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1. Introduction

Let H be a Hilbert space with inner product (, ) and let x,, n = 0, 41,
be a (two-sided) sequence of elements of H. Let B(m, n) = (xm, xn), and for
each n let Hn(x) be the smallest closed (linear) subspace of H containing all the
xrn for m < n. Let H_,,(x) be the intersection of all the Hn(x), and let H+r(X)
be the closure of the union of all H.(x). We call {x.1 a Hilbert sequence.
A Hilbert sequence {x,,} is called deterministic if H-.(x) = H+X(X) and will

be called linearly free if H-.(x) = 0. (Some authors call sequences satisfying
the latter condition "completely nondeterministic.") Cramer [1] has shown
that for any Hilbert sequence {xn} there exist Hilbert sequences {un} and
{v,} with xn = un +vn, un E Hn(x) and v. e Hn(x) for all n, um I vn for all
m and n, {un} linearly free, and {vn} deterministic ("Wold decomposition").

There is a well worked out theory for stationary sequences, where B(m, n)
depends only on m - n. Cramer [1] has proved some results for certain classes
of nonstationary sequences. Most of these results involve Fourier series or trans-
forms. In recent years, great progress has been made in Fourier analysis by
way of L. Schwartz's theory of distributions. However, it appears that distribu-
tions have not yet been used much in prediction theory. One paper by Rozanov
[5] extends classical results in prediction theory to stationary "random dis-
tributions."

In this paper, we find a necessary and sufficient condition that a Hilbert
sequence be deterministic in terms of the Fourier transform of its covariance
B(m, n), assuming only the following:
(1) for some polynomial P, B(n, n) < P(n) for all n.

The Fourier transform of B(m, n) will be a Schwartz distribution on the two-
dimensional torus (product of two circles).

For stationary sequences, there is a classical criterion for determinacy. Our
criterion for nonstationary Hilbert sequences is less satisfactory, since it involves
an existence assertion, but it is a criterion, and the partial results of Cram6r [1]
proved under more restrictive hypotheses on B follow fairly easily from it. We
also obtain a characterization of the covariances of linearly free sequences.
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As iii the stationary case, the results of this paper can be extended to the case
of functions xt where t runis through all real values and/or Xt takes values in a
finite product of Hilbert spaces. Such extensions have been obtained by my
studenit C. MI. Deo [2]. The results also have natural generalizations to arbitrary
Hilbert sequiences (not necessarily satisfyiing hypothesis (1)). These genieraliza-
t ionls, not involving Fourier analysis, are also proved by Deo in [2].

2. Distributions on tori and Fourier series

7Alost of the definiitioiis anid results in this section are takenl froii L. Schwaltz
([6], chapter 7, sectioni 1).

L.et Tk be the Cartesian product of the k circles
(2) {exp (27risj): -oo < Sj < X}, j =k1,.*,k.
L,et D(71k) = OA be the linear space of all complex-valued infiniitely differentiable
functiomIs on 7'k (or CIO functions of the sj, periodic of period 1 in each variable).
Each f 'Dk has a F'ourier series

k \

(3) f(sI, , S) = am,..,M exp 27ri F }?ljsj
Ml, * =-M j=1

where for any r > 0 there is a K > 0 such that for all in1, Mk,

(4) lam., mkl < K/(1 + i11 + + ?n'),
so that the series in (3) is uniformly absolutely convergent. Conversely, given
aniy set {fma,...,mk} of complex numbers such that for aniy r > 0, (4) holds for
some K, the series (3) defines an Sf e k.

WXe say .f,, -*f in a)k if for any k-tuple p = (pI, * , pk) of nonnegative in-
t egers,

(5) DP(.f, - f) = P+ +Pk(f. f)/asi ***ds.as" 0

uniforlmlly on1 T'k.
If.f has Fourier serics (3) and ., has Fourier coefficients aM1, in = (Inl, * k),

then.&4, f in U if and only if for every polynomial P in k variables,
((;) >P(rn)(a(In- am)-0 as n-*o,

uiiniformiily in vi.
Convergence ill )k is equivalent to simultaneous convergence with respect to

a coulltab)le family of pseu(do-norms 11 Iivhere

(7) lFfl, = St1l) IDPf(x)l.
xETc

Thus °k is a Fr6chet space: the convergence is convergence with respect to a
locally convex, metrizable topology which is easily seen to be separable and
complete (hut not normizahle).
A set B in Dk is bounded (thlat is, included in some scalar miultiple of eacl

nleighborhloo(l of zero) if amid omulv if each pseud(lo-iolri Ii , is boullide(d on B.
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Given any sequence f. of functions in such a set B, we can find a subsequence gm
such that DPgm converges as m -X c at each point of a countable dense subset
of Tk, for each p. Equicontinuity of the DPgm (because of uniform boundedness
of higher-order derivatives) then gives pointwise convergence of DPgm oil Tk
for each p. Finally, pointwise bounded convergence of higher-order derivatives
gives uniform convergence of DPgm for eacll p to DPg for some g G Uk. Thus B
is sequentially relatively compact. By metrizability and completeness, closed
bounded sets in Dk are compact.
A set 311 in a topological linear space S is called a barrel if it is closed, sym-

metric, and convex, and for each f e S, cf E M for somiie c > 0. The space S
is called barreled if each barrel is a neighborhood of 0. A simple Baire category
argument shows that any complete metric linear space, for instance 5k, is bar-
reled. A barreled space in which closed, bounded sets are compact is called a
.lIontel space.
The space D)'(Tk) = k of distributions on Tk is the linear space of all complex

liiiear functionals on °6 conltinluous for the given convergence. For each ele-
ment A of k, we let

(8) A m, = A (exp (-27ri m jsj)).

Conitinuity implies that there is a polynomial P (depending oIn A) such that

(9) 1A,... ,m, < P(ml, Mk,) for all ntl, **k,
Tlheni we have
(10) A = Am1,.. mk exp (27ri mnjsj),

where the series of distributions on the right converges for aily f C Dk. This
agrees with the classical assignm11ent of Fourier series if A is defined by a finite
lor-el measure p, for examiiple by an integrable functionl h,

(I l) Al(g) = f7k g dM = fTk gh ds, ... dsk.

Againi, conversely, for any numbers Am1,.. mk satisfying (9), therc is anl A E Sk
satisfying (8) and hence (10).

Given that a sequeiice S, converges to S in 3, pointwise on 0Dk, the set of
all f c Bk such that IS,,(f) I < 1 for all n is a barrel. Henice the S,, are equicontini-
uouis, aiid converge uniforiimly on compact sets, thus uniformily on bounded
sets. lIi otlher woords, a weak* convergent sequence in Sk is stronigly convergent.

3. Positive kernels

Let S be a vector space over the field of complex numbers. We assume that a
conJugation of S is given, that is, a conjugate-linear map x -X - of S into itself
sUchi that I = x for all x. (If S is a suitable function space, for instanice S =
an(d f c S, we let f(t) = f(t)-.) For anly linear functional U onl $, we let F(x) =
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U(x)-. Then clearly U - U7 is a conjugation of the dual linear space S' of all
linear functionals on S.
Given complex linear spaces S and T, let B(S, T) be the linear space of all

bilinear functions from S X T to the complex numbers, and let B'(S, T) be its
dual space. Given U e S' and V E T', we let

(12) (U 0 V) (x, y) = U(x)V (y).
Then 0 is a bilinear map of S' X T' into B(S, T).

For any s E S, t G T, we have an element

(13) s O t: B- B(s, t)
of B'(S, T). The tensor product of S and T, S 0 T, is defined as the linear sub-
space of B'(S, T) generated by all such s 0 t. For s e S, t E T, U e S', V e T'
we have

(14) (U (0 V) (s 0 t) = U (s) V(t).

If S has a conjugation and A, B e B(S, S) we write A >> B if for all x G S,

(15) A(x, x) > B(x, x).
If A >> 0, then A(x, p) = A(y, x)- for all x, y, and (x, y) = A(x, y) is an inner
product except that A (x, x) may vanish for some x $4 0. Note that for any
UGS', U® U>>0.
PROPOSITION 1. If UJ, V e S', then U U>> V V if and only if V = cU

for some complex number c with jcl < 1.
PROOF. If V = 0, let c = 0. If not, then since

(16) IUJ(x)V' > IV(x)l2
for all x c S, the null space of lJ is included in that of V. Since both null spaces
have codimension 1, they are equal. Thus V = cU for some c # 0, and clearly
cl < 1, q.e.d.
Forf, g c °D let (f X g)(s, t) = .f(s)g(t). Theii X is a bilinear map of Di X DI

into D2. This yields of map of V into B(D1, D,) which is one-to-one since finite
sums F fi X gi are dense in 2D2 (by Fourier series). To show that the natural
linear map of Di ® D1I into D2 is one-to-one, suppose

n

(17) F fi X gj = 0, f,,gj E °l,yj = 1, *.. , n.
j=l

Let F1, * , Fm be a basis for the subspace of D, spanned by the fj. We can then
write

n rn
(18) ff, ® gj = F, F,k G

j=1 k=1

for some Gk e Di. For each fixed t, we then have
m

(19) Z_ Fk( )Gk(t) = 0
k=1

for all s, so Gk(t) -_ 0 for eachi k. Thus
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n

(20) E fj 0 gi = 0.

Hence Di 0 1 can be regarded as a subspace of )2,with 0 = X.
If U, V e D,' then U 0 V E °2 since the formal product of the Fourier

series of U and V converges in D2.
A covariance B(m, n) satisfying assumption (1) of section 1 yields a B E °2

with
(21) B = E B(m, n) exp (27ri(-ms + nt)),
that is,
(22) B(exp (-2iri(ms + nt)) = B(-m, n).
We call B the covariance distribution of the given Hilbert sequence.

Iff e 5),, let

(23) f(s) = a. exp (27rins).
n

Then Zn anXn is absolutely convergent in H, and
(24) B(f 0 f) = E B(m, n)amin = ( a,x,, E a.xn) > 0.

n,m m n

Thus B >» 0. It is easy to see that, conversely, any B E D with B >> 0 is the
covariance distribution of some Hilbert sequence satisfying (1).
A proof of the following was kindly supplied by L. Bungart.
PROPOSITION 2. If B >> 0, B E 3, then there exist Bj e DI, j = 1, 2,

such that

(25) B(f 0 g) = j(f)Bj()
j=1

for all f, g e Di.
PROOF. We have an inner product ,3(f, g) = B(f 0 g) on DI (where ,B(f, f)

may vanish for some f #d 0). Since DI has a countable dense subset and B is
continuous, the inner product space (DI, j) is separable. Thus we can choose
j3-orthonormal fj E D, j = 1, 2, * * *, whose linear combinations are dense for g
(although DI will not generally be complete for p3). Let

(26) Bj(f) = B(fj 09 f) = 3(fj,,) = 3(f, fj)-
for any f E Di. Clearly Bj e D' and

(27) RA(f) = :(fi,f)- = 0(f, f).
The conclusion of the proposition then holds according to the general expansion
of an inner product over an orthonormal basis.
PROPOSITION 3. If B E D2' and

(28) B(f 0 g) = Rj(f)Bj(g)
j=l

for all f, g E Di, then

(29) B = 57 (Rj(j Bj)
jl1
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where the series contverges in D2' (pOintWisC on 2 hcnce uniformnly onl bounded Sets
(strongly)).
PROOF. Clearly the given series of distributions converges for each F belong-

ing to the dense subspace 01 Dl of D2. Now if K is any suim of finitelv many
of thc 7j 0D Bj, theni B >> K >> 0, so that for aniy integers iin and n,

(,0) JK(exp (2iri(ms + nt)))l
< [K(exp (2tiri(s - t)))]I'2[K(exp (27rin(s -tfl]' '''
< [B(exp (27rimn(s - t)))B(exp (2irin(s - t)))]1"2 < 1P(mii, II)

where P is a polynoiiiial independenit of K. According to the clharacterization
of convergence in D2 expressed by (6) in section 2, the set of all stuch K is ecqui-
conltinuouis. Hence,

(31) RB(F) = (hj 0 Bj)(F)
j=1

for all F c 3D2, where the ser'ies converges absoltutely. As miienltionied in section 2,
s(lllent ial pointwise convergence implies strong convergence since D2 is a Mont-el
space.

4. Diagonalizing the covariance of a linearly free sequence

D)EFINITION. A (distribttion U e 931 llill be calle(i zero-meroniorphic if for sonie
finite integer in,

(32) U = lUJn CXp (2rinis).
n =m

If U is zero-meromorplhic, then sinlc U,, is of polyniomiiial growth as nX

(388) Z U,Z1

is the Laurent series of a function analytic in the unit disk Izl < 1 except pos-
sibly for a pole at 0.
THEOREM 1. If -'it is a Hilbert sequence satisfying (1), with covariance dis-

tribution B, then -u,,, is linearly free if and only if there exist zero-nieromnorphic
l'j swichi that

(841) B =Bi Uj I,,

whcre the series convcerges in 5D'.
PRtOoF. First slipposc {u,, is linearly free. F'or eaclh n7 let PIU be the or-

tlhogonial projection of H onto H,,(u), and let y,, =u,, - P-o,,. Then for distinct
n, the y,, are orthogonal. I-et z,, be y,,/11y1l1 if liy,,I1 > 0, otherwise let z,1 = yn = °'
According to Cram6r ([1], theorem 1), the ym (or z, ) for mn < n span H,,(u)
in this (linearly free) case. Since the zj are orthonormal, for each it we have
t,, = 1jc,jzj for somIe complex constants cn;, w-hich wve take as 0 if z, = 0;



IPIREDICTION THEORtY 229

thle c,,j are theni uniiquely determinied, withl c,,; = 0 for j > it. For aniy j, Ic,,jj <
B(n, n) '2, so that Ic,Aj is bounded by a polynloinial in ni, unliformly in j.
Now if f, g e 1), and

(35) f(s) = a,, exp (27rins), g(s) = Z b,, exp (27rins),
theti Z a,,u,, anid , b,,,, converge to elemienits F, G of II respectiv'ely, and
(:36i) BX(*f 0 g) =

_ B(Qn, n)aj,1b, = (F, G)
m,n

= Z (P, zj)(G, zj)

=
_ (_ a?,lcmj)(_ b,,11,j)
j m 7

sincee the nonizero zj arc orthonormnal, aiid c,,j = 0 if zj = 0. B3ecause of the rapid
decrease of am and b,, for large indices and at miost polynomiiial growth of c,,j,
all the above series are absolutely convergent. 'Nov let

(:37) Uj = ,,j exp (27rinis).
,I =,

The series coniveges in V since thel c,4j are bounded by a polynomiiial in it.
Clearly,

(:38) B(f ® Y) = Z UA(f)Uj(a)
j = -

for aniy f, g C ). It follows from proposition 3 that

(:39)) BX= Z Uj0Uj
j1=-x

wlhere the series converges stioiigly in 52. Of course, each L j is zero-mller0olnorl ii..
For thle converse part of tIle t heorem, suppose B E o' anid

(40) B = Z U, 0 U,
j=-

Nvliere each Uj is zero-imieroinlorphic, and

(41) j= 3 c,,j CXl) (2irins).
, = U)

Note that for fixed n,

(42) IC,j'=2 (,jU, 0 j)(exp (21rin(s - t)) < x,

Let H1 be a (coiiiplex) Hlilbert space with orthoniorinial basis zj: j = 0, I1,
4-2 . * * , aIid let xe = Y,j C,jzj (the series clearly converges in H). We shall show
that {x,,} is a linleauly fr-ee sequence with covariance distribution B. First,
( z,,,zj) = 0 for it < ii (j), so zj is orthogonial to I-,(x) if r < n(j), anid zj I 1H_(x).
Since this holds for all HJ.,I(1) is the zero subspace, anid the sequence x,x,, is
lillearly fiee. Also,
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(43) (Xm, X.) = C jc.j = ¢ (Uj 0 Uj)(exp (27ri(ms - nt))
J 3

= B(exp (27ri(ms - nt)),

(44) B =i: (Xm, x.) exp (27ri(-is + nt)).
m,n

Since the property of being linearly free clearly depends only oIn the covariaince,
the proof is complete.

5. Characterization of deterministic covariances

THEOREM 2. A Hilbert sequence {x7,, with coVariance B(7), it) satisfying (1)
is deterministic if and only if there does not exist a zero-meromnorphic U $d 0 with
B>rC0 U.

PROOF. First suppose {x4, is not deterministic. Let Xn = U,, + Vn be its
Wold decomposition, un linearly free, and VI, deterministic. Let B, C, and D be
the covariance distributions of x,,, u,, and vI, respectively. Then since (urn, vn) is
zero for all m and n, B = C + D and B >> C 5z 0. We have by theorem 1

(45) C = i Tj 0 Cj
j= _-

where the Cj are zero-meromorphic. Choosing a nonzero Cj, we have B >> C:j 0 c
as desired.

Conversely, suppose {x,,} is a Hilbert sequence with covariance distribution B
and B >> U 09 UT where U' is zero-meromorphic and U #, 0, say

(46) U = , bn exp (27rins), bk #4 0-
n=k

Tlheii for any finite sequence a1, * , av of complex numbers,
N 2

2

(47) Xk - ajXk-j > |[exp (-2i7iks) - E a1 exp (- >i(k - i)s)j|
j=1 =

= lbkl2 > 0.

Thus Ilxk- Pk1lxkll > Ibkl and {x,} is not deterministic. This completes the
proof of theorem 2.
Note that theorem 7 of Cramer [1] is an immediate consequence of our the-

orem 2. Cramer's theorem 6 can also be derived, with a little more trouble;
this will be done in section 6. A derivation of the known criterion in the station-
ary case will be given in section 7.
Theoiem 2 cail be reformulated as follows.
COROLLARY. A Hilbert sequentce with coi'ariance distriibutiotn B is nondeter-

rninistic if and only if there exists a zero-mero7norphic U - 0 such that U is con-
tinuous on Di for the inner product (f, g) = B(f 0 g).

PROOF. If U is zero-meromorphic, U F- 0, and B» U 0 U, then I(f)j 2 <
(f, f) for all f, so U is contiinuous. Conversely, if U is continuous, then B >>
V 0 V for some zero-meromorphic V = cU, whelc c is a nionzero constalit.
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6. A result of Cramer

Suppose that the covariance distribution B of a Hilbert sequence is a finite,
complex-valued, countably additive measure oIn T2 (the "harmonizable" case).
Let G(u) be the total variation of B in the rectangle 0 < s < 1, 0 < t < it.
Then G is a noiidecreasiiig funcetioni oIn [0, 1], differentiable almost cverywhere.
Cram6r ([1], theoriem 6) has show-ii that if

(48) fo log G'(u) du =

then {x4 is deterministic. To infer this from our theorem 2, it suffices to show
that if B >> U 0 U for some zero-meromorophic U /- 0, then

(49) 10 log G'(u) dll >-x

Now if f e a(TP) and If(s)I < 1, 0 < s < l, theln

(50) 1U(7f)2 < B(f Of) < G(1).
Thus U is a countably additive complex-valued l3orel measure of total varia-
tion at most G(l)"2. By the F. and M. Riesz theorem ([4], p. 47) U is absolutely
continuous; there is an integrable function u such that

(51) U(f) = f'f(s)u(s) ds

for all f c ).
iNow if f G D, f vaniishes outside an open set V, and If(s) 1 for 0 < s < 1,

then

(52) f dG > B(f 09 f) > If f(s)&(s) dsl2.
There is a sequence {f?,} of such f's with f,, converginig almost everywhere as
n -x o to the function 0 with

(53) (s) u (s) Ift (s)Itu(s) °
0, s c V,(53)~~ ~ ~~(s) =~0{usIi()- otherwise.

Thus

(54) dG > (f Iu(s) 2ds).
Here the arbitrary open set V can be replaced by an arbitrary Borel measurable
subset A of the unit interval.

Since the singular part of dG is concentrated in a set N of Lebesgue measure
zero, we have

(55) IA G'(s) ds = fA N G'(s) ds > (fA |u(s)I ds) = (I u(s) I dsj
Thus we have use for the following quaint lemma of pure measure theory.
LEMMA. Suppose f and g are nonnegative measurable functions on a probability

space (Q, B, I') such that both g and log g are integrable and for every set A e B,
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(56) fAf [fJA ]
Then f log f dP > - .
PROoF. Let A-, be the set where f > g, and for n = 0, 1, * ,let An be the

set where (g/en+l) < f < (g/en). Since log g is integrable, g is strictly positive
almost everywhere, and hence the set A wheref vanishes also has measure zero by
assumption. Thus

(57) IP(A-,) + P(Ao) + *-- = 1.
Since g is iiitegrable, we have for each n

(58) fA glen dP > [fA. dP] fA d <e

Let Bn be the subset of A. on which g < e-n2. Then P(At, B.) < Il/e'2,
anid since log g < -n/2 on B,, and the Bn are disjoint,

(59) E nP(Bn) < 00.

It follows that EN nn(An) also converges, and

(60) f log f dP = Ef logfdP 2 Ef (log g - n - I) dPf~~ =1A n f1A.
= f log gdP- (n + 1)P(An) > X q.e.d.

Now, the function u mentioned earlier in this section is zero-meromorphic,
and hence of the form exp (-27riks)h(s) for some integer k and some function h
in the Hardy class HI having nonzero integral (zero-th Fourier coefficient).
Thus the function log lul = log Ihi is integrable (see, for example, [4], p. 53).
Applying the lemma with f = G', g = Jul, we obtain

(61) fo log (G'(s)) ds > -o,

which proves Cramer's assertion.
It is worth noting that Cramer's sufficient conditioin for determinacy is not

necessary. Let h be a real-valued function on T' which is not zero-meromorphic,
such that h(s) 2 1 for all s. We can even take h c Di. Let B = h X h; then
B >> 0. If h X h» U 0 U for some zero-meromorphic U # 0, then h = At
with 1X1 2 1 by proposition 1, contradicting the fact that h is not zero-mero-
morphic. Thus B is deterministic. On the other hand, B is clearly harmonizable
with
(62) G'(s) = h(s) Ir h(t) dt, f01logG'(s) ds > 0>-°°

Thus we have obtained a class of deterministic covariances which do not have
the "thinness" property which had characterized the previously known classes.
Whether theorem 2 can be improved to provide a more explicit analytic criterion
seems to be an open problemi. It is well known, from the stationary case, that
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nililike linlearly frce covariances, deterministic covariances do nlot formiii ani addi-
tive class.
We note here that in the harmonizable case, the zero-meromorphic distribu-

tionis Uj in theorem 1 anid U in theorem 2 may be taken as integrable functioiis
for Lebesgue measure on T', by the argument given at the beginning of this
section.

7. The stationary case

If a covariaince B(in, n) satisfies B(m, n) 3=#(m - n) for solleC function 3,
then B is the covariance of a stationary Hilbert sequence {x,,}. Trhe covariance
distribution is then equal to a finite nonnegative measure ,u concentrated in the
"diagonal" s = t in T2. Letting
(68, ) v(A) = p((s, t): s E A),
we ol)tain a finite measture v on Tl with a Fourier series

(64) v = Cn exp (27rins).
n

Trlle stanidard result is that {x,,} is deterministic if and onily if the logarithm
of the denisity f of the absolutely continuous part of v is initegrable (equivalently,
has integral greater than - ) . Let us infer this from our results. For f integrable
on T', logf is integrable if anid only if f = igl2 for some nionzero g in the Hardy
class H2, that is

(65) g(s) ggn exp (2irins),
n=O

whllere Zn=O ly"12 < (S [4], p. 5:8). Thuis if logf is integiale, aiid h is any
element of 0, theni

(6(i() f hsh0t (dl = 10 Ih(s)12 d, (s) > f1 I|(s)11(s) 12 ds

> If' -(s)h(s) ds 12= ( 0 g)(h 0 h)
so that L>> g 0 g. Sinice g is zero-meromorplhic and iiot identically zero, the
given Hilbert, seqtience is not, deterministic.
The converse assertioni, that if the sequeniec is niot, determiniistic theni logf is

ititegrable, follows 'rom Crami6r's result proved in sectionl 6. (For a direct
treatment of the stationiary case, see Doob ([3], chapter 12).
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