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1. Introduction

We continue the study of strictly ergodic symbolic dynamical systems which
was started in our earlier report [6]. The main tools used in this investigation
are "homomorphisms" and "substitutions". Among other things, we construct
two strictly ergodic symbolic dynamical systems which are weakly mixing but
not strongly mixing.

2. Strictly ergodic symbolic dynamical systems

Let A be a finite set consisting of more than one element. Let

(2.1) X = AZ =H A, An = A forallne Z,
neZ

be the set of all two sided infinite sequences

(2.2) x = {a"In Z}, an = A for all n E Z,

where

(2.3) Z = {nln = O, + 1, + 2,}
is the set of all integers. For each n E Z, an is called the nth coordinate of x, and
the mapping

(2.4) 7r,: x -+ a, = 7En(x)
is called the nth projection of the power space X = AZ onto the base space
An = A. The space X is a totally disconnected, compact, metrizable space with
respect to the usual direct product topology.

Let q be a one to one mapping of X = AZ onto itself defined by

(2.5) 7En(q(X)) = ir.+1(X) for all n E Z.

The mapping p is a homeomorphism ofX onto itself and is called the shift trans-
formation. The dynamical system (X, (p) thus obtained is called the shift dynamical
system.
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Let X0 be a nonempty closed subset of X which is invariant under (p. The
pair (X0, p) may be considered as a dynamical system, and is called the symbolic
dynamical system. We are interested in the case when (X0, () is strictly ergodic,
that is, when (X0, p) is (i) minimal, and (ii) uniquely ergodic at the same time.
This means that (i) for any x0 E XO, the orbit of x0 defined by

(2.6) Orb(xo) = {np(x0) n e Z}

is dense in X0, and that (ii) there exists only one probability measure defined on
the sigma-field Vxo of all Borel subsets ofX0 which is invariant under (p. Strictly
ergodic dynamical systems were discussed by J. C. Oxtoby [9].

Let (X0, p) be a strictly ergodic symbolic dynamical system. Let 4Uxo be the
uniquely determined probability measure defined on the sigma-field -dxo of all
Borel subsets of X0 which is invariant under (p. The map T may be considered
a measure preserving transformation defined on the probability space (X0, RxX,
Pxo). It is easy to see that (p is ergodic as a measure preserving transformation on
(X0, gx, yxL), that is, if B is a Borel subset of X0 such that cp(B) = B, then
either uxo(B) = 0 or pxo(Xo- B) = 0.

It is an interesting problem to study the properties of such an ergodic
measure preserving transformation Tp. All the information concerning the prop-
erties of qp as a measure preserving transformation on the probability space
(X0, Rxo, Mxo) is contained in the two sided infinite sequence xo = {an I n E Z}
for any x0 E X0. It is well known that, for any x0 = {anIn E Z} E X0, the
correlation

1 +m-1
(2.7) (n) = lim- E akak+fn

m-0o m k=t

exists uniformly in ? for any n E Z, and that the correlation function {4(n) I n E Z}
plays a fundamental role in the study of the dynamical system (X0, (p). It turns
out that the triple correlation

Irn+m-1
(2.8) 4(nj, n2) = lim- E akak+nlak+n2m-0 m k=?

also exists uniformly in e for any n1, n2 E Z, and these correlations , (n),
(nj, n2), together determine the ergodic measure preserving transformation (

up to a spatial isomorphism.
The general theory of symbolic dynamical systems was developed by G. A.

Hedlund and M. Morse [2] and W. Gottschalk and G. A. Hedlund [1]. Various
examples of strictly ergodic symbolic dynamical systems were discussed by
S. Kakutani [6], M. Keane [7], K. Jacobs and M. Keane [4], K. Jacobs [3],
and it was shown that many different types of point and continuous spectra can
appear in this way.

It was only recently that R. Jewett [5] succeeded in proving that, for any
weakly mixing ergodic measure preserving transformation Tp' (defined on a
Lebesgue probability space) with finite entropy, there exists a strictly ergodic
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symbolic dynamical system (XO, p) such that the shift transformation p on the
probability space (XO, Vxo, /'x0) is spatially isomorphic with the given trans-
formation p'. This result was further improved by W. Krieger [8] by showing
that the assumption of weak mixing is not necessary. W. Krieger even showed
that the finite set A can be chosen in such a way that eh < IA _ eh + 1, where
JA denotes the number of elements in A and h = h(p') is the entropy of q'.

3. Example 1: Sturmian systems

Let A be a finite set consisting of two elements + 1 and -1. Let a, 11 be two
real numbers, 0 < a, 13 < 1. We assume that a is an irrational number. Let f,,,
f, be two A valued functions defined on the real line R, periodic with period 1,
defined by

(3.1) J) +1 if 0 < s <
(3.1) fp( ) -1 if P <1s < ,

(31*) t*I~,A....J+1 if 0 < . 13,
if 1< .1.

We may consider fp and fp as A valued functions defined on the set T of all real
numbers mod 1. Let us put

(3.2) x= {an I n e Z},
where

(3.3) a= fp(na) for all n E Z,

and XO = Orb(xo) (the closure of the orbit of xo). Then it is easy to see that
(XO, qp) is strictly ergodic and that qp has a pure point spectrum as an ergodic
measure preserving transformation defined on the probability space (XO, Rx,
'x0). In fact, it is not difficult to see that XO consists of all elements xS and x: of
X = AZ of the form

(3.4) xs = {a"(s) In E Z} for all s E T,

(3.4) x* = {an(s) I ne Z} for all s E T,

where

(3.5) a"(s) = fp(s + na), n e Z,

(3.5*) a"(8) = f; (s + na), n E Z,

It should be observed that xs and x. differ from each other only for a countable
number of values of s, that is, only for those values of s E T for which s + na _ 0
or s + na-1 (mod 1) for some n E Z. If we put
(3.6) VI (xs) = i (xs) = s, s E T,



322 SIXTH BERKELEY SYMPOSIUM: KAKUTANI

then / is a continuous homomorphism of the dynamical system (X0, (p) onto
the dynamical system (T, (p'), where p'(s) s + a (mod 1) for any s E T. Since
/ is essentially a one to one mapping, it follows that p is spatially isomorphic
to T', and, since a is an irrational number by assumption, T has a pure point
spectrum as an ergodic measure preserving transformation defined on the prob-
ability space (X0, Rx, yxo)
Now, consider xo = {a, n e Z} defined by (3.3) as a two sided infinite

sequence

(3.7) xo= . a-2, a-, ao, a,, a2, -

If we substitute two successive +1 for each an = + 1 in this sequence while
keeping each a. = -1 unchanged, then we obtain a new two sided infinite
sequence

(3.8) Yo = { b2, b-1, bo, b1, b2,
To be more precise, we first define the two sided infinite sequence of integers
{Uk Ik Z} by

(3.9) UO = 0
2 if ak = +1,lUk+1 ~Uk = l if ak = -1, k = +1, _2,

Then we put

(3.10) $buk = buk+I = 1 if ak = + 1,
lbuk= -1 if ak = -1, k E Z.

This determines the two sided infinite sequence {bn n E Z} uniquely.
Let Y0 = Orb(yo). Then it is easy to see that (Y0, p) is strictly ergodic, although

it is not easy to determine the spectrum of p as an ergodic measure preserving
transformation on the probability space (Y0, My, /yo). We mention one result:
if a is a transcendental number of Liouville type defined by

(3.11) a= 10 ,
k=1

where {nk I k = 1, 2, } is an increasing sequence of positive integers such that
limk.- . (nk+ 1 -2nk) = + oo, and if P is a real number for which the fractional
part of lOflkf is between 0.5 and 0.6 for k = 1, 2, * - *, then (Y0, (p) is a strictly
ergodic dynamical system for which (p is weakly mixing but not strongly mixing
as an ergodic measure preserving transformation defined on the probability
space (Y0, Rxo, ux.).

4. Example 2: Morse and Toeplitz sequences

Let againA be the set consisting oftwo elements + 1 and -1. Let p (n) be anA
valued function defined for n = 0, 1, 2, - * * by
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(4.1) p(n) = ( - I)nl+"2+ -+ nk

where ji = 0 or 1, i = 1, 2, * * *, k, and

(4.2) n = 'l + 1122 + 77322 + * * 2* 1.
It is easy to see that p(n) is uniquely determined for n = 0, 1, 2, * * , by
p(0) = 1 and
(4.3) p(2n) = p(n), p(2n + 1) = -p(n), n = 0, 1, 2,*.

Let us consider the element x0 = {an n E Z} E AZ defined by

(4.4) an= Jp(n), n =0,1,2,,
{p(-n-1), n -1, -2,

and put XO = Orb (x0). Then x0 = {an In E Z} is the so-called Morse sequence,
and, as was observed in [6], the symbolic dynamical system (X0, p) is strictly
ergodic.
Let now / be a mapping of X = AZ onto itself defined by

(4.5) ir.(O (X)) = 'An-1(X)1rn(X) for all n E Z.

It is easy to see that / is a continuous mapping of X onto itself and satisfies
q(q,(x)) = (?p(x)) for all x E X. This means that i is a continuous homo-
morphism of (X, qp) onto itself. It is also easy to see that i is a two to one mapping
of X onto itself and that *(x) = */(x') if and only if T(X) = X', where T is a
homeomorphism of X onto itself of period 2 defined by

(4.6) n,(T(x)) = - rn(x) for all nE Z.

Let us put yo = *(x0), or equivalently yo = {bnIn E Z}, where b" = an-1an
for all n E Z. It is easy to see that

(+1 if n=0,
(4.7) bn = I if n is odd,

-1k+ I if n is divisible by 2k, but not divisible by 2k+1
k = 1,2,---.

This shows that yo = {bn n E Z} is a two sided infinite sequence of Toeplitz
type discussed by K. Jacobs and M. Keane [4].
As was shown by Jacobs and Keane [4], if we put Y0 = Orb (y0), then (Y0, (p)

is a strictly ergodic dynamical system and 'p has a pure point spectrum as an
ergodic measure preserving transformation defined on the probability space
(Yo, Yo Pyo)
We denote by X*"x0 and Aey. the complex L2 spaces over the probability spaces

(XO, Vxo, ixo) and (Y0, Ro, juyj, respectively. We also denote by V,, the unitary
operator defined on *xo (and X*O.) by (V,f) (x) = f(p(x)). (We use the same
notation V,p because there is no danger of confusion). Let .A4 and X0 be the
closed linear subspaces of X$"x0 consisting of all functions f E Ax4 such that
f(T(x)) = f (x) for all x E X0 (even functions), andf(T(x)) = -f (x) for all x E X0
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(odd functions), respectively. Both .14 and #0 are invariant under V<,, orthog-
onal to each other, and together span the space 4xo: x. = we e) so. We
now observe that YO = O(XO) and that q is a continuous homomorphism of
(XO, qp) onto (YO, cp). From the fact observed above that *(x) = O*(x') if and
only if x' = T(X), it follows that VI, on #e is spectrally isomorphic with VI' on

'yo. This shows that V, has a pure point spectrum on S#e.
In order to prove that Vp has a continuous singular spectrum on 0O, we first

observe that the function 7ro (projection to the 0th coordinate) is an odd function
and that
(4.8) (Vn7ro, sro) = (7r., io) = I nr(x)io (x)Lx0(dx)

i1 m-
= lim - E Xn(qk(x0))R(9k(x0))m m k=O

I1 m-
= lim - Z 7En+k(XO)zk(7fO)

M-00 m k=O

1 mn-i= lim- y p(n + k)p(k).
m00 m k=O

If we denote this limit by a(n), then it is easy to see that af is a positive definite
function defined on Z which satisfies the following conditions:

o(0) = 1, a(-n) = (n),
(4.9) a(2n) = (n),

(2n + 1) = - 1(a(n) + a(n + 1)), n =0 ,2

Let v(A) be a real valued, nondecreasing function defined on the unit interval
[0, 1], continuous on the right at every point, such that

(4.10) a(n) = I exp {2niriA} dv(A) for all n E Z.
fo

From (4.9) follows that

I n-I
(4.11) lim - S (a(k))2 = 0,nfoo n k=O

and this shows that v(A) is a continuous function. On the other hand, from the
second and third rows of (4.9), it follows that

(4.12) dv ) + dv ) = ()

(4.13) dv -) dv( 1) -cos i dv(A)
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for all 2, and hence

(4.14) 2 )+ vQ 2 ))

(4.15) C( 1)) - s rv'(),

for almost all A, where v'(1) denotes the derivative of v(i) which exists almost
everywhere. We observe that v'(i) is integrable on the unit interval [0, 1], and
if we denote by y(n) the nth Fourier coefficient of v'(i):

(4.16) y(n) = fo v'(A) exp {2n7riA} dA,

then from (4.14) follows that y(2n) = y(n) for all n E Z. Since lime ±+ 0(n) = 0
by the Riemann-Lebesgue theorem, we must have y(n) = 0 for all n =6 0, and
hence v'(i) = constant almost everywhere. This constant must be 0 because of
(4.15). This shows that v(i) is singular.

Let f E MO be an odd function of the form f = s0 * g, where g is a normalized
eigenfunction from J4 belonging to the eigenvalue AO: V(0g = exp {2niro} g.
Since p is ergodic on (XO, x, tuxo), we have lg(x) = 1 almost everywhere on
XO. We observe that finite linear combinations of such functionsf form a dense
subset of X0. (This follows from the fact that Vq, has a pure point spectrum on
14,.) Hence, in order to show that V. has a continuous singular spectrum on

X0, it suffices to show that each such function f has a continuous singular
spectrum for V,,, that is, that if Vf(A) is a real valued, nondecreasing function
defined on the unit interval [0, 1] such that (Vpf, f) = lo exp {2nniA2} dvf(A) for
all n E Z, then vf (2) is continuous and singular. This is, however, easy to verify
since

(4.17) (Vf,f) = 7rn(x)7rO(x) exp {2niriA} g(x)g(x)yx0(dx)

= exp {2n7rio}a}(n) = I exp {2niri(2 + 2O)} dv(A).

5. Example 2 continued

Let yo = {bn n E Z} be the two sided infinite sequence of Toeplitz type
defined by (4.7). We construct a two sided infinite sequence zo = {cn n E Z}
from yo = {bn n E Z} in exactly the same way as we obtained the sequence
Yo = {bn n e Z} from xo = {an n e Z} in the discussion of Example 1 (that is,
by substituting for each a"= +1 two successive +1, while keeping each
an = -1 unchanged), and consider the orbit closure ZO = Orb(zo). Then it is
again easy to see that (ZO, zp) is strictly ergodic, although it is not easy to cal-
culate the spectrum of zp as a measure preserving transformation on the prob-
ability space (ZO, Rzo, uzo). In our case, it is again possible to show that (0 is
weakly mixing but not strongly mixing on (ZO, Bzo, yzo).
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