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1. Introduction

There are many existing approaches to the theory of point processes. Some
of these-following the original work of Khinchin [9] are "analytical" and
others (for example, [15], [8]) quite abstract in nature. Here we will take a
position somewhat in the middle in describing the development of some of the
basic theory of point processes in a relatively general setting, but by using largely
the simple techniques of proof described for the real line in [11]. We shall
survey a number of known results-giving simple derivations of certain existing
theorems (or their adaptations in our setting) and obtain some results which we
believe to be new. Our framework for describing a general point process will be
essentially that of Belyayev [2], while that for Section 4 concerning Palm
distributions is developed from the approach of Matthes [14].

First we give the necessary background and notation. There are various
essentially equivalent ways of defining the basic structure of a point process.
For example, for point processes on the line, one may consider the space of
integer valued functions x(t) with x(O) = 0, which increase by a finite number
of jumps in any finite interval. The events of the process then correspond to
jumps of x(t). One advantage of such a specification is that multiple events fit
naturally into the framework.
To define point processes on an arbitrary space T. it is often appropriate to

consider the "sample points- cw to be subsets of T. This is the point of view taken
in [18], where each a) is itself a countable subset of the real line, the set of points
'where events occur." Sometimes, however, a point process arises from some
existing probabilistic situation (such as the zeros of a continuous parameter
stochastic process) and one may wish to preserve the existing framework in the
discussion. A convenient structure for this is the following, used in [2]. Let
(Q, E. P) be a probability space and (T. Y ) a measurable space (T is the space
in which the events will occur"). For each a e Q. let S, be a subset of T. If for

each E e Y

(1.1) N(E) = N (E) = card (E n8'0)

is a (possibly infinite valued) random variable, then S. is called a random set
and the family {N(E): E e Y} a point process. The "events" of the process are,
of course. the points of 8.
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The model may be generalized slightly to take account of multiple events-
that is, the possible occurrence of more than one event at some t E T. The
definition of N(E) as card (E n S.) shows that N(E) is an integer valued measure
(on the subsets of T) for each co. As a measure, N.( ) has its mass confined to S.,,
and N.({t}) = 1 for each t e S.
To allow multiple events, we may simply redefine N.(E) to be an integer

valued measure with all its mass confined to S.> with Nl({t}) _ 1 for each
t e S. and such that N.(E) is a random variable for each E e Y. If N.({t}) > 1,
we say a multiple event occurs at t. If there is zero probability that any t E S. is
multiple, we say the process is without multiple events.

If we say a process may have multiple events, we shall be referring to this
framework and shall write M(E) for the number of multiple events in E. In such
a case, we shall write N*(E) for card {S. rn E} and refer to N*(E) as the number
of events in E without regard to their multiplicities. (Of course, N(E) is the total
number of events in E.)

In the manner just described, a point process may be regarded as a special
type of random measure. This concept has been developed in considerable
generality for stationary cases (see. for example. [15]), but this generality will
not be pursued here.

Another method of taking account of multiple events is to replace each t E S.,
by a pair (t, k,), where k, is a "mark" associated with t denoting the multiplicity.
This again is capable of considerable generalization by considering rather
arbitrary kinds of "marks" and the appropriate additional measure theoretic
structure. These ideas have been developed by Matthes (see, for example, [14])
for stationary point processes on the real line and provide an elegant framework
for obtaining results, for example, in relation to Palm distributions. In such
cases, the marks are chosen to be highly dependent on the set S. (for example,
translates of S.). At the same time, most results of interest can be obtained by
using essentially these techniques, but without explicit reference to marks.
Hence, we here use the framework previously explained.
For stationary point processes on the real line, there are several important

basic theorems. Included among these are (writing N(s, t) for the number of
events in (s, t]):

(i) the theorem of Khinchin regarding the existence of the parameter A =
lima o Pr {N(O, t) _ 1 }/t;

(ii) Korolyuk's theorem which, in its sharpest form, says that for a stationary
point process without multiple events, A is equal to the intensity It = &N(O, 1)
that is, the mean number of events per unit time; A and pu may be infinite; if
multiple events may occur, we replace p by &N*(O,1);

(iii) for the regular (orderly, ordinary) case (that is, when Pr {N(O, t) > 1 } =
o(t) as t 4 0) multiple events have probability zero;

(iv) "Dobrushin's lemma"-a converse to (iii)-stating that if A < ox and
multiple events have probability zero, then the process is regular.

Various analogues of these results have been studied for nonstationary point
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processes on the real line in [20], [4], [5], largely by using properties of Burkhill
iiitegrals. A clarifying and general viewpoint has been more recently given by
Belyayev [2]. Specifically in [2], generalizations of the two constants 2,p are
made in terms of measures A(.), M(.) on the space T. instead of in terms of point
functions. The principal measure IA() is defined (as customarily) on Y simply by
p(E) = &N(E)-countable additivity of N guaranteeing countable additivity of
,u( ). On the other hand, the parametric measure A(.) is defined in [2] by

(1.2) A(E) = sup Pr {N(Ei) > 0}: Ei E T. Ei disjoint, U E1 = E}.

It is easily shown that A(.) is a measure and it is clear that A(E) . /(E) for all
E E J For a stationary point process on the real line, A(E) = Am(E) and p(E) =
pm(E), where m denotes Lebesgue measure.

Using these definitions, it is possible to extend the basic results quoted above
to apply to point processes which may be nonstationary, on spaces T more
general than the line (including any Euclidean space). These generalizations are
systematically described in Section 2. In Section 3, stationarity is discussed in
general terms (with particular reference to Khinchin's theorem) when T is a
topological group. In both these sections, the general lines of development are
those of [2], with adaptation of the results in presenting a somewhat different
viewpoint, and with emphasis on simplicity of proofs obtained by direct analogy
with those of [11].

Finally, in Section 4, we discuss some basic results relative to Palm distri-
butions (and their expressions as limits of conditional probabilities), for
stationary point processes on the real line. The approach is essentially that of
[14] (without explicit reference to marks), again with emphasis on the simplicity
of proofs obtained from the techniques of [11].

2. The basic general theorems

The notation already developed will be used throughout this section. We
shall systematically obtain the generalizations of the basic theorems referred to
in Section 1. This development follows the same general lines as [2] but with
differences of detail and perspective.

All that is to be said in general relative to Khinchin's theorem concerning the
existence of the intensity, is contained in Belyayev's definition of the parametric
measure (1.2) given in Section 1. (For special cases, when T has a group
structure and the point process is stationary, it is possible to say more that is
directly analogous to the real line case-mention of this will be made later.)

It is shown in [2] that the truth of the generalized version of Korolyuk's
theorem, namely, A (E) = p (E) for all E E Y (for a point process without multiple
events or A(E) = &N*(E) if multiple events may occur), depends on the
structure of T rather than on any stationarity assumption. The proof given
directly generalizes that of [11] for stationary processes on the real line. This is
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most clearly seen for a nonstationary process on the real line (.7 then being the
Borel sets). For then if E is an interval (a. b]. we may divide E into n equal sub-
intervals E&i i = 1. n, and write X = if N(En) > 1i. = 0 otherwise.
Assuming there are no multiple events. it is easily seen that Nso = >-i= 1 X&
N(E) with probability one. as n -t and hence by Fatou's lemma.

n

(2.1) p(E) _ lim inf.&N' = lim inf E J Tni = I} < )(E).

But A(E) . /1(E). and hence, A(E) = M(E) for all E of the form (a. b]. Thus.
A(E) = /(E) for all Borel sets E. provided 1u is a-finite.
For the above proof to be useful when T is a more general space. we require

T to have sets playing the role of intervals. A suitable definition of such a class of
sets is given by Belyayev [2] and called a "fundamental system of dissecting
sets" for T. Here we shall use a somewhat different definition to achieve the
desired results. Specifically, we here say that a class W = {Enk: n. k = 1, 2 3
of sets Enk E t7 is a dissecting system for T if

(i) W is a "determining class" (see [3]) for a-finite measures on ..: that is. two
a-finite measures equal on W are equal on Y (for example. W may be a semiring
generating 7):

(ii) for any given set E E 'W. theie is corres})onding to each n = 1. 2. 3. a
set I,, of integers such that

(a) Enk are disjoint subsets of E for k e In with E - UkeI Enk c F, e X,
where EF . 0, the empty set, as n cc, and

(b) given any two points t1, t, of' E. for all sufficiently large values of n
(that is, for all n _ some no(t1, 12)). there are sets Enk1. Enk.2 k,. k2 E In( k, 7# k2,
such that t, GEnki. t2 e Enk2.
For example, for the real line, we may take Enk to be any interval (a. b] with

rational endpoints and of length 1/n. We note also that the requirement in (ii) (a)
that lim F, = 0 maybereplaced byPr {N(lim Fn) = 0} = 1, but this ofeourse,
depends on the process as well as the structure of T.
The proof of Korolyuk's theorem given for the real line now generalizes at

once to apply to a point process on a space T possessing a dissecting system.
This is easily seen from the following lemma.
LEMMA 2.1. Consider a point process on a space T posse.ssing a dissecting

system C = {Eflk}. With the above notation for E ce C. k e In. write hnk = 1 if
N(Enk) > 0. Ink = 0 otherwise. Let

(2.2) \n= nk
kel,

Then

(2.3) -n I'N*(E) . cc with probability one,

as n1 c.
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Further, if x* = 1 when N(Enk) > 1 and X* = 0 otherwise, and if N(E) < or
with probability one, then

(2.4) E
, X1*---1(E) with probability one.
kenkEI~

asn r.-
PROOF. It is clear that N., < N(E). On the other hand, if x) _ N(E) _ rn.

there are points tl, tm' where events occur. For large n, these are eventually
contained in different sets Enk and hence NV' > in. Equation (2.3) follows by
combining these results.
The second part follows by noting that since (with probability one) only a

finite number of distinct events occur, they are eventually contained in different
Enk sets when n is large, and thus for such n, n* = M(E).
By using the first part of this lemma, Korolyuk's theorem follows as for the

real line by a simple application of Fatou's lemma. Stated specifically we have
(see [2]):
THEOREM 2.1 (Generalized Korolyuk's theorem). For a point process. with

a-finite principal measure. on a space T possessing a dissecting system. woe have
a(E) = &N*(E) for all E E S. In particular if there are no multiple events. then
the principal and parametric measures coincide on S.

If )( ) or M(.) is absolutely continuous with respect to some v-finite measure
v on T. then under the above conditions the densities d2/dv, dp/ldv coincide a.e.
This reduces again to the usual statement of Korolyuk's theorem for stationary
point processes on the line.
A point process on T is called regular (orderly, ordinary-of [20], [5] and

especially [2]) with respect to a dissecting system a = {Efk} if

Pi.{N(Eflk) > 1}0.(2.5) lim sup =0
n-x k Pr {N(Enk) > I}

(For simplicity. we shall always assume Pr {N(Enk) > 0} :& 0 for any n, k.) This
definition applies to a point process which may conceivably have multiple events.
However, the next result shows that in fact regularity precludes the occurrence
of multiple events under simple conditions on T.
THEOREM 2.2. Consider a point process (allowing multiple events) on a space

T possessing a dissecting .systemr1 W. Suppose the process is regular and that there
exist En e W, En T T such that 2(En) < c. Then, with probability one, the process
has no multiple events.

PROOF. Let E e 6 be such that x(E) < oc>. Write again M(E) for the number
of multiple events in E. Then by Lemma 2.1, 11(E) = lim,, Y2keI Xnk (with the
usual notation). where X*k is one or zero according as N(Efk) > I or not. Hence.

(2.6) GM(E) < lim inf [ E Pr {N(Enk) > 1 }]
n kc-In

. lim inf Pru {X(Enk) > 1} Pil. {N(E) > 0}
n -7 P{. (Ek) > jE,
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which is zero since by regularity the first term in the braces tends to zero, and the
sum does not exceed A(E) < oc. Since &M(E) is a measure on Y, &M(T) =
limnO, &M(En) = 0. and hence, M(T) = 0 with probability one.
A converse result of Theorem 2.2 is "Dobrushin's lemma." A general form

of this given in [2] assumes a "homogeneous" point process-for which T
possesses a fundamental system W of dissecting sets such that Pnk(O) =
Pr {N(Efk) > 0},Pnk(1) = Pr {N(Enk) > 1} are each dependent on n but not on

k for Enk E W. This assumption does not imply stationarity of the point process
(indeed there may be no "translations" defined on T), but it may well be that
the only interesting homogeneous processes are stationary ones. We give a less
restricted result below. It may still be of greatest interest in the stationary case,
but it does allow considerable variation in the quantities pk (°),pk (1) for fixed n.

Specifically to obtain Dobrushin's lemma, we shall assume the existence of a
dissecting system 'a = {Enk} for which there is a sequence {On} of nonnegative
real numbers, and a function 4)(O) -- 0 as 0 -+ 0, such that for each n

(2.7) On - Pr {N(Enk) > l} _ (fn)Pr {N(Enlk) >0}
for all k.
THEOREM 2.3 (Generalized version of Dobrushin's lemma). Consider a

point process without multiple events, on a space T possessing a dissecting system
W satisfying (2.7). Suppose A(E) < 00 for some E e 'W. Then the point process is
regular.

PROOF. Using the notation of Lemma 2.1, we have

(2.8) E Xnk N(E), E X -k 0
ke-In keIn

with probability one, as n -+ cc. Since both sums are dominated by N(E) and
&N(E) = IA(E) = A(E) < cc, it follows by dominated convergence that

(2.9) E Pr {N(Enk) > 0} = Y{Z Xnk} - (E) = 2(E),
kern~ keIn

and similarly that

(2.10) E Pr {N(Enk) > 1} 0.
ken,

Hence by (2.7).

(2.11) On E Pr {N(Efnk) > 0} . E Pr {N(Enk) > 1} - 0.
keIn keIn

and thus by (2.9), Ofn-* 0 (2(E) _ Pr {N(E) > 0} > 0 since E e6).
Finally, from (2.7) again,

,p[Pr {N(Eflk) > 1}]<0(n(2.12) su Pr {N(Enk) > 0}j< 4(On ) 0

as n -- oo.
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3. Stationarity generalities

A very great deal of literature exists relative to stationary point processes
on the real line (see Section 4). One expects to be able to say less about stationary
point processes on the plane or in R' (see, for example, [6]). However, there is
quite a good deal that may be said even when T is just assumed to be a (locally
compact) topological group. In this section, we comment briefly on a few aspects
of such results.

If T is a locally compact (Hausdorff) group, the natural a-field Y is the class
of Borel sets-generated by the open sets of T. It is usually convenient to assume
(and we here do) that T is also a-compact, and then Yr is also generated by the
compact sets of T. (It is, in fact, sometimes assumed that T is second countable;
for example, [15]. While this additional assumption may be necessary for some
purposes it does, however, imply that the group is also metrizable.)
For a point process on such a group T, stationarity may be defined in terms of

the invariance of the joint distributions of N(tE,), , N(tEn) for t e T. where
n is any fixed positive integer and the Ei are any fixed sets ofY (tE = {ts: s E E},
ts denoting the group operation). If T is not abelian this gives a concept of "left
stationarity," "right stationarity" being correspondingly defined.

Under (say, left) stationarity, the principal and parametric measures u(.),
A(.) are (left) invariant Borel measures which are regular provided their values
on compact sets are finite ([7], Theorem 641)-which we will assume. Thus, A(.)
and i(.) are just constant multiples of the Haar measure m(.) on T, i(E) =
)m(E), /1(E) = iAm(E), say, for all E E Y, where A and ju are constants, the para-
meter and the intensity of the stationary point process, respectively. Questions
concerning the parameter and intensity in such a setting have been discussed to
some extent in [1]. The general line of argument above is that of [2].

If in addition T possesses a dissecting system W = {Enk} of, say, bounded sets
(that is, having compact closures) and if a stationary point process on T is
without multiple events, then Theorem 2.1 shows that A = pu < cc. This is
Korolyuk's theorem in the stationary case. Further, in such a case it is not
unreasonable to suppose that P{N(Efk) > 0} and m(Efk) are independent of k
(which will hold if, for example, for fixed n the Enk are translates of each other).
Then using the notation of Theorem 2.3 we have, from the proof of that theorem,

(3.1) rnPr {N(En0) > 0} -*A(E) = Am(E)

for E e W, where rn is the (necessarily finite) number of integers in the set I,, and
E,0 is any given Enk for k e I,

But since by definition of 'W.

(3.2) E - U Enk IF.0,
ke-In

it follows that

(3.3) rnm(E.0) = E m(Efk) -m(E),
keI,
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and hence, that
Pr {N(En0) > 0}

(3.4)

as n -+ oX. It is this latter property that the parameter satisfies in Khinchin's
existence theorem. We summarize this as a theorem. For convenience of state-
ment, we will here call a dissecting system W homogeneous if the distribution of
N(Enk) and m(Eflk) do not depend on k for each fixed n.
THEOREM 3.1. Consider a stationary point process without multiple erentes on

locally compact group T. Suppose T is also a-compact. Then there exist constants
i, p such that A(E) = Am(E), ,u(E) = jim,(E)for all E E S. where m( ) is the Haar
measure of T. 0 . A . ,u < oo.

Suppose, in addition. that T has a homogeneous dissecting system ' {Eflk}
of bounded sets E,,k. Then the point process is regular. )l = ,u and

(3.5) lim Pr {N(En0) > 0} ,
n-B m(Eno)

where E&O is any Enk.
COROLLARY 3.1. The stated results hold if the condition that '6 be a homo-

geneous dissecting system is replaced by the requirement that for each fixed n. the
sets Enk are all translates of each other.
The above remarks have been concerned with a stationary process without

multiple events. When multiple events are allowed, the appropriate generaliza-
tions of the real line results occur. For example. ifE is a set ofY with 1(E) < cc

(for example. E compact), and if N5(E) denotes the number of those events in
E which have "multiplicity" s = 1, 2, - then p, = &N,(E)/I(E) is a prob-
ability distribution on the integers 1, 2, we may interpret {pJ} as the "prob-
ability that an event has multiplicity s." If in addition T has a homogeneous
dissecting system W = {Enk} and we choose E e I61 with Iu(E) < oc writing
Xnk = 1 if N(Enk) = s and Xrk = 0 otherwise. then. similarly to Lemma 2.1,

(3.6) E Xnk - Ns (E)
keI,

as n-- x, with probability one. The familiar argument of taking expectations
and using dominated convergence shows that rnPr {N(Eno) = s} --Ns(E)
where Eno is any Enk and rn is the number of points in I, Similarly,
rnPr {N(Eno) _ 1} -- A(E). Thus,

(3.7) p, = lim Pr {N(E.0) = sI N(En0) _ 1}
ne-x

giving intuitive justification to the description of p, as the probability that an
event has multiplicity s (under these assumptions p, does not depend on E).
Further questions of this type are considered in [16] when T = R`. We note that
the above calculation may also be considered as a special case of that in the
next section concerning Palm distributions.
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4. Concerning Palm distributions

For a stationary point process. the Palm distribution P0 gives a precise mean-
ing to the intuitive notion of' conditional probability -given an event of the
process occurred at some point (for example. t = 0)." When T is the real line,
we may write (for certain sets F e E)

(4.1) Po(F) = lim Pr {FIN((-A, 0)) > 1}.

That is. P0 (F) is then the limit of the conditional probability of F given an event
occurred in an interval near t = 0 as that interval shrinks. For example, if' F
denotes the occurrence of at least one event in the interval (0. t] (that is.

v((,X() _ 1}). then P0 (F) = F, (t). the distribution function for the time to the
first event after time zero given an event occurred "at" time zero.

This kind of procedure for particular sets F was used by Khinchin [9] and is
useful in providing an "analytical" approach to such conditional probabilities
(see. for example. [12]). More sophisticated and general measure theoretic treat-
ments involving the definition and properties of P0 have been given by a variety
of authors (for example. [14], [15], [17], [18], [19]). In this section, we shall
use a "middle of the road" approach to the definition of P0 (based essentially on
[14]) which is capable of considerable generality. Our main purpose will be to
give simple proofs for formulae such as (4.1) and its generalizations to include
"conditional expectations" of' functions. Such results have application, for
example. to the evaluation of the distributions of the times between events in

terms of conditional moments [13].
We give the construction of the Palm distribution P0 for stationary point

process on the real line in the manner of [14], though, from a somewhat different
viewpoint. The construction generalizes to apply to point processes on groups
(see also [1i]). but we consider just the real line case for simplicity relative to

the later results.
Consider. then, a stationary point process (without multiple events for

simplicity) with finite parameter A on the real line. Again for simplicity. we take
the sample points co to be themselves the subsets St of T = R1, that is, CO is a

countable set of real numbers (without finite limit points, since 2 < xj). Denote
by .J the Borel sets of T = R' and by E the smallest a-field on i2 making
N(B) = Nt,(B) measurable for each 13 e J. Finally, we shall again write N(s. t)
for N{(.s t]}. the number of events (card {co n (.s. t]}) in the semiclosed interval

(.s. I]'
For any real t. and co e Q. let cot e Q denote the set of points of X translated

to the left by t: that is. if co = {ti}. co = {ti - t}. IfF is any set of 3 and c cE Q.
co = {ij}. say, wve define co* Ec Q to consist of precisely those points ti E cO for
which coi e F. In other words. to form cs*, we "thin" w by retaining only the
points ti such that a), (that is. co translated to ti as origin) is in F. The co* define
a stationary point process formed from some of the events in the original point
process. For example. if F = {w: N(O, t) _ 1}, the new process contains
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precisely those events ti of the old process which are followed by a further event
within a further time I (that is, no later than ti + t). Write NF for the number
of events of the thinned process in the interval (0, 1). that is, card {co* r (0, 1)}.
Then the thinned process has intensity AF = 4NF.
Now this procedure may be carried out for any F e Y. and for fixed cO, NF is

countably additive as a function on E. It follows at once that AF is a measure on
A., and hence, that

(4.2) PO(F) =,A
is a probability measure on A, A= A fN(O, 1). This PO is the desired Palm
distribution.
To give. PO an intuitive interpretation, one wishes to prove relations such as

(4.1). Equation (4.1) is not universally true, however, as can be seen by con-
sidering a "periodic" stationary point process in which the events occur at a
regular spacing h, where the distance to the first one after t = 0 is a uniform
random variable on (0, h). For this process take F to be the occurrence of at
least one event in the open interval (h - , h). Clearly. Pr {F | N(-, 0) _ 13 =
1 when 3 < ij. But N, = 0, and hence PO(F) = 0.
We give now a class of sets for which (4.1) does hold. Specifically, we shall call

a set F e .7 right continuous if its characteristic function XF(W0) is such that
XF (COt) is continuous to the right in t; that is XF (Ca) -_ XF (a),) ass 1 t. Equivalently,
this means that for any t, if (fl E F then as e F when s is sufficiently close to t on
the right, and conversely.
THEOREM 4.1. Suppose F e 7 is a right continuous set. Then

(4.3) Pr{FIN(-6,0) > 1} - Po(F)

as bj.0.
PROOF. Let 3m be any sequence of nonnegative numbers converging to zero

as m -xcc. Write rm for the integer part [3m- 1] of 3 1. Divide the interval (0, 1)
into rm intervals of length 6m (with perhaps an interval of length less than 5m
left over). Write Xmi = 1 if N((i- 1)m, ibm) > 1, Xmi = 0 otherwise, i =
0, 1 . rm. Let

(4.4) Nm = E XmiXF(CWi5_)

Then Nm denotes the number of intervals ((i - 1)3m, ibm] containing an event
and such that the translate Wjidm is in F. But by the right continuity assumption,
if an event occurs at to, then Cwoto E F if and only if Coim e F for that interval
((i - 1)3m, ibm] containing to when m is sufficiently large. Further, with prob-
ability one, when m is sufficiently large the events all lie in different intervals
and there is no event in the last short interval. Hence. with probability one,
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N,,, NF as m -* cc. Since Nm _ N(O, 1) and &N(O, 1) < cc, it follows by
dominated convergence that &Nm, AF as m -- x. That is,

(4.5) Pr{Xmi = 1, Wib -F} AF
i= 1

or by stationarity, rmPr {XmO = 1, co e F} AF. But

(4.6) Pr {Xmo = 1, CO e F} = Pr {FI N(-6,O°) _ 1} Pr {N 6m, 0) > 1}
Hence, since rm 3 1 and Pr {N(m 0) l 1} - m' we have

(4.7) Pr{FIN(-6m,0) > 1} PO (F),
as required.
As an example, consider the set F = {o: N(0, t) _ r}, r = 1, 2, * This is

easily seen to be right continuous, and hence the theorem applies. In this case,

(4.8) Po(F) = lim Pr {N(O, t) _ r|N(-6, 0) _ 1}

is interpreted as the distribution function for the time to the rth event after time
zero, given an event occurred "at" time zero. (Note that at least r events
occur in (0, t) if and only if the time to the rth event after time zero does not
exceed t.)

Similarly, if we take 0 < t, . t2 .-< tk, 0 _ r1 . r2 * < rk, and

(4.9) F = {wo: N(O, t1) _ r1, N(O, t2) _ r2, * * , N(O, tk) _ rk},

then F is right continuous, leading to what could naturally be termed the joint
distribution function for the time to the r1st, r2nd, *, rkth events after the
origin given an event occurred at the origin.
The convergence in Theorem 4.1 does not occur for all F e Y in general.

However, we may regard the probability space Q as consisting of real integer
valued functions increasing by unit jumps where events occur, and consider it
as a subspace of D, the space of functions with discontinuities of the first kind
(see [3]) where D has the "Skorohod topology." Then Theorem 4.1 may be
shown to imply weak convergence of P, = P( * N(-6, 0) > 0) to P0.
A slightly different definition given by Matthes ([14]) does give convergence

similar to Theorem 4.1 for all F E F. Specifically, let s = s(co) denote the time
of the first event prior to the origin. Then instead of P,(F) = P{CO: O e
FIN(-6, 0) > 0}, we may consider Pa (F) = P{w: cow eFIN(-6, 0) > 0}.
That is, the "origin is moved" slightly to the point s of (-6, 0), where an event
occurs. Then the following theorem (which is virtually identical to that of [10],
Section 1(f)) holds.
THEOREM 4.2. For each F e .Z,

(4.10) P,5*(F) PO(F)
as 6 1 0 (hence the total variation of P,* -PO tends to zero 6 l 0).
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PROOF. This can be proved as in [10], Section 1. However, a very easy
proof follows by a simplification of the method of Theorem 4.1. In fact, using
the notation of that proof, we consider N* (instead of Nm), where

V*(4.11 ) 0 m = E XmiXF(Wsmi)

with smi denoting the position of the last event prior to (or at) ibm. (A contri-
bution to the sum only occurs if this event is in ((i - 1)6m, ibm].) Then. with
probability one, N* converges to the number of events ti E (0, 1) for which
co,, e F. It follows as before by dominated convergence and stationarity that
rmPr {XmO = 1. c, e F} -+ AF. from which the desired result follows (for any
sequence 4m10) using the fact that Pr {.N("-t6m. 0) > 1} I/rm.
The fact that the limit in (4.10) holds for all F e Y is, of course. more satis-

fying than that in (4.1) which requires "continuity sets." However, the definition
of' P* is more complicated than that of Pa and the limit in (4.1) may be more
useful in practice. The difference between P, and P,* is. of' course, slight (but
we feel it worthy of exploration).
Theorems 4.1 and 4.2 concerned conditional expectations of the function XF,

given an event near the origin. One may ask whether similar results hold for
other functions. To answer this in relation to Theorem 4. 1, we will call a measur-
able function 4)(co) continuous to the right if 4(w0) is continuous to the right in t.

Before stating the generalization of Theorem 4.1. we give a lemma (the result
of which is contained in [14]) which is useful in a number of contexts.
LEMMA 4.1. If 4,is a measurable function on £2 and 4 is either nonnegative. or

integrable with respect to PO. then

(4.12) A fJOdP0 = -{E )(cowj): tj c (co .(O. 1)}.

The statement of this lemma. when X= Xr F E Y, is just the definition of
PO(F). Its truth for nonnegative measurable or P0 integrable 4) follows at once
by the standard approximation technique.
The following result generalizes Theorem 4.2.
THEOREM 4.3. Let 4 be measurable (on Q.). continuous to the right and such

that I4)(wt)I < f(w) for all t e (0. 1), where &{ON(0. 1)} < ao. Then

(4.13) e{|IN(-6, 0) > 1} -f dPo
as 61°.

PROOF. The pattern of the proof of' Theorem 4.1 applies, with 4) written for
XF Specifically.

rm

(4.14) Sm = dXmi4) (Ci6) I{4|)((l): tj e c)n (0, 1 )}

with probability one. But IS"I _ (co) * N(0. 1) which has finite expectation. and
thus, by dominated convergence and Lemma 4.1.
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(4.15) { 4dPo = i-1lim &Smf ~~~~~m- 1,1

m- o

since Pr(Xmo = 1) - 'am Arm . This is the desired result (writing N(-m, 0) _ 1
for XmO = I)
COROLLARY 4.1. If 4 is a bounded, right continuous function, the result holds.

For if 141 . K we may take 0(co) = K and &{i/.N(0, 1)} = KA. < oc.
This corollary is similar to a theorem of Ryll-Nardzewski [18] (there two

sided continuity of 0(wo) is required and the condition N(-3, 0) _ 1 replaced
by N(-6, 6) . 1).
COROLLARY 4.2. Suppose &Nk+`(0, T) < c, for some positive integer k,

T > 0. Then

(4.16) lirm &{Nk(0. T)jN(-6. 0) _ 1} = &,ONk(0, 1),

where &,0 denotes expectation with respect to the Palm distribution. That is. the
kth moment of N(O, r) with respect to the Palm distribution is simply the kth
conditional moment (defined as a limit) given an event "at the origin.
The proof is immediate on noting that 0(co) = Nk (0, T) is continuous to the

right, and for all t E [0, 1],

(4.17) 0(oJt) = N0(t, t + T) < N(O, 1 + T) =O(O),
where &{f(co)N(O, 1)} . &Nk+l(0, 1 + T). This latter quantity is finite since it
is easily seen by Minkowski's inequality and stationarity that &Nk+ '(0. s) < cc
for all s > 0.

Finally, we note the corresponding generalization of Theorem 4.2. For this,
the condition required above that 4 be continuous to the right can be omitted,
but the origin must "be moved" to measure from the time s of the first event
prior to zero. We state this formally.
THEOREM 4.4. Let 4 be measurable and such that 14)(co)I < /(a)) for all

t e (0. 1), where &{fN(0. 1)} < ac. Then

(4.18) &{4(w)IN(-I, 0) > 1} W{ dPo
as 6 1 0, where s = s(co) denotes the position of the first event prior to t = 0.
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