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Abstract. We consider Lk — first order logic restricted to k variables,
and interpreted in finite structures. The study of classes of finite struc-
tures axiomatisable with finitely many variables has assumed importance
through connections with computational complexity. In particular, we in-
vestigate the relationship between the size of a finite structure and the
number of distinct types it realizes, with respect to Lk. Some open ques-
tions, formulated as finitary Lόwenheim-Skolem properties, are presented
regarding this relationship. This is also investigated through finitary ver-
sions of an Ehrenfeucht-Mostowski property.

1 Introduction

In this paper, we are concerned only with finite structures. That is, our logical
formulas are interpreted in relational structures with finite domain. Interest in
finite model theory has largely grown from the fact that there is a close connec-
tion between definability of classes of finite structures and their computational
complexity. For instance, Fagin [10] showed that a class of finite structures is
definable in existential second order logic if, and only if, it is decidable by a non-
deterministic Turing machine in polynomial time (i.e. in the class NP). Similarly,
many naturally arising complexity classes have been characterised a,s definability
classes in appropriate logics.

These results raised the hope that model theoretic methods could be de-
ployed to attack some of the notoriously open problems in complexity theory.
Unfortunately, most methods and results developed in model theory fail to work
when only finite structures are considered (see [12]). For instance, the compact-
ness theorem for first order logic trivially fails, as do most of its consequences.
Indeed, as we make the transition from arbitrary structures to finite structures,
first order logic loses its central role. Two significant reasons can be discerned
for this: on the one hand, first order logic is too strong; and on the other hand,
first order logic is too weak.

First order logic is too strong in the sense that for every finite structure 21,
there is a first order sentence φ% that describes it up to isomorphism: that is,
for any structure <B, if 93 }p φ<&, then 03 is isomorphic to 21. This means that the
relation Ξ of elementary equivalence is trivial on finite structures — it coincides
with the isomorphism relation. Since a large part of model theory can arguably
be described as the study of the structure of the elementary equivalence relation
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and its variants, this raises a serious question about the applicability of model
theoretic methods.

First order logic is too weak in the sense that the class of finite models of any
first order sentence is of very low computational complexity. It can, in fact, be
recognised by a deterministic Turing machine using only a logarithmic amount
of workspace (in other words, it is in the complexity class DSPACEflogra]).
Moreover, there are easily computed properties in DSPACEflogn] that are not
first order definable.

The disparity in the above two statements can be accounted for by contrast-
ing the expressive power of single sentences with that of theories, i.e. sets of
sentences. In model theory, we are most often concerned with the limits on the
expressive power of sets of sentences. Clearly, two elementarily equivalent struc-
tures cannot be distinguished by any such set. However, when we only consider
finite structures, any isomorphism closed class S of structures is defined by the
countable set of sentences1:

Σ = {-vs I 21 £ 5},

where φ^ is as above. On the other hand, as already mentioned, the expressive
power of first order sentences is extremely weak. Another way of stating the same
thing is that, while every class of structures is axiomatisable, few interesting
classes are finitely axiomatisable.

One conclusion one can draw from the above is that in order to analyse the
expressive power of first order logic (i.e. of first order sentences) and, indeed,
of more powerful logics, we need equivalence relations that are coarser than the
relation of elementary equivalence. There are two main approaches to coarsen-
ing the elementary equivalence relation that have proved useful. The first is to
stratify the relation according to quantifier rank. This is useful in analysing first
order definability. Indeed, it can be shown that a class of structures is finitely
axiomatisable if, and only if, it is closed under the elementary equivalence rela-
tion of a fixed quantifier rank.2 The other approach is provided by a restriction
on the number of variables considered in defining the equivalence relation. This
way we obtain a notion of axiomatisability intermediate between finite and full
axiomatisiability — namely the notion of a class of structures axiomatised with
a finite number of variables. This turns out to be a valuable approach in studying
several natural extensions of first order logic, particularly extensions by induc-
tive and fixed point operators. For several such extensions, it can be shown that
any definable class of structures is, in fact, axiomatisable with a finite number of
variables. Moreover, it has been shown that many of the difficult open questions
of computational complexity can be recast as questions on the expressive power
of these logics.

In the rest of this paper, a signature σ is a finite relational signature, i.e.
it is a finite sequence of relation symbols ( Λ i , . . . , Rm) and associated arities
(rι 5 5 ^m)5 where r, E ω. A σ-structure 21 is an interpretation of this signature

1 Here, to say that Σ defines S means that S is exactly the class of finite models of Σ.
2 Provided that the vocabulary is purely relational, i.e. it contains no function symbols.



53

in a finite domain A, i.e. 21 = (A, Ή f , . . . , Λ;*). The wiΆA of σ, denoted width(σ)
is defined as max(rι, . . . , rm). The domain A of a structure 21 is often denoted
|2l|, while the cardinality of a set S is denoted card(S). For a sentence φ (or a
set of sentences Σ1), Mod(y>) (or Mod(Σ)) denotes the set of finite models of φ
(oτΣ).

2 Finite Variable Logics

Define Lk to be the fragment of first order logic in which we only use the variables
xι,..., Xk. For any sentence φ of Lk, we denote by qr(φ) the quantifier rank of
φ, i.e. the depth of nesting of quantifiers in φ.

The following definition introduces some basic notation used throughout the
rest of this paper.

Definition!. For two structures 21 and 03,

- we write
21 Ξ* 03

if the two structures agree on all sentences of Lk.
- If s is a tuple of elements in 21 and t is a tuple of elements in 03, with

length(s) = length(t) < k, by abuse of notation, we also write

(»,*)=*(»,<)

to denote that for any formula φ of Lk,

2l|=φ] if, and only if, 03 |= φ[t].

— Ar-size(2l) is the index (i.e. the number of equivalence classes) of the equiva-
lence relation =k on the set {(21,5) | s £ |2l|*}.

It can be shown that, if 21 is a finite structure and 21 =k 03, then

A-size(Sl) = fc-size(03)

(see, for instance, [8]).
The equivalence relation =k has a natural characterisation in terms of two

player pebble games in the style of Ehrenfeucht-Fraϊsse games. This characteri-
sation is essentially due to Barwise [4] (see also [13, 18]).

The game board consists of two structures 21 and 03 and a supply of k pairs
of pebbles (α, , 6t ), ! < « < & • The pebbles α i , . . . , α/ are initially placed on the
elements of an /-tuple s in 21, and the pebbles 6 1 , . . . , &/ on a tuple t in 03. There
are two players, Spoiler and Duplicator. At each move of the game, Spoiler picks
up a pebble (either an unused pebble or one that is already on the board) and
places it on an element of the corresponding structure. For instance he might take
pebble 6; and place it on an element of 03. Duplicator must respond by placing
the other pebble of the pair in the other structure. In the above example, she
must place α; on an element of 21. If at the end of the move the partial map
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f : 2(, _), Q3 given by α; »-)• 6; is not a partial isomorphism, then Spoiler has won
the game, otherwise it can continue for another move. Duplicator has a strategy
to avoid losing for q moves, starting with the initial position (21, s) and (25,2) if,
and only if, (21, s) and (05, i) cannot be distinguished by any formula of Lk of
quantifier rank q or less. Hence, if Duplicator has a strategy to play the game
indefinitely without losing, then (21, s) =k (05,2).

The following fact regarding the relations =k was established in [8]:

Theorem 2. For every finite structure 21 and tuple s of elements of 21, with
length(s) < k, there is a formula φ of Lk such that 05 |= φ[t] if, and only if,
(21, s) =k (05,2). Moreover, qr(φ) < *-size(2l) + k.

In particular, it follows from Theorem 2 that the set of Lk sentences true in any
finite model is, in fact, finitely axiomatisable within Lk .

Another useful notion is that of the L^-type of a tuple in a structure. The
following definition is from [8].

Definitions. Let s be an /-tuple of elements from a structure 21 for I < k. The
Lk -type of s in 21, denoted Typefc(2l, s), is the set of formulas φ of Lk with free
variables among a?ι, . . . , a?/, such that 21 [= φ[s\.

Thus, (21, s) =k (05,0 can be seen as shorthand for Type* (21, s) - Type* (93,*),
and Theorem 2 states that every L^-type is completely determined by one of its
elements.

The interest in finite variable logics stems largely from the fact that a number
of logics that have been considered in finite model theory -. — particularly in the
characterisation of computational complexity classes — have the property that
the definable classes of structures can all be axiomatised with a finite number of
variables.

Thus, for instance, LFP is the closure of first order logic under an operation
for forming the least fixed points of positive formulas. Similarly, PFP closes first
order logic under an operation forming the iterative fixed points of arbitrary
formulas [2]. It was independently proved by Immerman and Vardi [14, 20] that
LFP exactly characterises polynomial time complexity (the class PTIME) on
structures equipped with a linear order, while Abiteboul and Vianu [2] show that
PFP similarly characterises polynomial space complexity (the class PSPACE) on
ordered structures.

By results of Kolaitis and Vardi [15] and Dawar et al [8], we know the
following fact:

For any sentence φ of LFP (or PFP), there is a k and a set Σ of sentences
of Lk such that Mod(^) =

The significance of this fact lies in the observation (see [15]) that most results
showing that some property cannot be expressed in a logic such as LFP or PFP,

3 Kolaitis and Vardi [15] show that each such φ is equivalent to a sentence of the

infinitary logic L^αn while in [8], it is shown that every sentence of Lk

Όθω is equivalent
to a single countable conjunction of sentences of Lk .
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actually show that the property cannot be axiomatised in L f e, for any k. The
essential tool for establishing this is the pebble game defined above.

What's more, Abiteboul and Vianu [3] show that, even without the restriction
to ordered structures,

LFP = PFP if, and only if, PTIME = PSPACE,

where, equality for the logics means that they have the same expressive power.
Recent work has shown that this result of Abiteboul and Vianu can be ex-

tended to a variety of complexity classes. That is, for a large number of such
classes, logics have been found that characterise the class on ordered structures
and for which the expressive power is bounded by finite variable axiomatisabil-
ity (see [1, 6, 7]). Moreover, the inclusion relations between these logics exactly
mirror the inclusions among the corresponding complexity classes. Abiteboul et
al. [I] have shown that definability in these logics corresponds to complexity on
a relational model of computation, in which complexity is measured not as a
function of the size of the input, but as a function of the Ar-size of the input.

Translations of complexity theoretic questions into the framework of logics
with limited discerning power has not (as yet, anyway) thrown new light on the
separation of complexity classes. One reason for this was hinted at above, where
it was stated that the main tool for establishing the inexpressibility of a class
of structures in a logic such as LFP is the pebble game for Lk , which is used to
show that the class is not closed under the relation =k for any k. But then, the
class is not definable in any of the logics we are considering, and this tool is not
directly useful in separating the logics in question.

Nevertheless, some finer separation results have been obtained. For instance,
in [8] it is shown that there is a polynomial time decidable property that is
closed under =k for a fixed Ar, and is still not definable in LFP and in [7] two
different ways of restricting implicit first order definitions to finite variable ax-
iomatisibility are separated. Both of these results rely on the construction of
classes of structures in which, though the k-size is unbounded, it grows much
more slowly than the cardinality of the structures themselves. This suggests that
a greater understanding of the relationship between the size of a structure and
its Ar-size could be very useful (see [5] for a discussion of some of these issues) .
Some questions regarding this relationship are investigated in the next section.

3 Finitary Lδwenheim-Skolem Properties

We begin this section with a few straightforward remarks about the relationship
between the size of a structure and its Ar-size. First of all, it is immediate from
the definition that, if card(|2l|) = n, then Ar-size(2l) < n f e, since there are at most
nk tuples in 21. This bound is actually achieved in the class of linear orders, for
all k > 2.

If we turn the question around and ask how large a structure can we find
with a given fc-size, at first things appear equally simple. It is trivial to construct
arbitrarily large such structures. Thus, if we consider the class of structures in
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the empty signature (sometimes called pure sets), it is clear that the &-size of
structures in this class is bounded by a constant, and yet there are arbitrarily
large structures in this class. On closer examination, we find that this class
splits into only finitely many =k equivalence classes of structures (indeed, this
is necessarily true of any class of structures in which the fc-size of structures is
bounded — see [9]). So, the existence of arbitrarily large structures of a fixed
fc-size follows simply from the existence of infinite =k equivalence classes. The
more interesting question is: how large can the smallest or largest structure
in a =k equivalence class be, with respect to its Ar-size (recall that the &-size
is invariant among structures in a given =k equivalence class)? Are there any
recursive bounds on either of these? This leads us to formulate the following two
open questions, which can be seen as downward and upward Lόwenheim-Skolem
properties for finite structures (over some fixed signature σ, with

2 < width(σ) < k

— the case of unary signatures is straightforward).

Open Question 1 Is there a recursive function /^, for every Ar, such that, for
every finite structure 21 with fc-size(2l) < n, there is a 03 such that

card(|03|) < fk(n) and 21 =k 03?

Open Question 2 Is there a recursive function gk for every fc, such that, if 03
is a finite structure with &-size(03) < n and card(|03|) > g k ( n ) , then there are
arbitrarily large finite 21 such that 21 =k 03?

We first observe that if we drop the word recursive from the above questions,
then the answer is yes in both cases. This is based on the fact that for any
fixed g, there are only finitely many sentences φ of Lk with qr(φ) < q.4 Thus,
for any n, the relation =k has finite index on the class of structures 21 such
that &-size(2l) < n (by virtue of Theorem 2). We can then define the functions
dk,ek : N -» N by:

dk(n) — max{card(2t) | Ar-size(2l) < n and 21 is smallest in its =k class.}

ek(n) = max{card(2l) | Ar-size(2l) < n and 21 belongs to a finite =k class.}

Here, by finite =k class, we mean a class that contains finitely many structures up
to isomorphism. The functions dk and ek are well defined, because they involve
taking, for each n, the maximum of a finite set of cardinalities.

The Open Questions 1 and 2 posed above can now be seen as asking if there
are recursive upper bounds on the functions dk and e/ f . Moreover, since the
relation =k is decidable, if such upper bounds exist, then the functions dk and
e/e are themselves recursive.

It is also a worthwhile line of investigation to establish lower bounds on the
functions dk and ek. At present, the best known lower bounds on these functions
are exponential, as described in the next section. The following open question
can thus be added to the two mentioned above:
4 Once again, we use the fact that our signatures are purely relational.
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Open Question 3 Are there super-exponential lower bounds on the functions
dk and e&, for any kl

By super-exponential, we mean of the order of 2^n^ for some super-polynomial
function /. Even though the exponential lower bounds established for trees (and
discussed in the next section) are of the form 2g(n\ where the function g is O(n),

there are constructions known that raise this to at least 2n .

It should also be pointed out that the case of k — 2 is solved, as linear
lower and upper bounds are essentially established in [17]. Thus, we adopt the
following proviso for the rest of the paper:

Wherever k refers to the number of variables, we assume that k > 3.

4 Trees

The exponential lower bounds on the functions d^ and e^ can be established by
considering the class of complete binary trees. We introduce this class through
a series of definitions.

Definition4. - A tree T is a structure (V, X) where,

• ^ is a partial order on the set of vertices V\

• there is a unique ^-minimal element of V, called the root] and

• every element v £ V (other than the root) has a unique X-predecessor,
called the parent of υ.

- Two vertices are siblings if they have the same parent. If u is the parent of
v, we also call υ a child of u.

— The subtree rooted at a vertex v is the substructure of T formed by the set

{u G V I v :< u}.
— The height of a tree is the length of its longest maximal chain.

— For any c £ ω, a c-ary tree is a tree in which every vertex has at most c
^-successors.

- A complete c-ary tree is one in which every vertex has either 0 or c successors,
and all maximal chains are of equal length.

Now, a lower bound on the functions d^ and βk is obtained from the following
three facts. Let T/> denote the (unique up to isomorphism) complete binary tree
of height h.

1. Th is characterised up to isomorphism by a sentence of L3.

2. card(TΛ) = 2 f t - l .
3. For any Ar, there is a Ar' such that k-size(Th) < hk , for all h.

For details of the above, the reader is referred to [8]. Here, we only note that (1)
above is based on the following lemma (stated here without proof, details can
be found in [5], for instance), which will be of use later:
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Lemma 5. For every d £ ω, there is a formula δd of L2 such that, in any partial
order P = (V, X), P f= δd[u] if, and only if, the length of the maximal chain below
u is d.

A natural first attempt to improve on the exponential lower bound is to
consider trees with higher than binary branching. Clearly, facts analogous to
the above hold for c-ary trees for any constant c, i.e. each complete c-ary tree
is described up to isomorphism by a sentence with no more than max(c 4-1,3)
variables; the size of the complete c-ary tree of height h is exponential in /ι, but
the &-size is polynomial in h. This, of course, does not improve on the exponential
lower bound.

Another approach is to consider trees of uniform arity, whose arity is a func-
tion of their height (this approach is considered in [1]). However, this also fails
as we can no longer describe such a tree up to isomorphism with a fixed (in-
dependent of the height) number of variables. In particular, if T is a complete
c-ary tree, then

1. there is a T1 such that T =k T' and the arity of T1 is at most k\ and
2. if c > fc, there are infinitely many non-isomorphic T" such that T =k T".

The above facts are consequences of the following general property of trees:

Lemma 6. Let v\,..., VK+I be siblings in a tree T, let T\,..., T/e+i be the respec-
tive subtrees rooted at these nodes, and let v be their common parent. IfTi =k Tj
for I < ij < Ar + 1, then

1. T =k T', where T1 is obtained from T be removing T^+I.
2. T =k T", where T" is obtained from T by adding a new subtree Tk+2 =

k Tk+1

above v.

Proof: The proof is a straightforward pebble game. We describe Duplicator's
winning strategy in the game played on T and T'. The game on T and T" is
analogous.

First of all, if Spoiler plays anywhere (in T or T') other than in the subtrees
T ι , . . . , 7 f c + ι , Duplicator simply plays on the same node in the other tree. If
Spoiler plays in one of the trees 7; (in either T or T") which does not contain
a pebble, Duplicator responds by playing in a subtree Tj of the other tree not
containing a pebble (not counting the pebble being currently moved). Such a
subtree must exist, because there are at least k matching subtrees and only
k — I pebbles on the board. The vertex played by Duplicator is determined by
her winning strategy in the k pebble game on structures T; and 7}, given by
the fact that TI =k Tj. If Spoiler plays a pebble in a subtree T, which already
contains a pebble, Duplicator responds with a pebble in the subtree Tj containing
the matching pebble. Again, she uses the winning strategy for the game on Γ,
and TJ to guarantee that the result is a legal position. It is not difficult to verify
that this describes a winning strategy for Duplicator on T and T'.

It is possible to use Lemma 6 to show an exponential upper bound on the
functions dk and ek on the class of trees. Thus, the lower bound based on com-
plete binary trees cannot be improved as long as we confine ourselves to trees.
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In order to prove this upper bound, it is useful to establish some more basic
properties of the =k relation on trees.

Lemma?. For any tree T = (V, X), any vertices w, v £ V and any k > 3, if

(T, «)=*(!»

then the following two conditions hold:

1. (T, u') =k (T, v'), where u1 and v1 are the parents of u and v respectively;
and

2. Tu =k Tυ, where Tu and Tv are the subtrees of T rooted at u and v respec-
tively.

Proof: Since (T, u) =k (T, υ), Duplicator has a winning strategy in the k pebble
game played on two copies of T that begins with a pebble on u in one copy and
on υ in the other. In the following we will refer to these two copies as T1 and
T2 respectively. We will also use superscripts 1 and 2 to distinguish vertices and
subtrees of T1 from those of T2.

If Spoiler's first move is to place a pebble on u' (in T1), then Duplicator
must respond with a pebble on vf (in T2), as placing a pebble on any other
vertex v11 -< υ2 would allow Spoiler to pebble a vertex in between v2 and v"
(for instance, v') resulting in a losing position for Duplicator. Now, from the
assumption that Duplicator has a winning strategy, we conclude that Duplicator
wins the game from the position (T1, w, u'), (T2, v, v1} and this implies (T, u1) =k

(T, ΐ/), establishing condition 1.
To establish condition 2, we argue that if, in the game starting from (T, u)

and (T, v), Spoiler confines his moves to the subtrees Tu in T1 and to Tv in
T2, then Duplicator has a winning strategy also confining her moves to these
subtrees. Suppose this were not so and, for some move by Spoiler within the tree
Tj (without loss of generality), Duplicator is forced to respond with a vertex
outside Tj. Note that, after the first such move by Duplicator, T2 contains
pebbles both within and outside TJ2, since there was a pebble on v initially,
while all pebbles in T1 are within Tu. Spoiler now places a pebble on t/1, using a
previously unused pebble if there are only two pairs of pebbles currently on the
board, or possibly moving a pebble otherwise (though not moving the pebble
used in the previous move). In either case, there remain pebbles within and
outside Tυ

2, not counting the pebble that Duplicator must now place. Duplicator
must respond with a vertex v" in T2 that is a lower bound (in the partial order
X) of all the currently pebbled vertices in T2. Since these pebbled vertices include
vertices both within and outside of Γv

2, it must be the case that v11 -<( v. This
means that u and v" can be distinguished by a formula δd as in Lemma 5, giving
Spoiler a winning strategy from this point on.

In fact, the converse of Lemma? holds as well, but we do not require it for
our purposes. One immediate consequence of Lemma 7 that is of interest to us
is the following:

Lemma8. // (T, u) ^k (T, t;) and u X u', then there is no v1, such that v -< v'

and(T,u')=k (7>').



60

In other words, if (T, u) ^k (T, v), then the subtrees Tu and Tv realize completely
disjoint sets of Lfc-types in T.

Also, combining Lemma 6 with Lemma 7 gives us the following:

Lemma 9. For every tree T there is a tree T1 , with T =k T1 ', such that there
is no set v\, . . . , v^+i of distinct sibling nodes in T" with (T", v, ) =k (T', Vj) for
I <ij < fc+1.

Moreover, if T contains a set v\ , . . . , Vk of distinct sibling nodes such that
(T,Vi) ΞΞk (T,Vj) for I < i,j < k, then there are arbitrarily large T" such that
rn —k rπll

In addition, using Lemma 8 we can establish bounds on the size of the tree
T1 of Lemma 9, as in the following.

Lemma 10. // T does not contain a set vi, . . . , Vfc+i of distinct sibling nodes
such that (T,vf ) =k (T,Vj) for 1 < ΐ , j < k + I and fc-size(T) < n, then
card(|T|)< kn.

Proof: We first note that, by virtue of Lemma 5, fc-size(T) is at least as large
as the height of T. Now, we establish the claim by induction on the height of
the tree. The basis is trivial. For the induction step, we group the children of
the root of T into equivalence classes according to their I, ̂  -type in T. By the
hypothesis of the lemma, there are at most k elements in each equivalence class.
Let us say there are e equivalence classes: EΊ, . . ., Ee. Associate with each £",-,
the number n, of distinct Lk- types that are realized in the subtree rooted at one
of the elements of Ei (this is, by Lemma 7, the same for all the elements of Ei).

By the induction hypothesis, the total number of elements in all the subtrees
rooted at elements in Ei is at most k A r n * , and thus

card(|T|)< 1 + Ar
l<ι<e

Since k > 3, for each t, fcn« > 3, and therefore Σ1<ί<e kn* < ArE l<*< e n'. But, by

Lemma 8, Σ1<t <e

 n* < n' an<^ we conclude that caf3(|T|) <kn.

Note that, in the proof of Lemma 10, it suffices to count the L^-types of
individual elements. The Ar-size would be larger than this number, and the bound
obtained could be made tighter. However, we are only interested in establishing
the exponential order of the bound, and the simple argument given above serves
that purpose.

Now, Lemmas 9 and 10 immediately yield the upper bounds on the functions
dk and e^ on the class of trees:

Theorem 11. If T is a tree with Ar-size(T) < n, then there is a tree T' with
carddT'l) < kn such that T =k T1 . Moreover, z/card(|Γ|) > Ar n , then there are
arbitrarily large T" such that T =k T" .

The question arises as to whether any of the techniques that work for trees
can be generalised to other classes of structures, and perhaps even to obtain
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a positive resolution of Open Questions 1 and 2. We outline one such attempt
at generalisation in the next section, though it is one that fails to resolve the
questions, in the general case.

5 Indiscernibles

The following definitions introduce notions of sets and sequences of indiscernibles
for finite variable logics, that are analogous to the standard definitions from
model theory.

First, recall the following definition:

Definition 12. Given a structure 21 and a sequence of elements s — (QI, . . . , α/j)
from 21, the basic equality type of (21, s) is the formula

where S = { ( i , j ) \ i < j and αt = α^}, and T — { ( i , j ) | i < j and α, φ a,j}.

That is, the basic equality type of a tuple is its complete quantifier free
description in the language of identity.

Now we can introduce the definitions of indiscernible sets and sequences.

Definition 13. A set X C |2l| is a k -indiscernible set'm 21, if whenever s,ί £ Xk

are such that s and t have the same basic equality type, then (21, s) =k (21,^).
X C 1 21 1 is a k -indiscernible sequence in 21, if there is some (not necessarily

definable) linear order on X such that for any order increasing s,t £ X1 , I < Ar,

Clearly, any ^-indiscernible set X is a fc-indiscernible sequence, as any order on
X would satisfy the conditions of the definition. However, the converse may fail.

The next definition is also a straightforward analogue, with finitely many
variables, of a standard definition from model theory.

Definition 14. A structure 05 is a k-elementary substructure of 21, denoted
03 X* 21, if |03| C |2l| and for every t E |03|fe and every formula φ of £,*,

03 [= φ[t] if, and only if, 21 |= φ[t].

By analogy with the Ehrenfeucht-Mostowski stretching technique, we make
the following definition.

Definition 15. A class of structures C has the k- Ehrenfeucht-Mostowski prop-
erty (or k-EM property, for short) if, for every structure 21 in C, if X C |2t| is a
fc-indiscernible sequence in 21, with card(X) > Ar, then

1. there is an 2lx G C with 21' ^k 21 and card(|2l'| Π X) < k.
2. for any set Y disjoint from |2t|, there is an 21" G C such that 21 ̂ k 2Γ and

X U y is a ^-indiscernible sequence in 21".
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We motivated the introduction of indiscernible sets as an attempt at gener-
alising the techniques used in the previous section on trees. We now justify this
through the following theorem.

Theorem 16. The class of trees has the k-Ehrenfeucht-Mostowski property.

Proof: We prove that if X = { α i , . . . , an] is a fc-indiscernible sequence in the
tree T with the order αz < α, for i < j, then there is a collection of disjoint
subtrees T I , . . . , Tn of T such that:

1. α, G Ti for 1 < i < rc;
2. Ti =k TJ for 1 < ij < n; and
3. the roots of Ti and TJ are siblings for 1 < i,j < n.

The result then follows from Lemma 6.
In order to establish 1-3, we first note that a straightforward modification of

the formula δj of Lemma 5 yields a formula 7^ of L3, such that T \= 74 [α, b] if,
and only if, the distance from the root to the greatest lower bound of a and 6 is
d. Thus, from the assumption that X is a sequence of indiscernibles, we conclude
that there is a single vertex g such that g is the greatest lower bound of any pair
di, (ij. By taking Ti to be the subtree rooted at a successor of g which contains
α t, properties 1 and 3 are easily established. Furthermore, since the elements of
X all have the same L^-type, property 2 follows immediately from Lemmas 7
and 8.

Other classes of structures that have the Ar-EM property include the class of
linear orders (trivially, since no linear order contains a large enough indiscernible
sequence), and the class of pure sets, i.e. structures in the empty signature. We
shall see below examples of classes of structures where the Ar-EM property fails.

We will now show that we can establish recursive upper bounds for the func-
tions dk and e^ for any class of structures having the Ar-EM property.

Lemma 17. There is a recursive function ih, for every k > 3, such that for any
structure 21, with fc-size(2l) < n and card(|2l|) > ^(n, m), there is a set X C |2l|
which forms a k-indiscernible sequence in 21 with card(X) > m.

Proof: The proof is a direct application of the finite Ramsey theorem (see [11]).
This guarantees the existence of a function ik such that if we take any ordered
set A of more than ^(77,777) elements, and partition the set of order-increasing
tuples in Ak into at most n sets PI , . . . , Pn, then there must exist a homogeneous
subset X of A with card(X) > m, i.e. there is an i such that [X]k C Pt , where
[X]k is the set of order increasing tuples of elements of X.

Now, taking A to be the universe of 21, choosing an arbitrary ordering of
the elements, and letting the sets P, be the =k equivalence classes on the order
increasing tuples in |2l|Λ, the resulting set X is guaranteed to be a fc-indiscernible
sequence in 21.

Now, the following theorem is immediate.
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Theorem 18. If a class of structures C has the k-EM property, then there are re-
cursive functions fa and gk satisfying the conditions of Open Questions 1 and 2,
onC.

Proof: For the function #/., just take gk(n) — ik(n, k).
For/fc, let f k ( n ) = ^(n, fc+1) —1. Note that any structure 21 with k — size(*X) < n
and card(2t) > f k ( n ) m has an indiscernible sequence of k + 1 elements, and
therefore contains a proper Ar-elementary substructure.

Unfortunately, the k-EM property does not generalise from the class of trees
to the class of all finite structures. It does not even generalise to the class of all
partial orders, as the following example shows.

Let Bn be the (unique up to isomorphism) partial order induced by a Boolean
algebra with n atoms. This structure is characterised up to isomorphism by a
sentence of L3, namely the sentence that is the conjunction of the axioms of
Boolean algebras (stated in terms of the partial order relation) with 3xSn Λ
(-ιΞ#ίn+ι), where the formulas S are from Lemma 5. Moreover, the set A of
atoms is a /^-indiscernible set in Bn, for any k, since any permutation of A can be
extended to an automorphism of Bn. Thus, we obtain structures with arbitrarily
large sets of Ar-indiscernibles, yet which are, up to isomorphism, unique in their
Ξ^ equivalence class.

Though the class of Boolean algebras does not have the k-EM property, it
certainly does have recursive (even exponential) bounds on the functions dk and
e/c. This suggests that the k-EM property is too strong a requirement. One way to
weaken it is to require collapsing and stretching only for sets of Ar-indiscernibles
of size much larger than & itself. In fact, as the above argument shows, we cannot
replace k by any constant in this requirement, and get a property that is satisfied
by the class of Boolean algebras. We must, instead, replace it by a function of
the fc-size of 21.

Definition 19. A class of structures C has the weak k-Ehrenfeucht-Mostowski
property (or weak k-EM property, for short), if there is a recursive function h such
that for every structure 21 in C, if Ar-size(2l) < n and X C |2ί| is a Ar-indiscernible
sequence in 21, with card(X) > h(n), then

1. there is an 21' ±k 21 with card(|2l'| Π X) < h(n).
2. for any set Y disjoint from |2ί|, there is an 21" such that 21 X* 21" and X UY

forms a Ar-indiscernible sequence in 21".

With this definition, it can be verified that the class of Boolean algebras has
the weak k-EM property.

Moreover, the weak k-EM property is still strong enough for the following:

Theorem 20. If a class of structures C has the weak k-EM property, then there
are recursive functions fk and gk satisfying the conditions of Open Questions 1

and 2, on C.

Proof: Just take gk(n) = ik(n,h(n}) and fk(n) = ik(n,h(n) + 1) - 1.
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However, the weak k-EM property is still too strong to hold of the class of all

finite structures. This is a consequence of a recent result due to Luczak [16] (see
also [19] for a proof of this result). Luczak shows that the sentence θk which is the
conjunction of all extension axioms with k variables (see [15] for the definition of

Θk) has infinitely many minimal models with respect to the substructure relation.

Since Kolaitis and Vardi [15] showed that all models of θk are =k equivalent,

it follows that the class Mod(^) does not have the weak k-EM property. Note
that this does not negatively resolve Open Questions 1 and 2, but it does show

that we cannot hope to replace 21 ΞΞk 05 with the stronger requirement 03 -^k 21

(at least in Question 1).
We end with the observation that we can define a stronger notion of in-

discernibility, that allows us to prove collapsing and stretching properties (α la
Ehrenfeucht-Mostowski) over the class of all structures. This is given by the
following.

Definition21. A set X C |2l| is a set of strong k-indiscernibles in 21, if whenever
s G |2l|*, α,α' G X and a' is not in s, then, (21, s) =h (21, s [ a / a ' ] ) , where s[a/a'}
is the tuple obtained from s by replacing all occurrences of a by α'.

We then have the following:

Theorem 22. If X — { α i , . . . , α/e+i} C |2l| is a set of strong k-indiscernibles in

21, then

1. there is an 21' ̂  21 with |2l'| = |2l| \ {αi}

2. for any set Y disjoint from |2l|, there is an 21", with |2l"| = |2l| U Y, such
that 21 X f e 21" and X U Y is a set of strong k-indiscernibles in 21".

The proof of the stretching part (part 2) of Theorem 22 appears in [18]. The
proof of the first part is similar, and we omit it.

Unfortunately, with this stronger notion of indiscernibility, we do not have

an analogue of Lemma 17.
Acknowledgements: I am grateful to Martin Grohe, Henrik Imhof and Eric

Rosen for carefully reading an unpolished version of this paper.
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