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1. Introduction

In recent years many papers concerned with estimation of the rate of con-
vergence in the central limit theorem in Rk have appeared (see [1], [2], [6]-[8],
[10], [13]-[16]). They have significantly extended our knowledge in this area.
We shall mention here two recent results which are most closely related to the
estimate obtained in the present paper.

V. Rotar [14], applying the method of characteristic functions, obtained a
"nonuniform" estimate. It was a generalization of the corresponding one
dimensional result of S. Nagaev [11] which had been extended to the case of
differently distributed summands by A. Bikyalis [9]. Under the assumption
that the summands are identically distributed, Rotar's result can be formulated in
the following manner. IfPn is the distribution ofthe normalized sum n -1/2 S= 1
of nondegenerate, independent, identically distributed random variables with
values in Rk such that ef = 0,° 111 < oo, and Q is the normal distribution
with the same first and second moments as (l,then for any absolutely measurable
convex set E c Rk

(1.1) IPn(E) - Q(E)I . c(k) (A1 ,+ i3)(E) n-

where c(k) depends only on k, A is the covariance matrix of (l and 4A(E) is
defined in formula (3.2) below.
On the other hand, V. Paulauskas [13], applying the method of composition

of H. Bergstr6m [3]-[6] and using the results of the author [16], derived a
bound in terms of "pseudo moments" which, in the notation introduced above,
takes the form

(1.2) IP.(E) - Q(E)I < c(k)v'3n-12,
where

(1.3) v3 = max (V3, V/4), V3= f ( x, x)312 P - QI(dx).
(Here IP - Qj denotes the variation of the measure P - Q.)

563



564 SIXTH BERKELEY SYMPOSIUM: SAZONOV

From the theorem to be proved in this paper by using the method of composi-
tion, both results (1.1) and (1.2) follow (see remarks to the theorem). Further-
more, the resultant bound differs from (1.2) in that v'3 becomes V3 = max (V3,
v3kI(k + 3)) which not only improves (1.2) but also is the best possible result in the
sense that it is impossible to replace the exponent k/(k + 3) by m > k/(k + 3).
It is appropriate also to mention that our theorem is new even in the one
dimensional case where it is an improvement on the classical bound of Berry-
Esseen. Finally we note that although this theorem is formulated and proved for
convex sets E, it can be extended, in the spirit of R. Bhattacharya [7], to sets
of a more general type.

Hereafter the following notation will be used: c, c(k), with or without indices
will denote, respectively, absolute constants and constants depending only on
the dimension k (the same symbol may be used for different constants); ' will
denote the class of all measurable convex subsets of Rk (by measurability we
always mean absolute measurability); gk denotes the set of all nondegenerate
probability measures on Rk with mean zero and finite third moments; Itj for
any signed measure it on Rk denotes its variation; finally, for T > 0, NT (and (PT)
will denote the normal distribution (and its density) with mean zero and
covariance matrix T- 2I, where I is the (k x k) identity matrix. In addition, the
partial derivatives (0/1x.)f, (02/ax.Ox,)f, ... for any differentiable function
f on Rk will be denoted, respectively, by O'f, O , ,f, * , for the sake of brevity.

2. Some lemmas

In proving the theorem, we shall use a series of lemmas to which this section
is devoted.
LEMMA 2.1 For any probability measure P on Rk

(2.1) sup IP. (E) - N1 (E)I
EeW

=< 2 sup |[(P - Nl)*NT](E)I + 24 F[[(k/2) 2

T-
Eet L J/2

Lemma 2.1 can be proved in exactly the same way as Lemma 2 in [16]. The
only difference is that instead of the bound used there for N1[b(E, ± h)], where
6(E, h) = Eh - E, 5(E, -h) = (Ec)h - Ec, and A', h > 0, for any A c Rk is
an h-neighborhood of A, it is necessary to use a more precise estimate which
follows from the results of B. von Bahr [2], namely, for any measurable convex
set E for all h > 0

(2.2) N (5(E, + h)) < 2 F[(k + 1)/2] h.

REMARK 2.1. It may be that the dependence of the right side of 2.2 on k is
unnecessary, that is, that a bound of the form

(2.3) N1(b (E, ± h)) < ch,

is valid, where c is an absolute constant. In any case, this is true for spheres.
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Indeed, by immediate calculation one is easily convinced of the validity of 2.3
for spheres centered at zero. From this and the formula representing the non-
central X2 distribution in terms of central x2 distributions (see, for example,
[17]), it follows that for a sphere S with center at (a1, * ak) of arbitrary
radius t

(2.4) N1(6(S, + h)) < e-a2/2 E - (-2 N(')((S('), + h)) _ ch,

where a2 = 1 a, N() is the (k + 2i) dimensional normal distribution with
mean zero and identity covariance matrix, and S(i) is a sphere in Rk + 2i of radius
4 with center at zero.
LEMMA 2.2. If {ti}, for i = 1, 2,*, is a sequence of independent random

variables with common distribution P E gk, Pn the distribution of the normalized
sum n- 1/2 Si l cj, and Q the normal distribution with the same first and second
moments as P, then

(2.5) sup IPn(E) - Q(E)j . cj(k)i3n-122 n = 1,2,
EeW

where

(2.6) 13 = |P - QI(x:(A-x,x) _ 1) + J x)> (A1X,X)312lP - Qj(dx)
and A is the covariance matrix of the distribution P. The constant c1 (k) _ c'k512.

PROOF. The proof of this lemma differs little from the proof of Theorem 1
in [16] which, as will be clear later, it makes more precise.

First, let us note that it is sufficient to prove the lemma in the case where
A = I. Indeed, let

(2.7) {t t,1, * ,ti,k), i = 1, 2, * ,k}
be elements of Rk such that the real random variables (ti, 1), i = 1, 2, * , k,
are uncorrelated. Denote by A the matrix (ti,j/&112(ti, 41)2). Let P be the
distribution of the variable Ac1 and .P the distribution of the normalized sum
n- 1/2 Si 1 A i. Obviously, the covariance matrix of P is equal to I.

Because AW = W and for any measurable set E, P"(E) = F"(AE),
Q(E) = N1(AE), it follows that

(2.8) sup IP (E) - Q (E) = sup IP.(E) -N1 (E)I.EeW e

On the other hand, since A1 = A-1' ) and A has the identity covariance
matrix, A = (A -1) (A -1)*. Consequently,

(Q-1X X)3/2 = IAxI3, {x: (A-x, x) 1} = A-151
(2.9) {x:.(A-x,x) > 1} = A-1S,
where S is a sphere with unit radius and center at zero and, therefore,
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(2.10) V3 = IP- QI(A-'S1) + JfA-Sf IAxI 3 IP - Ql(dX)

= IP - Nj|(Sj) + X - Nl|(dx).

Now, keeping the notation of [16], we shall indicate only those modifications
in the proof of Theorem 1 of [16] which are necessary for the proof of this
lemma.

In the first place, for any measurable set E

(2.11) |(P - NI)(E)| < 2II- N1|(Rk)
< (JP- Njj(S1) +N|I -NiI(dx)) = 2V3,

so that the lemma is true for n = 1.
We must now bound nI[Uo*(P(.) - Nl,2)](E)| in the following manner.

(Compare (21) of [16]; below, for brevity, we shall put H1 = P(n) - Nl/2.)

(2.12) nj(UO*Hi)(E)j l (f( iji) I[- Ni(dx)
2/2 c1 k312 V3

= 3 nil2
(Here we have used the inequality

(2.13) VsV3, s < 3,
for s = 3, where

(2.14) vs=J, k I II NI|(dX) f ( x sx)2p I(dX),

is the sth pseudo moment of the distribution P.) Analogously, the estimates of
the terms I(Ui*HI)(E)I, for i = 1, 2, * , n - 2, (compare equation (22) of
[16]) are changed to

(2.15) < c1c1(k)k3/2V32 T1
6n t~~~~~,.. n-2

Furthermore,

j(Un-,*H,(E)j nl-/2 E suxp ja1g.-(x)j Lx.1 I-' - NiI(dx),nil .=1~Ia Rk
(2.16)

aug l(x)|I < sup I(P(n. - Nn /2 )(X)| @a xfl Il dx,
by the induction assumption

(2.17) sup J(P(n-) Nn1-,12)(E)I < c,(k)v3(n - 1)-1/2 < 2/2cl(k)i3n- 12,

and it is easy to calculate that, for T > 0
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(2.18) { |q,p(x)j dx <(-) .

In this way, using (2.13), we have

(2.19) I(U.i*Hi)(E)I < 2 cH(k)k112E32T

From formulas (2.12), (2.15), (2.19), and (23) of [16], and Lemma 2.1 it follows
now that for any T > 0

(2.20) sup P(E) - N1(E)I _ a 3 + c(k)T +

where

=
2 k32 = 2f k3/2 + 4 k1/2

(2.21) 3 3
(2.21)

F~~-4[[(k + 1)/2]1
y 24[ F(k/2) J

By placing T = (yIn/fl1cI(k))112 (1/03), in (2.20), we obtain the desired result
in which we can take c (k) to be

(2.22) cl(k) = ply,[I + (1 + e1 ) ]2 = c'k5/2(1 + o(1)) ask -+k o.

The lemma is proved.
LEMMA 2.3. Let I be the (k x k)-identity matrix and let t'(*) be defined by

formula (3.2) (that is, q (E) is the distance from 0 to the boundary of the set E).
For arbitrary E c Rk, x E Rk, A E

(2.23) 1,q(E) - q (E + x) I _ IxI(,) = |k1(E).
The proof of the lemma is elementary and we shall omit it.
LEMMA 2.4. For any probability measure P E 9k with the identity covariance

matrixI,forarbitraryT . 1

(2.24) sup 3 (E) IP (E) - N1 (E)I
. 6sup 3(E)|[(P - Nl)*NT](E)I + c2(k)T',

EeW
where q(-) is the same as in the preceding lemma, and c2(k) _ ck512.

This lemma is essentially proved in [14].
LEMMA 2.5. For all s, t = 0, 1, 2,3; I > 0,

(2.25) jr xls 18tq,(x)j dx < ck 1 t ,
where at is any partial derivative of tth order with respect to x.
The assertion of the lemma is verified by simple calculation.
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LEMMA 2.6. Let E be an arbitrary subset of Rk and let q(*) be defined as in
Lemma 2.3. We put

(2.26) R(X Z) = R (E-y) ( (X- y) - p1(z - y)) dy.
Then, for allT > 0, x, z e Rk

(2.27) IR(X, Z)I |x -ZI,
(2.28) l@tR(x, z)I < ck'12 t = 1, 2, 3,

(2.29) f IY[R(x, z)q9,(x z)]I dz
(cksI2r s t = 0, s = 0, 1, 2, 3,

_5 cksl2Tfs(T + * + rt) t, s = 1, 2, 3,

(CT, S , t = 0, 1, 2, 3,

where 9t is any partial derivative of tth order with respect to x.
PROOF. The inequality (2.27) follows from Lemma 2.3:

(2.30) IR(x, z)l = | ((E - x - y) -t(E - z - y))(p1(y) dy < Ix - zl.

For the proof of (2.28) we note that

(2.31) Rk
' p,(x) dx = 0, t = 1, 2, 3,

and, consequently, by Lemmas 2.3 and 2.5

(2.32) IatR(x, z)l = | (E- y) (p1(x -y)dy

= ||k (t,(E - x) - ,(E - y))%p,1(x - y)dy

fIx| I I @t(,(x)I dx < ck112
Rk

Finally, we obtain inequality (2.29), by a simple computation using (2.27), (2.28),
and Lemma 2.5.
LEMMA 2.7. Let E be an arbitrary measurable subset of Rk and let ,( ) be

defined as in Lemma 2.3. Set

(2.33) i(x) = t,(E - x), R(x) = Rk i(y),1(x - y) dy,

and for T > 0 let

(2.34) h {(x)= N.(E - x) if 0 0 E,
I- N, (E - x) if0c-E.
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Then, for all x e Rk

(2.35) |R(x) - T(x)l _ k"2,
andfor lxi <.T(0)

ckS'2 + TS) t = 0, s = 0, 1, 2,3,
(2.36) l0'[Rs(x)h,(x)]l . cksl2(T-(s-)++ + Tt), s, t = 1, 2, 3,

ct, , t =0, 1, 2, 3.

PROOF. Inequality (2.35) follows immediately from Lemma 2.3:

(2.37) R?(x) - T(x)I = x + z) -T (x)) p, (z) dz _ lzRzp(z)dz < k1"2.

Let us bound Iis(x)@t'h(x)I, s, t = 0, 1, 2, 3. Using the notation (3.6) for
t * 0 because of equation (2.31) and Lemma 2.5, we have

(2.38) jis(x)0'h,(x)j = is(x) at@%plP(y) dy
< is(X) |_ Otp,(y)I dy . IyRsjIat(p(y)j dy

E-x R~~~~~~k

< cks12Tt-s

for all x e Rk, s = 0, 1, 2, 3. From this, in particular, (2.36) follows for s = 0.
Further, noting that if|x| < (0), then0 EE=0 E-x,O 0E => -0 E-x,
and using Lemma 2.5, we have

(2.39) ITs(x)hh(x)I - J ylsp,(y) dy _ ck.12T-s
for all x such that lxi < i(0) and all s = 0, 1, 2, 3. Since, because of (2.35)

(2.40) R-S(x) = (i(x) + R(x) - (x))s _ 2- 1(is(x) + IR(x) - i(x)
. 2s- (Ts(x) + ks12),

it follows from (2.38) and (2.39) that

(2.41) IRs(x)O'h,(x)l _ ck,/2(1 + Tt-s)
for lxl < T(0) and s, t = 0, 1, 2, 3. From (2.41), in particular, (2.36) follows
for t = 0. Finally, the assertion (2.36) for s, t = 1, 2, 3 is obtained by a simple
calculation using (2.41) and the inequality

(2.42) I0tR(x)I < k"2 t = 1, 2, 3,

which follows from (2.28).
The lemma is proved.
LEMMA 2.8. Let Fn be the distribution of the normalized sum Cn =

n"1/2 II=, cj of independent, identically distributed random variables j =
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( -i11 * i,k) with distribution function P E Yk having the identity as covariance
matrix. Then, for any measurable set E c Rk

(2.43) M. = 1(E)IlPn(E) - NI(E)l . Wk"2(k + (k312 + v3)n-112),

where 'q() is the same as in Lemma 2.3, and V3 is defined by equation (2.14).
The proof of this lemma is essentially contained in [14]. Let n, j =

n- 1/2 £= 1 (i j. Using the inequality

(2.44) .I"J3< 4(1 + n-1/2&jc1,JJ3)
for one dimensional random variables (see [12], [14]), noting that

(2.45) gIj113 = JNRk |X|3 F- N1) (dx) + J |XI3N1 (dx) . V3 + ck312,
and defining E by formula (3.6), we have

(2.46) M. = q3(E)I(P - N1)(R)I <.3(E)(FP. + N1)(E)

<- l + |+ x3N1(dx) _ k'/2g( i4l.nI3) + ck312
Rk j=1

. ck1/2(k + n11g2( E 13)) < ck 12 (k + n- 12g 13)

. ck 12(k + (k312 + V3)n-1/2).

3. Formulation and proof of the theorem

THEOREM 3.1. If {Ej}, for i = 1, 2,*, is a sequence of independent,
identically distributed random variables with distribution P E gk, Pn is the distri-
bution of the normalized sum n - 1/2 I% 1 (i, and Q is the normal distribution with
the same first and second moments as P, then for any E E ' with boundary OE

(3.1) PnP(E) - Q(E)I . c(k) I
)3 (E)

n

where V3, A are the same as in Lemma 2.2, and

(3.2) tj (E) = inf (A 1x,x)1/2.
xeODE

The constant c(k) _ ck5.
PROOF. Pursuing the same reasoning as we did at the beginning ofthe proofof

Lemma 2.2 and recalling that in the notation introduced there

(3.3) 8A(E) = inf |AxI = ieinf lxI = ,(AE)xe8E xe5(AE)

we see that for the proof of the theorem it is sufficient to obtain the bound

(3.4) InP(E) - N1(E)j _ c(k) I + 33(E) n-2, n = 1,2,
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where

(3.5) V3 = -NII(S1) + fI~Ix13 - Nil (dx).
Si

For any set E c Rk let

(3.6) if O E'

Obviously, for any measurable E c Rk

(3.7) 43(E)lP(E) - N1(E)I = 3N(E)|P(,)-
= I - N1|(X) <- V3 <-V3,

and, therefore, taking into account (2.11), we have

(3.8) JP(E) - N1(E)l < V3___2 1 + g3(E)'
that is, (3.4) is true for n = 1. We shall show that if (3.4) is true for all values
of n smaller than some fixed value, with constant c(k) which will be made precise
later, then (3.4) is true also for this fixed value of n with the same constant c(k).
In what follows we shall assume n _ 2.
Throughout the proof of the theorem, E will denote a fixed, measurable,

convex set. Let us define the probability measure P(s) by P(.n) ( P(nI12 *). For
brevity, let

(3.9) Hi = P(-)- N'112, i = 1, 2, * * *, n.

In exactly the same way as in [16] (page 186), for arbitrary T > 0 we have

(3.10) (F,-Nl)*NT = Hn*NT =( Ui + nNo)*HI,
where

(3.11) Ui = Hi*N,, Ti = + T i = 1, 2,* * * n 1

Below, we shall assume T 2 1. Furthermore, let

fi (x) = Hi (E -x), i = 1, 2, n *,n1,¢ (x) = t(E -x),
(3.12) R(x) = fA (y)<p1(x - y) dy, R(x, z) = R(x) -R(z),

R1 (x) = R(0, x).

Using the representation

(3.13) t (0) = q(z) + R(x, z) + R1(x),

where

(3.14) q(z) = '(Z) + (4(0) - R(O) - t(z) + R(z)),
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we have, for all i

(3.15) 43(0) (Ui Hj)(E) = 3(0) { ffi(x + y)(p,(y) dy]HI (dx)

= |k [| 3()fi(Z)pi(X z) dz] H (dx)

j1,J2,J3_Iij1!j2!33!il, j2, J3 2 o il ! i2 !j3! (i 2j3)
il +j2 +J3= 3

where

(3.16) Ii(jl1,j2j3)

= |Rk LL| qj'(z)fi(z)Ri2(x, z)qj(x - z) dz] R 3(x)H1(dx).
Rk Rk

We shall now concern ourselves with bounding Ii = (l, j2, j). First of all,
since by Lemma 2.7

(3.17) I-z(0) - R(0) - t(z) + R(z)l < 2k112,
then, taking into account the obvious inequality

(3.18) 'j(z) _ 1 + '3(z), j = 0, 1, 2, 3,

we have

(3.19) lqjl(z)l . 2ji-1(d1(z) + It(0) - R(0) - 4(Z) + R(z)ljl)
< 2l-1(l + t3(z) + (2k1/2)j), j, = 0, 1, 2, 3.

Furthermore, because

(3.20) H() = (P(.) - Nl1,2)(.) = ( N-N)

and (n/i)112(E - z) e %, it follows from Lemma 2.3 and the induction assump-
tion that

(3.21) I(1 + t3(z))fi(z)1
< I1 + tI3[- (E - z)) (Pi- N1)[() (E - z)

< c(k)V3i- 12,
and from Lemma 2.2 it follows that

(3.22) Jfi(z)j < cj (k)v3i- 1/2.
Combining (3.19), (3.21) and (3.22), we obtain

(3.23) |qj1(z)f.(z)j < 2ji-1(c(k) + (2k1/2),Cl1 (k))v3i 1/2

for all jl = 0, 1, 2, 3; i = 1, 2, * * * , n - 1.
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For the bound of Ii(jl,j2, j3) with j3 = 0 we expand the function

(3.24) fjj1,2,i(x) = ,fRk qj (z)fi(z)Rj (x, z)qp,.(x - z) dz

in a Taylor's series to terms of third order and use the relations

(3.25) JfRk H1 (dx) = fRk x.H, (dx) = fRk xuxH, (dx) = 0,
which follow from the fact that the corresponding first and second moments of
P and N1 are the same. We have

(3.26) II(il, j2, 0)

6 |fRk(ujvjX1 , , x. H, (dx)

<spU, jt,,i(X) 1 / H1 (dx)s,upv,w Rk u=l

-< 6 SUp u", j,fi, j2 i(X) |3/2-

Furthermore, since for T _ 1

(3.27) 1 _ /2 Ti, i =0, 1,*** ,n -1,
it follows from (3.23) and Lemma 2.6 that

(3.28) IaU,,Wfjl,2ji(x)I
< sup qj1(z)fi(z) | |3,,w(Ri2(x, z)(p?l(x - z)) dz

_ ckj2'2(c(k) + kij'2C1(k))V3i-1/2A2 (Ti),
where

(3.29) 1i(Ti) = T, ' 0 I

(1IT j=2, 3.

Expanding the function fj, i2, i(x) in a Taylor's series up to terms of first order
and reasoning analogously, we also have

(3.30) IIi(jl, j2, 0)1 _ k1S2SUp IOaUh 2,i(X)Ii3n1I23
X, U

and

(3.31) |0'fJ2 i-"_(x)I _ ckJ212(c(k) + kjl/2c1(k))V3n- 12T -j2.

From (3.26), (3.28), (3.30), and (3.31) we obtain

(3329hj12 9) -< J T/ Ajl|t 2A
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where

(3.33) Ji(jl,j2) = ck(3 +j2)2(c(k) + ki1/2Ci(k))V2n-3I2i-12A (Ti)
fori = 1, 2, - , n-2and

(3.34) J"-1(j1,j2) = ck(l+i2)12(c(k) + ki112Ci(k))V2Xn-lT'i-2.
In order to boundIi(jl,j2,j3) withj3 = l we write the productfj,,j2,i(x)Rl(x)

in the form (with f in place of i2 i for brevity)

(3.35) fRf1 0 + Y OR I(O)x. + y 'RI().,

kkk Ou3, . wR 1(91 x) x.xxw)
6u,v,w= I

k k

+ E OU,f(O)xu Rl(o) + E D Ri(O)xv
u= v=

i k

+ _ E 2wR,(,92)x,x,w
2 v,w= l

1KX
+

029n2U(3x)xuxvR,(x),+ vfZ I

2 u,v=1

(I921 _ 1, t = 1, 2, 3). Using a calculation analogous to that in (3.26), and
taking into account that, according to Lemma 2.6, IR1(x)I . lxi, we obtain

k3/213
(3.36) IIi(l,i2, 1)1 - k (1fl,j2i (0)1 sup U3V,WR1(x)J

x, U, V, W

+ Ilufi1,i2,i(0)l Sup Ja2
x, U, v

+ sup - 3/2.
x,u, v

We now use Lemma 2.6, (3.23), and (3.27) as in (3.28), to bound 'fi 2 i(x)I.
Then taking into account that 18'RI(x)I _ ck 12 (from Lemma 2.6), we have

(3.37) lIh(iJ,j2, l) | Ji(il,j2 + 1), i = 1, 2, , n - 2.

To obtain inequality (3.37) for i = n - 1, it is sufficient to use the relations

(3.38) lIi(l,j2h, l)1 _ sup If,J2,,i(X)lIJ XIxIIH |I(dx)
< sup Ifj, j2, i(x)JV3n 1/2,

x

and then to bound lfj,,j2."(x)I as has just been indicated.
To bound Ii(jl, j2, 2), we use the following representation of the product

iR 2 (with fJl,j2,i = f for brevity)
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(3.39) fR2 =f(O)(R 2(0) + 2 y (R1 2I1)(o)xx+)
k u

+ (Da,RIaXR1)(0) + 2(,,WRl,'Rl
w= 1

+ E'Rl@ 2 wR1) (9219IX)l91X xuxv + ( 2(X

where 19,1 _ 1, 4 = 1, 2, 3. Performing the calculation, analogous to (3.26),
with the use of the inequality IRi(X)I _ xl, we have

(3.40) lIi(il ji2, 2)1

< k312[E1fi2i2,i(0)(sup IRv,X(x)l + 2 sup | a2 wRj) (x)1)
x,u, v x,u,v, w

+ sup Ialfj1,j2,i(x)| 3n-32.
x,u

Now bounding Iatfj,j2i(x)I similarly as in (3.28), using (3.23), (3.27) and
Lemma 2.6, and noting that by Lemma 2.6, IatRII < ck1/2, t 1, 2, we obtain

(3.41) IIi(hl,i2, 2)1 < Ji(il,j2 + 2), i =1, 2, n -2.

For i = n - 1, in exactly the same way as in the case ofj3 = 1, we deduce

(3.42) In-1(jl,j2, 2)1 - Jn-1(jl,j2 + 1)-
Finally, Ij(0, 0, 3) is bounded quite simply. Using the inequality IR1 (x)I < lx

and (3.23), we have for all i = 1, 2, , n -1,

(3.43) II(0, 0, 3)1 _ sup Ifi(x j IXI3IHII(dx) _ c(c(k) + cl(k))V32i-12n-3/2.

We now note that for m _ 0
n-2

(3.44) -Tmi-1/2
dx

(nx)/(x - l)1/2(- -1 + T 2)

< n2, m = 0, 1
l2v/3TnI2, m = 3.

Combining (3.15), (3.32), (3;37), (3.41), (3.42), (3.43) we obtain

[3.45) 3(0)[ ( +Ui *+H((E)

_ ck2[(c(k) + kc,(k))T + k(c(k) + cl(k))yv2n-'
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Passing on now to the bound for L = 0 (0) (N,0 * H1) (E), let us define h/. by
means of equation (2.34). For t(0) _ 1, using bounds similar to (3.26), applying
Lemma 2.7, and noting that

(3.46) 2-1/2 < To < 21/2

(remember that T _ 1), we obtain

(3.47) ILI| SUP ,W,h,h(x)IV3n32 < ckV36 U,V,W

Now consider the case where t(0) > 1. We have

(3.48) L = t3(0) (J + | ) ho(x)HI (dx) = I, + I2
IXI <t(0) 'IXI (0)

and

(3.49) 1121 ~ ~~0) SXI3(O) IH I(dx) fRk Ix3lHII(dx) < V3n 3/2

In order to bound I,, using the representation

(3.50) t(0) = t(0) - R(O) + R(x) + R1(x),

we write I, in the form

(3.51) I3 = Z . Il.I(i, j2,i3),
jl,J2.J32O 21-2!j3!
jl+j2+j3=3

where

(3.52) (IJl,J2,j3) = (t(0) -R(O))ij ,f Rj2(x)h?O(x)Rj3(x)Hl (dx),

and we put

(3.53) fjl,j2(x) = (¢(0)-R(0)y1Ri2(x)h,0(x).
First, let us bound I(jl, j2, j3) with j3 = 0. Expanding the function fj,, 2(X) in
a Taylor's series up to terms of third order and, taking into account (3.25), we
have

(3.54) gIND j,i2')|-|fjjl.j(°)| IH,I(dx)
k

+ E |aVfiIJ2(0) | Ix| x IIHiI (dx)
U= 1 xj 2: 2s(0)

+ - Z U VfJhj2(°) IxUxVIIH1 I (dx)2
, ,=1 IXI 2. (0)
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+ - sup |f, j,j',2(X) fXRk IIH(dx).
U,V,W

Noting, further, that for 4(0) > 1,

(3.55) YE|( Ixul) IHiI(dx) _ km/2 mX03,H1,(dx)
xl (o-4) U=1 Rk

_ k l23n3l m =0, 1, 2,
and using Lemma 2.7 and formula (3.46), we obtain

(3.56) I(jI1,j2,0)j -< sup 1IYfj,,j2(x)lk3/2V3n-3/2 < ck3V3n-312.
lxi <.(O)
t=0,1,2,3

To bound I(jl ,j2,j3) withj3 = 1 (correspondingly withj3 = 2), we represent the
productfjf ,2(x)Rjl(x) = fR1 in the form (3.35)(correspondingly, fj, j2(x)RJ,3(x) =
fR 2 in the form (3.39)). Considerations, analogous to those applied to the
bounding of I(jl, j2, 0) with the use of (2.27) and (2.28), lead to the inequality

(3.57) II(Il,j2,j3)I < ck3iV3n-3122 3 = 1,2.
Finally, according to (2.27),

(3.58) II(°, °, 3)1 - fRkxIX3H1l(dx) _ v3n -3/2.

Combining (3.51), (3.56), and (3.58), we obtain

(3.59) I1I, . ck3V3n312,
which, together with (3.47)-(3.49), yields the bound

(3.60) ILI < ck3-n3,2
From (3.10), (3.45), (3.60), and Lemmas 2.2 and 2.4, we can now conclude

that for T _ 1

(3.61) sup (1 + 'k3(E))|P.(E) - N1(E)I
EeW

_ ck3 3n 1/2 + ck2[(c(k) + kcl(k))T
+ k(c(k) + cl(k))]3n + c2(k)T-

_ co[k3v3n-112 + ((k2c(k) + k1/2)
+ (k3c(k) + k0112)T)32 n-1 + k52T-1].

We shall take the two constants c1 and c2 such that

cl <. c2 _ 2/3,
(3.62) co(2c2' + c2 + c2'2 + c1 + c1c2) _ 1,

j(2c2cj1 + C2) + c'c2 _ 1,
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where c', c are the constants of Lemmas 2.2 and 2.8 respectively, and we shall
require c(k) to satisfy the conditions

(3.63) c2I'k5 < c(k) . cl 2k6.

Then, if V-3n812 < c1k3, we have

n1/2
(3.64) T = > 1,

i~3C11(k) =

and for this value of T the right side of (3.61) does not exceed

c(k)53n12o[k)
3 ck2 +1/ ki1k ~

(3.65) c(k)±3n-l CO + t( + 3 + + c(k))k 12

k5/2 1
+ Cl/2(k) < c(k)3n-112.

If V3n-12 > c1k3, then by Lemmas 2.2 and 2.8

(3.66) sup(I + '3(E))I(P. - Nj)(E)II
EeW 4( vk k3/2 v v ) v

\C1 n'i/2 + C1 n'1/2n/2+ n1/2]

. cn(k) I [c(k) ( ( + c')]

_ c(k)i53n-12
The theorem has been proved.
REMARK 3.1. One can bound V3 (which enters into the formulation of the

theorem and Lemma 2.2) by an expression depending only on the third pseudo
moment V3 (see equation (2.14)).

In order to do this, we shall first prove an auxiliary inequality which is of
interest in itself. Namely, we shall show that there exists a constant c such that
for any probability measure P on Rk

(3.67) |P - N1 (Rk) ck -3/2(f Ix| |P - N I (dx))kl(k+3).
First, let us suppose that

(3.68) 0 < v = |P - N1(Rk) < 2.

Let Rk = R+ u R- be the Hahn-Jordan decomposition of the space Rk with
respect to the signed measure P - N1. We define the probability measure P',
putting

(3.69) P'(E) = V XE(O) + N1(En R+) + P(E r E),2

where XE(X) is the indicator of the set E. Clearly,
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(3.70) r | - Nll(dx) Ir HI Nll(dx) =r k x13(N- P')(dx).

Furthermore, let a be a number such that

(3.71) Ni(Sa) = 22'

where Sa is a sphere of radius a with center at zero. Because

V
(3.72) N1(Sc) = P'(S') + P'(Sc) = 1 -2'

where Sa = Sa - {O}, it follows that

(3.73) f IX13P'(dx) _ a3P'(S,) = a3(NI - P') (S) < x3(N1 P) (dx),
and therefore,

(3.74) f Ix13N1(dx) = 3a|x| (NI - P')(dx) + fa xIX3p(dX)

-< Irk|x(N' - P') (dx).

The inequality

(3.75) IP - Nj(R") 2Ni(Sa) - g(a, k)
( kl(k + 3) =k(k +3(

IX1|31|P_ N, I(dx))J x133N, (dx))

follows from (3.68), (3.70), (3.71), and (3.74). It is not difficult to convince
oneself that g(a; k), as a function of a, does not increase as a increases, and that

23(2-k)/2(3+k)(k + 3)k/(k+3) . 3/2(3.76) g(+0, k) = (F(k/2))3/(k+3)k < k

If v = 2, then the distribution P is singular with respect to N1 and

(3.) R kl(k + 3) k/(k+ 3)(3.77) JIX131p- NI (dX)) > JIX13N, (dX)
> ck3122 = ck312P - Nl(Rk).

Thus, (3.67) is proved.
Let us return now to the notation adopted in the theorem. If V3 _ 1, then,

according to (3.67),

J.P - N(SI) 6k-312vkIl(k+3) < 6k-312V3,
(3.78)

S|xIX3 - N1j(dx) _ V3,
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and, consequently,

(3.79) V3 _ (1 + ck 3/2)V3.
For V3 < 1, according to (3.67),

lF-Nl| (S 1) < ck3/2Vk3/(k1 + 3)IP - NII(SI) . 5k 3I2~(+
(3.80)

Js I3lPlF-N1I(dX) < V3 _ v3I(k+3

and, therefore,

(3.81) V3 _ (1 + 6k 3I2)vk(k+3

Thus,

(3.82) V3 _ (1 + k-312)iV3,

where

(3.83) V3 = max (V3, V31( ))

It is appropriate to mention that V3 cannot be bounded by a multiple of V3.
Indeed, let Px, X > 0, be a probability measure on Rk, defined by

k

(3.84) Px(E) = N1(EnSx) + (2k) 1NN(Sx)x (XE(Yi) + XE(-Yi)),

where yi is a point in Rk whose ith coordinate is

(3.85) = (k x3N (dx) (N1(Sc)1/2

and the remaining are zero. A simple calculation shows that for Px we have
V3 = V3forX > 1, and that V3 -+0asX -oo. Therefore,iV3V-1=Vv3/3(k+3)C O
as X -+ x.
REMARK 3.2. Of course V-3 can also be bounded in terms ofthe third absolute

moments

(3.86) f3 = I lx13P(dx), p3 =
-
|k ixI3P(dx).

Rk i =1 Rk

In fact, because

XIx3.(dX)) (|I lx12P(dX)) 12
(3.87)

X13N<(dx)<(k + 1)k1/2,
Rk

we have

(3.88) V3 = fRk Ix131F - NiI(dx)
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= J X1x3(P + Nj)(dx) . (2 + k `l03,

so that, from (3.82) and the obvious inequality /33 _ k112fX3,
(3.89) j3 _ (2 + ck-')fl3 < k"'2(2 + ck-')3'3.
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