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1. Introduction

The central limit theorem has been presented at various levels of generality
and application, both with respect to types of processes considered and to types
of limit laws considered. The main results of this paper, contained in Section 4,
refer to Markov processes, with a time homogeneous law of evolution, whose
transition probabilities, averaged in the Cesaro (C-1) sense, converge to a
common limit. As indicated in Theorem 2. 1, this is equivalent to the assumption
that the process has a finite invariant measure and the state space is a final set
(in the sense of Doeblin [5]). The results can be extended to processes on inde-
composable sets and this generalization is indicated. Conditions for convergence
to any infinitely divisible law are given, and special consideration is given to
normal and clustering (compound Poisson) distributions.

The method is related to the familiar approach when the state space is count-
able: look at the interblocks between successive returns to a given state, these
being independent with a common distribution when the process is started at
this state. For a noncountable state space the single state of the classical
approach must be replaced by a uniform state set, a notion first used in [4].
Section 2 provides an introduction to the terminology used regarding Markov
processes, in particular to uniform state sets. The interblocks between successive
returns to a uniform state set are identically distributed for the process with a
suitable starting distribution, but are no longer independent. They do, however,
satisfy a pointwise strong mixing condition.

Thus, we need the central limit theorem for pointwise strong mixing stationary
sequences. This was first presented in its general form in [3]. In Section 3 a
revised and expanded version is developed, which is suitable to the present
application.

This study is based upon the comparison of laws of functionals of the process
to laws of sums of related independent random variables. This requires the
notion of asymptotic equivalence of laws developed by M. Loeve; a brief intro-
duction to the subject is provided at the end of Section 2.
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Finally, the results on normal convergence in Section 4 leave the value of the
variance of the limit distribution unclear, and several alternative representations
of this quantity are given in Section 5.

2. Preliminaries

Let (Y, d) be a measurable space and P be a Markov kernel on (X, .4): the
domain of P is X x X, P(x, *) is a probability on sl for each x E ., and P(*, A)
is a? measurable on e for each A E d.
To a Markov kernel P there corresponds a family of Markov kernels Po, Pl,

p2, * * *: P°(X, * ) = b., the unit measure concentrated at x, for each x E T; the
kernel P1 = P, and the P" for n > 1 are defined inductively by

(2.1) PT(x, A) = fPn-1(x, dy)P(y, A).

The Chapman-Kolmogorov equation then applies: for all m, n > 0, x e 7,
A E sX,

(2.2) Pm"'T(x,A) J Pm(x, dy)Pn(y, A).

Let M denote the Banach space of bounded, real valued, measurable functions
on (X, d4) with supremum norm, and let e1 denote the Banach space of finite
signed measures on s with total variation norm. Each of these spaces is a
vector lattice under its natural ordering, and the Markov kernels {PO, pl, P2, ***
define a semigroup of positive linear contractions on M by

(2.3) Pnf(X) = f P"(x, dy)f(y).

Similarly, a semigroup of positive linear contractions on 'D is defined by

(2.4) (pP"(A) = f4(dx)P"(x, A).

For any (p e F and real Borel measurable f on (X, d4), we will use both the
notations | f(x)p(dx) and (pf, according to convenience, to denote the integral
of f with respect to T whenever this integral exists. Note that the expression
(Pf is unambiguous since it can be verified that (TP)f = ((Pf).
When (p = (pP, we say that (p is invariant.
Elements ofa are states, (X, ds) is the state space, and sets in aS are state sets.
The product measurable space HIn0 (V", dTn), where each (V(, A") = (X, Ja),

is the sample space; an element of nH,= 0 X" is a sample value. We denote the
projection of II'=0 X" on its nth coordinate by X,. and call X. the sample value
(or value of the process) at time n.
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For any probability p E (D, a probability Pi, is determined on rlI0Js'- by
the Markov kernel P through the relations

(2.5) P,[XO EAo,* * - Xn e AJ]

fCp(dxO) f P(xO, dxl) .. f P(Xn- 2, dX, - )P(Xn-I 'An)
Ao Al An-

(See the Ionescu Tulcea theorem [9], p. 137).
We say that 'p is the starting distribution of the process probability P,,. When
= 6, we denote P,, simply P, The term "starting distribution p" will be

used only when the measure (7 is a probability. Note that {X"} is strictly stationary
with respect to P,, if, and only if, p is invariant.
The sample space together with the family of process probabilities is a

Markov process. Any real valued Borel measurable function Z on HIn00 (X", SI')
is a random variable. (It is convenient at times to allow complex as well as real
valued functions to be random variables. Also it is common to refer to the
projections X, as random variables, whether real valued or not, and to refer to
the {Xn} as a "process".) We let Eq, E. denote the expectations corresponding
to Pq,, Px, respectively, defined on the random variables. A constructive argument
verifies that, for any random variable Z, the expectation E.Z exists on a measur-
able set and is measurable in x on that set. Moreover, when E, Z exists for
some starting distribution p, then Eq Z = I (p(dx)ExZ.
For any state set A and n > 1, define

(2.6) TAn) = min {oo, k _ 1: E xA(XJ) =

where XA denotes the indicator function of A (XA(X) = 1 or 0 according as x E A
or x ¢ A). We call TA() the nth entrance time of A, and we write TrA for T(1) and
define rT°) = 0. Entrance times play a basic role in the analysis of Markov pro-
cesses. They are H1' 0 i" measurable, and hence are random variables (pro-
vided we allow the value + oo). They are also Markov times (see Loeve [9] for
definition and properties). Let

(2.7) PnA)(x, B) = P_[T(n) < oc°,X(A) E B].
Then the {Pn)} satisfy the Chapman-Kolmogorov equation, and P'A) is a
Markov kernel if, and only if, PX[rT(n) < 00] = I for every x. Now suppose
PX[rCA < oo] = 1 for every x E A. Then we can restrict P') to A x sA, where
sA = {B Ec d: B C A). In this case P(A) = P[A) is a Markov kernel on (A, s1A)
with the iterates PnA) (restricted to A x JaA). We call the corresponding Markov
process the process restricted to A.
A state set A is stochastically closed (s.cl.) if A * 0 and P(x, A) = 1 for

every x e A. If A contains two disjoint s.cl. subsets, then A is decomposable.
Otherwise A is indecomposable (indec.). If A is indec. and contained in no
strictly larger indec. set, then A is maximal indec.
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A state setA is inessential ifPX[T(r) < °o] ° as n -+ o for everyxE X. A
countable union of inessential sets is null. If a state set A is not null, then it is
positive (commonly called "absolutely essential").

Doeblin [5] has shown that, if there is a a-finite measure iu on s such that
i is positive on every s.cl. set, then X can be partitioned into a countable family
of maximal indec. s.cl. sets and a null set. (For a discussion of related conditions
see [4].) Our analysis applies to this situation. To simplify matters, we restrict
the process to an indec. subset ofX and hereafter assume X is indecomposable.
The generalization of our results is then immediate. In particular, limit distri-
butions become weighted distributions over the maximal indec. sets.
A positive, indec., s.cl. set A is a final set if every null subset ofA is inessential.

Hereafter we will assume that X is a final set. In fact, X is a final set if, and only
if, condition (C) of Harris [7] holds: there exists a a-finite measure y on s1(i # 0)
such that p(A) > 0 => PX[z¶() < o°] = 1 for every n and every x E X. (See
Theorem 13 of [14] and confer [8].)
When a? is separable (that is, countably generated) and X is indec., then X

has a final subset differing from X by a null set. (See Blackwell [1] and Corollary
5 of [4].) Now given any countable class of d measurable functions, there is
always a separable sub-a-field a.o of d such that this class of functions is s4
measurable and such that the restriction of P to (X, ao) is a Markov kernel
(that is, such that P(*, A) is slo measurable for A E ao) (see Doob [6]). Thus,
for most of the results that follow the assumption that X is a final set is not
essential to the results, but the statements of hypotheses and conclusions are
considerably complicated without it.

Harris [7] has shown that under his Condition (C) there exists a a-finite
invariant measure iX on X, unique up to a multiplicative constant. The results
that follow depend on the additional assumption that i is finite, and hence that X
has a unique invariant starting distribution (probability) it. Moreover, i always
denotes this invariant starting distribution.(In Section 3 of [4] this measure i
was denoted p.)
From Theorems 7 and 5 of [4], we have the following theorem.
THEOREM 2.1. The set X is a final set with invariant starting distribution X if,

and only if,
in-I

(2.8) -E Pj(x,A) -i(A)
n j=0

as n -+oo for every x E X and A E sl. Moreover, in this case the convergence is
uniform in A, that is 11(1/n) 1"_o'Pj(x, *) - °rl - 0 as n - oo in 4D.
A state set A is uniform if A is positive and if

(2.9) sup I-I E Pj(x, B) - ir(B) -+
xeA, Be.d n j=O

as n -+ oo.
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When s.' is separable, uniform subsets of X exist. Moreover, if any uniform
subset exists, then . is a countable union of uniform sets. But it is possible that
Y has no uniform subset. (See [4] Section 3.)
For any positive A, let iA denote the normed restriction of Xt to A: 7rA(B) =

7t(AB)/t(A) for B E d. (By [4], Corollary 2, rc(A) > 0 if and only ifA is positive.)
For Theorem 14 of [4], we have the following theorem.
THEOREM 2.2. Let T be a final set with invariant starting distribution Xt and

let A be positive. Then

(i) for every starting distribution cp, as n -oo,

T(n) 1
(2.10) X( A ) a.s. P

(ii) for every x E A and state set B,

(2.11) (-) L Pi )(x, B) -rA(B).
j=O

Thus, A is a final set for the process restricted to A, and 1rA is the unique invariant
starting distribution for the restricted process. Moreover, ifA is uniform, then

(2.12) sup |(-)Pi)(x, B) - 7rA(B) -|0
xeA, Be.d n j=O

as n - oo.
The process restricted to positive A is either aperiodic or has a period c, in

which case there is a decomposition ofA into c disjoint subsets A 1, * * *, A, such
that the process moves cyclically through the subsets (P(x, Ai+1(modc))= 1
for every x E Ai and i = 1, * - *, c) and A - U Ai is null (see Doeblin [5] or
Theorem 11 of [4]). Furthermore, the process restricted to any Ai is aperiodic
(that is, it has no further cyclic decomposition) and

(2.13) IIP(Ai)(X,) - iTAill -+ 0

in eD as n oo for every x E X. (See [4] Theorem 12.) We call c the period of A
(where c = 1 if A is aperiodic). Take note that X can be aperiodic, and yet the
process restricted to positive subsets of X may have period greater than one.
We say that A is exponential ifA is uniform and aperiodic. In this case

(2.14) Pn(A) = su IIP(A)(X,A ) -AllA 0

as n -. oo, and it follows that the convergence of the pn(A) to 0 is exponentially
fast (see the exponential convergence case in Loeve [9]).
We will have recourse several times to the following result (stated as Pro-

position 34 and Corollary 7 in [4]).
LEMMA 2.1. Let f be a real valued monotone nondecreasing function on

{1, 2, 3, * * } and set Af(n) = f (n + 1) -f (n). Then for every positive A,
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(2.15) 7r(A)E-Af(TA) = f(l)ir(A) + (1 - 7r(A))E,XAAf(TA)
In particular, E,TAZA= 1/Xr(A) and E,ATA - (2E,_TA - 1)/ir(A), and, for any
r > 0, s > 0,

(2.16) E,,(T' (lOg TA)') < °o °e:.E l(T1'(log TA)) <oo.

A set A is strongly uniform if A is uniform and if SUPXEA EXTA < °O. It is not
clear that strongly uniform sets exist even when uniform sets do, but in [4] it is
shown that sufficient conditions for the existence of strongly uniform sets are
either that sl has a positive atom (as in the countable state space case) or that
there is a uniform set A such that E,(1og TA) < co (equivalently, EAA(TA log TA) <
oc). If C has a strongly uniform set A, then there exist strongly uniform An T
such that X - UAn is null and UAn is s.cl. ([4] Theorem 16).
THEOREM 2.3. (Theorem 17 and Corollary 9 of [4]). Let X be a final set with

invariant starting distribution rc.
(i) If EjTA < oo (equivalently E,A A < cO) for some strongly uniform A, then

n

(2.17) ,B(x) = sup E (PJf(x) - ic(f
is,1flks 1 j=O

is bounded on strongly uniform sets and finite outside a null set. Moreover, /B is
bounded above by a ir integrable function ,B. (The upper 1r integral of , is finite
but / may not be measurable.)

(ii) If ,B is bounded on some positive set, then g contains strongly uniform sets
and E,jA < oo for every positive set A.

In what follows we will study conditions under which sequences of probability
laws are asymptotically equivalent, comparing sums of dependent random vari-
ables to sums of independent random variables with the same distributions. We
will use ., with or without affixes, to denote a probability law. In particular,
Y(Z) denotes the law of the random variable Z, which may also be described by
the distribution function, Fz(x) = P[Z < x], -oo < x < oo, or the charac-
teristic function, gz(u) = E exp {iuZ}, -o < u < oo.
A full discussion of asymptotic equivalence of laws will be found on pp.

371-375 of Loeve [9]. Our terminology differs slightly, and we summarize
briefly. Let {Yn}, {Y,7} be two sequences of probability laws, where Fn, gn and
FX, g9 are the distribution function and characteristic function of Y7n and Y,'
respectively. Then we say the laws Y,7 are asymptotically equivalent to the laws
Y,S, written Y,, - Y,, if the two sequences have the same weak limits for the
same subsequences of subscripts. (Here £W'n and Y£° are always probability laws,
although their weak limits may have variation less than one. We define ,, - Y.'
only for probability laws. Thus, weak and complete equivalence (as defined in
[9]) coincide, since if W- Y.' and Y., -.° as n' -. cc, where Y is a prob-
ability law, (that is, the convergence is complete), then Y- completely as

n' oo also.)
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Now we have Y,7 - Yn'if, and only if, I h(x)(dF.(x) - dF.(x)) -. 0 as n -+ oo

for every continuous function h such that lim._- ± . h(x) = 0. The condition
gn(u) - gn(u) - 0 as n - co for every u is sufficient for Y°n- Y,7' but not
necessary. However, if either sequence {Y,} or {n'} is completely compact (that
is, bounded in probability) and £9,n -2°n' then both sequences are completely
compact and g.(u) - g'(u) -+ 0 as n -+ oo for every u.
Our comparison of laws in most cases will involve an iterated limit. All iterated

limits are to be understood in the generalized sense. Thus, a,, a as n -ooc then
6-. oo if

(2.18) lim supt lim sup, an, = lim inf, lim inf, a., = a.

In particular, we say that distribution functions Fn
,

converge weakly to the
distribution function F, denoted Fn,, .4 F, as n -+ oo then e oo, if, for every
pair of continuity points x, y of F, F., (y) - Fn,G(x) -FP(y) -F(x) as n -+ oo

and then 6 -+ oo. The convergence is complete,.denoted Fn 4+ F, if, in addition,
Var (F"n,) -+ Var (F) as n -+ oo then e -+ oo. Convergence of laws and of charac-
teristic functions in the iterated limit are defined analogously. The weak compact-
ness of laws, the Helly-Bray theorem, and the Levy continuity theorem remain
true for iterated limits, as the reader may verify.

3. Pointwise strong mixing stationary sequences

Let (0Y, A?) be a measurable space, rIH 0 (03, _n) the corresponding product
space, with coordinates ("_, n) = (', X), Yk be the projection of n'3yn on the
kth coordinate and P be a probability on nlg". In other words the sequence
{Yn} is a stochastic process with values in (&, X4). We assume the process is
stationary:

(3.1) P[Yo E Bo, YmE Bm] = P[Yn c Bo*, Ym+n EBm]
for every m, n; Bo * *, Bm X4.

Let .Fn be the a-field generated by Yn, Yn+l, * (the a-field of measurable
cylinders with base inn,IIk). We assume that a regular conditional prob-
ability P(Y0, * - -, Yn; F) exists on go x .... X 3(n X in for each n. This is, for
each F e En, a measurable function of (Y0, * * *, YJ) which is in the equivalence
class of the conditional probability of F given YO, * * *, Yn and a probability on
.Fn for each YO, - * *, Yn. This is always possible if (Y, -4) is a Borel subset of the
real line or a finite or denumerable product of real lines (see Doob [6]). In
Section 4, where we apply the theory of this section to Markov processes, the
regular conditional probabilities arise constructively from the Markov kernel
P(x, A).

Let

(3.2) Pn sup + JP(YO, * , Ym; F) - PFI.i;Yo,...- Y ;FE-F
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Note that the p, are monotone nonincreasing. The results that follow depend
on pn -+ 0 sufficiently fast as n -+ oo.

The next three lemmas parallel Lemmas 7.1 to 7.3 of Chapter V of Doob [6].
The proofs are also similar and we indicate differences only where necessary.
LEMMA 3.1. Let U, V be real or complex valued, where U and V are measur-

able functions of YO, * *, Ym, and Ym+,, Ym+n+, *, respectively. Let r, s > 1
with I/r + 1/s = 1. Then

(3.3) IEUV - EU*EVj| 2pnI'E1IrIUIr.E1IsJV Is.
The right side may be infinite, but then the bound is trivial.
LEMMA 3.2. Let U be a bounded real or complex valued measurable function

Of Ym+n, Ym+n+l, *-- Then

(3.4) |E(U I Y,, Y,)- EU _ 2pn sup IUI,
where the conditional expectation is defined from the regular conditional prob-
abilities introduced above.
LEMMA 3.3. Let f be a real or complex valued measurable function on (OY, AR)

and let Ef(YO) = 0, and EIf(Yo)t2 < oo. Set

(3.5) a2 = Eif(Yo)I2 + 2-( Y Ef(YO)f*(Yy))
wheref * is the complex conjugate offand S denotes the real part of the expression
following it.

If Zpn,/2 < O,then the series on the right converges, 0 o,2 < 00, and

n-1
(3.6) lim EIn-1/2 Ef(Yk)12 = a2

n-oo k=O

If, moreover, either (i) f is bounded and Ip 1/2 < 00 or, (ii) I np, 12 < 0c, then

(3.7) lim {E|f (Yk) 2 -na2} = -2R (Y kE(f(YO)f*(Yk)))n-.: k=O k= 1

where the series on the right converges to a finite limit.
PROOF. The finiteness of a2 follows from Lemma 3.1. The remainder of the

proof is based on the identity
n-i 2

(3.8) E Y_ f(Yk) -nu2
k=O

n-1io
= -2l Y kE(f(Yo)f*(Yk)) - 2n_q Y E(f(YO)f*(Yk)).

k= 1 k=n

The first limit assertion follows upon dividing by n and applying Lemma 3.1 to
the terms in the series on the right. Likewise, the final assertion follows if
E np,1/2 < oo upon applying Lemma 3.1. If, instead, f is bounded and

n < oo then the final assertion follows by applying Lemma 3.2 to the terms
in the series and noting that - npn < oo. To establish this observe that the Pn
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are noninereasing so
n w

(3.9) npn2 . Y p,i/2k Z Pk'2
k=l k=l

and

(3.10) Z npn np:'2(npn'2) < (np,/2)2
Let f be a real valued Borel measurable function on (ON, -) and let

{ - 1

(3.11) St= Y f(Yj), gt(u) = E exp {iuSe}.
j=O

LEMMA 3.4. For any positive integers k, e, m, real b, c and real u # 0,

(3.12) jgm(u) - (ge(u))mj
< 2IulE1I2 (min {IS - cl,})

(mIuIEl'2(min{Sk -bl, }) +

PROOF. Let 1 . v < m andj = [tv/k] (ifj = 0, then the summation in the
following expansion vanishes by convention and only the last two terms remain).
Elementary computations yield
(3.13)

Ig(V+l)(u) -g(U)geV(U)I
=E exp {iu(S(v+ 1) -c)}-E exp {iu(St - c)}E exp {iu(St(v+ 1) -Se))

j-l
|E [E(exp {iu(S? - c)} - 1)(exp {iU(Se+(i+l)k - S+ik- b)} 1)
i=O

* exp {iu(S?(V+ 1) -S+(i+ l)k-(i + 1)b)}
- E(exp {iu(S - c) -1}E(exp {iU(St+(i+l)k - S+ik -b)}- 1)

* exp {iu(S(V+ 1) - S+(i+1)k - (i + 1)b)}]
+ E(exp {iu(St- c)} - 1) exp {iu(S(v+ 1) - S+ jk - jb)}
- E(exp {iu(Se - c)} -1)E exp {iu(St(v+ 1) -S+ jk -jb)}1

Applying Lemma 3.1 to the above expression, while observing that exp {iuz}-
I I_ lu| min {IzI, 2/|uI}, we obtain an upper bound of

j-1

(3.14) y 2p 1'2E112(exp {iu(Sg- c)}l- 1)2E1/2(exp {iu(Sk - b)} - 1)2
i=o

+ 2p j2E"2(exp {iu(Se - c)} - 1)2

< 2IulE1/2(min {IS, -c,ci

* (Z.Pi2 IulE1/2(min{Sk - bl2}) +pU/2)
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Applying this bound to the absolute value of each term in the expansion
rn-i

(3.15) g,m(u) -(g(u)) =m (g6(V+l)(u) - g6(u)g6v(U))(g6(U))mvl
v= 1

completes the proof.
We are now in a position to transpose the central limit theorem for independent

random variables.
Let fl, f2, * * be real valued Borel measurable functions on (V, X) and let

Snz =~-2;f-O(Yj). Let F,,n and g,,e be the distribution function and characteristic
function of 8,,n. respectively. For any constant r > 0 (arbitrary but fixed) let

(3.16) a,n, = { xdF,, (x), F ,,,(x) = Fn,,(x + a,,,n),

an= a,,,{, l + Z2dF.,(x)

x y2(x)= f I + y2dF, e (y).

Here and in what follows, we use the notation [z] for the largest integer in
(that is. less than or equal to) a real number z. Also, $o*m denotes the mth
convolution of the law Y.
The above notations follow closely those for the general case of the central

limit theorem as given in Loeve [9].
THEOREM 3.1. Let EpX 2 <X and f,,(Yo) -O* 0 as n -

(i) If lim sup, lim sup, (kn/f) Var (Tn,, ) < X, then t(Sn,kn) - *[kn!t](Sn e)
as n - oo then t' -+ oo. Thus the possible limit distributions of Yf(Sflkn) are

infinitely divisible and Y(Sn,,k) -+ Y with characteristic function

(3.17) g(u) = + eiux 1I 2 2 Pd(x)3g (u) =

I + x 2 ~~x 2

if, and only if (k,,1/)Cn,, -,a, (knl/f)TnP,,6 . T as n -* oo, then f -- cc.
(ii) If the laws f*[kn/6](Sn,, ) are completely compact, then (knl/t) Var (Tn,) is

bounded.
PROOF. Under the hypothesis in Section 2, we have for all f _ fo sufficiently

large that
z2

(3.18) lim sup (k/)0 I +x2dFn(x) = limsup(kn1/t)Var(Tn,,) _ C < oo.

Then, for f _ to,

(3.19) lim sup (f)E (min ISn,e - an,,, <})_ C (I +±
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Now applying Lemma 3.4, where f = fn, m = [kn/t], k is the eo introduced
above, b = an,eo and c = an ,e we obtain

(3.20) g. e.(U) - (9n (u))m 0

as n -+ oo then t - oo, hence Y(Sn, m) - *'(Sn,e)
Since Sn, k -S,.m contains less than t terms distributed like fn (YO), we have

P
Sn kn-Sn,em -+ 0 as n -- oo for each e. Hence, °(Sn,k.) - Y*m(Sn6) as n -+ oo

then e -+ oo. The remaining assertions are immediate consequences ofthe central
limit theorem for independent random variables. The theorem is proved.
The central limit theorem thus applies in full generality for the iterated limit

as n -+ cc then e - oo. Under weaker mixing conditions, such as ordinary strong
mixing, the limit must be taken as n -. oo and then m -+ oo (where Sn,k 's
approximated by the sum of m independent random variables distributed like
Se and e = [kn/m]) and much weaker results are obtainable (see [3], Part II).

Let AI(!s, a2) denote the normal distribution with expectation #I and variance
a2 and let

ln,41 -n,= f xddP,e(x),

(3.21) kn= ! (j' X2dF.,(x) -a

(Recall that t is an arbitrary but fixed positive constant.)
COROLLARY3.1. LetpZPn2 < oc,kn°- asn oc, limsupelimsupnIh,f eI <

cc, lim supe lim supn or2e < cc and knP[jfn(Yo)j > E] 0 as n - oo for every
E > 0. Then Y (Sn,k) - X(Yn, e, a,6) as n -.ooc then occ.
PROOF. We have

(3.22) P[|PSn, ] _ P [I fn( Yi) > K] -(P[I fn(Yo) g]
The hypotheses then imply that (kn/{)P[ISn,eI >e] -+ 0 as n -+ oo for every e
and every s > 0. The hypotheses also imply that an -+ 0 as n - oc for each
e, and

(3.23) ( !) Var (Tn, e)

< ( -) (LI< (x - a.,)2 dPn,e) + P[-Sn,.-an,l >- r])

_ 2e + (kn)P[USnl > T - lan,1]1

It follows that lim supt lim supn (kn/l) Var (n, e) < cc. The corollary is then
an immediate consequence of the theorem and the normal convergence criterion
(see Loeve [9]).
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NOTE. The condition k"P[If,(Y0)| _ s] - 0 implies that

(3.24) max P[ISf,(j+1)t - Sj,ej _ -. 0

as n - oo for each e > 0. But even this condition is not necessary (as in the case
of independence) for approximation of Y(Sn, k.) by normal distributions. In [3]
an example of this is given for a stationary Markov process on the real line,
where the exponential convergence case applies. The example is easily modified
to a countable state space, as well.
COROLLARY 3.2. Let pp '/2 < oo,andkn-+ oo asn - oo, andletEf (YO) = 0

for each n and lime-. lim,,_ ES = 1. Then f(Sn,kn) X(0, 1) as n -oo
if, and only if, (kn/t,) f X2x2dFfl e(x) 0 as n -ooX then 1 oo for every s > 0.

In particular, if Ef(yo)2 < oo for some function f, then

(3.25) a2 = liM EIE f (Yj) -nEf(YO))

n-exists, where 0 < a2 < c/c. If a>2 > 0, then

(3.26) Y

[( f(Yj) - nEf(Yo) )/$;; ] A(°, a2)

asn -+ oo.If a2 = 0, then

(3.27) ( f (Yj) - nEf(YO)/O O
j=o

while if, in addition to the above hypotheses, either f is bounded or E np1 2 < co,
then the sums 1.o f(Yj) - nEf(YO) are uniformly bounded in probability and
quadratic norm.

These assertions all follow directly from Theorem 3.1, the Lindenberg-Feller
normal convergence criterion and Lemma 3.3, since

(3.28) Var (Tn ) _ ES2 +
<

c 2ES2.
EXAMPLE. Let ON = (0, ± 1, ± 2, *--} and {Yj} be a Markov chain with

Po, n = 1/2n+ 1 for n _ O, p,,, = p _,0 = 1 for n _ 1. Then {Y,,} is stationary
with the starting distribution ir{0} = 1/2 and ir{ ±n} = 1/2n+2 for n _ 1. Thus
E,gYo = 0 and EnYO2 is positive and finite. Also Pn 0 exponentially fast. In
this case a2 = 0 and we have Ej%-I Yj uniformly bounded in quadratic norm.
Moreover, Y,,(1j-oYj) converges as n - oo to a noninfinitely divisible limit.

Now, if b n°°,then VI-o' Yj/b. + 0, but we will have (k1/t)TP, -c+ 0 in the
iterated limit if and only if lim inf (bn/ kn) > 0, and this is the condition needed
to bound (kn/t') Var (Tn, e) as n - oo then te- oo. Thus the assumption of
boundedness of (k/t) Var (Tn, e) or some similar condition is required for
Theorem 3.1. This assumption is incorrectly omitted from Theorem 17 of [3].
COROLLARY 3.3. Let E pl/2 < oo, kn-°° as n - oo and Bn E E satisfy

(3.29) lim sup knP[YO e Bn] < c°.
n
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Let S -= 7 I XBg"(YJ). Then Y(S.,k.) - Yt as n - oo then 1 oo, where
7n, I is the law with characteristic function

(3.30) hn, (u) = exp {v=qv;1
and

(3.31) qv;n, = (kn)P[Sn, = v].

Moreover, the 1'(Sn,kn) are completely compact.
PROOF. Choosing T < 1, we have that

(3.32) Var (T., ) -P[Sn, t > 0] - 1P[Yo c B.].
Thus (kj/6) Var (T., e) is bounded and Theorem 3.1 applies. The hypotheses also
imply that S. 4P 0 as n co for each 1, hence

(3.33) log gn {(u) = Y (euv - I)P[Sn e = v](I + o(1))
v= 1

as n oo for each 1' (recall g,,e is the characteristic function of S, ). Thus
[knl~]- - sn-+c o

gn't hn,e - 0 as n oo for each e. The complete compactness of YA(,n,kn)
follows since ES., kn = kXP[Yo e Bj] is bounded.
For any random variable S, let med (S) denote any number in the median

interval of S. Let S. = EJ!- O f (Yj). The following lemma is based on inequalities
of P. Levy.
LEMMA 3.5. For any integers 1, m > 0 and any real c,

(334) (1/2 -pe) max ±Sk+ med (Sm-k)} .> c

< P[Sm+ >- + M[ < ]

and

(3.35) (1/2 - p.)P[max ISk + med (S^mk)I _ c]k.m

< P[ISM+t >- - + mP[ISl > 2

PROOF. Let Sk = Sk + med (Sm-k) and

A1 = [S' > c]

Ak = [max Sj' < c, S' _ c], k =2,3,**-
j<k

(3.36) Bk = [Sm+g - Sk+f - med (Sm k) > 0]

Ck = [sk+? - Sk < 2
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Then [maxk<m Sk _ c] = UT= I Ak and
m

(3.37) U AkBk [Sm+e - u U Ck).
k=l k=l

By stationarity, med (Sm-k) is a median of Sm+ - Sk+l and, for k < m,

(3.38) P(Bk |YO, ,Yk-1) _- 2 Pe.

Since Ak is determined by YO, * Yk-1 and since PCk = P[Se < -a/2] for
each k, we have

(3.39) (1/2 - p,)P[max Sk > a] .
<

PAkBk
kSm k= 1

< P[Sm+ e>-2] + mP e < a]

This establishes the first inequality. Applying this inequality with f replaced
by -f, so the signs of all the variables are changed, and adding the two resulting
inequalities yields the second inequality, which proves the lemma.
THEOREM 3.2. Let I p /2 < o, f.(Yo) -O 0 as n - oo and

(3.40) lim sup lim sup k,,Var (T,e) < oc)

Let v,, be random times (positive integer valued rI R" measurable functions on

116(Y") such that v/kn - 1 as n -+ oo. Then Y(S ,Vn) - Y(S.,kn) as n oc
PROOF. If jn = o(kn), then (j/1) Var (T., e) -7 0 as n -oo for e sufficiently

large, and it follows from Theorem 3.1 that, uniformly in 0 < j _ j,

(3.41) S" j- e°

as n -+ oo then e -. oo. Also

(3.42) jnP[lsnt, - c n,|3-]< in , Var (T, e) -°0

as n -. oo then t -+ oo for every 3 > 0. Applying Lemma 3.5 with f = f-cell/,
we have

(3.43) (1/2 - p,)P[max nj + med (S,j._j) > 3]

<_P[ Sn, j'+te - =2]+ inP[ Sn, I LXn,.|> 2]

as n - cothen / oo. But also, by (3.4),

(3.44) max med (Sn,j j) _(in- )LXn,e| o
j;gjn ?
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thus

(3.45) max S" - 0- j) n,t O

in the iterated limit.
Now, since vn/kn -P 1, there exist jn = o(kn) such that P[Ivn - k,I > in] °0

as n -. oo. Letting C(j) = (jn - 2j)0n ,e1/6 for j > 0, C(0) = 0 and Cg(j) =
- Ce(-j) for j < 0, it follows from stationarity that

(3.46) Sn v.
- Sn,k,- Ce(Vn kn) 0

as n -. oo then e -+ oo. Thus

(3.47) Y(Sn vn- Ce(vn - kn) _ knxn,) Y(Sn kn-knt(n)

in the iterated limit. But the S,,, k a-knX,l/e are completely compact (that is,
all weak limits as n -+ oo then e -* oo are complete limits). It follows that, if
Y(Sn,kn) are completely compact, then the knXnele/ are bounded in n for 6
sufficiently large and Ce(vn - kn) -P+ 0 since in this case maxljl <,j Ce(jn)| 0
as n -. oo. On the other hand, if for some subsequence, n', 2(Sn',ik) have a
weak limit that is not complete, then Ikn"any,e/6I -°°c as n' oo then 6 -. oo.

But then IC0(v., - kn') + kn'cn',t,e!l P cc in the iterated limit, and both
Y£(Sn',kn') and '(Sn,vw) lose all mass at + oc as n' oo. Thus Y(Sn,v")
2(Sn,kn) and the theorem is proved.

4. Markov processes with convergent transition probabilities

We assume that e is a final set with invariant starting distribution ir. For
any state set A consider the interblocks between entrance times of A,

(4.1) YA;n (XTA(n,) ,X tA()+ +-1)-

By Theorem 2.2, the YA; n constitute a stationary process with respect to PfA
When A is exponential we also have pointwise strong mixing. Using this device
we apply the results of Section 3 to Markov processes.

Parallel to the notation in Section 4, we let

(4.2) SA;n,e Z_ fn(Xj),
j=O

and FA; n, e and gA;n,e be the distribution function and characteristic function of

SA;n,e, respectively, when rcA is the starting distribution. The quantities aA n,e,
FA;n,e, XA;n and "A n are then defined in terms of FA;n e exactly as the corres-
ponding quantities are defined in terms of Fn,, in Section 3. In particular,
S; n e= Vj-O fn(Xj) and we denote this quantity simply Sn e as in Section 3.
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The notation S4(Z) means the law of the random variable Z (where Z is a
function of the Markov process) when T is the starting distribution.
LEMMA 4.1. Let PiJf -+ 0 in qp measure and in CP' measure for two starting

distributions, qp and <p'. Then -(Sf,kn) Y,I(S.,kn)
PROOF. Under the hypothesis, for any m fixed,

(4.3) X,(Sn,kj) - Y,(Sn,k, Sn,m) = £4Pm(Sn,kn-m)

hence, letting Oim = (p(l/m) Y'm-7 pk

(4.4) f4(Sf kn) Y /m(Sn,kn-m)

.and the same is true for p'. Since, as m -+ oco,
(4-5) (P rn-iP

M k=O M k=O

in (D, the lemma follows by letting n -. oo then m oo .

THEOREM 4.1. Let A be uniform with period c, and f, 0 in Xt measure as

n -. o and

(4.6) lim sup lim sup (k- Var (TA;n,) < °°.

(i) Then SA;flS -. 0 in P!A probability as n - oo for each 6 and

(4.7) 7fA(S.,kkn) ](SA;n ce)

as n -+ oo then e - oo. Thus the possible limit distributions of Y7,A(Snf,k) are

infinitely divisible and 7A(Sn,k) -. Y with characteristic function
Cf. - - ~iux I\1+ x2

(4.8) g(u) = exp iua + leiux d(x)1 + X2) x2

if, and only if,

(4.9) (-)A;n, a(XI) A; n e C T

as n oo then - oo.

Furthermore, for every starting distribution p such that PiJf -+ 0 in qi measure
as n -.oo for each fixed j, Yq,(S.,kn) - YA(Sn,kn).

(ii) If, moreover, either lim sup, lim sup. (k./6)IA;n,tI < oo or lim supe
lim sup, (kn/6)IaA; n,e < oo, then

(4.10) YA(Sl ) A9*knn(A)/e1 (SA; n)
as n -. o thent6-.oo.

(iii) If the laws y*[kn,r(A)Itl(SA;n,e) are completely compact, then (kn/6)
Var T1A;n,e) and (kn/6)IaA;n,|I are bounded.
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PROOF. (i). Since 7rAPj _ (ir(A))-1ir for each j, we have jn(Xj) - 0 inPXA
and in Pn probability for each j as n -+ooc, and it follows easily that SA;, n 0
in PgA and in Pn probability as n -+ oo for each {.

Let {A 1, * * *, A,) be the cyclic decomposition of A into exponential subsets.
Then, for each Ai, 7Af _ C7rA and SAi;n,, = SA;n,ce a.s. P . It follows that

(4.11) - Var (TAi;n,e) _< C , Var (TA;n,ct)-

Thus the hypothesis of the theorem on Var (TA;n, 6) implies the corresponding
hypothesis with A replaced by Ai. By Theorem 3.1,

(4.12) ~ 'r,(~;,nc1) _~y,*cck7(Ai)/e'I(S(4.12) Sn-Ai(SAi;n,knnr(Ai)) 7yAi ( )(Ai;n,e).
Now let vn = min {k: T(k) > kn}. Then v,,/kn7r(Ai) --*1 a.s. Pgi as n

oo by

Theorem 2.2, and, by Theorem 3.2,

(4.13) Y-Ai(SAi;n,v,) "Y1Ai(SAi;n,kf,n(Ai))
as n -+ oc. Let (v.)

(4.14) An = SAi;n,vn Sn,k. - E f.(Xj).
j=kn

Since 7tAiPk+ld -+ 7t in (D as n -+ oo for each k, where d is the cyclic period of e,
the measures 7tAiPn are uniformly absolutely continuous with respect to Xr by
the Vitali-Hahn-Saks theorem, and

(4.15) PgAi[lAnI - E] = P-Aien[jSAi:fl,1j ] 0

as n -+ cc for every £> 0 since ISAi;n,1l _ maxe<cISA;n,ej -+ 0 in P,n prob-
ability. It follows that

(4.16) _°ntA(Sf,kf) 2,*kn1c(Ai)/e](S ;fnl e) = ,*[k.f(A)lceI(SA; n,d)

Starting the process with distribution iCA is equivalent to selecting one of the
Ai at random then starting the process with distribution rCAi. But SA; n,ct has
the same distribution for each of the PA,, i = 1, * * *, c, hence

(4.17) Y-A(SA;n,ct) = YgnA (SA;n,c.).

Applying Lemma 4.1, we now have, as n -+ oo then t -+ oo,

(4.18) =, (Sn, kn) YnA(Sn,k)k n1A )(SA;,ce)
for any starting distribution q such that Pif,, - 0 in .p measure, since Pifn -+ 0 in
both irA and 7rA measure. The assertions in part (i) follow from this and the
central limit theorem for independent random variables.

(ii) Fix an integer i and let e' = c[t/c] - ic for e > (i + I)c. Then ic <
/-' - < (i + 1)cand/l- 1 aste - oo so

(4.19) Y,*[knRi(A)/?](5 , ,y*[knn(A)1e]Sn' ' 12^(S.n
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as n -soo then ( x by the central limit theorem and part (i). We must establish
that

(4.20) ,'*[kA)/I(* ns ( A;n,f) ~An((AA;n,f')
as n -x cc then ' oc. In fact we will show that

(4.21) y*[k.nA/6] (SA;n, -e') Yo,
the law degenerate at 0, which implies the above.

If lim sup, lim sup. (k/{) cI , e6 < co, then this latter convergence is a con-
sequence of the central limit theorem, since, for i sufficiently large,

kn" (A) Var (TA;n,t-e') ° 0

(4.22) k"()(A)

asn-oo then'-+ co.
The hypothesis on aA; n, e implies the corresponding hypothesis on aA;n 6 In

fact, elementary computations show that

(4.23) IOA;n,6 - aA;n,61f _ Xd-FA;n,e(X) + (T + T ) Var (TA;n,f)

and, if IaA;n,e < T/2, then

(4.24) d.l<rxdFA;n,((X) _ (2T + 6T1) Var (TA;n, )

The hypotheses imply that aA; n, 6 0 as n -+ oo for each t, and it follows that

(4.25) lim sup (fk) IOA;n eI . lim sup (fk) (IaA;n,| + T Var (TA;n,6))
where y is a constant depending only on T. The assertions in part (ii) follow.

(iii) The assertions in part (iii) follow from the central limit theorem for
independent random variables, and the theorem is proved.
Let

QA(x, B) = PX[TA > n, Xn E B]
(4.26) o

QA(X, B) = E QnA(X, B).
n= 1

The QA(x, B) is the n-step transition probability from x to B with a taboo on A.
LEMMA 4.2. Let A be positive. Then 7c = 7r(A)7tAQA*, hence, for any 7r inte-

grable f,

(4.27) E,A ( f(i)



CENTRAL LIMIT FOR MARKOV PROCESSES 503

PROOF. Consider the identity
n rn-\

(4.28) E QA(x, B) = P(x, B) + f P(x, dy) Q(y, B))
j= 1 J-A j=1J

Integrating with respect to x, we have

(4.29) t( E QjAB) = 7r(B) -(1 + 7t(A))X-A(E QJAB)

or

(4.30) 7t(B) = 7r(A)7EA( QJAB) + (1 - 7t(A))7E.%7AQnB.

Since QA(x, B) _ PX[TA_ n] -+ 0 as n -+ o for every x, the last term con-
verges to 0 by the dominated convergence theorem. Thus it = 7r(A)7EAQA.
Now, since 7tAPtA = 7iA by Theorem 2.2, the monotone convergence theorem

implies forf _ 0,

(4.31) EffA f(Xi)) = E'A( E f(Xi))

= | 74(dX) (EYE X[?A.jlf(XJ))

= 7tA(dX)QAf(X) = XA=J - i~~~rA'

The last assertion then follows from the linearity of E"CA and iX, and the lemma
is proved.

Proceeding as in Section 3, we let

k kan xfdPA;fnl1(x)PA;n,e= If -A;n,{ = ; XIAnb

(4.32) 2 kn r
2

(A;n,2 ( X2dPA;n,?(X) - a ;n,1A;~~~Jx <rA
COROLLARY 4.1. Let A be uniform with period c,

(4.33) lim sup lim sup |IA;n c| < °°, lim sup lim sup a2 < °°

and knPnA[ISA;n,,1I > 8] 0 as n -+oo for each e > 0. Then,for every starting
distribution cp such that PJfn - 0 in q measure for each fixed j, Yq,(Sn,kn)
-A'"(IA;n,,;n,) as n - oo then e -+ oo.

As in the proof of Corollary 3.1, it follows from the hypotheses that
(kn/l) Var (TA;.,n ) is bounded for t sufficiently large.
The conclusion then follows from parts (i) and (ii) of Theorem 4.1.
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COROLLARY 4.2. (i) LetA be uniform, kn -°O as n - cO, nfn= Ofor each
n, and

(4.34) lim lim kn( ETASifA,G = 1.
e-oo n-00 ?I R ;n

Then YnA(Sn ,kf) -X A(0, 1) as n -. oo if, and only if,

(4.35) (!n)L. X2dFA;n,(X) O0

as n -+ oo then e -+ oo for every e > 0.

(ii) In particular, if A is uniform and f is iX integrable and satisfies
EgI(Aj (f(Xj) - 7rf))2 < oo, then

(4.36) k(Nf) = lim (_ E [E (f"(XA) - ]

exists, where 0 < a2(f) < oo, and, for every starting distribution c,

(4.37) n[f Xj -nf)] 4 A'o, a (f)),

as n -4 oo (where tq(O, 0) denotes the law degenerate at 0).
PROOF. As in the proof of Corollary 3.2, the hypotheses imply that

(k./t") Var (TA;n,V) is bounded for e sufficiently large. Since nfn = 0,

(4.38) (k.) la,el = (k) LR XdFA;n,e

The assertions in part (i) then follow from Theorem 4.1 and the classical
Lindeberg-Feller theorem.
Now if A has period c, let A1, * * A, be its exponential subsets.
The hypotheses in part (ii) of the corollary imply

tAf-, 2 TA -1 _2

(4.39) nEA [ (f(Xj- irf)] CEXA[Z (f(X3) rf) < O.

Then Lemma 3.3 implies that
7r(A(t) f)

(4.40) a 2 = lim EEns [ (-f(Xi) f)]

exists, where 0 . a2 < oo. But
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(41) [ .)7 (Ai)E [f 1 (f(Xj)

(4.41)E~~~~~~~ (cV-1f)2Xi A Ef(f (tA) - f)
and, letting e' =cel]

(4.42) E-A[ - (f(Xi) - f)] - EXA[ (f(Xi) -if)]
j=_o=

< (C 1)2EfAZ fX)- f]

It follows that u2 = a2(f) (as defined in the corollary).
The convergence to a normal or degenerate limit follows directly from

Theorem 4.1 and the classical cases, or (when a2y(f) > 0) by applying part (i) of
the corollary with kn = n and f, = (no2 (f))1N2(f - xf)
The next result provides several conditions under which the hypothesis of

part (ii) of Corollary 4.2 may be satisfied.
THEOREM 4.2. Let irf2 < oo and A be positive. Then each of the following

conditions is sufficient to insure that En (.A- 1 (f(Xj) - 7rf))2 < 0c:

(i) f vanishes outside A and irf = 0,
(ii) EjA < 00 (equivalently, E TAz < OC) and supx#A If(x)I < O.
(iii) there exist r, s > 1 with I/r + I/s = 1 and there exists a function g on

{1, 2, 3, *}to (0, oo) such that (a) fX -A If(x)I2r,(dx) < c and, (b) I' l/g(n) <
.oo and, (c) E,g(TA)2l < cc.

In particular, (b) and (c) are satisfied (by some g) if, (d) E"A(TA log TA)2s < oc.
PROOF. Let S = zj?A1 (f(Xj) - rf). Under condition (i), S = f(X0) and

E'-AS2 = 7rf2/7A <cc.
Under condition (ii), TA as well as f(X0) - 7rf have finite second moments

with respect to E"CA' and

(4.43) S|I f(X0) - gfI + (TA - (SPOT If(X)I + I|fI)

The assertion follows in this case upon applying Minkowski's inequality to the
right side.
Now let (iii) hold and let h = XX-A(f(- rf ). Then

(4.44) S = f (XO) - rf + X[TA >fnlh(Xt).

Since f(X0) - 7rf has finite second moment with respect to E RA' it remains to
show that

(4.45) 6 = ElA2 (x[?A>nhh(X.)) < cc.
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Applying Minkowski's and then H6lder's inequalities,

.0
(4.46) _. {EnA(X[tA>fl]h2(Xfl))}"l2n=1

< Y P-A[rA > n] 12s(EX"A h(Xn 1|2r)1/2r
n=1

(h2r)1/2r PiA
<

( A P.[TA = n] 1/2sr(A) n=1

where the least inequality follows since PIA[TA > n] = Pi[TA = n] (see Lemma
2.1) and since

(4.47) E AIh(Xn)I2r = (1/7T(A)) fA E Ih(Xn)12r2,(dx)
< (1/n(A )) E.,Ih(Xn) 2r7,(dx)

7r(A)
Condition (iii) (a) insures that |Iht2r < oc. Moreover,

(4.48) Z (Pz[TA = n])1/2s
x

= Z (g(n))112s- '(P[TA = n]g(n)2s-1)1/2s

_` _ 1 - 1 /2s x _1 12s
< [ (g(n)) [ PL[Tr = n]g(nf)2s- 1

by H6lder's inequality. Conditions (iii) (a), (b), and (c) are therefore sufficient
to establish that 3 < oc.

Finally, if (d) holds, then, by Lemma 2.1,

(4.49) E, (T2s-I log2ST,) = E, (TA log 2s/(2s -)tA) 2s-1 < °c.

Thus (b) and (c) hold with g(n) = n log2s/(2s- 1)n.
COROLLARY 4.3. Let EnA < 00 (equivalently, let E 2z.A < oc) for some

uniform set A. Then for every positive state set B,

(4.50) a2(B) = 7r(B)-3 lim 7(A) E [ - 7(B)61 o

exists, where 0 . a2(B) < oc. and, for every starting distribution f,

(4.51) y( Tn(Tsn)- I R)) °0. 2(B)).
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Moreover,
2 2~1

(4.52) UN(A) = lim E"A -TA
" A 7t(A))

PROOF. For any positive B,

(4.53) L .nKB _(B))n a]
~nl n(B) + a o/-n1

= [fhraY i XB(Xj) > n]

_ [(B) 1/2 n/n(B)+a./n - a(7r(B))3/2
= nL (xBXJ) -(B)) _XB.X

Since EjA[ )Al(XB(Xj) - 7r(B))]2 < by (ii) of Theorem 4.2, the conver-

gence assertions for (gn) follow from Corollary 4.2, the variance of the limit
distribution being 7c(B) -3 times the variance of the limit distribution of
n1/2 yn - (XI X) - 7r(B)). If B = A, then this variance isL 7(A)A))j(4.54) 6(A)-lim ) E [A Y (XA(Xj) - 7(A))

1 (_{
= limtEnA (rA - TA)-

COROLLARY 4.4. Let Bn e d satisfy lim sup kn7r(Bn) < o0,where kn -+ x as
n -. oc and let Sn,e = Xj=-1 XB,,(Xj). Then,for any uniform set A and any starting
distribution cpsuch that pPiBn - 0 as n - oo for each fixed j, ffq,(Sn,k.) X.,,'
as n -+ oo then f oo where n is the law with characteristic function

hn,(u) = exp {vE (eiuv - 1)qA;V;n,}e
(4.55)

qA; v; n, e = g PITA [SA; n,,
= VI

PROOF. Choosing T < 1 in the formulae defining TA;n,6e we have

(4.56) Var (TA;n,e) _ Pn,A[SA;n,e > 0] . EITASA;n,, = nir(Bn)
7r(A)

by Lemma 4.2, for any positive A. The hypotheses then imply that (k"/{)
Var (TA;n , e) is bounded and that

(4.57) (kn a(A;n<k,_ E RASA;n,eS -kn ir(B.)
\ i~= r(A)

is also bounded. The assertion then follows from Theorem 4.1 in the same way
that Corollary 3.3 follows from Theorem 3.1, on considering the characteristic
functions 9A; n, e of SA; n, e -
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5. The variance of the normal limit distribution

In this section f is a real valued measurable function on the Markov state
space (T, sd) and S. != z-- f(Xj). -Corollary 4.2 gives conditions for con-
vergence in law of (Sn- nif)/ /n;to a normal distribution as n - oo. The vari-
ance of the limit distribution, a2(f), is the limit variance of (S,(-) -Tn)rf)
(nr(A )/n)112 with respect to PIA where A is any uniform set such that these vari-
ances are finite. In this section we give conditions under which the variance of
(Sn- nif )/X/;n with respect to PRA or Pn converges to a2 (f
Consider the following hypotheses:
(El) there exists a strongly uniform set A such that E,JA < °;
(E2) E,JA < °° for every positive A and e has uniform subsets;
(E3) EnATA < oc for every positive A and C has uniform subsets.

We have shown that these three hypotheses are equivalent in [4] and hereafter
refer to them simply as (E).
LEMMA 5.1. Let (E) hold and 7rf2 < oo. Let tp be any starting distribution

such that p <<Xr and dp/d7r is bounded. Then, as n - oo, E n7f= n of+o( n/).
PROOF. Let dp/drc . b. Then we have for any number c

rn-l
(5.1) E,PSn -niPf = { E pk(fx[IfI]) - n7r(fX[IfI<cl)}

k=o

+ { n Pk(fX[ifl.c]) - n7r(fX[If,>c])}.

Now by Theorem 2.3, the first bracket is bounded by cpB _ bcn,f < oo and
the second by n(b + 1)7r(IfIX[If >). Since 7Ef2 < oo implies 7l(VIX[If >C) =
o(l/c) as c -. oo, the lemma follows by choosing c = c(n) so c(n) = o( /n) and

r(IfIX[jfj>C]) = o(l//n).
The next result is a small generalization of a lemma of Chung and Robbins

(see [2], pp. 84, 85). Its proof is easy and will be omitted.
LEMMA 5.2. Let U1, U2, *-be uniformly integrable. Then, as n - ,

E(maxkSn |UkI) = o(n).

Letf = f- irf.
For any state set A and k _ 1 let

(A) -1 )TA-
(5.2) ZA;k = E f(Xi), UA;k = f(Xi).

j=A j = TA'-)

Let An = max {k: Tk) < n} and Zj;n = 11n-1 f(Xj) where here and in what
follows we use the convention that for a sum Ij=k tj where k > t, we set

Th=k tj = 0 if k = e + 1 and
k tk-

(5.3) Yt =- E t3 if k > ' + 1.
j=k j=e+ I
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THEOREM 5.1. Let A be uniform and E,WA(UA; J)2 < 00. Then

(5.4) lim () EnA(Sn-nirf)2 = Gj2(f).

If, moreover, (E) holds, then

(5.5) lim (-) E A(Sn - EASn)2 = oU(().

PROOF. To simplify notation we write Zk, Zn, Uk for ZA;k, ZA;n, UA;k,
respectively. We prove the first assumption with the restriction that A be ex-
ponential then indicate how to extend to A uniform. By Lemma 5.2

(5.6) EA(Z)2 < E lA(max {Uk2}) = o(n).
We will show that

tnnr(A)] 2

(5.7) E"A(_ = 0(n).
k=An+ 1

The first assertion will follow since, by Corollary 4.2,
[nn(A)] Zk2

(5.8) linm ( ERA (- zk = a2 (f)

Now the Zk are a stationary sequence with respect to PnA and square inte-
grable. Thus the ZjZk are uniformly square integrable for all j, k. Let Hn

,
=

[|Anln- 7r(A)l > s]. Now in squaring ZnVA)"l Zk, there are at most 21nlr(A)-
An terms ZjZk with ij - < m. Since Aln < n, we have

[nnr(A)] 2 n X0
(5.9) E7tL< 2 j (JZ+)
"A.9En Zk) _2 E E(ZjZj+k)l

An+1 ~j= 1 k=m

n n m-1

+ 1 E(Zj2XH.,.) + 2 E E |E(ZjZj+kXHn 6)I + 2enmE"AZ 1.
j=l j=1 k=l

But )n/n -+ ir(A) in Pf A probability, and it follows that the second and third
terms in the above-expansion are o(n) for each fixed m, £ > 0. By Lemma 3.1,
the first term is bounded by 2n I' m pl/2(A), where the pk(A) converge ex-
ponentially to 0. The relation (5.7) is thus proved for A exponential by letting
n -+ o then e-+ 0 then m - oo in the above expansion.

If A is uniform, then it follows easily that, for any exponential subset Ai of
A, E -A.((UAi; ')2 < oc, and the first assertion holds with A replaced by Ai. That
it also holds for A then follows by the same kind of argument as in Corollary 4.2.
The last assertion follows from the first and Lemma 5.1, and the theorem is

proved.
THEOREM 5.2. Let (E) hold and f be bounded. Then

(5.10) urn (!)E,(s~ - nirf)2 = U2(f).
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PROOF. By (E) uniform sets exists, hence there exist uniform AmT X (see
[4]), and, for each Am,

(5.11) ~~En 2Um l) 1112(.f|| _n,,() < °°-

Thus

(5.12) in () En< (Sn - nirf )2 = a 2

for each m by Theorem 5.1. Also, by Theorem 2.3,

(5.13) f E Pkf < 211f12fl
k= 1

for all n, so the fII 1 pkf are uniformly integrable with respect to it. Now

(5.14)

(1)E.(Snn- f)2 - (An) "A. (S - n7rf)2

(n){A_ Ex(E f (Xk)) r(dx)

- 1 Am( n-)k=O )n kd7r + 2 if (-)[ 2

p n( E Pkf) dir.
The integrands in the first integral are uniformly bounded and those in the
second integral are uniformly integrable, since ir is invariant. It follows that the
difference converges to 0 as m -+ oo uniformly in n and the theorem follows by
lettingn oo thenm oo.

Let rn = S=p1I(fpkf) . Then

(5.15) (!)E.(S. - nitf)2 = 7i(f2) -t- ()Y rk-

Under the conditions of the preceding theorem this expression converges to
(72(f) as n -* oo. When, moreover, ( is aperiodic, the rn have a limit and the
expression simplifies:
COROLLARY 5.1. Let (E) hold, f be bounded and m be aperiodic. Then

(5.16) a2(f) = ir(f2) + 2 E ir(fpnf).
n= 1

PROOF. We have to show rn -. I 1 ir(fP'3f) as n -+ oo. But by Theorem
2.3, the quantities 1|k=O pkfl are bounded by a Xt integrable function, ,B, for
all m. Thus, for m < n and c > 0,

n n -m

(5.17) E pkJ = pm E pk
m 0

< CIIPm(X,. - rli + Pm(f#X[p>cI) + itflX[#>cI



CENTRAL LIMIT FOR MARKOV PROCESSES 511

since 7r(j -m Pkf) = 0. Since X has uniform sets by (E), the (possibly non-
measurable) functions IIPm(x, )- il converge to 0 almost uniformly in x as
m - oo, hence are bounded above by measurable functions gm _ 2 converging
to 0. Thus

(5.18) rn-Tm = 7Ef pkf- < lflil Epkfl
m m

=< jjf]j(cigm + 2FXF[p,>c]) 0
°

as m - oo then c - oo uniformly in n _ m.
The convergence of the rn follows and the corollary is proved.
THEOREM 5.3. Let (E) hold, fb = fX[IfI Sb] and lb = fb - 7rfb for any b > 0.

Let i(f2) < oo and E,,,(Ik =o I(Xk)|)2 < oo for some uniform A. Then a(f) =
limb_.. U (fb). In particular, if X is aperiodic, then

(5.19) UN(f) = 7r(f2) + 2 lim E (fbpnfb).
b-oX n=1

PROOF. IfA is not exponential, then for any exponential subset Ai ofA, the
hypothesis EA.(Eli -1 f (Xk) 1)2 < oo still applies. Thus we assumeA exponential
in what follows. Now by (E) and Theorem 4.2, E"A(A= fb(Xk))2 < °O for every
finite b. Thus

F n-I
(5.20) YIn1 E fb(Xk) N(0,bk(f;))

k=O

as n -. oo.
Similarly, E"A[ k=. (f(Xk) - fb(Xk))]2 < 0o and

(5.21) Y/{n-112E (f(Xk) -fb(Xk)) - (0, N(f -b))
_k=O

Now by Lemma 3.3 and 3.1,

(5.22) 2(f - fb) _ En [E (I(Xk) -fb(Xk))] (1 + 4 1p/2(A))

But the right side converges to 0 as b -. oo. It follows that o}4fb) _ o2(f) as
b -. oo, and the last assertion follows from this and Corollary 5.1.
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