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These lectures will provide a brief introduction to the model theory of strongly
minimal sets. The first two sections will develop the basic combinatorial geom-
etry of strongly minimal sets. In sections three and four we will show how the
pregeometry of the strongly minimal set detects the presence of ambient algebraic
structure. Finally we will show how these ideas come together in Hrushovski's
proof ([HI]) of the Mordell-Lang conjecture for function fields.

Strongly minimal sets are just the beginning of the story in geometric model
theory. My hope is that by concentrating on strongly minimal sets I can give a
reasonably self-contained introduction to this important and beautiful subject.
We assume only that the reader is familiar with the treatment of ω-stable theories
given in [CK] or [S]. A full development of geometric model theory is given in

[Pi]
My own appreciation of geometric model theory was slow in coming. I owe

a great deal to Anand Pillay, Elisabeth Bouscaren and John Baldwin for the
numerous conversations it took to enlighten me.

1 Strongly minimal sets and pregeometries

Let £ be a first order language and let M be an ^-structure. Recall that a
formula φ(v) with parameters from M is said to be strongly minimal if for any
elementary extension N of M and any formula ψ(v) with parameters from N
exactly one of {α G N : N \= φ(a) Λ φ(ά)} and {ά E N : N |= φ(ά) Λ ^ψ(ά)}
is infinite. We say that a subset D of Mn is strongly minimal if it is defined
by a strongly minimal formula. We will often consider D as a structure in its
own right by taking all of the structure induced from definable subsets in Mn

(by "definable" I will always mean "definable with parameters" unless I specify
otherwise).

If A C M and 6 £ M we say that 6 is algebraic over A if there is an £-formula
φ(v) with parameters from A such that M \= φ(b) and {α £ M : M \= φ(ά)} is
finite. The set of all elements of A algebraic over A is called the algebraic closure
of A and denoted acl(Λ). The algebraic closure relation on a strongly minimal
set determines a pregeometry.

* Partially supported by NSF grant DMS-9306159 and an American Mathematics
Society Centennial Fellowship.
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Definition Let X be a set and let cl : P(X) ->• P(X) be an operator on the
power set of X. We say that (X, cl) is a pregeometry if the following conditions
are satisfied.

i) (monotonicity) If A C X, then A C d(A).

ii) (transitivity) If A C X, then cl(cl(A)) = cl(A).

iii) (exchange) If A C X, α,6 G X and α G cl(A U {6}), then α G cl(A) or
6 e c l ( Λ U { α } ) .

iv) (finite nature of closure) If A C X and α G cl(A), then there is a finite
ΛO C A such that α G cl(Ao).

In any structure M conditions i), ii) and iv) are true of algebraic closure. If D is
a strongly minimal subset of Mn we consider the operator X »-> acl(X) Π D. We
abuse notation by also calling this operator acl. The important observation of
Baldwin and Lachlan [BL] is that exchange holds in any strongly minimal set.

Lemma 1 If D be a strongly minimal set, then (D, acl) is a pregeometry.

Proof We need only verify that exchange holds. Suppose α, 6 G D, A C D,
α G acl(A, 6). For notational simplicity we assume that A = 0.

Suppose φ(a,b) and \{x : φ(x,b)}\ = n. Let ψ(w) be the formula
"\{x : φ(x,w)}\ = n". Ifψ(w) defines a finite set, then 6 G acl(0) and α G acl(0).
Thus we may assume that ψ(w) defines a cofinite subset of D.

If {y : φ(a, y)/\ψ(y)} is finite we are done (as 6 G acl(α)). Thus we assume that
\D ~~ {y : Φ(°"> y] Λ Ψ(y)}\ = l Let χ ( x ) be the formula expressing

\D-{y:φ(x,y)Λψ(y)}\=L

If χ ( x ) defines a finite set, then a G acl(0) as desired. Thus we assume χ ( x )
defines a cofinite set.

Choose α i , . . . ,αn+ι such that χ(α, ). The set BΪ = {w G D : ψ(w)/\φ(a,i, w)}

is cofinite for i = 1,.. . , ra + 1. Choose 6 G Π^* Then ^(α, ,6), for each i. So
\{x : φ(x, b)}\ > n + 1, contradicting the fact that ψ(b).

If (X, cl) is a pregeometry we say that A is independent if α ̂  cl(A \ {α}) for
all a G A and B is a basis for y if B C Y is independent and Y C acl(5). In
any pregeometry any two bases for Y have the same cardinality which is called
the dimension. If A C X we also consider the localization C\A(B] = cl(A U B)
and notions of independence over A and dimension over A. We let dim (B) and
dim (B/A) denote the dimension of B and dimension of B over A respectively.

We say that a pregeometry (X, cl) is a geometry if cl(0) = 0 and cl({#}) = {x}
for any x G X. If (A",cl) is a pregeometry, then there is a natural associated
geometry. Let XQ = X \ cl(0). Consider the equivalence relation ~ on X given
by α ~ 6 if and only if cl({α}) = cl({&}). By exchange, ~ is an equivalence

relation. Let X be X0/ ~ Define cl on X, by cl(A/ -) = {6/ -: 6 G cl(A)}. It
is easy to check that (X,cl) is a geometry.
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We distinguish some properties of pregeometries that will play an important
role.

Definition Let ( X , cl) be a pregeometry.

i) We say that (X, cl) is trivial if c\(A) = \JaeX cl({α}) for any A C X.

ii) We say that (X, cl) is modular if for any finite dimensional closed
A.BCX

dim (A U B) = dim A + dim B - dim (A Π B).

iii) We say that (X, cl) is locally modular if (X, clα) is modular for some a G X.

We give several examples for strongly minimal sets.

1) Let D be a set with no structure. Then for all a G D, acl(α) = {α} and
acl(0) = 0. Thus (D, acl) is a trivial geometry.

2) Let D |= TA(Z, s), where s ( x ) = x + 1. Then acl(0) = 0,
acl(α) = {sn(a) : n G Z} and acl(A) = {sn(α) : α G A,π G Z}. Thus (D, acl) is
trivial pregeometry that is not a geometry.

3) (projective geometry) Let F be a division ring and let V be an infinite vector
space over F. We view V as a structure in the language £ = { + , 0 , λ α : α G F }
where λα(x) = αx. Then V is a strongly minimal set and for any set A C F
the algebraic closure of A is equal to smallest F-subspace spanned by A. The
usual dimension theorem for intersections of linear subspaces shows that this
pregeometry is modular. This is not a geometry since cl(0) = {0} and for any
a G V \ { 0 } , c l ( a ) i s the line through a and 0. To form the associated geometry
we take as points the lines through 0. The closure of a set of lines is the set of
all lines in their linear span. Thus the associated geometry is just the projective
space associated to V. If dim V = n, then the projective space has dimension
n-1.

4) (affine geometry) Let V and F be as above. We define a second geometry on
V where the closure of a set A is the smallest affine space containing it and
cl(0) = 0. (An affine space is a translate of a linear space). Here cl({α}) = {α}. So
this is a geometry. Let α, 6, c G V be non-colinear. Then dim (a, b, c, c+b—a) = 3,
while dim (a, b) = dim (c, c + b — a) = 2 and cl(α, 6) Π cl(c, c + 6 — α) = 0 as these
are parallel lines. Thus the geometry is not modular. If we localize at zero, then
the pregeometry is exactly example 3) so this is locally modular.

For F = Q we can view this as the algebraic closure geometry of a strongly
minimal set by viewing V as a structure in the language {τ} where

τ(x,y,z) = x + y- z.

(For arbitrary F, add function symbols for ax + y — az for each α G F.)

5) Let K be an algebraically closed field of infinite transcendence degree. We
claim that (K, acl) is not modular. Let k be an algebraically closed subfield of
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transcendence degree n. We will show that even localizing at k the geometry is
not modular. Let α,6 ,x be algebraically independent over k. Let y = ax -f b.
Then dim (k(x, y, a, b)/k) = 3 + n while dim (k(x, y)/k) = dim (k(a, b)/k) = 2.
But acl(Ar(x, y)) Π acl(Ar(α, 6)) = k contradicting modularity. To see this suppose
d G acl(fc(α, 6)) and y is algebraic over k(d, x). Let k\ = acl(fc(cf)). Then there is
p(X, Y) E Λι[X, Y] an irreducible polynomial such that p(x,y) — 0. By model
completeness p(X,Y) is still irreducible over acl(fc(α, 6)). Thus p(X, Y) is
α(Y — α ί̂ — 6) for some α G acl(fc(α, 6)) which is impossible as then a G &ι and
α,6 G ΛI

Algebraically closed fields are the only known natural examples of non-locally
modular strongly minimal sets. Zilber conjectured that every non-locally modu-
lar strongly minimal set is essentially an algebraically closed field. By Macintyre
([Mac]) we know that every infinite ω-stable field is algebraically closed This
was refuted when Hrushovski ([H2]) showed that there are non-locally modular
strongly minimal sets which do not even interpret infinite groups. Hrushovski
([H3]) later showed that there are strongly minimal sets which are proper ex-
pansions of an algebraically closed field. For example he showed that there are
strongly minimal structures (£), -f, , 0, 0) where (D, +, •) is algebraically closed
field of characteristic p > 0 and (D,φ,0) is an algebraically closed field of
characteristic q φ p.

Although Zilber's conjecture is false it provided the motivation for a great
deal of important work. One related problem is still open.

Cherlin-Zilber Conjecture Suppose G is an infinite simple group of finite
Morley rank. Then G interprets an algebraically closed field F and G is definably
isomorphic to an algebraic group over F.

We next give a useful characterization of modularity. Let (X, cl) be a prege-
ometry.

Lemma 2 The following are equivalent.

i) (X, cl) 25 modular.
ii) If A C X is closed, b G X and x G cl(A,6), then there is a £ A such that

a?€c l (α,6) .
iii) // A, B C X are closed and x G c\(A, B), then there are a G A and b G B

such that x G cl(α, 6).

Proof
i)=> ii) By the finite nature of closure we may assume that dim A is finite. If

x G cl(6) we are done, so we may assume x (£ cl(6). By modularity

dim (A, b, x) = dim A + dim (b, x) — dim (A Π cl(b, x))

and

dim (A, b, x) = dim (A, b) = dim A -f dim b - dim (A Π cl(b)).
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Since dim (b, x) = dim (b) -f 1, there is a £ A such that a £ cl(6, x) \ cl(b). By
exchange, x £ cl(6, α).

ii)=y» iii) We may suppose A and B are finite dimensional. We proceed by
induction on dim A. If dim A is zero then iii) holds. Suppose that A = cl(Ao, α)
where dim A0 = dim A — 1. Then x £ cl(A0, B, a). By ii) there is c £ cl(^40) #)
such that x £ cl(c, α). By induction there is α0 £ AQ and 6 £ B such that
c £ cl(α0, 6). Again by ii), there is α* £ cl(α0, α) C A, such that x £ cl(α*, b).

iii)=> i) Suppose A, B C X are finite dimensional and closed. We prove i)
by induction on dim A. If dim A = 0, then we are done. Suppose A — cl(^4o> α)
where dim AQ = dim A — 1, and we assume, by induction, that

dim (Ac, B) = dim A0 + dim B - dim (A0 Π B).

First, assume that α £ cl(A0, B). Then dim (A0,B) = dim (A,B) and, since
α £ AQ, dim A = dim A0 + 1. Since α £ cl(^40, B), by iii) there is α0 £ A and
b £ B such that a £ cl(αo, 6). Since α £ cl(αo), by exchange, 6 £ cl(α, αo). Thus
6 £ A. But 6 ̂  AO, since otherwise α £ AQ. Therefore

dim (A Π B) = dim (A0 Π B) + 1

as desired.
Next, suppose that α ^ cl(Ao,5). In this case we need to show that

A Π B = AQ Π B. Suppose 6 £ B and b £ cl(Ao, α) \ cl(A0). Then by exchange,
α £ cl(Ao,6), a contradiction.

Remark: If F is a vector space, then it is easy to see that if α i , . . . , αn is a basis
for A and 6 1 , . . . , 6m is a basis for 5. Then any x in the span of A U B is the
sum of a linear combination of the α, and a linear combination of the bj. Thus
condition iii) above holds.

Exercise: If K is an algebraically closed field, z, α o , . . . , αn are algebraically in-
dependent and

n

y - Σ flι'χl

i=0

then T/ is not algebraic over k(x) for k a subfield of acl(αo,. . . , αn) of dimension
less than n -f 1.

We conclude this section by illustrating the close connection between Morley
rank and dimension for strongly minimal sets.

Let D be a strongly minimal set and let A C D. There are two kinds of types
in S\ (A). We say that p £ Si (A) is an algebraic type if there is a formula φ(v, w)
and α £ A such that φ(v,a) defines a finite set and φ(v,a) £ p. There will be a
minimal n such that p contains a formula φ(v,b) which defines a set of size n. It
is easy to see that this formula isolates p.
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Let pi = {-^φ(v,a) : a £ A, and φ(v,a) defines a finite set}. By strong
minimality pi is complete and consistent. Clearly p\ is the unique non-algebraic
one type. Clearly RM(pι) = 1, while RM(p) - 0 if p is algebraic.

We inductively define the type of n-independent elements pn £ Sn(A) as
follows:

φ(vι, . . . , υn-ι> β) is in pn+ι if and only if the formula

\{w : -ιφ(vι,...,vn-ι,w,a)}\ < m

is in Pn-i for some m. Since pn_ι is a complete type, strong minimality implies
that

- either "\{w : φ(v\, . . . ,υn_ι, ιu,ά}| < ra"
- or "\{w : -ιψ(υι,...,vn_ι,tι;,ά}| < m"

is in Pn-ι for some m.
Let q £ Sn (A) . We let dim q be the maximum m such that there are 2*1 , . . . , im

such that <? restricted to Viί,...,Vim is pm. We reorder the variables so that
ij — j. If 6 is a realization of q then &ι, . . .,6m are independent over A and
&m+ι, ,&n G acl(A, & ι , . . . , 6m).

We argue by induction that RM(pn) = n. We may assume that D is saturated
and A is infinite. Suppose q £ 5n(A) and q φ pn. Suppose 6 = (61, . . . , 6n) is a
realization of q, (reordering the indicies if necessary) &ι, . . . , δm are algebraically
independent over A and 6m+ι , . . . , bn £ acl(A, 61, . . . , 6m). Then 61, . . . , 6m

 re~
alizes pm and, by induction, RM(pm) = m. Thus RM(q) = m. It follows that
RM(pn) < n.

If 6 = (61, . . . , bn) is a realization of pn, then 61, . . . , 6 n _χ are independent
over A, so RM(pn) > n — 1. Suppose RM(pn) = n — 1 and φ(vι, . . . ,υn) is a

formula (with parameters from A) that isolates pn among types of Morley rank
n — l. Since (&ι, . . . , 6n-ι) realizes pn-ι and bn is not algebraic over 6χ, . . . , 6n_ι,
the formula

is in pn for every TV > 0. By strong minimality, there is an N such that pn

contains a formula asserting

Since A is infinite, we can find a £ A, such that <^(δι, . . . , 6n-ι, α) But then
tp(6ι, . . . , 6n_ι, a /A) has rank n—l, is not equal topn_ι and contains φ(v\, . . . , vn)
a contradiction.

It is easy to easy to see that RM(En) > RM(E)n for any definable set E.
Thus RM(Dn) > n. If q φ pn, then RM(q) < n. Since there must be some type
of rank at least n, that type must be pn. Since p is isolated once we discard types
of rank less than n, RM(pn) = n. Thus RM(Dn) = n.

Thus for any p £ Sn(A), RM(p) = dim p. Also RM(a/A) = dim (a/ A). From
this, and the fact that the corresponding equation is clearly true for dimension,
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we see that in strongly minimal sets we have the following version of the Lascar
equality

RM(a, b/A) = RM(a/A) + RM(b/A, a).

The equivalence of Morley rank and dimension will allow us to conclude that
in strongly minimal sets Morley rank is definable.

Lemma 3 Let D be strongly minimal. Suppose C C £)m+n is definable. Let
Ca = {x G Dn : (α, x) G C} for a G Dm . The set Yn}k = {a G D™ : EM Ca > k}
is definable for each k < n.

Proof We prove this by induction on n.
Suppose n = 1. We first note that there is a number N such that \Ca\ < N

or \D \ Ca\ < TV, for all α G Dm\ since otherwise the type

5 IS

f\
1 = 1

is consistent and a realization violates strong minimality.
Thus RM(Ca) > 1 if and only if \Ca\ > N. So Yl 1 is definable. Clearly

Yι,o = D™.

Suppose n = s + 1. We work by induction on k. Clearly Yn$ is definable.
For α G £>m, let 5α = {6 G D5 : By (b,y) G _Cα}. Clearly if RM(Ba) > k,
then RM(Ca) > k. Suppose RM(Ba) < k. If 6 £ Ba and (6, c) £ Cα, then
dim (b,c) = dim b + dim (c/b). Let Aa = {b e Ds : {y: (b,y) £ Cα} is infinite}.
As above, there is an N (independent of α) such that

Thus Λa is definable and RM(Ca) > k if and only if RM(Aa) > k - 1.
Thus RM(Ca) > k if and only if RM(Ba) > k or RM(Aa) > k - 1. So, by

induction, Yn,k is definable.

Finally we make one very useful definition.

Definition Let v = v\, . . . , vn, 6 = 61, . . . , bm and suppose φ(v,b) has Morley
rank k and Morley degree 1. If 6 G 5 and p £ Sn(B) is the unique type of rank
k containing φ(v, 6), then we call p the generic type for φ(v,b) over 5.

2 Families of plane curves

Let D be a strongly minimal set. In this section we will consider families of
strongly minimal subsets of D2. We first consider two illustrative examples.
Suppose V is a Q vector space. Let E = { ( x , y , z ) G V3 : y = ma? + z} where
m G Q. For a G V, let Ea = {(z, y) : (x, y, a) G #}. We think of E as describing
the family of plane curves {Ea : a G V}. We call V the parameter space for the
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family E. Note that in this case the parameter space is rank one. Indeed, if E
is a family of plane curves in V2 of higher rank, then for many distinct a and 6
Ea and Eb agree except perhaps on a finite set.

On the other hand suppose K is an algebraically closed field. Fix n G TV and
consider

E = { ( x , y, z0, . . . , 2n-ι

If

+ zn.ιx
n~l +

n-l

h +

»=0

for a = (α0, . . . , αn_ι) G ΛΓn, then {Ea : α G A'n} is an n-dimensional family of
strongly minimal sets.

In this section we will examine families of plane curves and use them to
give an alternative characterization of local modularity. To make these notions
precise we must first digress and discuss Meq and canonical bases.

Let M be any £-structure. We associate to M a new structure Meq in many
sorted language £eq D £. For each 0-definable equivalence relation E on Mn,
we add a new sort SE and a new n-ary function symbol /#. We interpret SE as
Mn / E and f& as the quotient map

x »-> x/E.

We can think of M as being the sort 5=. Clearly if M -X AT, then Meq ^ TVeq.
Moreover if A is an £eq-structure elementarily equivalent to Meq, then A is
7Veq for some TV = M. Also note that if σ G Aut(M), then there is a unique
extension of σ to σ G Aut(Meq). Clearly every automorphism of Meq restricts
to an automorphism of M.

One function of Meq is that any structure interpretable in M is isomorphic
to a structure definable in Meq. For our purposes the most important property
of Meq is the existence of canonical bases.

Definition Suppose M is saturated. Let X C Mn be definable. We say that A
is a canonical base for X if σ fixes X setwise (ie. X = {σ(x) : x G X}) if and
only if σ fixes A pointwise (ie. σ(α) = α for a G A) for all σ G Aut(M).

If p G 5n(M) then A is a canonical base for p if σ(p) = p if and only if σ
fixes A pointwise for all σ G Aut(M).

Note that if A is a canonical base for X and dcleq(yl) = dcleq(£), then B is
also a canonical base for X.

Suppose X is defined by the formula φ(x, a). Let E be the equivalence relation

ά E b & (φ(x, a) <* φ(x, b)).

Let a — a IE G Meq. Then α is a canonical base for X.
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We next show that if D is strongly minimal, A C D and p £ Sn(A). Then p
has a canonical base a £ Meq.

Suppose p has rank r and Morley degree 1. There is a formula φ(v,b) £ p
such that ^ has Morley rank r and Morley degree one. By definability of rank
there is a formula Ψ(w) such that ^(6) and

Ψ(w) & RM({x : φ(x, w)}) = r.

Let θ(w) be the formula

Λ RM({z : φ(x, b) Λ <£(x, z ) } ) = r Λ

{z : 0(x, 6) Λ -.^(x, z ) } ) = r] .

Clearly 0(6) holds.
We can define an equivalence relation on Y = {y £ Dm : θ(y)} by

: ^(x, j/) Λ φ(x, z ) } ) = r.

Let a be the equivalence class b/ ~.
Then <τ(α) = a iff σ(6) ~ 6. But σ(p) = p iff σ(p) is the generic of φ ( v , b ) .

Since σ(p) is the generic of φ(v, cr(6)), σ(p) — p if and only if σ(6) ~ 6. Thus a
is a canonical base for p. Clearly a £ dcleq(6).

If p has rank r and Morley degree d > 1 and φ(v,b) is a rank r degree c?
formula in p, then a similar argument shows that α £ acleq(6).

We summarize these arguments in the following theorem.

Theorem 1 Suppose A C D and p £ Sn(A), then there is a canonical base
for p in acleq(A). If p has Morley degree 1, then the canonical base for p is in

We next need to consider the computation of ranks in Deq. The key is the
following unpublished lemma of Lascar and Pillay.

Lemma 4 Let D be a strongly minimal set and let DQ C D be infinite. Suppose
E is an ^-definable equivalence relation on Dm . Let a £ Dm and a = a/E.
There is a finite C C Dk (for some k) such that an automorphism of D fixing
DQ fixes a if and only if it fixes C setwise.

Proof By adding DO to our language we assume that acl(0) is infinite.
Our first claim is that there is 6 = (61, . . .6m) £ Dm algebraic over a such

a E b. Choose 6 such that b E a, and j = \{i < m : 6, is algebraic over α}| is
maximal. We must show that j = m. Suppose not. By reordering the variables
we may assume that 61 , . . . , bj are algebraic over a and 6, is not algebraic over
a for i > j. Let

Y = {x £ D : a% + 2 . . .32/n ( δ ι , . . . , f y , z , ί / j + 2 , ,yn) £E a}.

Clearly 6j+ι £ Y. If Y is finite, then any element of Y is algebraic over
6 ι , . . . , 6 j , α , and hence algebraic over a. Thus by choice of 6, Y is infinite.
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If Y is infinite, then since D is strongly minimal, Y is cofinite. In partic-
ular there is d E acl(0) Π Y. But then we can find dj+2,...,dm such that
(6ι, . . . ,6 J ,d,dj+2ι ..,ί'm)/J5 = OL and 61,.. . ,6 j ,d are algebraic over a con-
tradicting the maximality of j.

Let C be the set of all conjugates of 6 under automorphisms fixing a. Then C
is fixed setwise by any automorphism which fixes α and DQ. If c E C, then c/ E —
a. Thus α is fixed under all automorphisms which permute C. In particular an
automorphism fixes a/E setwise if and only if it fixes C setwise.

Lemma 2.2 gives an easy description of Morley rank in Deq. If p is a jC,eq-kype
over D. Let a realize p. By lemma 2.2 there is a finite set C such that the set C
is interdefinable with a over D. Then RM(p) is equal to the dimension of C.

Definition We say that a strongly minimal set D is linear if for all p E 82(D),
the canonical base for p has rank at most one.

Suppose φ(vι,V2,b) is strongly minimal. Let T be the family of sets Cβ
where β and 6 realize the same type. There is a natural equivalence relation on
T, Cot ~ Cβ if and only if CaΔCβ is finite. If p is the generic type of φ, then the
Morley rank of the canonical base of p intuitively corresponds to the dimension
of TI ~. Thus D is linear if and only if there is no family of plane curves of
dimension greater than one. Algebraically closed fields are nonlinear since we

have the family of curves C(a,b) — {(x> y) '• y — ax + 6}, while vector spaces are
linear.

We next show that the linear strongly minimal sets are exactly the locally
modular ones.

Theorem 2 Let D be a strongly minimal set. The following are equivalent.

i) For some small B C -D, the pregeometry DB is modular.

ii) D is linear.

iii) D is locally modular (ie. there is b E D such that D^ is modular).

Proof

i)=> ii) Adding the parameters B to the language we assume that
B = 0 and D is modular. Let p E 82 (A) be strongly minimal. Let
Φ(vι> V2, a) be a strongly minimal formula in p. Let 61, 62 realize p.
Let X = acl(ά) Π acl(6ι, 62). By modularity

dim X = dim (α) + dim (61,62) — dim (0,61,62).

Since dim (ά, 61, 62) = dim (ά) + 1 and 1 < dim (61, 62) < 2, dim X < 1. Thus

dim (61,62/0) = dim (61,62,0") — dim (ά)

= dim (61, 62) — dim X
= dim(6ι,6 2/X).
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Thus dim (δι,62/X) = 1. Let c be a canonical base for p, then, by 2.1,
cEacl e q(X), so RM(c) < 1.

ii)=> iii) Let 6 E D-acl(0). We will show that D localized at 6 is modular. We
will use the fact that 1.2ii) is equivalent to modular. Suppose B is a finite di-
mensional closed set. Suppose αi E acl(α2,£,6). We must find d E acl(B, 6)
such that αi E acl(α2, d, 6). Clearly we may assume that a\ g a,cl(B,b),
0,2 & acl(5,6) and α± g acl(α2,6) (else we are done). Thus dim (αι,α2/6) = 2
and dim (αι,α2/S6) = 1.

Let c be a canonical base for the type of αi, α2 over acleq(#, 6).
By 2.1 cEacle q(£,6).

claim c E acleq(αι, α2).
Since c is the canonical base for p, RM(αι, α2/c) = 1.
Since RM(αι,α2/c) < RM(αι,α2), RM(c/αι,α2) < RM(c).
By ii) RM(c) = 1, thus c E acleq(αι,α2).

Since RM(αι,α 2/fc) = 2 and RM(αι,α2/c) = 1, c g acl(6).
Thus, since 6 ^ acl(0), 6 ^ acl(c). Thus αi and 6 realize the same type over c
and, by saturation, there is d £ D such that tp(α\, α2/c) = tp(b, d/c). Then

acl(6, c) C (acl(αl5 α2, 6) Π acl(B6))

and c? <jt acl(6).
We claim that d £ acl(α2,6). If d E acl(α2,6), then, since d £ acl(6),

α2 € acl(d, 6) C acl(β,6), a contradiction.
Thus since d E acl(αι, α2, 6) \ acl(α2, 6), «ι E acl(α2, 6, d) as desired.

We next give an "incidence geometry" interpretation of local modularity.
This material will not be used in the subsequent sections.

Definition Suppose P and L are sets and / C P x L. We think of P as a set of
points, L as a set of lines> and / as the incidence relation (ie. I(p, I) if and only
if p is on /). We say that (P, L, /) is a quαsi-design if

i) for any p, {/ : 7(p, /)} is infinite
ii) for any /, {p : /(p, /)} is infinite, and
iii) for any /i φ /2, {p : I(p,lι) and /(p,/2)} is finite.

If in addition
iv) for any pi φ p2, {/ : /(pi,/) and J(p2,/)} is finite

then we call (P, L, /) a pseudo-plane.

We say that (P, L, /) is complete-type definable if there is a complete type
r(x,y) such that P = {x : 3y r(x,y)}, L = {y : 3x r(x,y}} and / is the set of
realizations of r.

Lemma 5 Let M be any saturated structure. If there is a complete type definable
quasi-design in Meq> then there is a complete type definable pseudo-plane.
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Proof Let c E L and let B = {61,6 2 , . .-} C P, such that r(&, ,c) for all
i. Let σ be any automorphism of M fixing 5 point wise. Since L is the set of
realizations of a type, σ(c) G I/ and r(6, ,σ(c)) for all i. Thus by iii) c = σ(c).
Hence σ(c) <ΞdcΓ*(B).

Let n be maximal such that there are distinct & ι , . . . , 6 n such that r(6, , c)
and c g acl e c L(&ι,. . . , 6n). Let d G M^ be the unordered set { & ι , . . . , 6n}. Let r*
be the type of (c?, c).

Since 6, G acl(d) \ acl(c), c? ^ acl(c). Thus i) holds. By choice of n, c g acl(d).
If r*(dι,cι) and r*(c?ι,c2) then c?ι = {61,.. .,6n} where r(6, ,Cj) for i = 1 , . . . , n
and j = 1,2. Clearly since {6 : r(6, cι)Λr(6, c2)} is finite, {c?: r*(d, cι)Λr*(cί, c2)}
is finite. By choice of n if r(dι, c), r(c?2, c) and di ^ c?2, then c £ acl(c?ι, c?2). By
saturation, there are only finitely many c such that r(c, c?ι) and r(c, c?2). Thus
r* determines a pseudoplane.

Proposition 1 Let D be strongly minimal. If D is non-locally modular then
there is a complete-type definable pseudoplane.

Proof By 2.4 it suffices to show that there is a complete-type definable quasi-
design. Suppose D is not locally modular. Then by 2.3 there is a strongly minimal
p G 82(0) such that if c is the canonical base for p, then RM(c)=2. Let α = (x, y)
realize p and let r be the type of (α,c). Since RM(p) = 1, α ^ acl(c). Since
RM(α, c) = RM(c) +1 > 3, c ̂  acl(α). Suppose c / c\ and both (α, c) and (α, GI)
realize r. Let φ(v,b]\ be a strongly minimal formula in the type with canonical
base c and let φ(v,bι) be a formula in the type with canonical base c\. Since
d φ c, {v :.φ(v,b) Λ φ(v,bι)} is finite. Thus {x : r(x,c) and r(x,cι)} is finite.

3 Algebraic structure

A remarkable insight of Hrushovski is that in many situations algebraic structure
can be detected from the geometry of forking. In this section we will give one
version of this result and apply it to show that a locally modular strongly minimal
set interprets a group. We will also state a theorem of Hrushovski and Pillay
describing groups interpret able in locally modular strongly minimal sets.

Throughout this section D will be a saturated strongly minimal set. Our
main tool is the group configuration. Suppose we have elements α, 6, c, x, y, z in
L>eq such that:

i) RM(α) = RM(6) = RM(c) = RM(x) = RM(y) = RM(z) = 1;
ii) any pair of elements has rank 2;
iii) RM(α, 6, c) = RM(c, x, y) = RM(α, y, z) = RM(6, x, z) = 2;
iv) any other triple has rank 3.

Look at Diagram 1. Conditions iii) and iv) assert that each line has rank two
while any three non-colinear points have rank three.

There is one easy way that a group configuration arises. Suppose G is
a strongly minimal abelian group (indeed strongly minimal groups must be
abelian). Let α, &, # be independent elements of G. Let c = 6α, y — ex and
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Diagram 1
The group configuration

z — bx, then y — az and it is easy to check that conditions i)-iv) hold. Remark-
ably this observation has a converse.

Theorem 3 (Hrushovski) (see [Bol] or [PI] chapter 5) Suppose there is a group
configuration in Deq. Then D interprets a strongly minimal abelian group.

Let D be a saturated non-trivial locally modular strongly minimal set. By
adding a parameter to our language we assume that D is modular. We will show
how to use theorem 3.1 to find a group in Deq.

Since D is non-trivial we can find a finite A C D and 6, c £ D \ a,cl(A) such
that c G acl(A, 6) \ (acl(A) U acl(δ)). By modularity

dim (6, c, A) — dim (6, c) -f dim (A) — dim C

where C — acl(^4) Π acl(6, c). Since dim (6, c, A) — dim A 4-1 and dim (6, c) = 2,
dim C = 1. Thus there is a £ C with dim α = 1. Note that dim (α,c) =
dim (α, b) = 2, but dim (6, c/α) = 1.

Choose y, z G D such that (6, c) and (y, z) realize the same type over acleq(α)
and ( y , z ) are independent from (6, c) over α

(ie. dim (y, z/α, 6, c) = dim (t/, z/α) = dim (6, c/α) = 1).
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Since a E acl(6,c), z E acl(6,c,y). Thus dim (6, c, y) - 3 and dim (c, y) - 2.
Similarly dim (6, z) = 2. By modularity

dim (c, y, 6, z) = dim (c, y) -f dim (6, z) — dim X

where X = acl(c, y) Π dim acl(6, z). Thus dim X = I and there is
x £ acl(c, y) Π acl(6, z) with dim x = 1.

It is easy to see that α, 6, c, x, y, z is a group configuration. Thus D interprets
a rank 1 abelian group.

The next theorem summarizes a much finer version of this result (see [PI]
chapter 5)]). It says that not only is there an interpretable group, but the group
determines most of the structure of the the strongly minimal set.

Theorem 4 (Hrushovski) Let D be a non-trivial locally modular strongly min-
imal set. Then there is a rank 1 abelian group G definable in Deq such that G
acts definably as a group of automorphisms of the generic type of D.

In §5 we will use a structure theorem for groups interpretable in a locally
modular strongly minimal set. This result is true in a much more general setting.
We say that a stable theory T is 1-based if for any α and B the canonical base
for the type of α over acleq(5) is contained in acleq(α).

Lemma 6 // M is interpretable in a locally-modular strongly minimal set then
Th(M) is 1-based.

Indeed a finite Morley rank theory T is 1-based if and only if every strongly
minimal set is locally modular (see [PI] chapter 2).

Theorem 5 (Hrushovski-Pillay) (see [HP] or [PI] chapter 4) Suppose G is a
1-based group. Then every definable subset of Gn is a finite boolean combination
of cosets of definable subgroups.

We conclude by stating a generalization of the group configuration which de-
tects the presence of a field. A field configuration is a collection of elements
α, 6, c, x, y, z G Deq such that

i) RM(α) = RM(6) = RM(c) = 2 and RM(x) = RM(y) = RM(z) = 1;
ii) RM(α, 6) = RM(α, c) = RM(6, c) = 4 and RM(α, 6, c) < 5;
iii) RM(c, x, y) = RM(6, x, z) = RM(α, y, z) = 3;
iv) any three non-colinear points (see diagram 1) are independent;
v) If we replace α,6,c by α*,6*,c* with RM(α*) = RM(6*) = RM(c*) = 1,

then α*, 6*, c*, x, y, z is not a group configuration.

Suppose K is an algebraically closed field and αri, c*2, /?ι, βi, x are alge-
braically independent. Let α, 6, c be elements of the rank 2 group of affine trans-
formations where α is the transformation z ι-> a\z + #2 and b is z »->• βlz -f β^.
Let c be the composition. Let y = ex and z = bx. Then az = y. Note that
RM(α/2:,y) = RM(6/x, z) — RM(c/z,y) = 1. Thus we have a field configura-
tion. Remarkably this is the only way this can happen.
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Theorem 6 (Hrushovski) (see [Bol]) If there is a field configuration in Z)eq,
then D interprets an infinite field.

By a result of Macintyre ([Mac], see also [Po]), any infinite field interpretable
in an ω-stable structure is algebraically closed.

4 Zariski geometries

Zariski geometries were introduced by Hrushovski and Zilber in [HZ1], [HZ2]
and [Z]. In addition to providing an important class of strongly minimal sets
where Zilber's conjecture is true, they answer the metamathematical question:
Can one characterize the topological spaces that arise from the Zariski topology
on an algebraic curve?

We say that a topological space is Noetherian if there are no infinite descend-
ing chains of closed sets. If K is a field, then the Zariski topology on Kn is given
by taking the solutions to systems of polynomial equations as the basic closed
sets. Since the polynomial ring K[Xι,.. .,Xn] has no infinite ascending chains
of ideals, the Zariski topology is Noetherian.

A closed set X is irreducible if there are no proper closed subsets XQ and
Xι such that X — XQ U X\. A simple Kόnig's lemma argument shows that in
any Noetherian topological space, every closed set X is a union of finitely many
irreducible closed sets, called the irreducible components of X.

In Noetherian topological spaces we can inductively assign an ordinal

dimX = sup{dimY + 1 : Y is a nonempty, closed, irreducible proper subset of X}.

The dimension of a reducible closed set is the maximum dimension of an irre-
ducible component.

Definition A Zariski geometry is an infinite set D and a sequence of Noetherian
topologies on D, Z)2, .D3,... such that the following axioms hold.

(ZO) [Coherence]: i) If / : Dn -> Dm is defined by /(a?) = (/i(«),..., fm(x))
where each /,- : Dn —>• D is either constant or a coordinate projection, then / is
continuous.

ii) Each diagonal Δ^j = {x £ Dn : Xi = Xj} is closed.

(Zl) [Weak QE]: If C C Dn is closed and irreducible, and π : Dn -> Dm is a
projection, then there is a closed F C π(C) such that π(C) D fl (C) \ F.

(Z2) [Uniform one-dimensionality]: i) D is irreducible.

ii) Let C C Dn x D be closed and irreducible. For a G Dn, let
C(ά) = {x E D : (α, x) G C}. There is a number N such that for all a G Dn,
either |(7(α)| < N or C(a) = D. In particular any proper closed subset of D is
finite.

(Z3) [Dimension theorem]: Let C C Dn be closed and irreducible. Let W be
a non-empty irreducible component of C Π Δ?j. Then dim C < dim W +1.
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The basic example of a Zariski geometry is a smooth algebraic curve C over
an algebraically closed field where Cn is equipped with the Zariski topology. In
this case ZO is clear, Zl follows from quantifier elimination and Z2 follows from
the fact that C is strongly minimal. The verification of Z3 uses the smoothness
of C (though a weaker condition suffices). The remarkable result of Hrushovski
and Zilber is that with some natural additional assumptions the converse holds.

First one must see how model theory enters the picture. Given a Zariski
geometry .D, let CD be language with an n-ary relation symbol for each closed
subset of Dn. Let T> be D viewed in the natural way as an /^-structure.

Lemma 7 The theory of CD admits quantifier elimination and D is a strongly
minimal set. Moreover, Morley rank in Ί) is exactly dimension.

Zariski geometries may be locally modular. If X is an infinite set we can
topologize Xn by taking the positive quantifier free definable sets in the language
of equality (allowing parameters) as the closed sets. This determines a trivial
Zariski geometry on X. If K is a field we could topologize Kn by taking the
affine subsets (ie. cosets of subspaces). This is a non-trivial locally modular
Zariski geometry. If a Zariski geometry is non-locally modular, then Zilber's
conjecture holds

Theorem 7 Suppose D is a non-locally modular Zariski geometry, then T> in-
terprets an infinite algebraically closed field K. If X C Kn is definable in Ί),
then X is definable using only the field structure of K (we say that K is a pure
field).

Hrushovski and Zilber give a more refined version of 4.2 with additional
geometric information. By a family of plane curves in D we mean closed sets
X C Dm and C C D2 x X such that for all α £ X, if we let C(a) denote
{ ( x , y ) £ D2 : (x,y, α) £ C}, then C(ά) is a one dimensional irreducible closed
subset of D2. We say that a family of plane curves is ample whenever for p
and q are independent generic points of D2, there is a plane curve C(a) with
p, q £ C(a). An ample family is called very ample if for p, q (not necessarily
independent) generic points in D2 there is a curve C(a) with p £ C(a) and
q £ C(a). In this case, we say that the family separates points.

We say that a Zariski geometry D is (very) ample if there is a (very) ample
family of curves on D. If D is ample, then from 2.3 we see that D is non-locally
modular. The converse is also true (see for example [Ml]). Very ample Zariski
geometries are intimately related to algebraic curves.

Theorem 8IfD is a very ample Zariski geometry, then there is an interpretable
field K, C a smooth quasi-projective curve defined over K and a definable bijec-
tion f : D —> C such that the induced maps fn : Dn —ϊ Cn are homeomorphisms
for all n.

The proof of theorem 4.2 is a quite delicate application of both the group
configuration and the field configuration. Suppose we have a rich family of plane
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curves through a point (p,p). If X and Y are two curves through (p,p) we define
the composition X o Y by { ( x , z ) : 3y ( x , y ) 6 Y , ( y , z ) G X} The key idea
is to define an approximate notion of "tangency" and consider the "operation"
(X, Y) »->> Z where Z is tangent to X o Y at (p,p). This gives rise to the group
configuration. A more subtle construction, using the group we just found, allows
us to find the field configuration. A similar type of construction in a much simpler
setting is given in [MP].

We refer the reader to [Ml] for a more detailed survey of Zariski geometries.
We conclude this section by giving one further setting where this work applies.

Let K be a differentially closed field (see [S] or [M2]). There is a natural topology
on Kn given by taking solutions to algebraic differential equations as the basic
closed sets. The Ritt basis theorem implies that this topology is Noetherian. For
any D C Kn we topologize Dn by taking the induced topology.

Theorem 9 (Hrushovski-Sokolovic) Let D be a strongly minimal subset of Kn.
Then there is a finite X C D such that D\X is a Zariski geometry.

Using quantifier elimination in differentially closed fields it is clear that ZO, Zl
and Z2 hold. Hrushovski and Sokolovic show how to reduce dimension calcula-
tions to calculations in classical algebraic geometry and deduce Z3.

If D is a non-locally modular strongly minimal subset of Kn, then by 4.2, D
interprets an algebraically closed field F. The field F must be of finite Morley
rank (while K has Morley rank ω). There is one natural finite Morley rank field
interpretable in A', namely the field of constants CK = {x E K : x1 — 0}. Using
quantifier elimination and stability (see [M2]) one can see that any subset of Cj£
definable in K is already definable in CK using only the field structure. Sokolovic,
building on work of Cassidy (see [P2]), showed this is the only interpretable field
of finite rank.

Theorem 10 (Sokolovic) // F is an infinite field of finite Morley rank inter-
pretable in a differentially closed field K, then F is definably isomorphic to CK-

Corollary 1 // K is differentially closed and D C Kn is a non-locally modular
strongly minimal set, then D interprets a field definably (in K) isomorphic to

5 The Mordell-Lang conjecture for function fields

In 1993 Hrushovski [HI] found an application of geometric model theory to
diophantine geometry in his proof of the Mordell-Lang conjecture for function
fields. What, to me, is truly remarkable about Hrushovski's proof, is that it
seems to flow naturally from the stream of ideas in modern model theory. In this
section I will give some of the background of the Mordell-Lang conjecture and
outline Hrushovski's proof in one basic case. I refer the reader to [L] for a more
detailed history of the problem.
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We will work inside a large algebraically closed field K. An abelian variety
A is a projective variety equipped with a rational map μ : A x A -> A making
A into a group. We usually write the group additively. The simplest example of
an abelian variety is an elliptic curve. Let E be the projective plane curve given
by the equation Y2Z = X(X - Z}(X + XZ). We can think of E as the plane
curve y2 = x(x — l ) ( x — λ) together with one point O at infinity (this is the
point with homogeneous coordinates (0,1,0)). We must define the group law on
E. The zero of the group will the point O. If P and Q are distinct points on E,
consider the line / through P and Q (see diagram 2). Since E is a cubic curve
the line / will intersect E in exactly three points (counting multiplicity). If R
is the third point of E on /, then we say P + Q + R = O. Note that if P has
affine coordinates (x, ?/), then — P will have coordinates (#, y). To add a point 5
to itself we take / to be the tangent line to E at S. Usually / will intersect E at
S with multiplicity 2. In this case there is a second point T on E such that R is
also on / and S + 5 + T = 0. Otherwise, / will intersect E at S with multiplicity
3 and S + S + 5 = 0. Though it is non-trivial to verify associativity, this defines
a group law on E and addition is a rational map (see [Sil] or [SiT]).

One dimensional abelian varieties are isomorphic to elliptic curves. It is
not easy to give algebraic descriptions of higher dimensional abelian varieties.
However, if we look at complex abelian varieties there is a very easy topolog-
ical description. If A is a complex abelian variety of dimension d, there are
<*!)•• j ° ί 2 d E Crf linearly independent over R such that A is analytically iso-
morphic to Cd/A where A is the lattice Zαi + 4- Z(*2d (see [R]). The next
lemma summarizes some properties of abelian varieties which we will need. The
first principles are easy to verify for complex analytic varieties using the topo-
logical description.

Lemma 8 Let A be an abelian variety of dimension d.
i) A is a divisible abelian group. If K has characteristic zero or n is prime

to the characteristic of K, then A has n2d n-torsion points.
ii) (rigidity (see [Mil]) // A is defined over an algebraically closed field k,

then every abelian subvariety of A is also defined over k.

Definition Suppose Γ is a subgroup of A. We say that Γ is finite rank if there
is a finitely generated subgroup Γ0 such that

Γ C {g E A : ng E Γ0 for some n = 1, 2,. . .} .

For example, taking Γ0 = {0}, the torsion subgroup of A is of finite rank.

We can now state the full M or dell-Lang conjecture.

Mordell-Lang Conjecture (characteristic zero) Suppose K has character-
istic zero, A is an abelian variety, Γ is a finite rank subgroup of A and X is a
proper subvariety of A. Then X Π Γ is a finite union of cosets of subgroups of A.

This conjecture implies the Mordell Conjecture. Suppose C is a curve of
genus g > I defined over a number field k. The Mordell Conjecture asserts that
C has only finitely many Ar-rational points (i.e. points with coordinates in k).
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y2=

Diagram 2

To any curve C of genus g > 1 we can associate a ^-dimensional abelian
variety J(C) defined over k called the Jacobian of C (see [Mi2]). The curve C is
a subvariety of J(C) and J(C) is the smallest abelian variety in which C embeds.
If C has genus 1, then C is an elliptic curve and J(C) = C.

Let C have genus g > I. Let Γ be the Ar-rational points of J(C). The Mordell-
Weil theorem (see [L]) asserts that Γ is a finitely generated group. Thus Γ Π C
is a finite union of cosets of subgroups of Γ. If any of these subgroups is infinite,
then the Zariski closure of that coset is also a coset and the Zariski closure must
be the entire curve C'. But then there would be a group structure defined on C
and C would be an abelian variety contradicting the fact that J(C) D C and
J(C) is the smallest abelian variety in which C embeds. Thus CΠΓ is finite and
C contains only finitely many Ar-rational points.

The Mordell conjecture was proved by Fait ings who also proved the Mordell-
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Lang conjecture in case Γ is finitely generated. The full characteristic zero
Mordell-Lang conjecture (even in the case where A is a semi-abelian variety)
was proved by McQuillen ([Me]) building on Fait ings' work as well of work of
Raynaud, Hindry and Vojta.

In number theory, when studying question about number fields, it is often
insightful to ask the same question about finitely generated extensions of alge-
braically closed fields (we call these function fields). Long before Faltings, Manin
[Ma] proved the function field case of the Mordell conjecture.

Theorem 11 (Manin) Let k be algebraically closed of characteristic zero and let
K D k be finitely generated over k. Let C be a curve of genus g > 1 defined over
K. Then either C has only finitely many K-rational points or C is isomorphic
to a curve defined over k.

So far we have only considered characteristic zero. What about characteristic
p > 0? The obvious generalization of the Mordell-Lang conjecture to character-
istic p is false. Suppose C is a curve of genus g > 1 defined over Fp and let J(C)
be its Jacobian. Let a be a generic point of C. Let Γ be the group of Fp(α)-
rational points of J(C}. By the Lang-Neron theorem (the function field version
of the Mordell-Weil theorem (see [Si2])) Γ is finitely generated. If σ is the Frobe-
nius automorphism x »->» xp, then σn(α) £ C for all n. Thus C Π Γ is infinite,
but C is not a coset of a subgroup. In this case our curve C is defined over the
prime field. This leaves open the possibility that one could prove a function field
version of the Mordell-Lang conjecture in all characteristics. Prior to Faltings,
Buium ([Bu]) proved a characteristic zero function field version. Abramovich and
Voloch [AV] had made progress in characteristic p. Finally Hrushovski proved
the complete function field version (in fact Hrushovski's proof works in the more
general case of "semi-abelian" varieties).

Theorem 12 (Mordell-Lang Conjecture for function fields) Let k be an alge-
braically closed field with K D k. Let A be an abelian variety defined over K , X
a subvariety of A and Γ a finite rank subgroup of A. Suppose X Π Γ is Zariski
dense in X. Then there is a subabelian variety A± C A, an abelian variety B
defined over k, a surjective homomorphism g : A\ —>• B and a subvariety XQ of
B defined over k, such that g~l(X0) is a translate of X.

For the remainder of this section we will outline the proof of a special case of
Hrushovski's theorem which illustrates the use of model theoretic ideas.

Let k be algebraically closed of characteristic zero and let K D k. Let A be an
abelian variety of dimension d > 1 defined over K with no non-trivial subabelian
varieties (such an abelian variety is called simple). Let Γ be the torsion points
of A and let C C A be a curve on A. We will show that either C Π Γ is finite or
A is isomorphic to an abelian variety defined over k.

We are free to replace K by a larger field. Following Manin and Buium we see
that it is useful to replace K by a rich differential field. We can find a derivation
δ : K ->• K such that k = {a G K : ί(α) = 0}, the field of constants of δ. We next
replace K by the differential closure of (K,δ). Since k is already algebraically
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closed, passing to the differential closure of K does not add any new constants.
Thus we may assume that K is differentially closed and k is the field of constants
of A'.

The next idea is to replace Γ by a "small" group Σ D Γ definable in the
differentially closed field. We then have a chance of using our model theoretic
tools. What do I mean by "small"? Recall that K has Morley rank ω and if
V is a (/-dimensional variety then V has Morley rank ωd. The next result is a
compilation of work of Manin and Buium refined by Hrushovski and Sokolovic
in the model theoretic setting.

Theorem 13 Let K be a differentially closed field and let A be an abelian variety
defined over K. There is a definable group homomorphism μ : A —ϊ Kn for some
n such that Σ — ker(μ) has finite Morley rank. Moreover, if A is simple we can
choose μ so that ker(μ) has no proper infinite definable subgroups.

Since Kn has no torsion, Γ C Σ = ker(μ). We will argue that either Σ Π C
is finite or A is isomorphic to an abelian variety defined over k. Replacing Γ by
Σ allows us to use all of the tools from finite Morley rank group theory.

Let X C Σ be a strongly minimal set containing 0. By Zilber's indecompos-
ability theorem (see [Po2] 2.b) the subgroup of Σ generated by X is definable
and for some fixed n every element of that group is a sum of n elements of X.
By 5.4, since A is simple, X generates Σ. Thus Σ is in the definable closure of
X and, if we consider X with all of its induced structure, Σ is interpret able in
X.

We now break into cases depending on whether or not X is locally modular.

Case 1 X is locally modular.
In this case Σ is a one-based group. By the theorem 3.4, every definable

subset of Σ1 is a Boolean combination of cosets of definable subgroups. Since Σ
has no infinite definable subgroups, X must differ from Σ by a finite set. Thus
Σ itself is strongly minimal.

Consider Σ Π C. If Σ Π C is infinite it differs from Σ' by a finite set. Thus
the Zariski closure of Σ is C plus a finite set. But the torsion points of A are
Zariski dense in A, thus the Zariski closure of Σ = A. Since C C A we have a
contradiction. Thus Σ Π C is finite.

Case 2 X is non-locally modular.
As we pointed out in 4.6, in a differentially closed field any non-locally mod-

ular strongly minimal set interprets the field of constants. So we have a strongly
minimal set X which interprets the field of constants k and the group Σ. Using
Hrushovski's analysis of non-orthogonality in groups (see [Po2] 2.e), it follows
that there is a group G interpretable in k, and a definable homomorphism h
from Σ onto G. Since Σ is minimal h has finite kernel.

Using quantifier elimination and stability one sees that k is a pure alge-
braically closed field. That is: any subset of kn defined in the differentially closed
field K is already definable using the field structure of k. Thus the group G is



212

interpreted in the pure algebraically closed field k. But then there is an alge-

braic group GO defined over k such that G is isomorphic to Go(Ar), the fc-rational

points of Go ([Po2] 4.e).

Using the fact that Σ has only finitely many | ker(/ι) |-torsion point, one
constructs a dual hornomorphism g : Go(Ar) —>• Σ with finite kernel. Modding
out by the kernel we may assume that g is an isomorphism. Since the derivation
is trivial on k, g must be a rational map. Since g : Go(k) —>• A and Go(k) is

Zariski dense in GO (A'), g : Go(K) -> A. Since Γ is Zariski dense in A, g is
surjective.

Let TV C GO be a maximal linear algebraic subgroup. By a theorem of Cheval-
ley ([Sh]) Go/TV is an abelian variety. Since there are no nontrivial homomor-
phisms from a linear group into an abelian variety, N C ker</. Thus we can
replace GO by the abelian variety Go/TV. Since N is defined over Ar, we may
assume that GO is an abelian variety defined over K. The rigidity of abelian
varieties implies that every abelian subvariety of GO is definable over k. In par-
ticular ker(#) is defined over k. Thus A is isomorphic to the abelian variety
Go/ker(#) which is defined over k.

We conclude with a few words on what is needed to prove the full theorem.

The proof of Hrushvoski's theorem when A is not simple or Γ is a more general

finite rank group requires a slightly more subtle analysis of the finite Morley
rank groups that arise. We refer the reader to [Bo2] for a detailed account of the
proof in this case. In characteristic p we work with separably closed fields rather
than differentially closed fields. Separably closed fields are stable but, unlike dif-
ferentially closed fields, are not ω-stable. This leads to a number of complications

because we must now consider types rather than definable sets. We must also use

more general geometric model theory (see [Pil]). On the other hand rather than

the complicated group ker(μ) from lemma 4.4, one uses Πm=ι m^ Messmer's
([Me]) analysis of fields interpretable in separably closed fields replaces corollary
4.6 work in this case.

There are a number of very good discussions of Hrushovski's proof. I suggest

that the interested reader consult [Bo2], [P3], [Po2] or [H4] in addition to the
original article [HI].
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