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1. Introduction

Let H be a Hilbert space with inner product (, ) and let 2,,n = 0, &1, --- |
be a (two-sided) sequence of elements of H. Let B(m, n) = (m, %), and for
cach n let H,(x) be the smallest closed (linear) subspace of H containing all the
Zm for m < n. Let H_,(x) be the intersection of all the H,(x), and let H .(x)
be the closure of the union of all H,(z). We call {z.} a Hilbert sequence.

A Hilbert sequence {x,} is called deterministic if H_,(z) = H,.(z) and will
be called linearly free if H_.(x) = 0. (Some authors call sequences satisfying
the latter condition ‘‘completely nondeterministic.””) Cramér [1] has shown
that for any Hilbert sequence {z,} there exist Hilbert sequences {u.} and
{v.} with 2, = up + 0., u. € H.(x) and v, € H,(z) for all n, u. L v, for all
m and n, {u,} linearly free, and {v,} deterministic (“Wold decomposition”).

There is a well worked out theory for stationary sequences, where B(m, n)
depends only on m — n. Cramér [1] has proved some results for certain classes
of nonstationary sequences. Most of these results involve Fourier series or trans-
forms. In recent years, great progress has been made in Fourier analysis by
way of L. Schwartz’s theory of distributions. However, it appears that distribu-
tions have not yet been used much in prediction theory. One paper by Rozanov
[5] extends classical results in prediction theory to stationary ‘‘random dis-
tributions.”

In this paper, we find a necessary and sufficient condition that a Hilbert
sequence be deterministic in terms of the Fourier transform of its covariance
B(m, n), assuming only the following:

¢)) for some polynomial P, B(n, n) < P(n) for all n.

The Fourier transform of B(m, n) will be a Schwartz distribution on the two-
dimensional torus (product of two circles).

For stationary sequences, there is a classical criterion for determinacy. Our
criterion for nonstationary Hilbert sequences is less satisfactory, since it involves
an existence assertion, but it ¢s a criterion, and the partial results of Cramér [1]
proved under more restrictive hypotheses on B follow fairly easily from it. We
also obtain a characterization of the covariances of linearly free sequences.
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As in the stationary case, the results of this paper can be extended to the casce
of functions x, where ¢ runs through all real values and/or x, takes values in a
finite product of Hilbert spaces. Such extensions have been obtained by my
student C. M. Deo [2]. The results also have natural generalizations to arbitrary
Hilbert sequences (not necessarily satisfying hypothesis (1)). These generaliza-
tions, not involving Fourier analysis, are also proved by Deo in [2].

2. Distributions on tori and Fourier series

Most of the definitions and results in this section are taken from L. Schwartz
(6], chapler 7, section 1).
Let T* be the Cartesian product of the k circles

(2) {exp (2mis;): —o0 <55 < ®}, j=1, -k
Let ©(T*) = D be the linear space of all complex-valued infinitely differentiable
functions on 7% (or €= functions of the s;, periodic of period 1 in each variable).
Each f € ©, has a Fourier series

0

k
3) fGsry -+, ) = > Ay, -+ ymy EXP (21ri > "71j8j)

my, e, ME=— 0 =1
where for any » > 0 there is a K > 0 such that for all my, - - - | my,
4) |@my - om) S K/(L4+m3 + -+ + mi),

so that the series in (3) is uniformly absolutely convergent. Conversely, given
any set {@u,....m; of complex numbers such that for any r > 0, (4) holds for
some K, the series (3) defines an f € D;.

We say f, — f in 9 if for any k-tuple p = (py, -+ -, px) of nonnegative in-
tegers,

&) Dr(fu— [) = ont-dee(fy — f)/9sf -+ asft =0

uniformly on 7%
If f has I ourier serics (3) and f, has Fourier coeflicients aip, m = (my, - - -, nir),
then f, — f in D, if and only if for every polynomial P in k variables,

6) Pm)(a — a,) —0 as nm-—oo,
uniformly in m.

Convergence in Dy is equivalent to simultaneous convergence with respect to
a countable family of pseudo-norms || || ,, where

(7) 71, = sup [D7f(x)].
zE&Tk

Thus Dy is a Fréchet space: the convergence is convergence with respect to a
locally convex, metrizable topology which is easily seen to be separable and
complete (but not normizable).

A set B in 9, is bounded (that is, included in some scalar multiple of each
neighborhood of zero) if and only if cach pseudo-norm || ||, is bounded on B.
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Given any sequence f, of functions in such a set B, we can find a subsequence g,
such that D2y, converges as m — « at each point of a countable dense subset
of T*, for each p. Equicontinuity of the D?g, (because of uniform boundedness
of higher-order derivatives) then gives pointwise convergence of D?g, on T*
for each p. Finally, pointwise bounded convergence of higher-order derivatives
gives uniform convergence of Drg,, for each p to Drg for some g € ;. Thus B
is sequentially relatively compact. By metrizability and completeness, closed
bounded sets in D; are compact.

A set M in a topological linear space S is called a barrel if it is closed, sym-
metrie, and convex, and for each f € S, ¢f € M for some ¢ > 0. The space S
is called barreled if each barrel is a neighborhood of 0. A simple Baire category
argument shows that any complete metric linear space, for instance Dy, is bar-
reled. A barreled space in which closed, bounded sets are compact is called a
Montel space.

The space D'(T*) = Dy of distributions on 7T is the linear space of all complex
linear functionals on 94, continuous for the given convergence. I'or each ele-
ment A of Di, we let

(8) Ay, ome = A (exp (=2m 32 ms;)).
J
Continuity implies that there is a polynomial P (depending on A) such that
9) (A eomsl < Py, -0, m) forall my, -+, mp.
Then we have
(10) A= Ap...mexp 2ri 3 ms;),
m, e, mi 7

where the series of distributions on the right converges for any f € 9. This
agrees with the classical assignment of Fourier series if A is defined by a finite
Borel measure g, for example by an integrable function A,

(1) A(g) = T,,gd“= Tkghdsl---dsk.

Again, conversely, for any numbers A, ..., satisfying (9), thercis an 4 € Dy
satisfying (8) and hence (10).

Given that a sequence S, converges to S in D; pointwise on 9y, the set of
all f € B, such that |S,(f)| < 1 for all nis a barrel. Hence the S, arc equicontin-
uous, and counverge uniformly on compact sets, thus uniformly on bounded
sets, In other words, a weak* convergent sequence in Dy is strongly convergent.

3. Positive kernels

Let S be a vector space over the field of complex numbers. We assume that a
conjugation of S is given, that is, a conjugate-lincar map x — % of S into itself
such that £ = z for all x. (If S is a suitable function space, for instance S = DO,
and f € S, we let f(t) = f(t)=.) For any linear functional U on 8, we let U(x) =
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U(z)~. Then clearly U - U is a conjugation of the dual linear space S’ of all
linear functionals on S.

Given complex linear spaces S and T, let B(S, T') be the linear space of all
bilinear functions from S X T to the complex numbers, and let B’(S, T) be its
dual space. Given U € S’ and V € T’, we let

(12) U@ V)=y =UVy).
Then ® is a bilinear map of 8’ X T" into B(S, T).
Forany s € 8,t € T, we have an element
(13) s®t: B— B(s,t)
of B'(S, T'). The tensor product of Sand T, S ® 7, is defined as the linear sub-

space of B'(S, T) generated by allsuchs @ t. Fors € S,t e T,U € 8, V € T’
we have

(19) U@ Vis®t)=U@B)V().
If S has a conjugation and A, B € B(S, S) we write A > B if for all x € §,
(15) A(z, ) 2 B(z, 7).

If A >0, then A(x,y) = A(y,Z)~ for all z, y, and (z, y) = A(z, §) is an inner
product except that A(z,Z) may vanish for some z 3 0. Note that for any
UeS, UQU>»0.

Prorosition 1. If U, Ve S, thn UQ U >V ®Vifand onlyif V = cU
for some complex number ¢ with |c| < 1.

Proor. If V = 0, let ¢ = 0. If not, then since

(16) U@ 2 V()

for all x € S, the null space of U is included in that of V. Since both null spaces
have codimension 1, they are equal. Thus V = ¢l for some ¢ = 0, and clearly
le} €1, q.e.d.

Yorf,g € Dilet (f X ¢)(s, 1) = f(s)g(t). Then X is a bilinear map of D; X D,
into ®,. This yields of map of ©; into B(Dy, ©;) which is one-to-one since finite
sums Y f; X g; are dense in D, (by Fourier series). To show that the natural
linear map of D, ® D, into D; is one-to-one, suppose

(17) Zlf]x‘(h:()’ fj,gjeﬂ)lyj:l,"','n.
j=

Let Fy, - - -, F., be a basis for the subspace of ©, spanned by the f;. We can then
write

(18) 21 [i®g = kZI Fi @ Gk
i= -

for some G € D,. For each fixed ¢, we then have

(19) 2 Fe)G0) = 0

for all s, so G(t) = 0 for each k. Thus
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(20) J}j,lfj ®gi=0 "~

Hence D; ® D, can be regarded as a subspace of D,, with ® = X.

If U,V eDf, then U ® V € D; since the formal product of the Fourier
series of U and V converges in .

A covariance B(m, n) satisfying assumption (1) of section 1 yields a B € Dy
with

(21) B = Y B(m, n) exp 27i(—ms + nt)),
that is,
(22) B(exp (—2mi(ms + nt)) = B(—m, n).

We call B the covariance distribution of the given Hilbert sequence.
If fe Dy, let

(23) f(8) = 3 a, exp (2mins).

Then 3, a.x, is absolutely convergent in H, and
(24) B(f® f) = X B(m, n)anl, = (X nlm, 2 anZs) > 0.

Thus B > 0. It is easy to see that, conversely, any B € D; with B 3> 0 is the
covariance distribution of some Hilbert sequence satisfying (1).

A proof of the following was kindly supplied by L. Bungart.

ProrositioN 2. If B> 0, B € D3, then there exist B, € 1,7 =1,2, -+,
such that

(25) B9 = 3 BB

for all f, g € D,.

Proor. We have an inner product 8(f, ¢9) = B(f ® §) on D, (where 8(f, f)
may vanish for some f = 0). Since D, has a countable dense subset and B is
continuous, the inner product space (9, 8) is separable. Thus we can choose
B-orthonormal f; € §y,j = 1, 2, -+ - , whose linear combinations are dense for 8
(although D, will not generally be complete for 8). Let
(26) Bi(f) = B(fi ® f) = B(fi, /) = B(f, 1)~
for any f € D,. Clearly B; € D; and
(27) B(f) = 8(f;, /)= = B(f, f).

The conclusion of the proposition then holds according to the general expansion
of an inner product over an orthonormal basis.

ProrositioN 3. If B € D; and

(28) B ® 9 = 3 BANB)
for all f, g € Dy, then
(29) B=% (B; ® B))
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where the series converges in D; (pointwise on D, hence uniformly on bounded scls
(strongly)).

Proor. Clearly the given series of distributions converges for each F belong-
ing to the dense subspace D; ® D; of Dy. Now if K is any sum of finitely many
of the B; ® Bj, then B >> K > 0, so that for any integers m and n,

(30) |K (exp (2mi(ms + nt)))|
< [K(exp Cmim(s — )]\ 2[KN(exp 2min(s — t)))]1?
< [Bexp (2mim(s — t)))B(exp Cmin(s — £)))]'* < P(m, n)

where P is a polynomial independent of K. According to the characterization
of convergence in D, expressed by (6) in section 2, the set of all such K is equi-
continuous. Hence,

@1 B(F) = él(ﬁj ® B,)(F)

for all ' € ©,, where the series converges absolutely. As mentioned in seetion 2,
sequential pointwise convergence implies strong convergence since D, is a Montel
space.

4. Diagonalizing the covariance of a linearly free sequence

Deriniriox. A distribution U € D{ will be called zero-meromorphic if for some
Jinite integer m,

0
(32) U= 3% U,exp (2rins).
n=1m
If U is zero-meromorphic, then since U, is of polynomial growth as n — o,

(33) > U
n=m
is the Laurent series of a function analytic in the unit disk |z| < 1 except pos-
sibly for a pole at 0.
Tueorem 1. If {u.) is a Hilberl sequence salisfying (1), with covariance dis-
tribution B, then {u.) is linearly free if and only if there exist zero-meromorphic
U; such that

(34) B= 3 U;®U,

where the series converges in 9.

Proor. I'irst suppose {w,} is lincarly free. For cach n let I’, be the or-
{hogonal projection of H onto H,(u), and let y, = u, — I’»_1u,. Then for distinct
n, the y, are orthogonal. Let z, be y./||y.]| if |ly.]] > 0, otherwise let 2, = y. = 0-
According to Cramér ([1], theorem 1), the y, (or z.) for m < n span H,(u)
in this (linearly free) case. Since the z; arc orthonormal, for each » we have
. = >_jc.z; for some complex constants ¢,;, which we take as 0 if z; = 0;
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the ¢,; are then uniquely determined, with ¢.; = 0 for j > n. For any j, |e.;| <
B(n, n)"2 so that |c.;| is bounded by a polynomial in #, uniformly in j.
Now if f, g € D, and

(35) f(s) = 2 a, exp (2wins), g(s) = X b, exp (2wins),
then ¥ a,u, and ¥ b,u, converge to elements F, G of II respectively, and
(36) B(f® g = X B(Om,n)ad, = (I, G)

=2 (F,2)(,2)"
J
= Z (Z amcmj) (Z BuEnj)
J m n
since the nonzero z; arc orthonormal, and ¢,; = 0 if z; = 0. Because of the rapid

decrease of a,, and b, for large indices and at most polynomial growth of ¢.;
all the above series are absolutely convergent. Now let

B37) U; = i C.j oxp (2wins).

n=j

¢.; are bounded by a polynomial in n.

The series converges in ©; since the
Clearly,

(38) Bfeg = ¥ UNHUG)
J=—N
for any f, ¢ € 9,. It follows from proposition 3 that
(39) B = }f U;® U;
j=—

where the series converges strongly in 5. Of course, each U is zero-meromorphic.
Ior the converse part of the theorem, suppose B € 93 and

(40) B= % T;®(;

Jj=—x

where cach Uj; is zero-meromorphie, and

(+1) ;= i Cnj CXP (2mins).

n=n(y)

Note that for fixed n,

(42) S el = £ (05 ® Uj)lexp mins — 1) < =.

Let I be a (complex) Hilbert space with orthonormal basis z;: j = 0, &1,
+2 .-+ ,and let x, = 3, &.;z; (the series clearly converges in H). We shall show
that {x,} is a linearly free sequence with covariance distribution B. First,
(2, 2;) = 0forn < n(j),so z;isorthogonal to H,.(z) if r < n(j),andz; L H_,(x).
Sinee this holds for all j, I1_.(x) is the zero subspace, and the sequence {x,) is
linearly free. Also,
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(43) (@my Tn) = 22 Cmica; = 2 (U; @ Uj)(exp (2wi(ms — nt))
J 7
= B(exp (2wi(ms — nt)),
(44) B = 3 (@m, x.) exp Cai(—ms + nt)).

Since the property of being linearly free clearly depends only on the covariance,
the proof is complete.

5. Characterization of deterministic covariances

THEOREM 2. A Hilbert sequence {x,} with covartance B(m, n) satisfying (1)
18 deterministic if and only if there does not exist a zero-meromorphic U = 0 with
B>»>UQ®U.

Proor. First suppose {z.} is not deterministic. Let x, = w, + v. be its
Wold decomposition, u, linearly free, and v, deterministic. Let B, C, and D be
the covariance distributions of x., u., and v, respectively. Then since (um, v,) is
zero for all mand n, B = C 4 D and B > C # 0. We have by thcorem 1

(45) (=¥ 0,
Jj=—
where the C; are zero-meromorphic. Choosing a nonzero C;, we have B > C; ® C;
as desired.
Conversely, suppose {z,} is a Hilbert sequence with covariance distribution B
and B> U ® U where U is zero-meromorphic and U > 0, say

(46) U= n)ijk b, exp (2mins), be # 0.

Then for any finite sequence ay, - - - , ax of complex numbers,

(47) T — j‘—: ATk i > l'l:exp (—2wiks) — ji'l a; exp (—2mi(k — j)s)] >
= |b]2 > 0.

Thus ||zx — Pe_izil| > |bx| and {z,} is not deterministic. This completes the
proof of theorem 2.

Note that theorem 7 of Cramér [1] is an immediate consequence of our the-
orem 2. Cramér’s theorem 6 can also be derived, with a little more trouble;
this will be done in section 6. A derivation of the known criterion in the station-
ary case will be given in seetion 7.

Theorem 2 can be reformulated as follows.

CoroLLaRrYy. A Hilbert sequence with covariance distribution B is nondeter-
ministic if and only if there exists a zero-meromorphic U # O such that U is con-
tinuous on D, for the inner product (f, g) = B(f ® 7).

Proor. If U is zero-meromorphic, U 5 0, and B> U @ U, then |U(f)|? <
(f, f) for all f, so U is continuous. Conversely, if U is continuous, then B >>
V ® V for some zero-meromorphic V' = ¢U, where ¢ is a nonzero constant.
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6. A result of Cramér

Suppose that the covariance distribution B of a Hilbert sequence is a finite,
complex-valued, countably additive measure on T? (the “harmonizable” case).
Let G(u) be the total variation of B in the reetangle 0 <s<1,0<¢ < w
Then G is a nondecreasing function on [0, 1], differentiable almost everywhere.
Cramér ([1], theorem 6) has shown that if

(48) /;1 log G'(u) du = — =,

then {z,} is deterministic. To infer this from our theorem 2, it suffices to show
that if B> U ® U for some zero-meromorphic U # 0, then

(49) ﬁ) log G (w) du > —=.
Now if f € D(T") and |f(s)] < 1,0 < s < 1, then

(50) TN < BU®]T) < G).

Thus U is a countably additive complex-valued Borel measure of total varia-
tion at most G(1)V/2. By the I'. and M. Riesz theorem ([4], p. 47) U is absolutely
continuous; there is an integrable funetion u such that

(51) C() = [ fe)uts) ds
for all f € D,.

Now if f € Dy, f vanishes outside an open set V, and |f(s)] < 1for0 < s < 1,
then

(52) [.d6 > BG @) 2|[) raw) ds:

There is a sequence {f.} of such f’s with f, converging almost everywhere as
n — « to the function ¢ with

_ Jlu@)ila)], u(s) #0, seV,
(53) $(s) = 0, otherwise.
Thus
(54) [‘ (6> ( ﬁ fu(s)| ds)g-

Here the arbitrary open set V can be replaced by an arbitrary Borel measurable
subset A of the unit interval.

Since the singular part of dG is concentrated in a set N of Lebesgue measure
zero, we have

65 [ G@ds=[  @@ds2(f,_ lu@lds) = ([, lu@]ds)"

Thus we have use for the following quaint lemma of pure measure theory.
LemMma.  Suppose f and g are nonnegative measurable functions on a probability
space (Q, B, ) such that both g and log g are integrable and for every set A € B,
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2 a2 [f, 0]
Then/logfdP > —o,

Proor. Let A_; be the set where f > g, and forn =0, 1, --- , let A, be the
set where (g/emt!) < f < (g/e™). Since log g is integrable, g is strictly positive
almost everywhere, and hence the set A where f vanishes also has measurc zero by
assumption. Thus

(37) P(AL) + P(Ag) + --- = 1.
Since ¢ is integrable, we have for each n
2
(58) g/ dP > [ fAn g dp] , /A. gdP < e,

Let B, be the subset of A, on which g < e/2, Then P(A4, ~ B,) < 1/e"?,
and since log ¢ < —n/2 on B, and the B, are disjoint,

(59) Y nP(B,) < .

n=1

It follows that X, nl’(4,) also converges, and

©60) [ logfdr = > [, togfapr > > [, (ogg—n—1)dp

n=—1J" n=-—1 »

= [toggar — il (n+ P > —, ged.

Now, the function u mentioned earlier in this section is zero-meromorphic,
and hence of the form exp (—2xiks)h(s) for some integer k and some function h
in the Hardy class H' having nonzero integral (zero-th Fourier coefficient).
Thus the function log |u| = log |h| is integrable (see, for example, [4], p. 53).
Applying the lemma with f = G’, g = |ul, we obtain

(61) ﬁ)‘ log (' (s)) ds > —0,

which proves Cramér’s assertion.

It is worth noting that Cramér’s sufficient condition for determinacy is not
necessary. Let h be a real-valued function on 7' which is not zero-meromorphic,
such that h(s) > 1 for all s. We can even take h € D1. Let B = h ® h; then
B>0.If h® h> U ® U for some zero-meromorphic U # 0, then h = A
with |A\| > 1 by proposition 1, contradicting the fact that h is not zero-mero-
morphic. Thus B is deterministic. On the other hand, B is clearly harmonizable
with

(62) G'(s) = h(s) j;l h(t) dt, E log G'(s) ds > 0 > —w.

Thus we have obtained a class of deterministic covariances which do not have
the “thinness’” property which had characterized the previously known classes.
Whether theorem 2 can be improved to provide a more explicit analytic criterion
seems to be an open problem. It is well known, from the stationary case, that
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unlike linearly free covariances, deterministic covariances do not form an addi-
tive class.

We note here that in the harmonizable case, the zero-meromorphic distribu-
tions U, in theorem 1 and U in theorem 2 may be taken as integrable functions
for Lebesgue measure on 71", by the argument given at the beginning of this
section,

7. The stationary case

If a covariance B(m, n) satisfies B(m, n) = g(m — n) for some function 8,
then B is the covariance of a stationary Hilbert sequence {z,}. The covariance
distribution is then equal to a finite nonnegative measure p concentrated in the
‘“diagonal” s = ¢ in T2. Letting

(63) v(A) = p((s, 1): s € 4),
we obtain a finite measure » on 7! with a Fourler scries
(64) v = Y ¢, exp (2mins).

The standard result is that {r.} is deterministic if and only if the logarithm
of the density f of the absolutely continuous part of » is integrable (equivalently,
has integral greater than —). Let us infer this from our results. For f integrable
on T log f is integrable if and only if f = |g|? for some nonzero g in the Hardy
class H?, that is

(65) g(s) ~ ZO gn exp (2mins),

where Y oo 9.2 < o (sce [4], p. 53). Thus if log f is integrable, and A is any
element of Dy, then

(66) [ h® hde = L " R(s) ]2 dv(s) > fo NG (s)h(s) ]2 ds

> |[ 56h(s) ds| = @ ® )i @ ),

50 that p>> 7 ® g. Since g is zero-meromorphic and not identically zero, the
given Hilbert sequence is not deterministic.

The converse assertion, that if the sequence is not deterministic then log f is
integrable, follows from Cramér’s result proved in scction 6. (For a direct
treatment of the stationary case, see Doob ([3], chapter 12).
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