THE DISTRIBUTION OF GENERATIONS
AND OTHER ASPECTS OF THE
FAMILY STRUCTURE OF BRANCHING
PROCESSES

WOLFGANG J. BUHLER
UNIVERSITY OF HEIDELBERG

1. Introduction

Throughout this paper branching processes will be viewed as models for the
development of biological populations. Unless stated otherwise, it will be
assumed that the population starts at time ¢ = 0 with one individual in genera-
tion 0 and of age 0. Each member of the population will live for a random life
time. Then he will be replaced by a random number of new individuals, his sons.
These will be in generation k + 1 if their father was a member of the kth
generation. Also we shall allow for an individual to ‘“‘survive,” that is, he may
have himself as one offspring in generation k and start a new life. In the branching
process model, it is further assumed that the lifetimes of all individuals have a
common probability distribution with distribution function G, that the prob-
ability B for survival is the same for all individuals, that all individuals have
the same distribution of the number of offspring given by a probability gen-
erating function A, and further, that all the random variables introduced so far
are independent.

We shall follow the notations of Harris [10] who has studied many aspects
of this model. Until recently the emphasis has been on studying the total
population size; the possibility of an individual giving birth to offspring more
than once has not usually been considered. The only exception seems to be the
papers by Crump and Mode [5], [6], who consider a case somewhat more
general than ours.

The questions with which this paper is concerned are about the distribution
of generations in a population at a given time, the time pattern according to which
generations appear and disappear, the degree of relationship between different
individuals, the number of relatives of a certain degree, and so forth.

The first mention of distribution of generations with the present meaning in
the literature was by Harris [10] who used the number Z®(t) of individuals in
generations 0,1, - -+, k — 1 alive at time ¢ as an approximation to the total
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population size Z(t). Thus, the probability generating function F(-, t) of Z(t)
could be approximated by that of Z*(¢). Conditioning on the first event in the
process, that is, on life length and number of offspring of the original ancestor,
led to the recursion formula

(L1) F*+1(s, t)
= o[l — G(t)] + f(: h[FO(s, ¢ — u)] [BFU(s, ¢ — u) + 1 — B] dG(w)

with F©(s, t) = 1. Formula (1.1) was given in [10] for the case § = 0. Applying
the same kind of argument to the sequence Z¥(¢), defined as Z®(¢) if Z®(¢) =
Z(t) and as oo otherwise, yields a sequence of probability generating functions
F¥ which also converges to F and satisfies a relation similar to (1.1), however
with F¥(s, t) = 0. This sequence of probability generating functions (p.g.f.) was
first introduced without a probabilistic interpretation by Levinson [16]. The
asymptotic behavior of the distribution of generations after a long time and the
development in time of high generations in supercritical processes (that is, in
processes with #'(1) + B > 1) was studied by Martin-Lof [18] and then, inde-
pendently and using different methods, by Kharlamov [13], [14], [15], Samuels
[22], [23], and Biihler [4]. While Martin-Lof and Samuels considered general
age dependent branching processes, Kharlamov and Biihler restricted them-
selves to the case of Markov branching processes (with exponential distribution
of the life length) and Galton-Watson processes (with constant life length).
Kharlamov allows for individuals of more than one type (admitting in [15] even
an uncountable set of types). Methods similar to those of Kharlamov were used
by Greig [8] in the study of chains of bacteria multiplying according to a birth
and death process, where a chain is broken into two when a bacterium forming
an “‘interior link” of the chain dies.

In all papers except [4], the survival probability f is zero. These asymptotic
results will be described in Section 2. Section 3 considers the same questions in
the subcritical case. While these questions themselves are not definitely answered,
Theorems 3.1 and 3.2, dealing with the behavior of subcritical processes “long
before extinction” may be of independent interest.

We shall then return to the supercritical case and study the family and
relationship structure of the population, first extending the results given in [4]
about the distribution of distant relatives, then considering the finer structure as,
for example, the sizes of sibships, cousinships, and so forth. Finally, we shall
reconsider and generalize a result first given by Stratton and Tucker [25] about
the emergence of the first generation if the population is started by a large
number N of individuals in generation zero.

2. The distribution of generations

It will be assumed throughout that the lifetime of an individual is positive with
probability one, that is, that G(0+) = 0, and that its distribution is not con-



GENERATIONS IN BRANCHING PROCESSES 465

centrated on a lattice, except when we consider Galton-Watson processes. If
1 <m = F(1) < co, then there exists a unique positive « satisfying,

2.1) mf: e~ d(G(t) = 1.

The subcritical case with m < 1 will be considered only when a (necessarily
negative) solution « of (2.1) exists and when the mean ji and variance 6* of the
distribution

(2.2) 1) = mf; e~ dQ(x)

are finite. In the critical case m = 1, we have o« = 0 and F = G. Denoting the
ratio Z,(t)/Z(t) by Ri(t), Samuels [23] obtained the following result.

TaeorREM 2.1. If G is not a lattice distribution, if G(0+) = 0, 6% < o0,
h(0)=0,1 <m < o0, h"(1) < 0, and B = 0, then

K.
(2.3) lim Y R (t) = ®(x)

120 k=0

in probability, whenever K, is such that

=2\ —1/2
” (k- )(Z) " -

Here, as usual, ®(¢) denotes the distribution function of the standard normal
distribution.

Kharlamov [14] proved the same result and its extension to the branching
process with individuals of different types [15] for the Markov case with life-
time distribution G(¢) = 1 — exp { —A¢}. He did not assume k(0) = 0, and
thus he obtained (2.3) in conditional probability given W > 0, where W =
lim,,, Z(t) exp { —at} witha = A(m — 1).

Both Kharlamov’s and Samuels’ proofs proceed by first showing

K.
(2.3") lim Y p(t) = O(x)

1= ® k=9

with p,(¢) = EZ.(t)/EZ(t), where the only condition on the offspring distribution
needed to establish (2.3') is m < co. Showing then that £ o Z,(¢)/E X o Z,(2)
is close to Z(t)/E Z(t) for large t and hence close to W, they obtain (2.3) by taking
the ratio of these two expressions, cancelling W which is positive, and using (2.3").

Using essentially the same method, Samuels establishes a local version of the
above result.

THEOREM 2.2.  If the conditions of Theorem 2.1 are satisfied and if | x> dG(x) <
00, then as n — o0,

(2.5) G~/nR,(t,) > fip ()
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in probability provided the sequence t, satisfies (¢, — nﬁ)/&x/r_z — x. Again the
corresponding relation

2.5 a~/np,(t,) - fig(x)

requires no condition on the offspring distribution but m < oo.

These theorems, loosely speaking, state that at time ¢ the generations with
generation numbers around ¢/fi are the most frequent in the population or that
generation n will never make up a higher proportion of the total population than
around time zji. If we denote the mean and variance of @ by u and o2, Samuels
[23] has pointed out that for the supercritical process, while the above is true,
the absolute number Z,(¢) of living individuals of the nth generation achieves its
maximum at a much later time, namely, around ¢ = sy, and in fact at time nji
is still relatively small. More precisely, she obtained the following two theorems,
in which U,(¢) denotes the number of generation n objects born by time ¢ and
V, = U,(0) is the total size of the nth generation.

TueEOREM 2.3. If G(0+) = 0 and 6> < o, and if h(0) = 0,1 <m < 0,
B =0,and h"(1) < o0, then as n = oo and (¢, — nu)/a\/; -z,

U’l(t”) -

(2.6) O(x)
in probability.

THEOREM 2.4. If in addition to the assumptions of Theorem 2.3 we have
f2?d@(x) < © and if G is not a lattice distribution, then

(2.7) — > ¢(x)

o~/nZ,(t,)
1V,

in probability.

These theorems again are established. by first proving their expectation
counterparts without the restrictions on & (except for m < o0) and then showing
that a certain sequence of differences of random variables converges to zero in
quadratic mean. If we substitute m" W for V, in the denominator of the left side of
(2.6), we obtain the quantity which was shown by Martin-Lof [18] to converge
to @®(x), not only in probability but also in square mean.

The contrast between Theorems 2.1 and 2.2 on one hand and Theorems 2.3
and 2.4 on the other may be illustrated by the following corollaries, the first
being a consequence of Theorem 2.3, the second following from Theorem 2.1.

CoRroOLLARY 2.1. Under the conditions of Theorem 2.3, the time T, of the birth
of a randomly chosen individual of the nth generations has, as n — o0, asymptotic-
ally a normal distribution with mean nu and variance no?.

CoroLLARY 2.2. Under the conditions of Theorem 2.1, as t — 0, the
generation G, of a random individual alive at time t has asymptotically a normal
distribution with mean t/ji and variance tG/ji>.
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Corollary 2.2 for the Markov case and its counterpart for the Galton-Watson
process were also obtained by Biihler [4]. They will be stated separately here
and proof will be indicated since it gives additional insight into the processes and
the idea underlying it will again be used in later sections.

THEOREM 2.5. (i) If in a Galton-Watson sequence with § > Oand 1 < f +
m < o0, and if G, denotes the generation of an individual chosen rundomly at time
n, then .

. G, — nm/(m + B)
(2.8) ngolo P{(nmﬁ/(m + B)*)/? =z

W > 0} = ®(x),

where W = lim,_, , Z(n)(m + B)”" almost surely.

(ii) In @ Markov branching process with G(t) =1 —e™", if 0 S B <1,
1< B+ m< 0 and h"(1) < 0, denoting by G, the generation of a random
individual alive at time t, we have

G, — mt
: lim Py <
(29) e { (me)z =

W > 0} = O(x),

where W = lim,_, , Z(t) exp { — (B + m — 1)t} almost surely.

To prove the continuous time version, one conditions first on the number
N(t) of “splits” that have occurred up to time ¢. Then given N(f) = n, say, we
further condition on the sizes of the families produced at each split, that is, on
the variables U;, V;,i = 1,2, --, n, representing the numbers of survivors
(necessarily equal to zero or one) and the number of individuals newly born at
the ith split. Then after choosing one of the z individuals at random following a
suggestion of P. Clifford, we trace his line of ancestry back to the original
ancestor present at time zero defining random variables L;, i = 1,2, -, n, a8
follows. If the ith split produces (as a newborn individual) an ancestor of the
individual considered, we let L; = 1, otherwise L; will be equal to zero. The
generation G, of our individual thus is just the sum of all the L;. Under our
conditioning the variables L;, representing the “loss’ in generation number as
we go back beyond the ith split, will be independent. Let S, denote the sum
y +uy + - +u, +v + vy + -+ v — k.Then,given (U;, V;) = (u;, ),
i =1,2, -, n,the conditional probability of the event L, = 1 is #/s; and since
the L; are bounded we can apply the central limit theorem to their sum whenever
the variance

(2.10) Yy = 3 &(1 _ ﬂ)

k=1 Sk Sk

converges to infinity. This, however, will be the case since for almost all realiza-
tions of the process V, /S, is of the order 1/k as k — oo. More precisely, invoking
Toeplitz’ lemma, we can replace both the conditional expectation E(n) =
=2, v/% and V(n) by [m/(B + m — 1)] log n. This at the same time removes
the conditioning on the family sizes (U;, V;). The final step is unconditioning
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with respect to N(¢) using the fact, established by Athreya and Karlin [2], that
N({t)(f + m — 1)exp {—(B + m — 1)t} converges to W almost surely.

3. The subcritical case

In the subcritical case § + m < 1,itis known that Z(¢) almost surely becomes
zero as { becomes large. It is also well known that at least in the Galton-Watson
case with A”(1) < oo and in the continuous time Markovian case the conditional
distribution of Z(¢) given Z(t) > 0 has a limit as ¢ - oc. The probability
generating function of this limit will be denoted by g. Since the total population
size (even after conditioning) does not go to infinity, Theorems 2.1 through 2.4
cannot possibly be true if § + m < 1 even though the assertions about ratios of
expected values tmade in them or in connection with their proofs remain valid.
It seems. however. reasonable to expect that Theorem 2.5 and possibly Corollary
2.1 should be valid in the subecritical case. If we try to imitate the proof of
Theorem 2.5 in the case f + m < 1 in order to establish relation (2.10) for the
process conditioned on Z(¢) # 0, we might want to show that the relative fre-
quencies of the possible values of /s, to appear up to time ¢ have reasonable
limits. A first step in this direction is to prove that in a sense we are dealing with a
stationary process. While this result is relatively obvious, it seems not to have
been published before. Let us first consider the Galton-Watson case, that is, let

Z, = (ZL, 72.--- . Z*) be a k type Galton-Watson process with basic prob-
ability generating function £ = (f!, f2,---. f%).
(3.1) Fis) = flsr s s) = ELHEE - 1| Zg = e}

Assume that the expectations m;; = E(Z] | Z, = e,) are finite and positive ; then
the matrix M = {m;;}, <; j<\ has a largest positive eigenvalue p.

TuroreM 3.1. If Zy, Z,, - - - is a k type Galton-Watson process with positive
expectation matrix M and finite second moments and if p < 1, then asn — oc and
N — oo, the joint conditional distributions of (Z,. o, L1y, Zyy,) given
Z, = e and Zy,,., ¥ 0 converge to those of a stationary process Xo, Xy, - - .

The stationarity of the limit distribution. if it exists, is immediate. To prove
the convergence, we first state a lemma which follows immediately from
Theorem 4.3 of Jifina [11] and its proof.

LemMA 3.1. Under the assumptions of Theorem 3.1, there exist constants C;

such that .
(s) — 1 .
©-2) lim J;(z)p— =g'(s) — 1.
. 6j1+-~+jk f':(s) ajl'*'““*’jk i
(3.3) '}L‘g st - 05l cp” | Bsp 58{;,(9 (s)
forall (ji.js. . ji). Here g'(s) is the limiting probability generating function of

Z,given Z, = e; and Z, + 0, and the convergence is uniform on compact subsets
of the region S = {s:|s;| < 1,i=1,2,"k}.
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To avoid unnecessarily complex notation, the proof of Theorem 3.1 will be
given only for the one dimensional case, k = 1. Let / be the conditional joint

pet.of Z ,Z, .\, Zpsr. Zysps,given Zy ., #+ 0, then
(34) Hn,N(SO-, S, 7775 Sps l1/)
— E(sgnsfn-kl ce an+rwrlw+n+r ZO — 1’ ZN+n+r > 0)

={1 - fN+n+r(O)}_1{fn(sof(slf(SZ o 'f(s,fN(W)) o )
- fn(sof(sl t ‘f('qrfN(O)) o )}

Using fy(w) — fy(0) ~ ¢;m g(w) and 1 — fy(0) ~ c¢;m" and applying Lemma
3.1, we obtain

(3.5) lim H, x(Sg. 81, . 8. W)

nN-x
= cym” "g(w)sgsy " Srg'(sof(slf(' : 'f(sr)) o )
S(suf(sz f)) ) (s2 0 f(8)) - f/(s0)-

RemARK 3.1. It is intuitively clear and confirmed by (3.3) that as n. N — o
the variables (Z,, Z,+1." "', Z,+,)and Zy ., become independent (condition-
ally given Zy 4+, > 0).

REMARK 3.2. The joint probability distributions of X, — 1, X; — 1, - are
the same as those of a branching process Y, Y, - - - with immigration, where Y,
has the p.g.f. g’, where the p.g.f. of the number of offspring of each individual
is f, and where the number I; of immigrants at time j has the probability
generating function f'(s)/m.

Let us now look at Theorem 3.1 for the two type Galton-Watson process in
which the two types represent the numbers of surviving and newborn individuals,
respectively. Thus, the limiting process X, Xy, - - - can be written as (Sy, N),
(Sy, N,), -+, where obviously the number S; of survivors at time ¢ can be at
most equal to the total number X;_; = §;_; + N;_; of individuals living at
time ¢ — 1. If for the process X,. X;, - - - we define the variables Ly, L, - - - as
having the values 1 and 0 with probabilities (conditional on X4, X;. - - ) N;/X;
and S;/X;, respectively, then (see, for example, Doob [7], Ch. X) almost surely
the sequences (1/r) Zi—, N;/X; and (1/r) Zi., N;S;/X} converge to the con-
ditional expectations M = E(No/Xo|F) and V = E(N;S,/X3| F ). where #
is the o-field of invariant events for the stationary sequence X;.¢ = 0, 1,2, -+~
Thus, we can apply the central limit theorem analogously as in the corresponding
step in the proof of Theorem 2.5.

Lemma 3.2. Let Xy, X,, - and Ly. L. - be defined as above and let
G, =Ly + Ly + -+ L,_,, then almost surely

. Gr - T;M

9‘7} = O(x).

The asymptotic independence of remote variables (as expressed, for example.
in Remark 3.1) should mean that actually. as X, will be independent of %, M
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and V are nonrandom and the conditioning on & can be removed. Furthermore,
going back to the original process Z, = (U, V), k =0,1,2,---, we could
let N, n, and r all be large in such a way that the first » and the last N variables do
not contribute much to Gy, ,,, and that the stretch of » variables in between
would essentially behave like the stationary process Xg, Xy, - - - .

CoxNsEcTURE 3.1. If Zy,Z,, Z,, - - - is a Galton-Watson process with f +
m < 1 and finite second moments, then as I — oo, the generation G| of a random
individual living at time I has asymptotically a normal distribution with expectation
IM and variance IV .

REmMARk 3.3. Whereas in the supercritical case the proportion of newly
born individuals almost surely converges tom/(m + f)leading to the expressions
for M and V in (2.7), this is not the case in subcritical processes where, indeed,
M and V will depend on f# and on the offspring distribution in a more complex
way.

In the case of continuous time, we can proceed similarly. Let {Y,, ¢ = 0} be
a subcritical Markov branching process with lifetime distribution function
1 — e7', with & as the p.g.f. of the offspring distribution and with immigration.
Assume the immigration to be compound Poisson; more precisely, let times
between immigrations be independent exponential variables (having the same
distribution as the lifetimes) and let the numbers of immigrants at each im-
migration be distributed according to &'(s)/m independently of each other and of
the other variables defining the process. Let finally Y, be distributed according to
the p.g.f. ¢,g’, where

(3.7) () =1 —ex {—(l—m)r——du—}
’ g P o h(u) — ul’

and ¢, = 1/g'(1).

TuroreM 3.2. Let {Z(t), t = 0} be a Markov branching process with G(t) =
1 — e ' whose offspring distribution is given by h(s) with h'(1) = m < 1 and with
B = 0. Then, as t and T tend to infinity, the finite dimensional distributions of the
process {Z(t + 1), T = 0} conditioned on Z(t + T) > 0 converge to those of the
process {Y, + 1,72 0} The joint p.g.f- of Yo.Ye,, Yo iveyr """ s Yeihooote, 18
given by

(3.8) ciexp{— m(t; + 1, + *** + 1,)}
(80F(81F(32F r—l(F(sr’ 7,)s Tr—l)’ T '), Tl))
- Fy(s,, tr)Ft(sr—lF(Sn T,)s 'Cr—l)
B (s, F(s,F(- - - 8,1 F (8, T,), Trmy ), "7 0), Ty),

where F(s, t) denotes the p.g.f. of Z(t) and F, indicates the partial derivative of F
with respect to its second (time) argument.

The proof will be omitted as it basically follows that of Theorem 3.1. It can
also be extended to the multiple type case.
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The arguments which led to Lemma 3.2 and from there to Conjecture 3.1
have to be appropriately modified. We now define a process {L,, T = 0} as
follows. Let L, be constant except for those points in time at which Y, increases;
ifat T = ¢ the Y process jumps by the positive amount V;, then, with probability
Vi/Y;+ + 1, the process L, will jump by unity, otherwise it will remain constant.
Thus, the increments of the process {L,, 1 = 0} will be stationary. Also, given
the process {Y,, T = 0}, they will be conditionally independent. An analogue
of Lemma 3.1 will hold. This will allow us to argue in the same way as in the
discrete time case to obtain an analogue to Conjecture 3.1.

CoNJECTURE 3.2. If Z(t) is a Markov branching process with f + m < 1,
then there exist constants M and V depending on the offspring distribution such
that the generation of a random individual alive at time t has asymptotically, as
t - o0, a normal distribution with mean Mt and variance Vi.

4. The relationship structure, distant relatives

In this section, we shall again study supercritical branching processes in dis-
crete or continuous time. For these we shall investigate how closely related
individuals taken randomly from the population will be and how many
relatives of a given large degree a random individual will have. If we take two
individuals at time ¢, these will be in generations G} and G? and have a last
common ancestor (at some time prior to f) whose generation will be denoted
@G}%. The number R!? = (G! — G}?) + (G? — G!?) will then be called the
degree of relationship.

THEOREM 4.1. Let RY, 1 <i < j < k, be the degrees of relationship of k
random individuals at time n in a Galton-Watson process with f > 0 and 1 <
B+ m < . Then asymptotically, as n — oo, given the population does not
become extinct, the random variables

P 2nmpB \ 12
4.1) V) = {R,, o— ﬂ} ((m n ﬁ)z)

have a joint normal distribution. Asymptotically, expectations are zero, variances
are unity, and the covariance of V¥ and Vi%is % if {i, j} and {¢, q} have one index
in common and zero otherwise.

TueoreM 4.2. Let R, 1 < i < j < k, be the degrees of relationship of k
individuals chosen randomly at time t in a Markov branching process satisfying
the conditions of Theorem 2.5 (ii). Then, given W > 0, asymptotically as t - oo,
the random variables

(4.2) Vi = (RY — 2mt)(2mt)~ /2 1<i<jsk,

have the joint normal distribution with expectations zero and covariance matrix as
in Theorem 4.1.

For the case k = 2, Theorems 4.1 and 4.2 are stated and proved in Biihler
[4]. The essential step in the proof is to show that the generation G4 or Gf of
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the last individual who is a common ancestor of at least two of the k& individuals
chosen has itself a limiting distribution (the tail of which is studied in [4] for
k = 2). The variables G} — G. G2 — G{.--- . G* — G{ are then conditionally
independent given G and the R are sums of two such variables plus something
that can be neglected as t - 0.

We now want to choose a random individual from the population. Then, if
we follow his line of ancestry back by a given number n of generations or by a
given time ¢, how many descendents will the ancestor have and how closely will
they be related to the individual chosen? To attack this question for large » or
t, respectively, we shall assume that we have a supercritical process in which the
age distribution is the stationary one. We shall then make use of the following
lemma about renewal processes, of which part (i} is a version of the central
limit theorem and part (ii) is due to Takacs [26].

Lemma4.1. Let X, X,, X5, - - - be nonnegative independent random variables
with a common distribution function G. Let

(4.3) S, =X, +X,+ -+ X, N(t) = max {K; S < t}.

() If EX, = m and 0 < Var X, = ¢! < oo, then (S, — nm) (nc?)”1? has
asymptotically, as n — o0, a standard normal distribution.

(ii) Under the same conditions (N(t) — t/m) (to?/m>)~''* asymptotically as
t = o0, has a standard normal distribution.

Now, as we select an individual at random, his age (under suitable conditions
on () will be a random variable X, with distribution function

f: e [1 — G(1)] dt

(4.4) A@) = o .
foe_"[l — G(1y] dt

At the time the individual was born he “selected his father”” among the indivi-
duals present, whose ages were distributed according to 4, with the risk of
selecting an individual of age x proportional to the ‘failure rate’ g(x)/(1 — G(x)).
Thus, we are led to the following lemma.

LemMa 4.2, If in a supercritical branching process, h"(1) < oo, and if G has
a density g with {3 [g(t)]? dt < o for some p > 1, then tracing the line of
ancestry of a random individual, the life lengths X,, X,, - - - of his ancestors are
independent and have the common probability distribution function

(4.5) Blx) = m foxe_’"g(t)dt.

If we choose an individual at random after a long time 7, denote his ancestor
living at time t — ¢ his ¢ ancestor, and let L, be the number of generations that
we “lose”” when we go back to him. Two individuals alive at time t will be called
t relatives if their last common ancestor was present at time v — ¢. Corres-
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pondingly, we shall define the (r) ancestor of an individual by going back n
generations in his line of ancestry. The (n) relatives will be those descendents of
the (n) ancestor who are not also descendents of the (r — 1) ancestor.

THEOREM 4.3. If H(0) =0, 1 <m < o0, A"(1) < o0, B =0, and G has a
density g with {§ [g(t)]7 dt < oo for some p > 1 such that the distribution B of
(4.5) has finite expectation fi and variance G°, and if at time zero the population
consists of a ( fixed or random) number of individuals whose ages are independently
distributed according to stationary age distribution of the process, then asymptotic-
ally as t - oo,

(i) L, has a normal distribution with mean t/fi and variance ot/

(ii) if D, denotes the number of t relatives of the individual chosen, then

>k
(4.6) lim P(Dye™m= D < ) = Y ZEE pk-bg

t—© k=1 M

where F is the distribution function of W = lim,, o Z(t)e” ™~V and F® is the
kth convolution of F with itself, F©(x) = ;o o) (x):

(iii) the degree of relationship R, of a random individual with a random t
relative is asymptotically normally distributed with expectation 2t/ji and variance
262 t/j13.

Proor. Part (i) follows from Lemma 4.1 (ii) using (4.5). Part (ii) is established
by conditioning on the number (k) of children of the ¢ ancestor, where the
factor kp,/m in (4.6) will be justified in Section 5. Finally, part (iii) follows
from (i) and Corollary 2.2.

Note that part (iii) is closely related to Theorem 4.2. Since the ages of indivi-
duals in the Markovian situation are immaterial, for £k = 2, Theorem 4.2 be-
comes a special case of Theorem 4.3 (iii).

The study of (r) relatives is not quite as simple as that of ¢ relatives. We shall
denote by 7', the time of birth of the (rn) ancestor and by R, the degree of relation-
ship between a random individual and a random () relative.

THEOREM 4.4. Under the conditions of Theorem 4.3, we have

(1) asymptotically, as n —» oo, (T, — nﬁ)/&\/; has a standard normal distri-
bution ;

(ii) if D, is the number of (n) relatives of a random individual, then for all x > 0

0 if &< g,
4.7 lim Pe ™™D, < x) ={ %+ if b= jo.
( ) no o ( n 2

1 if b > ja:

(iii) the degree of relationship R, between a random individual and a random
(n) relative is asymptotically, as n — o0, normally distributed with expectation 2n
and variance 2nG>.
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Proor. Part (i) follows from Lemma 4.2 together with Lemma 4.1 (i). To
prove (4.7), we condition on 7, and then use (4.6) and part (i). As 7, becomes
large

(4.8) P{e ™D, < x| T,,}A = P{D, exp {—aT,} < zexp {bn — aT,}|T,}

is approximately equal to

4.9) Z kb F* Y[z exp {bn — oT,}].
k=1 M

Thus,

(4.10) P(e”"D, < x) = EP{e” "D, < z|T,}

can be approximated by

+o
(4.11) p F*=Y[x.exp {bn — at}](P( ”#) dt

IR o~

‘which equals

(4.12) J Z kpy F*~D[z.exp {n(b — aji) + aat\/—}]cp

o k=1 M

If b — (m — 1)j1 > 0, the argument of F* ! will tend to + 00 and therefore
F*=D will tend to 1 uniformly on every finite 7 interval for ¥ < K for any K.
Similarly, b — (m — 1)ji < 0 implies the convergence of the F*~!) to 0 uni-
formly for k < K on every finite t interval. This proves the first and last state-
ments of (4.7). f b = (m — 1)ji, then the argument of F*~ ! will go to + o0 or
— o0 according to whether T > 0 or t < 0, thus making F*~!) converge to 0
on the negative halfline and to 1 on the positive halfline. With the corresponding
uniformity, the whole expression converges to .

Part (iii) is also proved by conditioning on 7,. We approximate for large T,
the probability

T,,}

—ZT -1/2
(4.13) P{(R —n — -—) ( ) <y
H #

by ®(y) using Corollary 2.2. Therefore, we can approximate

=2 -1/2
(4.14) {(R ~ 2n) (‘;") <z T}
-2 -1/2
RO I
u 1/2 Tn &ZTn -1/2
= (T) (E"”)(;?)
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by ®(x(ri/T,)'* — (T,/i — n)(3*T,/i*)~*"?). Unconditioning shows that
P{(R, — 2n)(6*nji*)”* < x} is close to

@ nil 1/2 _ G2\~ 12
o [ oo -o-n()
- o((t — nf) (n62)‘”2> (nG%)~ 12 dt

which can be rewritten as

+ nﬁ 1/2
(4.16) J_w ¢{(m) (x — r)} ¢(t) dr.

Asn — o0, (4.16) converges to j“_"m ®(x — 1)¢(1) dT which is the normal distri-
bution function with variance 2.

5. The relationship structure, close relatives

In this section, we shall study the sizes of sibships, the numbers of cousins of
an individual chosen at random, and related questions. There are two methods
of approaching these questions, the first makes use of the theory of multitype
branching processes and yields the distribution of the number of brothers,
cousins, and so forth, that a random individual will ever have ; the second, which
gives a more complicated method of going back to the corresponding () ancestor
and viewing his progeny, will also enable us to determine how many close
relatives are alive at the given point in time.

We shall illustrate the latter method with one example only. Suppose we want
to find the joint probability distribution of the numbers S of sibs and U of uncles
of a random individual. We assume that we are dealing with a supercritical
process which has been developing for a long time, so that the population size is
big and the distribution of ages is the stationary age distribution with distri-
bution function

f: e *[1 — G(t)] dt

(5.1) A@) = — .
fo e ®[1 — G(t)] dt

First, condition on the age 4, of the individual and on the life length B, of his
father, which is distributed according to the distribution function B defined in
(4.5). Given A, = a and B, = b our individual has s live sibs and u live uncles
if his grandfather has k = u children out of which u survive to the age ofa + b
and his father has j > s children and s of the j — 1 brothers survive to the age
of a. To carry our argument through, we need the conditional probability P, (x)
that an individual has & — 1 brothers given his age is x. Thus, we select an
individual at random among those of age « (or, since we are considering the
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continuous time case, with ages in a small interval around x). Hence, P, (x) will
be proportional to the number of k sibship individuals of age x present. This is
expected to be proportional to

(5.2)  pE {number of survivors to age x out of a k sibship} = p, - k[1 — G(x)].

Therefore, P,(x) = kp,/m for all x = 0. Now we can simply write down the
joint distribution of the numbers of uncles and sibs.

THEOREM 5.1. In a supercritical branching process with lifetime distribution
Sfunction G, with stationary age distribution according to (5.1) and distribution of
life lengths of ancestors given by (4.5), the joint probability distribution of the
number U of uncles and the number S of sibs of a random individual is given by

5.3) PWU =uS =s)

e 9} e} @ oo} k '.
=j dA(a)j D YD) m—z(k%

0 0 k=s+1 j=a+1

1 - @) [G@] " [1 — Ga + b)]*[G(a + b))~

Using the same method, one can find the joint distribution of the ages of the
individuals under consideration. As the expressions are rather complicated only
a simple example will be given. If we consider the Markovian binary split process
(where each individual after an exponential lifetime is replaced by two new
individuals), picking a random individual given that he has a cousin, his own
age A, the lifetime L of his father, and the age 4 of a random live cousin have
the joint probability density

(5.4) pla, £, @) = %Qexp {— 3@ + )} (2 — exp {—a}).

This density is not symmetric in @ and @, since our random individual is more
likely to have a brother and one cousin than no brother and two cousins.

We now turn to the consideration of multitype processes. First, we shall
identify the type of an individual with the size of the sibship to which he belongs.
Thus, any individual. no matter what his own type, will produce k offspring
individuals all of type &, with probability p,. The expectation matrix M then has
P = (p1, 2p,. 3ps, - - *) in each of its rows. Therefore, p is also its left eigenvector
with corresponding eigenvalue m. Thus, appealing to a result of Moy [20], we
can find the limit distribution of sibship sizes. '

Lemma 5.1. In a supercritical Galton-Watson process with h"(1) < oo, the
relative frequencies f, of the individuals whose sibships are of size k converge in
square mean to kp,/m and the frequency of sibships of size k converges to
Pi/(1 — po).-
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Since all types of individuals have the same offspring distribution, we can
combine all sibship sizes higher than K — 1, say, into one type. The expectation
matrix of the offspring then has rows

K—-1
(5.5) <p1’2pz, (K= Dpgoyom — Y kpk> = p(K).
k=1

Again, p(K) is the left eigenvector corresponding to the eigenvalue m. For those
processes with finitely many types, the convergence in square mean can be
replaced by convergence almost surely (Harris [10], Theorem II, 9.2); also the
continuous time Markovian case has been studied (Athreya [1]). As K is
arbitrary, we have almost sure convergence for all k = 1

THEOREM 5.2. (i) In a Galton-Watson process with expectation m > 1 and
with h"(1) < o0, the relative frequencies of the individuals belonging to sibships
of size k converge almost surely to kp,/m and the relative frequencies of sibships of
size k converge to p, /(1 — po)-

(i1) In a Markov branching process with expectation m > 1 and with h"(1) <
oo, the relative frequencies of individuals belonging to sibships whose size at birth
was k converge almost surely to kp,/m and the frequencies of the sibships of size
k represented in the population by at least one live member converge almost surely
to pi/(1 — po).

The relationship between the frequency of sibships of size & and the frequency
of individuals from such sibships is the one usually encountered when sampling
individuals or sampling families in a population. That it holds in the continuous
time case, where at the time of sampling families need not be complete, is
essentially due to the independence of P, (x) of x.

If we want to study different types of relatives at the same time, the corres-
ponding expectation matrix and their eigenvectors will not be quite as easy to
find. However, one can manage most cases of interest. Theorem 5.3 is an example
of such a case. As we shall see in its proof, it is now not possible to pool several
types of individuals; therefore, we impose an additional condition probably not
needed for the conclusion to hold.

THEOREM 5.3. If in a supercritical Markov branching process, the number of
offspring of an individual is less than or equal to K almost surely, then the proportion

f(ng, ny, my, -+, m,) of individuals in the population with ny — 1 brothers, n,
cousins, n, second cousins, -+ -, n, rth cousins converges almost surely to
. 0 Pny ud ipn PG~ JPJ u D2
(06) p(n07 LTI nr) = Z nl z P
m S m

Xk
> B pE),
k=1 m

where P9 (k) is the probability that j individuals of generation zero will ever have i
descendants of generation k, that is, 2o PP (k)s' = [y (s)]".
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ProoF. The proofshall be given only for the case r = 1 to simplify notation.
We shall then classify an individual as being of type (i, j) when he has ¢ — 1
brothers and j cousins, i = 1,---,K —1landj=0,1, -, K(K — 1). Now
not all rows of the expectation matrix M can be expected to be equal any more,
as obviously the number of my sons’ cousins will not be independent of the
number of my own sibs. However, the type of my descendents will be independent
of the number of my cousins and the number of sibs of my descendents will not
depend on my type at all. Thus, M has a relatively simple structure and a left
eigenvector can be easily found. In fact,

(6.7) MG, jyk,e) = kp, PS~ (1)

and the left eigenvector corresponding to the eigenvalue m is given by (5.6).
Of course, p(ng, #, * - - , #,) is the probability for an individual to have a father
with n¢ children, a grandfather with (i children, i — 1 of whom have a total of
n, children), ny + n, grandchildren, - - -, and an r ancestor with n, + 7, +
- -+ + n, r descendents.

6. Processes with limited rebranching

This section is concerned with a property of continuous time branching pro-
cesses first discovered by Stratton and Tucker [25], subsequently put in a
context which considers generations by Biihler [2], and discussed in a way
closest to the present treatment by Savage and Shimi [24]. Here we consider a
whole sequence of branching processes Zy(t), t 2 0, N = 1,2, - -, with Z§ ()
individuals in generation k, k = 0, 1,2, --+. Assuming Zy(0) = zZ00) = N,
the result of [25], [2], and [24] can be stated essentially as follows. As N — o,
there will be no second generation individuals yet at time ¢/N : however, there
will be a Poisson number of independent first generation families whose sizes
will be distributed according to the probability generating function 4 underlying
the process. Furthermore, in the limit the increments of Z{(¢/N) become inde-
pendent. We shall now extend this result and also consider the times of emergence
of higher generations than the first.

TuEOREM 6.1. Let Zy(t) be a sequence of branching processes with Zy(0) =
Z(0) = N, with offspring probability generating function h such that 0 < m <
oo and with distribution of life lengths according to the distribution function G with
G(0+) = 0and G'(0) = 1. Then, as N - o, the probability generating function
Hy n(s, @y n(t)) of the number ZY(ay, y(t)) of individuals in generation k at time
ay, n(t) converges to

= D gk

(6.1) k(s t) = exp{ A (h(s) — 1)},

provided a, y(t)- N'* — t. Furthermore, under these conditions the increments of
{Z¥(ar.n(t), t = 0} are asymptotically independent.
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Proor. Arguing as in Section 1, the p.g.f. F (s, t) of the number of indivi-
duals in generation k if we start with one individual in generation zero at time 0
is shown to satisfy the relation (1.1) with f = 0 and

(6.2) Fo(s, t) = s(1 — G(t)) + G(1).
From this it can be shown that

m* V(1 — h(s))
k!

as ¢ —> 0. Using the facts H, (s, t) = [F(s, t)]"¥ and (1 — x/N)¥ - ™%, the
first assertion is proved since g, y(t) tends to zero at the correct rate. Repeating
the same kind of argument for the joint distributions at different times, the
independence statement can be established. Similarly, it can be shown, that for
i # j,thevariables ZQ(a; y(¢,))and Z§(a; y(¢,))are asymptotically independent.

REMARK 6.1. Theorem 6.1 shows that, apart from a transformation of the
time scale, for a large initial population, all generations emerge according to the
same compound Poisson process. As for a large population, if short life lengths
are possible at all, it is likely that some offspring will indeed emerge after a short
time. It is not surprising that the only conditions on @ are local at ¢ = 0 and that
we need not restrict ourselves to Markov branching processes as had been done
originally.

(6.3) Fis.t)=1-— + O(t*)

OV ORI

During the preparation of this manuscript I enjoyed the benefit of helpful and
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