on a large number of definitions and preliminary results. In

Chapter 1 we introduce the basic notation and terminology and state a number of

Facts concerning these notions. These Facts will not be proved but references will

be given; some of them are proved in almost every exposition of GδdeΓs theorems,

others require quite extensive proofs that would be out of harmony with the rest of

the book. In Chapter 1 we also prove the fixed point lemma (Lemma 1.1), the essen-

tial undecidability of Robinson's Arithmetic, Q, a very weak finite subtheory of PA,

(Theorem 1.2), and the nonexistence of truth-definitions (Theorem 1.3).

In Chapter 2 we present the first and most important results of the subject,

GόdeΓs incompleteness theorem and his (second) theorem on the unprovability of

consistency (Theorems 2.1 and 2.4). GδdeΓs results were subsequently improved in

various respects and we present some of these improvements.

The main result of Chapter 3 is that, assuming that T contains a minimum of

arithmetic (Q), every recursively enumerable set is numerated by a (Σι) formula in

T (even if not all Σ^ sentences provable in T are true) (Theorem 3.1). We also prove

some refinements of this result.

Given that the set of axioms of a theory T is infinite, it is natural to ask if these

axioms can be replaced by a finite set of axioms. In Chapter 4 we apply the so called
reflection principles to prove some negative results concerning this problem

(Theorems 4.1, 4.2). For example, neither Peano Arithmetic, PA, nor any one of its

consistent extensions (in LA) is finitely axiomatizable. On the other hand, every

extension of PA has an axiomatization which is irredundant in the sense that none

of the axioms can be derived from the other axioms (Theorem 4.6). We also prove

the existence of not irredundantly axiomatizable theories (Theorem 4.7).

Let Γ be a set of sentences, for example Σn or Πn. A sentence φ is Γ-conservative

over T if every sentence in Γ provable in T + φ is provable already in T. Partial con-

servativity is studied in Chapter 5, where the basic existence theorems are proved

(Theorems 5.2, 5.3,5.4); it plays an important role in Chapters 6 and 7.

An interpretation of a theory S in a theory T is, roughly speaking, a function t

on the set of formulas of S into the set of formulas of T such that t preserves logi-

cal form and Tht(φ) whenever Shφ. S is interpretable in T, S < T, if there is an inter-

pretation of S in T. These concepts were introduced by Tarski. If, in addition, Sh φ

whenever Tht(φ), we shall say that t is faithful and that S is faithfully interpretable

inT.
Interpretability was originally used as a tool in proofs of (relative) consistency

and undecidability Interpretability (in arithmetical theories) is studied for its own

sake in Chapter 6. The key result is that if T is an extension of PA and Cons is a sen-

tence which (in a suitable sense) in T "says" that S is consistent, then S < T + Cons

(the arithmetization of GδdeΓs completeness theorem; Theorem 6.4). From this it
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follows that S < T if and only if for every finite sub theory S' of S, Th ConS' (Lemma

6.2) and that if S, too, is an extension of PA, then S < T if and only if every Γ^ sen-

tence provable in S is provable in T (Theorem 6.6). We also prove similar characteri-

zations of faithful interpretability (Theorems 6.13, 6.14).

Mutual interpretability is an equivalence relation; its equivalence classes will be

called degrees of interpretability. Let T be a consistent extension of PA. The degrees

of extensions of T, partially ordered by the relation induced by <, form a distribu-

tive lattice (Theorem 7.1). This lattice is studied in Chapter 7 both from a purely

algebraic point of view and in terms of the nature of the theories belonging to a

given degree.

It is quite often true in the following pages that a result stated for extensions of

PA actually holds for all extensions of some (much) weaker, sometimes finitely

axiomatizable, subtheory of PA. We shall, however, pay little attention to facts of

this type: what we are mainly interested in here are the properties shared by all the-

ories containing a sufficient amount of arithmetic. But, if a result is (proved to be)
true of Q (and its extensions), this will be explicitly noted.

Almost all the results presented in this book hold in a very general setting. In

spite of this we shall in Capters 1-7, for reasons of simplicity and readability, for-

mulate (and prove) these results for theories formalized in LA only. We partly make

up for this lack of generality in Chapter 8, which is devoted to generalizations, usu-

ally straightforward, to theories formalized in other languages; the most important

of these is the language of (first order) set theory.




