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L. Clozel

0. Introduction

In April 2006, Richard Taylor has completed the proof of the Sato-
Tate conjecture for elliptic curves over totally real fields, under a mild
assumption (see below). This is the completion of a project started sev-
eral years ago by Taylor and Michael Harris, aiming at developing the
higher-dimensional automorphic deformation theory of Galois represen-
tation, with its applications to cases of Langlands functoriality – here,
“Sato-Tate”. I will report specifically on 3 papers:

Clozel, Harris, Taylor, Automorphy for some ℓ-adic lifts of automorphic
mod ℓ representations ([CHT]);

Harris, Shepherd-Barron, Taylor, Ihara’s lemma and potential automor-
phy ([HSBT]);

Taylor, Automorphy for some ℓ-adic lifts of automorphic mod ℓ repre-
sentations II ([T]).

Together the three papers give a proof of “Sato-Tate” (with the re-
striction alluded to). The proof is based on the continuous development,
since ’95, of Wiles’ deformation method. After the initial impetus by
Wiles and Taylor-Wiles, I see two strands of development, characterized
by:
• The systematic study, and use, of forms on higher groups and their
associated Galois representations (Harris, Taylor).

• Deep technical progress (in degree 2, but this adapts to the higher,
dimensional situation) in the Taylor-Wiles method: here fundamen-
tal contributions are due to Taylor, Diamond, Fujiwara, Skinner-Wiles,
Kisin.

The purpose of these notes is to explain the result, even for a reader
who is not familiar with the modern theory of automorphic forms and
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2 L. CLOZEL

Wiles’ deformation theory. I have aimed at displaying, as clearly as
possible, the logical structure of the proof.

It is, in fact, not easy to envision the whole proof with some clarity:
first, because it systematically involves forms on higher groups – here,
unitary groups of arbitrary rank – which may not be, even now, famil-
iar to all number theorists. Secondly, because the deformation theory –
essentially used here to give an approximate proof 1 of a case of Lang-
lands functoriality – has to be combined, in an intricate fashion, with
two other ingredients. The first (see § 5) is a very powerful elaboration
of the “change of primes” or “3-5” trick of Taylor and Wiles. (This has
been developed by Taylor, in the case of GL(2), in two very important
papers [32, 33]. They are also basic for the proof of Serre’s conjecture
[17] on which Ribet reported at the conference.) The second, which is
closely connected, is the idea of proving potential modularity rather
than modularity. This is already introduced in § 1: see the section on
“Brauer-Taylor”.

These notes, then, endeavour to explain as clearly as possible the
fundamental ideas of the proof. I have tried to give statements which
involve as little technique as possible; however, at least in the five first
paragraphs, I have also attempted to give essentially correct statements
of the main theorems. (A few terms, however, will not be defined, such
as “crystalline representations” or “Steinberg condition”.) Also, I have
always stated the results with the minimal content required for the proof
of “Sato-Tate”, and even that over Q. (The general results apply to
totally real fields.)

In § 1, we give the statements of the Sato-Tate conjecture, and of
the (slightly weaker) theorem now proven (Theorem A). I also explain
three fondamental “reductions”: one, due to Serre and Tate, to an ana-
lycity property of “high L-functions”; Langlands’ expectation that these
higher L-functions are “automorphic”; and the arguments, introduced
by Taylor and relying on Brauer induction, reducing the automorphic
problem to a potential one (Thm. B).

In § 2 I review “known” material on Galois representations associ-
ated to automorphic forms (≡ automorphic representations). The re-
sults are due to a number of people, culminating with the work of Harris
and Taylor.
§ 3 states one of the main results of [CHT] on “conditional modular-

ity”, the analogue of Wiles’ theorem in higher degree. (Some indication
of the proof will wait until § 6.)
§ 4-5 are devoted to certain fibered Calabi-Yau varieties, whose use-

fulness in Arithmetic was revealed in [HSBT]. They play the role that
modular curves (Wiles) or Hilbert-Blumenthal varieties (Taylor) played
earlier as a medium for the “3-5” trick. Their basic properties are

1The correct term is potential proof.
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described in § 4, and in § 5, using them, we complete the proof of The-
orem A (Sato-Tate), following Harris, Shepherd-Barron and Taylor. At
this point, however, the proof is conditional. (This was the situation
when [HSBT] was – electronically – published, i.e., September 2005.)
It depends on the generalization (to forms on higher unitary groups) of
a classical lemma of Ihara.

The object of § 6 is to give some indications on the arithmetic theory
of automorphic forms on “compact” unitary groups, used for the proof of
Theorem C in § 3. Here we have not been able to give precise statements,
but the reader familiar with the Wiles/Taylor-Wiles proof will recognize
the usual objects, as well as the difficult problem named “non-minimal
level”. One way to obviate this would be to prove Conjecture I (end of
§ 6), the generalized Ihara lemma. A correct statement is given. This
conjecture seems very plausible (the natural analog in characteristic 0
is true) but difficult. Even with Taylor’s new proof it remains a very
attractive problem.

Finally, § 7 is devoted to a mere outline of Taylor’s new method. This
relies (1) on proving “potential modularity” rather than “modularity”
results, and (2) on a new method of Kisin.

In conclusion, the reader can expect here, of course, only an outline
of the 225 pp. of difficult mathematics contained in the 3 papers. He
should also consult Harris’s excellent exposition [11]. I would like to
thank Professor Yau, and the Harvard Mathematics Department, for
inviting me to give these lectures. I thank Peter Sarnak for forcing
me to read [HSBT] in one night. I thank Michael Harris and Richard
Taylor for their patience in explaining their work (and the common
work with Shepherd-Barron); Michel Raynaud for reading with me the
commutative algebra in Taylor’s paper; Jean-Pierre Serre and John Tate
for historical comments.

1. The conjecture. Reductions

Assume E is an elliptic curve over Q. There is then an integer
N > 1 such that the equation of E (as a smooth cubic in P2) has
coefficients in Z[ 1

N ]. We may further (multiplicatively) increase N so, if
p is a prime and p ∤ N , the reduced curve E over Fp is still smooth, i.e.,
still an elliptic curve. (There is, of course, an optimal choice of N , the
conductor, but this will not concern us. See [28].)

Denote by Ep the reduced curve, over Fp. It has been known since
Hasse (about 1930) that the number of points of Ep(Fp) is

Np = p+ 1− (βp + β̄p) , |βp| =
√
p.

This uniquely determines βp, up to complex conjugation. We normal-
ize (irrationally) by setting

αp = βp/
√
p.
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Thus |αp| = 1; only the couple {αp, α−1
p } is, of course, determined.

Now let EC denote the complex points of E, and let M = End(EC)
be the ring of complex multiplications of E (over C), i.e., its endo-
morphisms as a complex Lie group. If M 6= Z one says that E has
complex multiplication, and the behaviour of the α′s (or β′s) is severely
constrained and (essentially) understood. See [10]. Therefore, assume
now:

• E has no complex multiplication (over C).

• Question: What is the repartition of the α′
ps (p ∤ N) on the unit

circle?

We may think of the diagonal matrix

(

αp
α−1
p

)

as a conjugacy

class in SU(2) - for which we have taken a diagonal representative.
Consider the Haar measure on SU(2). By Weyl’s formula for invariant
integration, it determines a mesure µ on the set of conjugacy classes -
our set of α′s, modulo the identification (α 7→ α−1). If

α = eiθ (θ ∈ [0, π])

then dµ = 2
π sin2 θ dθ.

As usual in Number theory, we analyze the distribution of the α′
ps

as a density. For X > 0, write

µX =

∑

p6X

δ(αp)

∑

p6X

1
,

a probability measure on the set of conjugacy classes, where δ(αp) is
the Dirac measure of the point (αp, α

−1
p ).

Conjecture (Sato, Tate 1963). For X → +∞ , µX → µ.

(The convergence is the weak convergence of probability measures.)
The present theorem is a little weaker. The considerations at the

beginning of this § , about smoothness, can be made more precise (cf.
[28]). Given E/Q, one can define intrinsically the primes “of good
reduction” where E has a smooth projective model over Zp. This is
actually defined by E seen as a curve over Qp. One says that E has
potential good reduction at p if E ×Q L has good reduction for a finite
extension L of Qp. Here and further, for X an algebraic variety over a
field k, X ×k K is the variety over K (an extension of k) obtained by
extension of scalars.

The following theorem is one of the consequences of the 3 papers:

Theorem A. Assume

(i) E has no complex multiplication (over C).
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(ii) At some prime p0, E does not have potential good reduction.

Then the Sato-Tate conjecture is true for E.

From now on, we will abreviate the “Sato-Tate Conjecture” to “ST”.
Note that (i) and (ii) are (negative) potential conditions, i.e., can be
formulated in terms of the curves E ×Q F for F/Q a number field.
(Complex multiplication over C is “acquired” over a finite extension F ;
if E does not satisfy (ii), E×QF will have good reduction for a suitable
number field.)

1st reduction: Serre

Fix N such that E has good reduction for p ∤ N . We will simply
write L(s, E) for the Hasse-Weil zêta function of E with the bad primes
removed:

L(s, E) =
∏

p∤N

1

(1− αpp−s)(1− α−1
p p−s)

.

By the work of Wiles et al [37, 35, 3], one knows that E is as-
sociated to a modular form of might 2 on Γ0(N). Thus there exists a
modular form

f(z) =
∞

∑

1

an q
n (Im z > 0 , q = e2iπz),

eigenform of the Hecke operators, such that

L(s, E) = LN (s, f)

where the right-hand side is the L-function of f (an Euler product) with
the “bad” primes removed. In particular L(s, E), a priori convergent
(with our normalization) for Re s > 1, is

{

holomorphic in the s-plane

6= 0 on the line Re s = 1.

(We will return to modular forms later in this § .) We will say
that a function L(s) is good if it is holomorphic and 6= 0 in a neig-
bourhood of the line (Re s = 1). We note once and for all that the
complete L-functions of E (with suitable factors at the bad primes) can
be rigourously defined, but that a finite number of factors in the Eu-
ler products do not change the analytic arguments which follow. (In
particular, they have no effect on being “good”.)

We now form, for each n > 1, the n-th symmetric power L-
function:

L(n)(s, E) =
∏

p∤N

1

(1− αnpp−s)(1− αn−2
p p−s) · · · (1− α−n

p p−s)
.
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Note that, if there was a matrix tp ∈ SU(2) naturally associated to
(αp, α

−1
p ), the p-th factor of L(s, E) would be

Lp(s, E) = det(1− tpp−s)−1

and the p-th factor of L
(n)
p would be

L(n)
p (s, E) = det(1− Sn(tp)p−s)−1

where Sn is the representation of SU(2) on the homogeneous polynomi-
als of degree n in (X,Y ).

Theorem (Serre, Tate). Assume L(n)(s, E) is good for all n > 0.
Then (ST) is true for E.

The proof essentially reduces to the Hadamard-de la Vallée Poussin
argument.

The measures µX are invariant; to compute their limit it suffices,
according to Weyl, to test them against (finite linear combinations of)
characters of SU(2), which approximate continuous functions. Assume
χn (n = 0, 1, . . .) is the character of the irreducible representation of
degree n+ 1. In order to prove (ST) we must show that

(1.1) (µX , χn) −−−−−−−→
(X→+∞)

0 , n = 1, 2, . . . ;

of course, (µX , χ0) is identically 1. However, writing L(s) = L(n)(s),

χ = χn; the expression of L(n) yields:

−L
′(s)

L(s)
=

∑

p,α

χ(tαp ) log p

pαs
(Re s > 1),

where p runs over primes (∤ N), α > 1.

Under our assumptions, the left-hand side extends holomorphically
to (Re s > 1). The Wiener-Ikehara theorem then yields:

∑

p6X

χ(tp) = o(X/ logX) (X → +∞)

Since
∑

p6X

1 = X/ logX + o(X/ logX)

this implies (1.1). For more details see Serre [25, Ch. I]. (This argument
was already given, albeit heuristically, by Tate [31, § 4]. However Tate,
motivated by his conjectures on cycles, considered the tensor products,
rather than the symmetric products, of the 2-dimensional representa-
tion.)
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2nd reduction: Langlands

Our problem is now to show that, for all n, L(n) is good. The only
known way to prove “good” properties of L-functions is to associate
automorphic forms to them. For instance, in the case of our elliptic
curve over Q, Wiles and his successors have proved the following. Let

Γ0(N) =

{

(

a b
c d

)

∈ SL(2,Z) : c ≡ 0 [N ]

}

.

A cusp form of weight 2 for Γ0(N) is a holomorphic function f on the
upper half plane {z ∈ C : Im z > 0} satisfying the functional equation

f
(az + b

cz + d

)

= (cz + d)2f(z)

for

(

a b
c d

)

∈ Γ0(N), and vanishing at infinity:

f(z) =

∞
∑

1

anq
n , q = e2iπz.

Given E, there exists a cusp form f of weight 2 on Γ0(N) - which
is, morever, an eigenform of the Hecke operators - such that

L(s+
1

2
, f) = Lfull(s, E)

where L(s, f) =
∞

∑

1

ann
−s, and Lfull(s, E) is the full L-function (com-

pleted by the correct factors for p|N). (The shift of 1
2 cannot be avoided,

because of our “bad” normalization for L(s, E), necessary for a simple
description of the higher L-functions.) Then Hecke’s theory implies the
holomorphy of L(s, E) - in the whole s-plane.

In higher degrees, the classical definition of automorphic forms is
not adequate, so we use the adelic theory. Let

A = R×
∏

p

′ Qp

(restricted product) be the full ring of adèles. If G is a reductive group
over Q, G(Q) embeds into G(A) as a discrete subgroup. In particular,
take G = GL(2); R× embeds centrally into G(R). We consider the space

AG = L2(G(Q)R×
+\G(A))

where G(A) acts by right translations. We can define an automorphic
representation of G(A) as an irreducible submodule π of AG 2. Simple

2This notion is slightly incorrect, i.e., not sufficiently general. Here it is enough
for our purposes.
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facts about the topology of G(A) then imply that π decomposes as a
tensor product:

(1.2) π =
⊗

v

πv

over all primes v of Q (including ∞), πv being an irreducible represen-
tation of G(Qv) (= GL(2,R) or GL(2,Qp)).

A standard construction associates to f an automorphic repersenta-
tion π, which is then uniquely associated to E. In fact, π is a cuspidal
representation - the notion of cuspidal representations is a translation
of the notion of cusp forms in the classical language.

Replacing GL(2) by GL(n), then, we have a notion of automor-
phic or cuspidal representation of GL(n,A), again with a decomposition
(1.2).

There is a notion of ramification for these objects: given π, the
factor πp will be unramified for almost all p (= all p but a finite number),
and the adélic theory of automorphic forms associates to πp a Hecke
matrix t(πp): this is a diagonal matrix of degree n, modulo conjugation
(i.e., the action of Sn on the entries). Then one can form the (partial)
L-function:

(1.3) L(s, π) =
∏

p

det(1− t(πp)p−s)−1

(p unramified). The work of Godement-Jacquet show that L(s, π) (and
also the “completed” L-function, with suitable factors at the bad primes)
extends to the complex s-plane, with the usual properties familiar from
Hecke. (In particular L(s, π) will be holomorphic in the whole plane; a
functional equation relates L(s, π) and L(1 − s, π̃) where π̃ is the dual
representation.)

Conjecture (Langlands, 1970). For any n, there exists a cuspidal
representation Π of GL(n+ 1,A) such that

L(s,Π) = L(n)(s, E) := L(n)(s, π)

where π is the representation of GL(2,A) obtained from E.

We note that Langlands’s conjecture (even in this context) is more
general and complicated: in particular, given a cuspidal π, Π will be
“automorphic” - in a more general sense, see the previous footnote -
but not cuspidal in general. The fact that Π should be cuspidal follows
from our assumption on E (no potential good reduction).

Now the non-vanishing of L(s,Π) on (Re s = 1), for cuspidal Π,
has been proved by Jacquet-Shalika [16]. By the Theorem of Serre and
Tate, then, we see that

Langlands’s Conjecture imples Thm. A.



THE SATO-TATE CONJECTURE 9

3rd reduction: Brauer-Taylor

Note that if we could prove Langlands’ conjecture we would show
that the higher L-functions are better than “good” in our narrow sense,
since we would know their behaviour in the whole s-plane. In the case
of L(s, E), let us show how we could obtain the “good” behaviour by
proving only a result much weaker than the existence of f . This idea
has been introduced by Richard Taylor, who uses it very efficiently in
[32, 33]. See also, his lecture in Beijing [34].

We must recall that L(s, E) can be defined by a representation of
GQ = Gal(Q̄/Q). We fix ℓ, and consider

H1 = H1
ét(E ×Q Q̄,Qℓ).

This is, of course, the “dual Tate module” of the curve E; however
we will have to consider similar representations in degrees higher than 1,
so it is better to think already in terms of étale cohomology. The Galois
group GQ acts on this space, and we can define, for p ∤ N , the action of
the geometric Frobenius Frobp; we then form

L(s, r1) =
∏

p∤N

det(1− Frobpp
−s|H1);

with our analytic normalization we then have

L(s, r1) = L(s− 1

2
, E).

Now for F/Q finite, we have natural operations on Galois repre-
sentations. We identify GF = Gal(Q̄/F ) with a subgroup of GQ. Then:

(i) Given a representation rQ of GQ, we can define rF = resFQ rQ,
its restriction to GF .

(ii) Given rF , we can form the induced representation

rQ = indQ
F rF = ind

GQ

GF
rF .

Our representations are finite-dimensional and continuous, on ℓ-adic
vector spaces. Assume moreover that we can associate L-functions to
them, satisfying for a finite extension F/Q:

(iii) LF (s, rF ) = LQ(s, indQ
F rF ).

(So these L-functions are “inductive”.) This is true for the L-
functions we consider, either on removing a sufficiently large number
of bad primes, or after defining the good Euler factors at all primes,
which is possible for the automorphic L-functions, and for those associ-
ated to Galois representations in the cohomology of algebraic varieties.

Now assume F/Q is a Galois extension, so we have an exact sequence

1→ GF → GQ → GF/Q → 1
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with GF/Q = Gal(F/Q). By Brauer’s theorem, we have in the Grothen-
dieck group of finite-dimensional representations of GF/Q:

1GF/Q
=

∑

i

ni ind
GF/Q

GF /Fi
χi

where 1 denotes the trivial representation, Fi ⊂ F is a subfield such that
Gal(F/Fi) is nilpotent, χi is an Abelian character of this group, and the
ni are relative integers. Now the maps GQ → GF/Q, GFi → GF/Fi

allow
us to view characters of the finite quotients as characters of the full
Galois groups. Using obvious equalities, and (i-iii) we find, for our 2-
dimensional representation r = r1 of GQ – or any representation having
the properties recalled after (iii):

LQ(s, r) = LQ(s, r ⊗ 1GF/Q
)

=
∏

i

LQ(s, r ⊗ ind
GQ

GFi
χi)

ni .

Now

r ⊗ ind
GQ

GFi
χi = ind

GQ

GFi
(r|GFi ⊗ χi)

just as in the case of representations of finite groups, so:

(1.4) LQ(s, r) =
∏

i

LFi(r|GFi
⊗ χi)ni .

Now assume we know that r|GF
is not only good but automorphic

- i.e., associated (with F now playing the rôle of Q) to an automorphic
representation πF of GL(2,AF ).

We have the following diagram of extensions:

F
�

Fi

∣

∣

∣

Q

with F/Fi nilpotent (Fi/Q is not necessarily Galois). The Galois group
Gi = Gal(F/Fi) acts on Fi; since rFi = r|GFi

comes, by restriction, from
GF , it is isomorphic to all its conjugates by Gi. By well-known facts
(“strong multiplicity one”), the same is true of πF :

(1.5) πF ∼= πF ◦ σ (σ ∈ Gal(F/Fi)).

We are now in a situation where we can use Langlands’ theory of
automorphic base change. This implies that - assuming (1.5) - there
exists an automorphic representation πFi of GL(2,AFi) such that rFi is
associated to πFi .

This means that

(1.6) L(s, πFi) = LFi(s−
1

2
, rFi)
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where the left-hand term is defined by (1.3) - for n = 2, but with a
natural analogue when Q is replaced by Fi; and the right-hand term is
defined naturally by the (restricted) Galois representation. It suffices
for us to have such an identity at the good primes.

Now Galois representations, as well as automorphic representations,
can be twisted by characters of finite order of the Galois group (≡ of
the idèle class group by class field theory) and (1.6) implies:

L(s, πFi ⊗ χi) = LFi(s−
1

2
, rFi ⊗ χi).

Under our assumptions on E and r, πFi is actually a cuspidal rep-
resentation of GL(2,AFi). Thus also πFi ⊗ χi. The L-function on the
left, therefore, is “good”, in particular holomorphic and non-vanishing
on (Re s = 1). Since this property is conserved by products and quo-
tients, (1.4) shows the same for LQ(s, r).

Of course, giving this argument for the standard L-function L(s, E)
of E is absurd: while we know that this L-function “is automorphic”
we do not know it in general when Q is replaced by F and E by E×QF
(recall that non-soluble base change is not available!). However we see
that we could prove L(s, E) good by showing only that E×QF is asso-
ciated to a cuspidal representation for a suitable Galois extension
F . Following Taylor we say that E (or r) is potentially automorphic
if this is the case.

Before we proceed we insert a remark concerning the argument of
descent yielding πFi from πF (verifying (1.5)). The group Gal(F/Fi)
is nilpotent (in fact, “p-elementary”, cf Serre [24]). If it is cyclic of
prime order the descent argument is just Langlands’. Otherwise we
take a tower of extensions, cyclic of prime order, between Fi and F and
descend from step to step. Assume for instance there are two steps:

F
|
F ′

|
Fi

Using (1.5) we descend πF to πF ′ . If Gal(F ′/Fi) =< τ > (with τ ℓ =
1 for some prime ℓ) then it follows a priori from the first descent that
(πF ′)τ is πF up to an Abelian twist. To proceed we need πF ′ ∼= πτF
exactly, which need not be the case 3. It is a crucial remark of Harris
that in our situation we can choose πF ′ associated to r|GF ′ and therefore
isomorphic to its τ -conjugate.

Since base change (Abelian or solvable – taking the previous remark
into account) is available for GL(n) by the work of Arthur and this

3This is a notorious mistake in [1, § 3.6].
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author [1], the foregoing arguments extend to representations of higher
degree.

There is another trick in the same vein. Translating Langlands’s
conjecture in obvious terminology, we want to prove that “Snr is au-
tomorphic”. Write Rn+1 for Snr (we index by the degree). By the
Clebsch-Gordan formula,

(1.7) Rn ⊗R2 = Rn+1 ⊕Rn−1.

(To be correct, this is true for the “normalized” representations
occurring in Langlands’s conjecture, artificially “placed in weight 0”.
Otherwise (1.7) includes Tate twists. . . .) Now – and this is correct for
the Langlands-normalized L-functions –

L(s,Rn+1) =
L(s,Rn ⊗R2)

L(s,Rn−1)
.

If we know that Rn and R2 are automorphic, we know that the
Rankin L-function L(s,Rn ⊗ R2) is good (this is due to Shahidi [27]).
Therefore if L(s,Rn−1) is good so is L(s,Rn+1).

To show that all the L(s,Rn) are good, we see by induction that it
suffices to show that L(s,Rn) for n even is automorphic. Further, by
the previous argument, “potentially automorphic” is enough. Finally,
we see that ST (E) is implied by the following

Theorem B. Let r be the 2-dimensional Galois representation as-
sociated to H1(E).

For all odd n, there exists a totally real Galois extension F of Q
such that

resFQ(Snr)

is automorphic, in fact, associated to a cuspidal representation Π of
GL(n+ 1,AF ).

Note that we have not adopted Langlands’ normalization here: π
is in “weight 1” and Snr in “weight n”. The cuspidal representation,
then, will not be unitary. A twist by |det |n2 , where | | is the idèle norm,
reduces us to our previous notion of cuspidal representation.

2. Galois representations from cuspidal representations

The arguments in the 3rd reduction of § 1 were motivated by the
Galois representation associated to r. In fact, in order to prove the
existence of the representation Π in Thm. B, we will resort to the as-
sociated Galois representation, and an extension of Wiles’ deformation
theory. For this we need a large supply of Galois representations asso-
ciated to cuspidal representations.

Denote by F a totally real number field or a CM-field (a quadratic,
totally imaginary extension of a totally real number field F+). The
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reader who prefers so may, again, consider only the case of F = Q; this
will not suffice, however, for the proof of Thm. B.

Consider a cuspidal (unitary) representation Π of GL(n,AF ).To Π
we wish to associate Galois representations of GF ; as in § 1 they will in
fact be ℓ-adic representations. Denote by c complex conjugation (so c

is trivial if F is real). Then Πc is defined; we write Π̃ for the dual of Π.
We will need to make stringent assumptions on Π:

(a) Π∞ is cohomological.

If for instance, F = Q, so Π =
⊗

v=p,∞

Πv, let H be the Hilbert space

of Π∞. Then (a) means that

H•(GL(n,R),Π∞) 6= 0

for a suitable cohomology theory (cf. [2]). More generally, we may
assume

H•(GL(n,R),Π∞ ⊗ V ) 6= 0,

V being an algebraic, finite-dimensional complex representation of
GL(n). A similar definition applies to any F , by considering all Archi-
medean primes.

(b) Π ∼= Π̃c.

Note that if F is real this means simply that Π is self-dual (Π ∼= Π̃).

(c) For some finite prime v of F , Πv belongs to the discrete series.

For this notion see, e.g., [4].

We now have the following theorem. If ℓ is prime, a λ-adic repre-
sentation of GF is a representation on a vector space over Lλ, a finite
extension of Qℓ. In the statement v denotes a finite prime of F , and qv
the cardinality of the residue field.

Theorem (Kottwitz, Clozel, Harris, Taylor, Yoshida). Assume Π
is a cuspidal representation of GL(n,AF ) verifying (a, b, c).

For any ℓ, there exists a λ-adic representation Rλ(π) of GF , of
degree n, such that

(i) If Π is unramified at v and v ∤ ℓ, Rλ|Gv is unramified and

Rλ(Frobv) and t(Πv)q
n−1

2
v have the same characteristic polyno-

mial.
(ii) For any v ∤ ℓ, Πv |det | 1−n

2 and Rλ|Gv are associated by the
Langlands local conjecture.

A few comments:

• t(Πv) is the Hecke matrix of Π at an unramified prime v (for Π), which
already occurred in (1.3) – for F = Q.
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• For a finite prime, Gv ⊂ GF is a decomposition group, isomorphic to
Gal(F̄v/Fv).

• Note that (i) determines Rλ(Frobv) only up to semi-simplification.

• For the p-adic field Fv, the local conjecture (proved by Harris and
Taylor) associates representations of degree n of Gv and irreducible
representations of GL(n, Fv). The Galois representations must be taken
up to Frobenius semi-simplification: see [30], and the Introduction
to [13].

The local correspondence is then bijective.

• In many cases the family (Lλ) of ℓ-adic fields is given by the com-
pletions (at all finite primes) of a field of coefficients L associated to
Π. It is not clear to me that this is always true – cf. the proof of [13,
Thm. VII.1.9].

• There is a further property of Rλ, concerning the restriction to Gv
for v|ℓ. It is potentially semi-stable (a property of the Galois repre-
sentations occurring in the cohomology of algebraic varieties). If Πv is
unramified it is crystalline. In both cases it has Hodge-Tate numbers
hi,d−i(d = n− 1). When Π∞ is cohomological with trivial coefficients,

(2.1) h0,n−1 = h1,n−2 = · · · = hn−1,0 = 1 .

Only this case occurs in the proof of ST .

• Unlike (a,b), condition (c) is not a priori necessary: it is not needed in
the case of GL(2) or GL(3). Further work on the Arthur trace formula
is expected to remove it.

In order to justify the assumptions, we sketch the basic construction.
If F is totally real, denote it by F+ and choose a CM-extension F of it.
Consider the diagram of groups

(2.2)

GL(n, F )= GL(n, F )

| |

U(n, F+) GL(n, F+) .

Here U(n, F+) is a unitary group of rank n over F+. The vertical
lines associate a group over F+ and the group obtained by extension of
scalars to F (say, G and GF = G×F+

F ).
As already seen in § 1, there is a theory of base change associating

cuspidal representations π+ of GL(n,AF+
) and cuspidal representations

4 π of GL(n,AF ) stable the action of c. Since the rational F -structure
on U(n, F+) is twisted (from the F -structure of GL(n)) by the outer
automorphism of GL(n), we have likewise a base change relation:

4cuspidal in most cases, see [1]
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{

τ = automorphic representation

of U(n,AF+
)

}

←→
{

π = cuspidal (?) representation

of GL(n,AF ), π ∼= π̃c

}

.

If π+ was self-dual, π will be self-conjugate and self dual, so π ∼= π̃c.
Thus, either in the real and or in the complex case, we can hope by
descent in the left-hand side of (2.2) to associate to our given π (or π+)
a representation of the unitary group.

The point is that, unlike GL(n) for n > 2, unitary groups define
arithmetic quotients of the associated (Hermitian) symmetric spaces
which are algebraic varieties. The sought representations are then ob-
tained in the (étale) ℓ-adic cohomology of these varieties. Condition (a)
ensures that τ will indeed be detected by the cohomology of the quo-
tient variety, as in [2]; (b) was needed for descent; and (c) allows us to
work with specific unitary groups for which all this can be proved. See
[5, 13].

3. Conditional modularity

We fix a CM-field F (maximal totally real subfield F+, complex
conjugation c) and an n-dimensional representation R of GF over an
ℓ-adic field Lλ. We seek a cuspidal representation Π of GL(n,AF ) such
that R = Rλ(Π) as in § 2.

Conditions on R:

(a) R is crystalline at ℓ.

This means that, for all primes v of F dividing ℓ, R|Gv is crystalline.
(For a survey of the properties of ℓ-adic representations of ℓ-adic Galois
groups see Illusie [15].) In particular it has a Hodge-Tate decomposition.
Write

hi = dimL((Cℓ ⊗L R)(i))Gp , L = Lλ,

where i is the twist by the i-th power of the cyclotomic character. We
assume moreover

(a1) h0 = h1 = · · · = hn−1 = 1

which translates (2.1). (This suffices for ST. In general it suffices to
assume that for all v, “the Hodge-Tate structure is regular”, i.e., hi 6 1
for all i.)

(b) R is conjugate self-dual.
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This means that Rc ∼= R̃ ε1−n where ε is the cyclotomic character
GF → Z×

ℓ . (This twist is imposed by the usual translation between Π
and R, which has already occurred repeatedly.)

(c) R is Steinberg at v for some (finite) v.

This is a condition of indecomposability on Rv = R|Gv . By the local
Langlands correspondence, it means that Rv is associated to a discrete
series representation of GL(n, Fv). (The correct term is “generalized
Steinberg”, which includes supercuspidal representations.)

Note that these 3 conditions mirror those in § 2, except that (a) is
not always true for (the Galois representations coming from) cuspidal
representations: it is an assumption of good reduction.

We can choose a lattice in the space Lnλ of R, fixed by R, and this
defines a modular representation:

R̄ : GF → GL(n,Oλ)→ GL(n, kλ)

where Oλ, kλ are the integers and the residue field.
Up to semisimplification, R̄ does not depend on the lattice. Assume

in fact:

(d) R̄ is absolutely irreducible and big.

We will explain this notion presently. We will also need the condition
(“f” for “finite”):

(f) R̄ is unramified except at a finite number of primes.

The notion of big.

In Wiles’s proof had already appeared the condition (on a modular
Galois representation) of having sufficiently large image that, by Ce-
botarev density, the images of suitable Frobenius elements are needed
matrices in GL(2, k). See the proof of Thm. 2.49 in [6].

Assume R̄ is an absolutely irreducible representation of GF , of de-
gree n, over a finite field k. Let H ⊂ GL(n, k) be its image. For h ∈ H,
α ∈ k, let Vh,α be the corresponding generalized eigenspace. Then we
have unique, h-equivariant projections π : kn → Vh,α and injections
ι : Vh,α → kn. Write gℓ(n)0 for the matrices of zero trace in Mn(k).

We say R̄ is big if

(i) H1(H, gℓ(n)0) = {0}
(ii) For any irreducible k[H]-submoduleW in gℓ(n) we can find h ∈

H, α ∈ k such that Vh,α is one-dimensional, and π◦W ◦ι 6= {0}.
This definition makes the proofs work but is obviously unilluminat-

ing. To motivate it return to our elliptic curve E (without complex
multiplication). We have the associated representations:

rℓ : GQ → GL(2,Zℓ), r̄ℓ : GQ → GL(2,Fℓ).
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Serre has shown [26] that rℓ is surjective for almost all ℓ. For given
n, this easily implies [HSBT, Lemma 3.2] that Symnr̄ℓ has big image
for ℓ≫ 0; in fact, the image of SL(2,Fℓ) is already big. In fact, I expect
the following:

(2.3.1) Assume G is a semi-simple Chevalley group over Z, and R :
G → GL(n,Z) is irreducible (over Q or C). Then, for almost all ℓ,
R(G(Fℓ) ⊂ GL(n,Fℓ) is big.

This expresses the essence of the notion in applications; but compare
with Step A in the proof of Thm. D (§ 4). The proof is an exercise for
the reader.

I can now state, in a form sufficient for our purposes, the main result
of [CHT]. This is conditional, in general, on a conjecture relative to
automorphic forms on unitary groups, and which will be stated in § 7.
It plays the rôle, in this context, of a famous lemma of Ihara brilliantly
used by Ribet [23], Wiles and others. I call it Conjecture (I).

Start with a cuspidal representation Π0 of GL(n,AF ) verifying (a-
c) of § 2. Let Rλ be the associated Galois representation and R̄ its
reduction, on k = kλ. We assume ℓ > n, and ℓ unramified in F .

Let K/F be the finite Galois extension of F associated to the sub-
group ker(ad R̄) of GF , where ad R̄ is the adjoint representation. We
introduce a last, technical condition:

(e) F (ζℓ) is linearly disjoint from K over F .

Theorem C [CHT, Thm. 4.3.4].
Assume R̄ verifies (a-d) and (e).
Let R be a λ-adic representation, of reduction R̄, verifying (a-c) and

(f).
Assume conjecture (I) 5.
Then R is automorphic, i.e., there exists a cuspidal representation

Π of G(AF ), verifying (a-c) of § 2, such that R = Rλ(Π).

Remarks:

(i) The last statement is slightly incorrect, because there is an ℓ-
adic coefficient field Lλ involved (in the Theorem of § 2). We
may have to extend the field of definition of R and Rλ(Π).
(Harris and Taylor in [13] state their results over Q̄ℓ).

(ii) (a,b,c,d,f) are clearly true for R = Snr, where r is associated
to E, and ℓ is sufficiently large. The problem, of course, is the
modularity of R̄!

We will say a little more on the proof of this result in § 6.

5See § 6.
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4. A remarkable family of Calabi-Yau varieties

We parametrize the projective line P1 by homogeneous coordinates
(s : t); we will often write t = (1 : t). Consider the following subvariety
of Pn−1 × P1, defined over Q:

Y ⊂ Pn−1 × P1

(4.1) Y : s(Xn
0 +Xn

1 + · · ·+Xn
n−1) = n t X0 · · ·Xn−1

where (X0, . . . , Xn−1) are homogeneous coordinates in Pn−1. We view
Y as fibered over P1 by the second projection; thus Y defines a pencil of
hypersurfaces (Yt)t∈P1 in Pn−1. Note that for t = 0 we get the Fermat
hypersurface

(4.2) Xn
0 +Xn

1 + · · ·+Xn
n−1 = 0

already considered, after Weil, by Tate [31]; the computation of its
cohomology can be found in Deligne’s paper [8, Ch. I, § 7].

Let T0 = P1 − ({∞} ∪ µn).
Then Y → T0 is smooth, and in fact, defines a smooth projective map
Y → T0 over Z[ 1

n ].
The group H = (µn)

n acts on Y by

Xi 7→ ζi Xi

t 7→ ζ0 · · · ζn−1t

for ζ = (ζ0, . . . ζn−1) ∈ H. Thus H0 = {ζ : Πζi = 1} acts on Yt (t ∈ P1),
with the diagonal subgroup {(ζ, . . . ζ) : ζ ∈ µn} acting trivially.

The smooth fibration Y → T0 yields a locally constant sheaf VZ (in
the complex topology):

(VZ)t = Hn−2(Yt,Z)H0 , t ∈ T0(C).

This has, of course, variants in (algebraic) de Rham cohomology and
in étale cohomology, over Zℓ or Qℓ; in particular, if π : Y → P1 is the
projection,

(Rn−2Π∗(Zℓ))
H0 = VZℓ

is a lisse étale sheaf on T0/Q.

Fact. VZ is (locally constant) free of rank (n− 1) on T0(C).

Since we know that VZ is locally constant, it suffices to compute at
(t = 0). This is done in [8, I, 7.4].

(The computation there is, ostensibly, done neglecting torsion; but
it is known that cohomology of complete intersections such as (4.1) has
no torsion [7].)

Of course, the same is true for VZℓ
, VQℓ

. Finally note that if t ∈
T (C), the monodromy group π1(T0(C), t) acts on (VZ)t.

We now change notations, replacing n by (n + 1) in the defining
equations. Moreover, we now assume n even. Thus:
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V is locally constant, free of even rank n.
Moreover (VZ)t is identified with (Hn−1(Yt,Z))H0 ; since it is the

cohomology in the odd median degree of the smooth variety Yt(C),
Hn−1(Yt,Z) carries a symplectic pairing; because the characters of H0

occurring in Hn−1(Yt,C) do so with multiplicity 1 [8, I.7.4], this re-
stricts to a non-degenerate pairing on (VZ)t – again, we may compute
at (t = 0). Finally, this pairing is invariant by π1(T (C), t) – par trans-
port de structure.

The first main result in [HSBT] shows that the image of π1(T (C), t)
in Sp(Vt) has maximal size:

Theorem ([HSBT, Cor. 1.10]). For t ∈ T0(C), the image of
π1(T0(C), t) in Sp(Vt ⊗ C is Zariski-dense.

We now combine this with a very useful theorem of Matthews, Vaser-
stein and Weisfeiler. Assume G is a semi-simple group over Q: thus
G is in fact, defined over Z[ 1

N ] for suitable N , and G(Fp) is defined
for sufficiently large p. If Γ ⊂ G(Q) is a finitely generated subgroup,
Γ ⊂ G(Z(p)) for p large, so the image of Γ in G(Fp) is defined.

Theorem ([20]). Assume Γ ⊂ G(Q) is finitely generated and Zari-
ski-dense in G(C). Then, for p sufficiently large, Γ→ G(Fp) is surjec-
tive.

As the authors point out the proof of this theorem in [20] relies on
the classification of finite simple groups.

Another proof is given by Nori in [22, Thm. 5.1]; it would not
depend on the classification, but Nori does not give the details. Yet
another proof has been given by Hrushovski and Pillay using definability
theory [14, Prop. 7.3]. The reader can choose the proof suiting his
philosophical preferences.

At any rate, we get from the two theorems:

Corollary. There exists a constant C(n) such that, if ℓ1 6= ℓ2 are
two primes and ℓ1, ℓ2 > C(n),

π1(t, T0(C))→ Sp(Vt(Z)⊗ Z/ℓ1ℓ2Z)

is surjective.

Now let Wℓ1ℓ2 denote a fixed Z/ℓ1ℓ2Z-module, free of rank n, and
endowed with a symplectic pairing. Denote by TWℓ1ℓ2

the étale covering

of T0 (over C) defined by

TWℓ1ℓ2
(t) = Isom(Wℓ1ℓ2 , Vℓ1ℓ2(t))

where Vℓ1ℓ2(t) = Vt(Z)⊗Z/ℓ1ℓ2Z and the isomorphisms are symplectic.
This is a principal bundle over T0(C) with fiber Sp(n,Z/ℓ1ℓ2Z); from
the previous Corollary we get:
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Corollary. TWℓ1ℓ2
is a connected quasi-projective variety (over

C).

We can endow this variety with a Q-structure, or more generally
with an F -structure, if F is a number field. For this fix:

• F = a number field, GF = Gal(F/F );

• W = a free Z/(ℓ1ℓ2)-module of rank n, with a representation of
GF and an alternating pairing

W ×W → (Z/ℓ1ℓ2Z)(1− n),

thus:

(4.3) (σw, σw′) = ε(σ)1−n(w,w′)

where ε : GF → (Z/ℓ1ℓ2Z)× is the cyclotomic character. Define

TW → T0 /Q̄

by (TW )t = Isom(W,Vℓ1ℓ2(t)).
Then TW is a finite étale covering of T0 (over /Q̄); over C it is TWℓ1ℓ2

;
moreover TW is defined over F .

In particular TW is geometrically connected. Note that an F -point
of TW is given by t ∈ T0(F ) and by an isomorphism of GF -modules
between W and Hn−1(Yt,Z/ℓ1ℓ2Z)H0 .

We can view W as the data of two modular representations r̄ℓ1 , r̄ℓ2 ,
which are moreover symplectic, with the natural multiplier given by
(4.3). A point in TW (F ), then, yields Yt such that the natural repre-
sentation on Hn−1(Yt)

H0 , reduced mod ℓ1 and ℓ2 is isomorphic with r̄ℓ1
and r̄ℓ2 . However, this cohomology space yields a strongly compatible
system of Galois representations (for varying ℓ). Thus, if v is a place of
F where Yt has good reduction, and dividing neither ℓ1 nor ℓ2, we have

(4.4) trace(Frobv | Hn−1(Yt,Qℓ1)
H0)

= trace(Frobv | Hn−1(Yt,Qℓ2)
H0).

In fact, we have the stronger property that the characteristic poly-
nomials of Frobv in the two representations are equal.

We include in this section a last ingredient which will be crucial in
the next paragraph.

A theorem of Moret-Bailly

Assume
• F = a number field

• S = a finite set of primes (Archimedean or not) of F

• T = a smooth, geometrically connected quasi-projective variety
over F .
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For v ∈ S, let Ωv ⊂ T (Fv) be a non-empty open subset (for the
topology given by the local field).

Theorem ([21]). There existe a finite Galois extension K/F such
that:

(i) v ∈ S ⇒ v splits in K.
(ii) There exists a point P ∈ T (K) such that, for v ∈ S and w (a

place of K) dividing v:

Pw ∈ Ωv ⊂ T (Fv) = T (Kw).

Note that because v splits, Fv is naturally isomorphic withKw. Also
remark that if F is totally real, we also obtain K totally real.

5. Potential modularity

In this paragraph we will sketch the proof, in [HSBT] of a result of
potential modularity in the sense of § 1. This applies to a symplectic
representation of GQ (with Qℓ-coefficients). The result does not sup-
pose residual modularity (modularity of the associated representation
mod ℓ). On the other hand, it is conditional on Conjecture (I) (§ 7).

We have stated the result, consistent with our general policy, with
Q as the ground field. However, as we will see later, this is not sufficient
for the proof of Theorem B (§ 1), so of Sato-Tate. A similar result holds
when Q is replaced by a totally real field [HSBT, Theorem 3.1].

Assume ℓ is a prime such that

• ℓ > C(n) , ℓ ≡ 1 [n+ 1].

Given:

• r : GQ → GSp(n,Zℓ).

We make the following assumptions. As in § 2 Gp ⊂ GQ denotes a
decomposition group, Gp ∼= Gal(Q̄p/Qp). We denote by Iℓ the inertia
subgroup of Gℓ, and by εℓ the cyclotomic character on Gℓ.

• Assumptions on r.

(a) r is crystalline at ℓ, with Hodge-Tate weights (0, 1, . . . , n−1). More-
over

r̄|Iℓ ∼= 1⊕ ε̄−1
ℓ ⊕ · · · ⊕ ε̄1−nℓ .

(b) r has multiplier ε1−n.

(c) At a prime q 6= ℓ, q ∤ n+ 1 such that 1, q, . . . , qn−1 are distinct mod
ℓ, the semisimplification of r|Gq is unramified, r̄|Gq is unramified, and

r(Frobq) has eigenvalues (1, q, . . . , qn−1).

(d) r̄ is irreducible and big.

(e) Q(ζℓ) is not contained in K, where K/Q is associated to ker(ad r̄).
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(f) r ramifies at only finitely many primes.

Note that these are the assumptions which occurred in § 3; in par-
ticular (c) is an explicit form of “Steinberg at v” there. Note however
than (a) is stronger than (a) of § 3, where we just assumed r crystalline.
We now have:

Theorem D [HSBT, Thm. 3.1]. Assume Conjecture (I).
Then, if r verifies (a−f), there exists a Galois, totally real extension

F/Q such that r̄F has the same image as r̄ and rF is modular.

This is a difficult theorem, so we can only give a hint of the proof.
We do it is steps.

Step A. Choose a large (“absurdly large”) prime ℓ′ and construct r′ =
rℓ′ : GQ → GL(n,L), where L is an ℓ′-adic field with residue field
kL = Fℓ′ . The representation r′ must have the following properties:

• r′ is automorphic, essentially self-dual;

• r̄′ : GQ → GSp(n,Fℓ′) (and moreover the multiplier is ε1−nℓ′ ).

• r̄′ is large and verifies the conditions for conditional modularity
(Theorem C).

The representation r′ is constructed by induction:

r′ = ind
GQ

GM
(χ)

where M/Q is a CM-field (note that the degree is even!) and χ is
a suitable algebraic Grössencharakter of M , identified with its ℓ-adic
representation of GM . The field M is in fact, an Abelian extension
of Q. Then r′ is automorphic, by the base change results [1] already
mentioned at the end of § 1. However the difficulty is to ensure that r̄′

is (essentially) symplectic and verifies the other conditions in § 3. The
existence of χ is proved in [CHT, § 4.3].

Note that, by the usual properties of induction-restriction, r′|GF

is still automorphic for any extension F of Q – automorphic in our
usual sense, “associated to a cuspidal representation of GL(n,AF )” if
the restriction to GF remains irreducible.

Step B. Representations r and r′ define (irreducible) reductions r̄, r̄′.
This defines a symplectic Galois module Wℓℓ′ = W , so a variety TW
over Q (§ 4).

Step C. We now define a suitable set of local conditions, in order to
apply Moret-Bailly’s theorem. These pertain to a finite set S of rational
primes. For q = ℓ, ℓ′ let Vt,q denote Vt⊗Qq (t ∈ T0) seen as a local Galois
representation. For p ∈ S, the local conditions should specify an open
subset Ωp in Tw(Qp) such that, for x ∈ Ωp, the associated representation
of Gp = Gal(Q̄p/Qp) on Vt,q has certain properties (q may be equal to
p); here t ∈ T0(Qp) is the image of x. For instance:
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• For p = ℓ the condition insures that rt,ℓ is crystalline (with the correct
Hodge-Tate weights).

• Similar conditions in ℓ′.

• For some q 6= ℓ, ℓ′ the condition ensures that rt,ℓ and rt,ℓ′ are “Stein-
berg” ar q.

• At infinity simply take Ω∞ = TW (R); this is not empty because com-
plex conjugation acts on Vt ⊗Qq, for t ∈ T0(R), as the only element of
GSp(Qℓ) (up to conjugation) of order 2 and multiplier (−1).

We return to the first condition, the discussion for ℓ′ being similar.
Note that x ∈ TW (Qℓ), so it does not suffice to exhibit t ∈ T0(Qℓ). We
would want t ∈ T0(Qℓ) such that the associated representation of Gℓ on
Vt,ℓ verifies (a). This cannot be ensured on Qℓ, but it can be realized
on an unramified extension by Lemmas 1.13 and 1.14 of [HSBT]. The
set of points so obtained is then open.

(The fact that we may have to consider (unramified) extensions of
Qℓ forces us, in fact, to use a strengthening of Moret-Bailly’s theorem:
for the statement see [HSBT, Prop. 2.1]. We neglect this in the rest of
the sketch, and other technical details as well.)

Step D. By Moret-Bailly’s theorem, we can find a finite Galois exten-
sion F/Q, and x ∈ TW (F ) verifying our local conditions. In fact, F is
totally real (since the prime∞ splits in F ). Further (again, see [HSBT,
Prop. 2.1]) we can take F linearly disjoint from ker r̄ℓ and ker r̄ℓ′ . Now,
the representations in the following being restricted to GF , we see that
for t equal to the projection of x:

• r̄t,ℓ′ is modular (and verifies the conditions of Theorem C)⇒ rt,ℓ′
is modular.

Now recall that rt,ℓ and rt,ℓ′ are two specializations of a compatible
system of Galois representations. Therefore:

• rt,ℓ′ modular ⇒ rt,ℓ modular which implies, by definition, that r̄t,ℓ is
modular. But by the definition ot TW , r̄t,ℓ is r̄ℓ. Since r̄ℓ verifies the
assumptions of Theorem C, we have now:

• r̄ℓ modular ⇒ rℓ modular
which concludes the proof.

Besides the technical details omitted above, we have glossed over
two points. First, Theorem C (§ 3) was formulated for Galois repre-
sentations of GF where F is a CM-field, while we are working with
symplectic representations of GQ. We can choose a quadratic imagi-
nary field E; the arguments leading to step D gives us, by restriction,
a representation of GEF which will (trivially for a suitable choice of E)
verify all conditions of Theorem C. We then associate to rℓ|EF a cusp-
idal representation of GL(n,AEF ). This representation is invariant by
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Gal(EF/Q) so descends to a cuspidal representation of GL(n,AF ) by
[1]. In fact, it descends to two representations π and π ⊗ ε where ε is
the quadratic character of A×

F defined by EF/Q. But since we know the
existence of a representation of GF associated (for example) to π, an
argument of descent already seen in § 1 (“Brauer-Taylor”) shows that r
is associated to π or π ⊗ ε. (See [CHT, Lemma 4.3.2].)

The next point is more serious. For Theorem C we had to assume ℓ
unramified in the CM-field, here EF . We can choose E unramified at ℓ;
but the foregoing proof must also produce an unramified F . However, as
we have seen, this is implied by the local condition (a), already forced on
us by the previous argument. (The splitting property in Moret-Bailly’s
theorem implies that it is true in F .)

Of course, we would now want to apply Theorem D to the Zℓ-
representation r = Symn−1rE where rE is the 2-dimensional represen-
tation afforded by H1 of our elliptic curve. We inspect the conditions
imposed on r. Conditions (b,d,e,f) are easily checked if r is sufficiently
large. So is crystallinity in (a); the first part of (c) will be true for q
equal to the prime of bad reduction of E, perhaps after replacing Q by
a quadratic (totally real) extension. In particular, we already see that
we must apply Theorem D, not to Q in general, but to a totally real
field. This is, of course, the stronger statement contained in [HSBT].

Even then, however, there is no reason why the second part of (a):

(a′) r̄|Iℓ = 1⊕ ε̄−1
ℓ ⊕ · · · ⊕ ε̄1−nℓ

as well as:

(c′) r̄|Gqunramified

in (c), should be verified for some ℓ.
However, we can first choose a totally real field F , and an elliptic

curve E′ over F , such that Sn−1(rE′) verifies all the conditions imposed
on r (. . . for the extension to F of Theorem D). These conditions can
in fact, be verified directly on the 2-dimensional representation rE′ ; the
verification then relies on a version of Hilbert’s irreducibility theorem.

Consider the modular scheme over F of elliptic curves E endowed
with an isomorphism W ∼= H1

ét(E × F̄ ,Z/ℓℓ
′ Z) where W is now the

symplectic GF -module defined byH1(E′×F̄ ,Z/ℓZ)×H1(E′×F̄ ,Z/ℓ′Z).
As in § 4 this defines a (geometrically connected) variety, in fact, a
twisted modular curve.

Imposing suitable local conditions, and arguing as in the earlier
proof, we find a totally real field F ′ and a point of our variety over F ′,
ie. a curve E′′ with

H1(E′′ × F̄ ,Z/ℓZ) ∼= r̄E,ℓ

H1(E′′ × F̄ ,Z/ℓ′Z) ∼= r̄E′,ℓ′
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the isomorphisms, of course, being under the action of GF ′ . Now by
construction, Sn−1(r(r̄E′,ℓ′) verifies all the conditions of Theorem D,
so (after a further extension F ′′) Sn−1(rE′′,ℓ′) is modular. By strict
compatibily so is Sn−1(rE′′,ℓ). But then Sn−1(r̄E,ℓ) is modular, and we
are reduced again to an application of Theorem C. Finally, as in the
earlier case, we have to check in the constructions that the final field
F ′′ is unramified at ℓ. See [HSBT, § 3].

The final outcome is that Symn−1rE becomes modular, or automor-
phic, on some Galois, totally real extension F of Q. This is still not good
enough, for the argument at the end of § 1, bases on Clebsch-Gordan, for
taking case of odd-dimensional representations, imposes the existence
of a uniform F for a finite number of odd powers Sn−1. This imposes a
further complication on the correct statement of Thm D. (See the final
version of Theorems 3.1, 3.3 in [HSBT].) This completes our sketch of
proof for Theorem B.

6. Automorphic forms on R-compact unitary groups and
“Ihara’s lemma”

6.1. In this section we want to give more details on the theory of
automorphic forms on R- anisotropic unitary groups which leads to the
deformation theory of § 3, and state the conjecture (I) on which depends
the proof of Theorem B sketched in § 6. (Recall that this dependence
is removed by Taylor’s final argument, for which see § 7.) The proofs
rely systematically on the theory of automorphic forms on adèle groups,
on Wiles’ deformation theory, and on the Harris-Taylor solution of the
local/global Langlands conjecture [13]. We will expect from the reader
some familiarity with these topics.

Recall the essential content of Theorem C. We will simply take here
a quadratic imaginary field, which we denote by F . Thus F+ = Q. We
start with a cuspidal representation Π0 of GL(n,AF ) verifying (a,b,c)
of § 2. Then there is an associated λ-adic representation R0 = R(Π0),
n-dimensional and which we assume irreducible. If k is the residue field
of Lλ, we assume in fact, R̄ irreducible (over k). If now R is another
λ-adic representation of GF , verifying suitable conditions, we want to
show that R is similarly an R(Π).

The proof uses automorphic forms on unitary groups. Thus let

• G = unitary group of rank n over Q, relative to F/Q.

So far we may assume that G is the unitary group of a Hermitian
form on Fn. Thus G(F ) ∼= GL(n, F ). We further assume:

• G(R) is compact.
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Now let K ⊂ G(Af ) = Π
p

′ G(Qp) (restricted product) be a compact-

open subgroup. Because G(R) is compact,

XK = G(Q)\G(A)/G(R)K

is a finite set. If R is any commutative ring, we can consider the finite,
free R-module

A(R) = AK(R) = C(XK , R)

of functions on XK with values in R. Our rings of interest will be
L = Qℓ, O = Zℓ, k = Fℓ (or finite extensions of such) and C. Trivially,
A(O) ⊗ k = A(k), A(O) ⊗ L = A(L). If we choose an embedding
Qℓ ⊂ C, A(Qℓ) ⊗ C is identified with the usual space of automorphic
forms, A(C).

By right convolution, the Hecke algebra

H(Z) = Hecke(G(Af ),K)

of Z-valued functions on G(Af ), bi-invariant by K, acts on A(Z). Ten-
soring with R, we get an action of H(R) on A(R). In general, H is not
commutative; however the local factors

Hp = Hecke(G(Qp),Kp)

will be commutative if Kp is a “good” maximal subgroup of G(Qp). (We
can take K = Π

p
Kp, and this will then be the case at almost all p.) At

the ramified primes, one describes an explicit, commutative subalgebra
of Hp, and H will be the ensuing “restricted” algebra.

As in the classical theory for GL(2), we now denote by T the image
of

HZℓ
→ End(AZℓ

).

It is a commutative algebra, finite and free (as a module) over Zℓ. As-
sume f ∈ A(Zℓ) is an eigenform of T . Extending scalars, we obtain a
complex eigenform fC for the Hecke algebra HC, i.e., a “classical” auto-
morphic form on G(A) invariant by G(R). (A similar construction can
be made by introducing further a finite-dimensional representation V of
G(R), but we will reglect this.)

Now fC belongs to the space of a finite sum of irreducible represen-
tations τ of G(Af ) on

L2(G(Q)G(R)\G(Af )).

If we are able to effect the base change explained in § 2, we will
be able to associate to (each) τ an automorphic representation Π of
GL(n,AE). In fact, Π is uniquely defined by the character of T associ-
ated to f , by strong multiplicity one. (We assume, which will generally
be the case, that Π is cuspidal.)

In order to start deformation theory we need a Galois representation
associated to Π. Conditions (a), (b) of § 2 will be automatically sat-
isfied; however we need the “square-integrability” condition (c). For G
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a true unitary group and Π so obtained by base change, this condition
will generally not be satisfied.

We must, then return to our choice of unitary groups. Recall that
there are “twisted” unitary groups, associated to division algebras. We
let D be a division algebra (of rank n, degree n2) over the quadratic
imaginary field F , endowed with an involution of the second kind, i.e.,
an anti-automorphism ∗ of order 2:

(d1d2)
∗ = d∗2d

∗
1

inducing on F = Cent(D) the Galois action of Gal(F/Q). We then
define G by

G(Q) = {d ∈ D | dd∗ = 1}
and assume that G(R) is compact. It is assumed that there is a rational
prime p such that F splits at p, D×(Qp ⊗ F ) ∼= G(Qp) × G(Qp) and
(for the two primes π, π′ dividing p) D(Fπ) ∼= D(Fπ)

opp is a division
algebra. The base change Π will then be an automorphic representation
of D×(AF ), which transports to GL(n,AF ) (say, into Π′) by a known
form of “Jacquet-Langlands”. Then Π′ will be a discrete series at the
two primes π, π′ and we obtain a Galois representation of GF as in § 2 6.

Taking suitably large rings of coefficients, we now have an ℓ-adic field
(L, O, k, λ = prime ideal), an n-dimensional representation R (over O
or L) and its irreducible reduction R̄. Following Wiles, the next step
is to define a universal deformation algebra R(R̄). It should have the
property that, for S a complete, local, topolgically finitely generated
O-algebra, with residue field k:

(6.1) Hom(R(R̄), S) ∼=
{

representations R′ : GF → GL(n, S)

of unitary type, such that R̄′ = R̄

}

.

(In the right-hand side we have to identify representations conjugate by
1 +Mn(λS) is the maximal ideal.)

There are difficult problems in definingR. First, the representations
of GF that will come from automorphic forms must be “of unitary type”,
i.e. satisfy condition (b) in § 3. Since (b) means “there exists an isomor-

phism between Rc and R̃ ε1−n” it does not lead to a good deformation
problem: the isomorphism must be specified on the data. This leads
to the consideration, not of representations of GF , but of morphisms of
GQ into an extension of GL(n) that incorporates the intertwining: this
is a variant of Langlands’ dual group of a unitary group.

Under a suitable parity condition on the image of the generator c
of Gal(F/Q), the deformation theory of such “representations” can be
studied as in Wiles’ paper (for the parity condition see [CHT, Lemma

6Here the reader may think that we could have chosen f so Π has this property
(such f exist). However the deformation theory, as described in [CHT] seems to
require this for all f .
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1.1.2 and Theorem 3.1.1]. As usual, one must impose suitable conditions
on R′ in (6.1), and then compute the “cotangent space” R/ < m2

R, λ >.
The essential condition that one must impose is to consider only:

• crystalline deformations (for the restriction to Gℓ).

This is described using Fontaine-Laffaille theory – which imposes
ℓ > n.

• “Steinberg” or more generally ”discrete series” deformations at some
p 6= ℓ (the ramification prime specified above).

Once these conditions are specified, it is possible as in the classical
theory to compute the cotangent space

R/ < m2
R, λ) = H1

S(GS , ad R̄).

Here S is a finite set of primes, GS ⊂ GQ is the Galois group of
the maximal extension of Q ramified only at S, and S must contain at
least ℓ and p; H1

S is a subspace of H1 specified by the family S of local
conditions. See [CHT, § 1.4].

Now remember that we have chosen an eigenform f for T , which
gives rise to a Galois representation R (over L). It may be seen, as
in the classical theory (see [6, Lemme 3.27]) that there is actually a
naturally defined representation RT over T , where T is now restricted
in the following manner: the full algebra T is endowed with

T → O

defined by f ; the prime ideal λ then defines a maximal ideal by f ; the
prime ideal λ then defines a maximal ideal m in T and we localize at
m. We denote by T this new, localized algebra. (It is a semi-local ring,
free over O.) See [CHT, § 2.4].

The local properties of RT can be checked [CHT, Prop. 2.4.2] and
by the universal property we get a uniquely defined morphism

R → T .

As “usual”, the point if to check that this is an isomorphism. Just
as in the classical situation there are now two different cases.

6.2. Recall that the constructions in § 6.1 used modular forms of
fixed level, denoted by K. (Now the “level” groups considered must
be precisely described, see [CHT, § 2.1].) The form f comes with a
natural level K = K(f). We would like to show that any (suitable)
representation R′ with R̄′ = R̄ is automorphic, associated to a form
f ′. However the ramification K ′ of f ′ is not determined by that of R̄.
Deformations in minimal level are those where K is kept fixed; but
the ramification of f ′ may be deeper.
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The minimal level case can be proved directly: one proves an
identity

(6.2) R∅ →
≈
T∅

where T∅ is our original T (no level added) and R∅ is defined by the
set S of local conditions defined by rf (in particular, no additional
ramification on the Galois side). This is difficult but, except for the
complications dues to the higher dimension, is proved as in Taylor-
Wiles – the proof incorporates the elaboration of their method dues to
Diamond and Fujiwara. A very clear description of the commutative
algebra involved has been given by Fujiwara [9].

The next step consists in passing from the minimal to the general
case, and it is this step which is conditional. We need a variant of
Ihara’s classical lemma for modular forms, see [23]. We will not give
the classical formulation of Ihara’s lemma (for GL(2)/Q) but explain its
variant for a group G = U(2)/Q (as usual, compact at the Archimedean
prime).

So far we have been using spaces AK of automorphic forms of fixed
level. Now we may vary K and pass to the limit, obtaining for any R:

A(R) = lim
→
K

AK(R).

This is the space of R-valued functions on G(Q)G(R)\G(A), in-
variant by K for some K. It carries a representation (on the right) of
G(Af ). We may also fix a prime p 6= ℓ, takeK = UKp withKp ⊂ G(Ap

f )

fixed, and vary U . Then

AKp(R) = lim
→
U

AUKp(R)

is a representation of G(Qp). We assume G(Qp) ∼= GL(2,Qp).

On AKp we have the action of Hp =
⊗

q 6=p

H(G(Qq),Kq). The factors

for ℓ /∈ S (finite) are commutative. Assume now R = k (a finite exten-

sion of Fℓ), let ψ : HS =
⊗

q /∈S

Hq → k be a character, and consider the

eigenspace

AKp(k)ψ ⊂ A(k)

for Hs. (We assume ℓ ∈ S.) We say ψ is Eisenstein if there is a one-
dimensional (≡ Abelian) subrepresentation of A(k) on which Hs acts
by ψ.

Since p 6= ℓ, there is, as in characteristic zero, a notion of generic
representation of GL(2,Qp). (These are the representations which admit
“Whittaker functionals”. For the full theory in finite characteristic see
Vignéras [36].)
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Proposition 6.1. Assume ℓ > 2. If ψ is not Eisenstein, any irre-
ducible G(Qp)-submodule of AKp(k)ψ is generic.

In this case, in fact, an irreducible representation of G(Qp) is generic
or one dimensional. (Recall that n = 2 !) However, if G(Qp) acts by a
character, SL(2,Qp) acts trivially. But

G′(Q)SL(2,Qp)SU(2)

is dense in G′(A) (by strong approximation), where G′ = SU(2)/Q is
the derived group. So a non-generic form in A(k) is invariant by SU(2),
so is (one-dimensional) character.

We can now state the form of Ihara’s lemma mentioned earlier in
the text. We assume that G is one of our particular unitary groups. In
particular Galois representations can be associated to forms on G(A).
We will say that a character ψ of HS is non-Eisenstein if it is as-
sociated to a representation Π of GL(n,AF ) such that the associated,
reduced, Galois representation R̄ is irreducible.

Conjecture I. Assume ψ : HS → k is non-Eisenstein, and π is an
irreducible representation (over k/Fℓ) of G(Qp). If π is an irreducible
submodule of

AKp(k)ψ

then π is generic.

This seems much harder to prove for higher n. Note that if k is
replaced by C, a similar statement is true (this follows from [5]). For
different formulations of the problem, see [CHT, § 2.5] as well as [34].

Assuming the Conjecture, rather delicate arguments allow one to
extend (6.2) to arbitrary level. If we now consider a representation R
as in § 3, the assumptions made on R̄ imply that R̄ will be associated
to f (for a suitable choice of G), and the assumptions on R ensure that
a form f ′ giving rise to R will occur in the support of TK for a suitable
ramification group K. This implies Theorem C. (The reason for condi-
tions a - c imposed to R should now be clear; the “bigness” condition in
(d) is imposed in order to make the computation of H1

S possible, with
the correct expression in order to compare with the automorphic side;
(e) is also needed for this, as well as (f).)

7. Taylor’s final contribution

We will now sketch, very informally, Taylor’s new idea which al-
lows him to dispense with Conjecture I of § 6. The crucial fact, here, is
that, as should be clear from § 1 and 5, we are aiming at proving po-
tential modularity rather than modularity proper. In particular, in the
arguments of § 5, a potential version of Theorem C (of § 3) will suffice.

Recall that our datum is a representation R̄ of GF – in order to
keep things simple, F is imaginary quadratic as in § 6. We assume R̄
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automorphic; we are given a lifting R of R̄ over an ℓ-adic field, and R, R̄
satisfy the usual conditions (say, those of Theorem C). We are to prove
that R is automorphic.

Let F ′
+/Q be a solvable, totally real extension, and F ′ = F ′

+F . Then
R̄′ = R̄|GF ′ is still automorphic since solvable base change is available.

(We assume R̄′ irreducible.) As the local Galois groups are solvable, we
can then impose suitable local conditions to R′ = R|GF ′ and R̄′. (This
idea is due to Skinner and Wiles [29].) We will in fact assume:

Except at some prime v0 where we retain a “Steinberg condition”,

(7.1)

R̄|GF ′,v
is semi-stable for all finite primes v of F ′ not dividing ℓ.

We now simply denote by F the new (CM) field F ′. Recall the
meaning of (7.1). If Gv = Gal(F̄v/Fv), we have the inertia subgroup Iv
given by the exact sequence

1→ Iv → Gv → Gal(k̄v/kv)→ 1 .(7.2)

‖≀
Ẑ

Moreover there is a surjective homomorphism

tℓ : Iv → Zℓ.

The assumption is that Iv acts through tℓ: there is a unipotent matrix
U ∈ GL(V ) where V is the space of R, such that for σ ∈ GL(V ) where
V is the space of R, such that for σ ∈ Iv:

R(σ) = U tℓ(σ).

We now assume that (R, R̄) satisfies this condition. Let Ram be
the set of ramified primes for R̄ (not dividing ℓ). We may also assume,
since for v ∈ Ram R̄(Gv) is finite and solvable:

(7.3) v ∈ Ram⇒ r̄(Gv) = 1.

(Taylor also assumes that the primes in Ram are above primes of
F+ split in F ; in our description it is not clear that one could assume
this, but recall that for Sato-Tate the choice of quadratic imaginary field
was arbitrary. . . .)

Now, as in § 6, we can introduce a deformation algebra R = RS(R̄)
[T, § 2]. Here as usual S denotes a set of local conditions on a lift R of
R̄. They include:
• R crystalline (at primes dividing ℓ)
• and condition on its Hodge-Tate weights (at these primes)
• R semi-stable (at v 6= v0)
• R “Steinberg” (at v0, or some larger set of primes).
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The precise conditions are complicated, see [T].
On the other hand, R̄ was supposed to be automorphic, thus as-

sociated to an automorphic form f̄ on some unitary group of the type
described in § 6 (of course, now over F+). Again, we can define a nat-
ural Hecke algebra T , in a level associated to f̄ , and localized at the
maximal ideal m defined by f̄ .

Denote by Rred the reduced algebra, R divided by its nilpotent
radical. Also recall that T is reduced. (Extension of scalars from the ℓ-
adic field L to C shows that it has no nilpotents, because this is true for
the “classical” Hecke algebras, over C.) As in § 6 we get a map R → T ,
so in fact, Rred → T .

Theorem E (Taylor). Under suitable conditions or r̄, the natural
map

Rred → T is an isomorphism.

The inverted commas are here, not because the theorem is doubtful,
but because the statement we give is obviously vague. It was impossible
to state fully here the precise conditions imposed by Taylor. The point,
of course, is that they can be imposed for the representations involved
in the proof of “Sato-Tate”.

Finally, the proof of Theorem E proceeds by comparing the defor-
mation problem R and another deformation problem (or deformation
algebra) R′ where the local conditions, at the primes v ∈ Ram, are de-
fined as follows. Fix such a prime v. Recall that R̄(Gv) = {1}, while Gv
acts through tℓ; in particular, for σ ∈ Iv, the characteristic polynomial
of R(σ) (for a lifting R associated to R) is

(7.3) (X − 1)n.

Let us fix, on the other hand, n distinct characters

χi : Iv → 1 + λO ⊂ O×

where (O, λ) is a finite extension of Zℓ with χi of order ℓ (so ℓ > n · · · )
and consider representations at v for which the characteristic polynomial
of R(σ) is

(7.4) Π
i
(X − χi(σ)).

Note that over k/Fℓ the two deformation problems coincide. The
new problem R′ yields a sort of desingularization of R, which implies
Theorem E by a variant of the Taylor-Wiles method. Keeping track of
the relation between R and R′ involves a relative deformation theory,
which relies onthe schemes describing the representations of the local
Galois groups verifying (7.3) and (7.4) respectively. These are schemes
of matrices over the ring of integers O of the ℓ-adic field of coefficients,
and a rather precise study of them is done in [T, § 1]. Although Taylor
does not use his results, this use of the local deformation spaces is due
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to Kisin [18]. We refer the reader to Harris’s notes [11] for a fuller
description of Taylor’s argument.
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