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Mark Reynolds?

ABSTRACT Two-dimensional combinations of temporal and modal logics
have been studied for some time for their logical properties and their appli-
cations to natural language semantics and computer science. In this survey,
we briefly describe a variety of these logics, concentrating on the temporal-
temporal combinations, their properties and uses. We also look at some
more recent results using irreflexivity rules, tiling and mosaic techniques.

1 Introduction

We survey some recent results about various two-dimensional temporal log-
ics and some similar modal-temporal logics. We look at their simple logical
properties and applications in computer science and artificial intelligence.
For a more general account of multi-dimensional modal logic see [MV97]
and for broader surveys of temporal logic see [GHR95].

The logics we are most concerned with are defined over frames consisting
of a cross product of simpler structures. Valuations of propositional atoms
will be made at ordered pairs and so truth of formulas is also evaluated
at ordered pairs in structures. The accessibility relations of the modalities
will be restricted by keeping one of the coordinates of the two-dimensions
constant.

Such logics may be of interest to those investigating natural language se-
mantics, describing changes in temporal information contained in databases,
using interval temporal logics to describe the relationships between pro-
cesses or states of extended duration, combining temporal logic with logics
of possibility, knowledge or belief, describing systems of parallel processes
or trying to find modal approximates to the first-order logic of two variable
symbols.

In this paper we will briefly look at axiomatizations for these logics using
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Gabbay’s irreflexivity rules, undecidability proofs using the tiling technique
and we also describe an application to decidability questions of a technique
which was initially used by Istvan Németi in the area of algebraic logic (see
[Nem86])-the mosaic method.

2 Compass Logic

The most straight forwardly two-dimensional temporal logic is the compass
logic introduced by Venema in [Ven90] and [Ven92|. The language contains
four interrelated modal diamonds: ¢ , ¢ , & and € . Structures for this
language consist of two linear orders (T, <;) and (T3, <2): we shall call
such a pair a rectangular frame. Two-dimensional valuations for atoms are
made at ordered pairs from T; x T. We can think of (73,<;) as lying
horizontally and (T3, <) as lying vertically on a cartesian grid. The truth
of formulas is also defined at ordered pairs in a natural way: for example,

L4 (T1)<17T2) <2ag)7t1at2 |=p lffp € g(tht?)

o (Ty,<1,Ty,<2,9),t1,t2 = O Aiff there is s; € T} such that t; <; s;
and (TI» <17T27 <2,g),31,t2 l= A.

It is useful to define some abbreviations including the corresponding uni-
versal modalities and some boolean combinations of the basic modalities:
for example,

MA=-d -4
OA=ANOAANDAANBAANBA
O A=O AVAVH A

Notice that this notation extends the appealingly intuitive geographical
analogy suggested by the notation for a modal two-dimensional logic in
[Seg73]. The intuition further suggests another possible application of this
logic: to the field of spatial reasoning. Although there are modal logics for
spatial reasoning (such as the logic of convex hulls in [Ben96]), we know
of no investigation of the use of modalities for compass directions in this
field.
An example of the kind of statement one can make in the logic is

dBA-30 A

which is actually a validity where by a validity we here mean a formula
which is true at every ordered pair in every rectangular structure. A sat-
isfiable formula, on the other hand, is a formula ¢ for which there exists
some rectangular structure 7 = (T3, <1,T3, <2,9) and some pair (t;,t2)
such that

T,tl)t2 |= ¢
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Just to be clear, we also define semantic consequence by
A

iff T,t1,t2 = A whenever we have T ,t),ty =« for all y € .
Below we will consider the expressive power of this logic and give an
axiomatization for it. We will also see that validity is undecidable.

3 Variations

Variations on this logic arise in the usual ways: semantically, we can re-
strict our attention to certain subsets of the set of rectangular structures;
syntactically, we can consider other temporal operators; or we can combine
such variations.

Examples of restrictions are to only consider frames (T3, <1, T3, <2) (i)
with each (T3, <;) being dense, (ii) with (T}, <;) = (T2, <2) or (iii) with
each (T;, <;) being the natural numbers order. The logics resulting from
such restrictions will, of course, usually have more validities.

Considering the language, then a more expressive two-dimensional tem-
poral logic can be obtained by using Kamp’s until U and since S operators.
In one dimensional temporal logic, until (technically, the strict version of
until) is defined as follows:

e T,t = U(A, B) iff there is some time s such that t < s and 7,s = A
and for all times r such that ¢ < r < s we have 7,r = B.

Since is defined dually, i.e. with > instead of <. For two dimensions we
end up with four operators: U", §*, U¥ and S?, with a pair for each of
the horizontal and vertical ordering. The compass operators can easily be
defined in this language: for example & A =U Y(A,T).

Note that there are also less expressive versions of until and since (called
non-strict). In two-dimensions the horizontal (easterly) non-strict until has
defining clause:

o (Th,<1,To, <2,9),t1,ta = UL (A, B) iff there is some s; € Ty such
that t; <; s; and (Th, <1,7T5,<2,9),51,t2 = A and for all r; € T}
such that t; <; 71 <3 81 we have (T, <1, 1%, <2,9),7m1,t2 FE B.

The difference between strict and non-strict versions of until and since
is sometimes important in applications where time is taken to be the inte-
gers or natural numbers. In such a situation we also have the “next-time”
operators 3 ,( ,6) and () . The semantic clause for (5 , for example, is

(N,<,N,<,g),n,m #G o iff (N;<aN’<ag)’n+1,m '=a
while that for () is
(N,<,N,<,g),n,mpEQ aifn>0and (N,<,N,<,g9),n,m -1 a.
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It is not hard to show that the next-time operators are definable from the
strict until-since operators but not from the non-strict ones.

When the two dimensions of time are based on the same linear order (T, <
) (we can call such structures square) we have a diagonal in our structures:
{(t,t)|t € T}. Then we can make the language even more expressive by
including modal constants which represent being on the diagonal or on
one side of it as opposed to the other. For example we can introduce §
as a constant which is only true on the diagonal. Being in the north-west
half-plane is determined by the truth of the formula ¢ 6.

Harel in [Har83] has considered a two-dimensional logic with just & ,
& ,(® and O over natural numbers squares.

In square structures we can also follow Vlach and Aqvist(see [GHR94])
and introduce a converse modality J (here written ®) and projection modal-
ities J; and J,. The definitions are:

(T’<:T7<ag)atau }= ®a iff (T1<»T’ <7g)1u’t }= a
(T7 <7T, <ag):t17t2 '= Jia iff (T’ <,T) <)g)’t‘iat‘i i= «

There are many other variations on these logics: we can also relax some
of our semantical assumptions instead of restricting them (e.g. consider
structures where each (T}, <;) is not necessarily a linear irreflexive order),
or reduce the expressiveness of the language (e.g. do not use the “past”
operators such as € and ¢ ) instead of increasing it.

There are also less neatly two-dimensional combinations of temporal log-
ics in the literature. For example, there are the logics arising from general
Temporalizing [FG92] and combining [FG96] techniques. Temporalizing al-
lows the adding of a temporal logic on top of any other logic. Truth is
evaluated in two-dimensional structures but only a restricted language is
available- formulas with a horizontal modality nested inside a vertical one,
say, are outlawed. Combining or Fibring techniques, on the other hand, al-
low the full two-dimensional language but also allow very complex models
without commutativity of the two accessibility relations <; and <s. Such
structures are sometimes known as independent combinations of modal log-
ics [Tho80]. These logics are used to investigate the preservation of various
logical properties under combination logics. They can also sometimes be
the only way of keeping combinations of logic decidable. For more recent
results in this area see, for example, [KW91], [Spa93] and [GS97).

4 Expressive Completeness

With all the variations on temporal language even for a fixed semantic
domain, questions of relative expressiveness and expressive completeness
are bound to be raised. Many of these have been answered by Venema and
de Rijke in [Ven90], [Ven92], [Ven94] and [dR93].
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Expressive completeness for temporal languages (see [GHR94]) concerns
the well-known translation ([vB84]) from temporal or modal formulas into
formulas in a monadic first-order logic. A temporal logic is expressively
complete if and only if the translation is reversible. Without going into
details we just summarize that in the one-dimensional case there do exist
expressively complete temporal logics (e.g. the logic with U and S was
proved to be so by [Kam68] for Dedekind complete flows of time) while for
two-dimensional structures, Venema (in [Ven90]) has shown that no finite
set of operators is complete for the class of all square frames built from a
dense linear order.

However, [Ven94] presents an expressively complete two-dimensional logic
when we restrict our attention to flat structures, i.e. structures in which
the valuation g is such that p € g(¢t, u) iff p € g(¢,v) for any ¢, v, u.

5 An Axiomatization

Here we adapt the systems in [Ven90] (for an interval logic), [GHR94] (for
Vlach and Aqvist’s logic) and [Fin94] (for a two-dimensional until-since
logic) to give a complete finite axiom system for the compass logic. There
is a slightly different axiomatization for the compass logic in [MV97]. Recall
that the semantics are defined over frames with any pair of linear orders.
The inference rules are modus ponens and temporal generalization:

A A— B A A A A
B DA WA BA BA

along with two versions of the Gabbay IRR rule ([Gab81]):

QqALD-Pg— A
A

and the version with ¢ instead of & and E] instead of @ .
The axiom schemas include the usual ones for linear temporal logic:

provided the atom ¢q does not appear in A

A1: all classical tautologies,

A2: 1 (A—- B)— (W A—OB)

A3: A-MQ A

A4d: TA-OMA

A5: & (MAABAC)—-D(AVH BVO)

with south facing versions of A2, A3 and A4 and east-west versions of all
these and schemas C(SE), C(SW), C(NW), C(NE) to describe the interac-
tion of the two dimensions:
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CSE): 9 OA-H QA

e.t.c.

To see that the IRR rules are sound, just suppose that the atom g does
not appear in the formula A but that ¥ = (& ¢ AL ~H —q) — A) is
valid. Now consider any rectangular structure 7 = (T1, <1, T2, <2, 9) and
any (t1,t2) € T x Ty. Define a new structure 7’ = (T, <1, T3, <2, h) with
valuation h : (T} x Tp) — 2L via

q € h(ui,ug) iff ug =t
p € h(u,up) iff p € g(u1,u2) forp#gq.

It is clear that T/,t1,t3 = & ¢ A =& —q and so, as 9 is valid, we have
T',t1,t2 = A. A simple induction shows that for formulas like A which
do not contain the atom g we have T,t;,t3 = A. Thus the first IRR rule
is valid and it is straight forward to show that the whole axiom system is
sound.

The completeness part of the proof is made easy by the presence of the
IRR rules. Instead of considering the set of maximally consistent sets of
formulas as in many traditional completeness proofs we can confine our
attention to a subset of such sets called the IRR sets. For each of these sets
there is some atom which indicates its “latitude” relative to other compa-
rable IRR sets and there is some atom which indicates its “longitude”. It is
then straight forward to arrange the sets of formulas in a two-dimensional
grid and prove we have built a model of a given consistent set of formulas.

It is an open question whether there are axiomatizations for compass
logic without using IRR-style rules (as there are in the case of some logics
of historical necessity [Zan90]) but it is thought likely that there are not.
Note that, as we will see below, it is not possible to axiomatize compass
logic at all if we restrict the linear orders to be the natural numbers time.

6 Applications to Natural Language Semantics

Much of the initial motivation for studying multi-dimensional temporal
logics came from the study of tenses in natural language. In giving formal
semantics to various constructs it was realised that evaluating the truths
of complex expressions was not adequately done with reference to a single
time of evaluation. Often, for example, evaluating the truth of a past tense
expression is not a simple matter of finding a time in the past at which some
subexpression is true. The subexpression may depend on that past point
and the overall time of utterance for its truth. Extra dimensions —often
just 1 extra dimension— are used for points of reference in the semantics
of various perfect tenses (see [GHR94], [Gue78]) and in special temporal
constructs such as “now” (see [Kam71]) and “then” (see [V1a73]).
For a simple example consider the statement
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when he was gaoled he didn’t know that he would be released
before now.

Although, the statement contains an epistemic modality to confuse the
matter slightly, it is clear that its truth at time s could be adequately
established by finding a time ¢ in the past at which the following statement
is true:

he is being gaoled and he doesn’t know that he will be released
before now

provided that we are careful about the use of the word “now” and suppose
that it refers to time s. Thus the truth of the latter statement obviously
can only be evaluated at a pair of time points: one ¢ specifying when the
evaluation takes place and the other, s, specifying what time corresponds
to that word “now”.

7 Applications to Databases

Another very important use of temporal logic is in dealing with databases
which make use of time. We call these temporal databases. Time can be rel-
evant to a database in one or both of two different ways. Each change to the
contents of the database will be made at some time: we refer to this as the
transaction time of the database update. Databases often also store infor-
mation about the time of events: we refer to the actual time of occurrence
of an event as its valid time. Depending on which of these uses is made of
time or on whether both approaches have a role to play, we can identify
several different types of temporal databases but what is common to all,
as with all systems which change over time, is that describing or reasoning
about their evolution is very conveniently done with temporal logic. With
both the forms of temporal information involved, it was thus suggested
in [Fin92|, that describing the evolution of a temporal database is best
done with two-dimensional temporal logic. This is because, for example, at
a certain transaction time today, say, we might realize that our database
has not been kept up to date and we may add some data about an event
which occurred (at a valid time) last week. Thus a one-dimensional model
which represents this-morning’s view of the history of the recorded world,
is changed, by the afternoon, into a new one-dimensional model by having
the state of its view about last week altered. A series of one-dimensional
models arranged from one day to the next is clearly a structure for a two-
dimensional temporal logic. This application has recently been developed
into a logical language for controlling temporal databases (see [FR97]). Fur-
thermore, it has recently been shown ([FG92]) that the restricted kind of
logic needed for database applications is much more amenable to reasoning
with than the usually undecidable general two-dimensional logics.
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8 Intervals

As described in [vB95], there are many and various motivations for using
an interval temporal logic: these include philosophical considerations of
time and events, natural language, processes in computations and planning
problems. For constraint problems in planning it may be sufficient to just
consider networks of intervals with each pair related by some subset of
the 13 possible basic relations (see [All81] for details). However, for more
sophisticated reasoning about intervals an interval temporal logic such as
that in [HS86] is better suited.
The modalities in [HS86] include:

e (A): at some interval beginning immediately after the end of the
current one,

e (B): at some interval during the current one, beginning when the
current one begins, and

e (E): at some interval during the current one, ending when the current
one ends

As suggested in [Ven90], it is rewarding to notice that interval temporal
logics are closely related to two-dimensional temporal logics. We can use
the compass language to describe interval structures. Then the interval
logic is much the same as the compass logic with a diagonal but with half
the points missing. These logics are intertranslatable.

Suppose that (T, <) is a linear order. An interval structure over (T, <)
is obtained by adding a valuation for the atoms on intervals i.e. on pairs
(s,t) where s < t in T. Truth of formulas is also evaluated at intervals.

We turn this into (half a) 2-dimensional structure (T, <, T, <, g) for the
compass language with the diagonal constant § by the following moves:

e truth of formulas and the valuation of atoms only takes place at pairs
(s,t) with s < ¢t,

o p € g(t1,t2) iff t; <ty and p € h(ty,t2)
o (T,<,T,<,9),s,t=6iff s=t

Then interval properties can be expressed in compass logic:

e “all subintervals satisfy p”
isEMp



Two-Dimensional Temporal Logic 227

(T, <)

.

(T,<)

e “any interval strictly in the future satisfies p”

is®6ADB (-9 § —p))

In fact Venema shows that all the formulas of Halpern and Shoham’s
logic can be easily translated: for example, (B)p simply translates to ¢ p.

We know from a preceding section that the compass logic is not expres-
sively complete. In fact, in [Ven91], Venema describes a useful construct
which is not able to be expressed in the above interval logics. This is the
two-place chop operator C which is defined by

T,t,u = ¢C iff v such that t <v Av < u and
T,t,2vE=¢and T,v,ul=19

This operator would seem to have application in natural language semantics
(as “and-then”), program semantics (as sequential composition), planning
and be a generally useful composition construct in two-dimensional logics.

9 Undecidability via Tiling

The truly two-dimensional temporal logics we have met above are all unde-
cidable. This is usually quite straight forward to show using the domino or
tiling technique. The technique was first applied to two-dimensional logic
and other logics of programs in [Har83] where many different tiling tech-
niques are used to establish various levels of undecidability of the logics.
Other techniques such as coding of Turing machine runs (see [HS86] or
[HV89]) can be used but the tiling approach is very natural in this context.
In [MR96] it is shown that the compass logic itself is undecidable. The au-
thors use tiling but the proof is not completely straight forward. A much
better demonstration of tiling in action can be gained from considering
the two-dimensional temporal logic X2 with “next” operators 3, (D , ©



228 M. Reynolds

and () as well as the compass operators used to describe structures where
both dimensions of time are the natural numbers. This is very similar to
the two-dimensional logic actually considered in [Har83].

We fix some denumerable set C of colours. Tiles are 4-tuples of colours
and we define four projection maps so that each tile 7 = (left(7), right(r),
up(7), down(7)). We say of a finite set T of tiles that T tiles N x N iff there
is a map p : N x N — T such that for each 7,j € N,

* up(p(i,)) = down(p(i, j + 1))
o and right(p(i, 7)) = left(p(i + 1, 5)).
The tiling problem for N x N is:
e given a finite set T of tiles, does T tile N x N?

In [Rob71] it is shown that the tiling problem is co-r.e.-complete: and
hence undecidable.

It is now straight forward to use this result to show the undecidability
of the logic X2.

Given a finite set T of tiles we define (recursively) a formula ¢ of the
logic such that the satisfiability of ¢ is equivalent to the tiling of N x N by
T. This will be clear. Since deciding validity is just deciding satisfiability
of negations, this shows that validity in X? is r.e.-hard.

The formula ¢, which uses the elements of T' as propositional atoms is
simply the conjunction of the following:

-©OTA-QT

u V‘rET T

OArzr (T AT)

O /\up(r#down(r') ~(rA® )
O /\right(r);eleft(w) ~(rAQT)

Such tiling proofs tend to be more complicated for other two-dimensional
temporal logics. When the underlying flows are not necessarily the natural
numbers then we must use the temporal logic to code in a discrete sub-flow.
When the logic does not have next-time or until operators then the coding
gets more complicated again. See [MR96)] for details.

Note that we could have easily followed Harel and modified this proof
using a different tiling problem to show that the logic X? actually has
a [}-hard validity problem. This implies that the logic is not recursively
axiomatisable. In fact, when the underlying linear orders are restricted to
be natural numbers, integers or reals then many of the two-dimensional
and interval logics we have seen are non-axiomatisable. When the full class
of linear orders are available then this modified tiling problem, involving
the infinite repetition of a certain tile, is not able to be encoded in the
two-dimensional logic and we can only prove undecidability.
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10 Combinations of Temporal and Modal Logic

Since they are similar we consider a few combined temporal-modal logics
which exhibit a two-dimensional character. There is a survey of many of
these logics in [Tho84].

The simplest of these is perhaps the logic which we will call FP¢ (fol-
lowing [Rey98]). Models consist of a two-dimensional valuation on a cross
product of a linear order and a set. The temporal operators F' and P oper-
ate along the linear dimension perpendicularly to a modal S5 ¢ operator
on the set.

(U,T,<,9),u,t = FAiff 3s € T such that t < s and (U, T, <,g),u,s = A
(U,T,<,9),u,t = QA iff 3v € U such that (U,T,<,g),v,t = A
etc.

The logic was briefly mentioned in [Tho84] as being not very interesting.
However, we will look at some of its niceties in the next section. It is also a
logic which appears as a special case of many and various other combined
temporal logics.

FP¢$ logic is a restriction of the Synchronized Ockhamist branching-
time logic of [DZ94]. The semantical structures (called T x W frames by
[Tho84]) for this logic involve the cross product of a linear order (T, <)
and a set W along with equivalence relations ~; on W for each ¢t € T. The
equivalence relations must satisfy the property that w ~; w’ and ¢/ < ¢t
implies w ~y w'. The order (T, <) represents time and the elements of the
set W represents alternative histories. The ~;-class containing w can be
used to represent the histories which are possible from the point of view of
the world (¢, w). Thus the modality , defined by

(T, <, W,{~},9),t,w E O2a iff Jw’ € W such that w ~; v’
and (T, <,W,{~:},9),t,v' F a

represents the idea of “at this time in some history which is currently
considered possible”. The modality ¢; defined by

(T, <, W,{~},9),t,w = 01 iff Jw’ € W such that
(T,<,"V,{~t},g),t,w' l': «

represents the idea of “at this time in some history”. It is this latter modal-
ity which extends the non-temporal modality in the logic F P{. Logics very
similar to the synchronized logic form bases for logics of agency [BP90] and
causation [vK93]. There are axiomatizations of such logic in [vKar] and
[DZ96]. It seems to be an open problem whether this logic is decidable.
Logics of historical necessity or Ockhamist logics are closely related ex-
amples of a combined logic. They are not a neatly two-dimensional logics
but we do have a modal logic of possibility in some sense orthogonal to a
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linear temporal logic. These logics are obtained by removing the ¢; modal-
ity from the Synchronized logic above. They are described in [Bur79] while
there are axiomatizations in [Zan85], [Zan96] and [GHR94]. A special case
of this logic is proved decidable in [GS85].

Many combinations of time and other modalities arise from formal in-
vestigations into how knowledge (or belief) changes over time. These logics
are usually designed for reasoning about systems of multiple agents. See
[FHMV95] for a comprehensive survey. A temporal-epistemic logic for n
agents will use n knowledge modalities. Thus the versions which are of rel-
evance to us here are simple ones, formalizing the changes in knowledge of
one lone agent who knows about the world and her or his own knowledge.
S5 is commonly taken to be the non-temporal logic of knowledge appro-
priate for one agent. So we can formalize the semantics of the temporal-
epistemic logic using a two-dimensional frame very similar in general form
to those for Synchronized historical necessity. However, the accessibility
relation for the knowledge modality does not have to be restricted to being
between worlds (¢,w) and (¢, w’) with ¢ = ¢/. In the case with time being
the natural numbers these logics are well studied. In [FHMV95] there is
an EXPSPACE-complete decision procedure and complete axiomatization
for a logic like FP{) but with natural numbers time: this is a temporal-
epsitemic logic of one agent who doesn’t forget, doesn’t learn and who
knows the time.

We have mentioned that F'P{ logic has applications to systems of par-
allel processes. There has been some work in developing two-dimensional
logic for such applications. In [RS85], for example, we find a logic combin-
ing temporal and spatial modalities. Once again the temporal dimension
is the natural numbers and we have the other dimension based on a set
of processes. However, there is a set of names for links which may or may
not connect one process to another. The language uses until in the tem-
poral direction but has a spatial modality for each link as well as one for
the transitive closure of all links. This leads to a highly undecidable, un-
axiomatisable logic. In [SG87] on the other hand, we have a similar logic
but without the linking modalities. There is just the one existential spatial
modality as in FP{. With until as the temporal connective and the natural
numbers as time, this logic is stated to be EXPSPACE-complete.

There are a wealth of two-dimensional non-temporal modal logics which
have been investigated. As we will see in the next section some of the results
and techniques have also some application to temporal logics. One of the
most fruitful areas here has been the investigation of modal versions of first-
order logic and their cylindric algebra counterparts. If we look at first-order
logic with no function symbols, relations of arity only 1 or 2 and only two
variable symbols then we can regard the existential quantifier as a modal
operator and come with a two-dimensional modal logic which is the same
as that in [Seg73]. There is a very recent account of this area in [AvBN97].
In [VM95], a similar modal logic is studied but its modal semantics is
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generalized from the first-order motivation. This logic is proved decidable
and the proof is an example of the mosaic method which we now turn to.

11 Decidability via The Mosaic Method

The logic FP¢ is worth a closer look. This is not just because it may have
some application to systems of unbounded numbers of processes computing
in parallel. It is also interesting that the mosaic method can be used to show
the decidability of validity in this logic.

(From its beginnings in [Nem86), the mosaic method has been increas-
ingly used in proving decidability and completeness for various multi-modal
logics. It is well explained in [VM95] where it is used to prove completeness
and decidability of the logic LC,,.

Often, completeness and decidability proofs proceed in a step-by-step
manner adding one point at a time to eventually build a model of a satis-
fiable formula. In the mosaic method we instead try to find a set of small
pieces of a model which satisfies a certain closure property. This will be
enough to guarantee that the small pieces can be put together to form a
model. The actual putting together can either be done by a very simple
step-by-step operation (as in [VM95]) or (as shown recently in [HHM*96]),
we might be able to use new techniques (of Herwig and Hrushovski) to
immediately find the model.

In using the mosaic method to give a decidability proof we need to define
mosaics appropriate for the logic and define closure properties (dependent
on a given formula) for a finite set of mosaics so that the existence of such
a set of a certain size will be equivalent to the existence of a model for the
formula.

The logic FP{ is an interesting candidate for a decidability proof via
the mosaic method because, as shown in [Rey98], the logic does not have
the finite model property. This shows that the finite set of mosaics with
the closure property is not just a finite model in disguise.

Here is a brief summary of the decidability proof presented in [Rey98].
Suppose that we are interested in the satisfiability of the formula ¢. Recall
that the structures consist of a set U, a linearly ordered set (T, <) and a
valuation g : (U x T) — 2% for the atoms in L. The accessibility relation
for F is {((w,t), (u,s))|t < s} while that for ¢ is {((u,t),(v,t))}. We use
the usual symbols G, H and [ for the universal modalities defined from
F, P and ¢ respectively.

The object playing the part of a mosaic for this logic is called a segment
and consists of a finite set X with a pair () and v(z) of sets of subformulas
(or negations of subformulas) of ¢ for each x € X. We also impose some
conditions on the sets. Let us try to motivate these. We want the segment
to represent the small piece of a model 7 = (U,T, <, g) consisting of the
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set of pairs of sets of subformulas of ¢ which one obtains by choosing some
s and t from T with s < t and looking at

{(A,B)| there is some u € U such that
acAif T,u,sEaand B € Biff T,u,t E G}

In other words, slice the structure at two different times and look at the
sets of formulas which are true on the slices on corresponding U lines.

Note that because we are interested only in subformulas of ¢ there will
be only a finite number of pairs in any segment. The conditions that we
impose on a segment are 10 in number but quite straight forward given the
motivation. For example,

e we require the sets y(z) and v(z) to be maximally boolean consistent
o if Ga € p(x) we require a € v(z) and Ga € v(z)
e if Oa € p(zx) we require o to be in each u(y)

e and, importantly, if Qa € p(xr) we require there to be some y € X
such that o € pu(y).

This is (part of) the definition of just a single segment. We then have
to find some closure conditions on a finite set of such segments which will
guarantee that they can be (copied as many times as necessary and) put
together to build a model of ¢. These closure properties are such as to
allow us to show how to construct a model of ¢ in a step-by-step manner
reminiscent of the construction in [Bur82] where defects are cured succes-
sively, thus gradually building the model. For example, if (X, , v) is in our
set of mosaics and Fa € v(z) then we would want there to be a mosaic
(X', ', V') also in the set which contains some 2’ € X’ with a € v/(z’) and
which is such that it could be glued consistently after the first mosaic. Note
that the gluing process sometimes involves multiplying copies of various U
lines and it is in this way that we can end up with U being an infinite set.

At the eventual (possibly infinite) end of this building process we have
a structure in which the labels of formulas on points are equal to the sub-
formulas of ¢ which are true at that point in the model. Provided that we
started the process with a segment with ¢ itself in a label then we will end
with a model of ¢.

The decision procedure is thus to check through the finite (but large)
number of possible sets of segments for any that satisfy the closure prop-
erties. Provided we show also that any satisfiable formula has such a set of
segments then the construction described above guarantees that we have a
correct procedure.

It is worth mentioning that the complexity of the decision problem for
this logic is an open problem: it is nexptime hard but the procedure de-
scribed above is double exponential.
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