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1. Introduction

In a paper [1] read before the Fourth Berkeley Symposium in 1960, I communi-
cated the elemeents of a theory of spectral multiplicity for stochastic processes.
A related theory was given about the sanme time by Hida [5]. Since then, I have
developed the theory in some subsequent papers [2]-[4], the most recent of
which contains the text of a lecture given at the Seveenth All-Soviet Conference
of IProbability and Mathematical Statistics in Tbilisi 1963. FA'urther important
work in the field has been made by Kallianpur and Mandrekar [6]-[8].

MIany interesting problems arising in coniiectioni with this tlheory are still un-
solved. The object of this paper is to offer a small contributioni to the inivestiga-
tion of one of these problems.
We shall begini by giving in section 2 a brief surxvey of tlle results of multiplicity

theory so far knowni for the simplest case of one-dimensional processes. For proofs
and further developments we refer to the papers quoted above. A major unsolved
problem will be discussed in section 3, whereas section 4 is concerned with some
aspects of the well-known particular class of stationary processes, which are
relevanit for our purpose. Finally, section 5 is concernied with the construction of
a class of examples which may be useful in the further study of the problemn stated
in section 3.

2. Spectral multiplicity of stochastic processes

Consider a stochastic process x(t), where x(t) is a complex-valued random
variable defined on a fixed probability space, while t is a real-valued parameter.
In general we shall allow t to take any real values, and shall only occasionally
comisider the case wheni t is restricted to the integers. We shall always assume that
the relations
(2.1) Ex (t) = 0, E'x(t)J2 < x

are satisfied for all t.
We denote by H(x) the Hilbert space spanned in a well-kniown way by the

random vrariables x(t) for all t, while H(x, t) is the subspace of H(x) spannied
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oinly by tlie x(u) wvith it < I. The tail space HI(.r, - ) may be regarded as reprc-
senting the "'infillitelv remiiote past" of the process. If H(x, -oc) only contains
thle zero elemnenit of H1(x), the x(t) process is said to be purely noiideterministic.

All processesx(t) considered in the sequel will be assumlled to satisfy the follow-
imig conditions (A) anid (B):

(A) the process is purely nonidetermiiiiistic;
(B) the limits in quadratic mean x(t + 0) and x(1 - 0) = x(t) exist for every t

tUnider these conditions the space H(x) wvill be separable. We note that, in the
case of a parameter t taking only integral value-, conditioni (1B) is irrelevalt.

Let us now for a momeilt consider the case whleni t is restricted to the integers,
so that we are concerned with a sequence of raindomn variables x,,, with 11 = 0,
± 1, Then there exists a sequence of mlutually orthogonal random variables
Zn witlh

(2.2) 1'zn£ =°0, Elzni2 = or1 0 for every i,
(.I) = 0 for om # it,

sucil that
71

(2.3) X, = Z (C/.,Z/,

wlhere the series

(2.4) Z IC,k2
k =--

converges for every it, so that the expressioni for x. coniverges in quadratic mean.
Trhe variable Zn, may then be regarded as a (iiormalized) innovation entering into
the process at time t = n.

lBy analogy, we mniglht expect to have in thle case of a coiitilllluOs paramnter t
a representation of tIhe formli

(2).5) x(t) f= g(t, u) (Iz(u1)
wvherc z(u) wAould be a process with orthogonal increiieelnts, the incremiienit dz(u)
representing the innovation element entering into the x(t) process during the
time element (u, u + du).

Iowe\veCr, in gen(eral this is iiot trle. 'I'le sittiatioii in the continuous case tUrnlls
out to be miior'e coimplicate(i thami in the discrelte case. li general the innovation
associated wvitli a giveu timie eleinietit imist be regarded as a multi-dimiieinsionial
or even infini te-dimiiemsioloal ranidomii variable, So t liat t le represenitationi (2.5)
is definitely too simpl)le.

In order to presenit the represcentationi formliula which in the general case takes
the place of (2.5), we must first consider the class C of all real-valued and never
decreasing, not identically constant functions F(t) which are continuous to the
left for all t. A subclass D of C is called an equiivalence class if any two functions
Fl anid F, in 1) are mutually absolutely contimnuous. If D1 and D2 are equivalenee
Classes, DI is said to be su1pcr'ior' to /), all(l wve write D) > D2, if ally F2 c D2 is
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absolutely continuous iclative to any Fl, c D). Evidently, lhe relation 1)D > D1:2
does not exclude the case that the two classes are identical.

Consider now a finite or infinite never increasing sequence of equivalence
classes
(2.6) D)I > D2 > ... > D]v,
where N may have aiiy of the values 1, 2, , . Tlieii X wvill be called the
total multiplicity of the se(qtuence. Flurtlher, let N(t) fori every t deniote the number
of those classes in (2.6) for which t is a point of increase of the corresponidinig
functions F. Then N(t) is called the mnultiplicity futnctioni of the sequence (2.(;).
Like N, N(t) may be finite or infinite, and we have

(2.7) N = sup N(t),
where t runs through all real values.
The fundamental proposition of multiplicity theory for stoclhastic processes

is the following. To any x(t) stochastic process satisfyinig conditions (A) and (B),
there is a uniquely determined sequence of the form (2.6) such that the followilno
properties hold. For exvery n = 1, 2, -, A, there is a process z,,(t) of orthogonal
incremenits, such that

E'Z,L (t) = 0, EIz,(t)j2 = F,L(t) eX

(2.8) Ez 7(t)z,, (') = 0 for uii 5# it anid all t, it,
N

II(x, t) = EII(z,, t) for all t,

where the last sumll deniotes the vector sumii of the orthogoonal stubspaces H(z,,, t).
We theni have for every t the representation

(2.9) .r(t) = E | g,,(t, 1) (1z,,(1),

wlhere the g9 are nioiiranldomi functions such that

(2.10) Eft| g(t, u)l2 dF.(u) < D.

It is important to obserxe that the Dn sequenec (2.6) is uni(luely determined
by the x(t) process. Thus, in particular, the multiplicity function N(t) and the
total multiplicity N are also uniquely determined by x(t). Accordingly, we shall
say that the D. sequence, as well as N(t) and N, are spectral muiltiplicity charac-
teristics of the stochastic process x(t).
On the other hand, the gn(t, u) and zn(u) occurring in the represenltation (2.9)

are not uniquely determined by the x(t) process. Thuis, for a given x(t) we mnay
have different representatioins of the form (2.9), all satisfying the relations (2.8).
However, the D. sequence (2.6), as well as the multiplicity characteristics N(t)
anid N, wiJl be identical for all these represcentationis.

According to the representation (2.9), we may say that the multiplicity fulne-
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tion N(t) determines the dimensionality of the innovation element [dzl(u),
dz2(u), *- -..] entering into the process during the time element (u, u + du).

It has been shown that the multiplicity characteristics of a given stochastic
process x(t) are uniquely determined by the covariance function of the process

(2.11) r(t, u) = Ex(t)x(u).

We finally remark that the multiplicity theory as outlined above can be di-
rectly generalized to stochastic vector processes of a very general kind. We shall,
however, not deal with these generalizations in the present paper.

3. Processes of total multiplicity N = 1

According to the above, we know that any given stochastic process x(t) satisfy-
ing (A) and (B) has multiplicity characteristics which are uniquely determined
by the process, and even by the covariance function r(t, u) of the process.
On the other hand, so far we know very little about those properties of the

process, or of the corresponding covariance function, which determine the actual
values of multiplicity characteristics like N(t) and N.

In the discrete case it follows from the above that, by analogy, it can be said
that the total multiplicity is always N = 1. In the continuous case, the important
class of (second-order) stationary processes has even N(t) = 1 for all t, and conse-
quently N = 1, as follows from well-known properties of these processes to be
presently recalled.

In view of these examples, it might well be asked if there exist any stochastic
processes with a total multiplicity exceeding unity. The answer to this question
is that such processes do, in fact, exist. It can even be shown that, as soon as we
proceed from the class of stationary processes to the more general class of har-
monizable processes introduced by Loeve, any prescribed multiplicity properties
may occur. In fact, it has been shown in [4] that, given any Dn sequence (2.6),
there exists a harmonizable process x(t) associated with this given Dn sequence.
However, the example of such a process given in [4] is of a very special kind,
and the corresponding representation (2.9) contains functions g.(t, u) having
rather pathological properties, not likely to occur in applications to any physical
problems.

Accordingly, it seems to be a problem of some interest to study more closely
those properties of a stochastic process which determine the actual values of the
multiplicity characteristics. In particular, it would be interesting to be able to
define some fairly general class of processes having total multiplicity N = 1.
A natural approach to this last problem might be to start from the class of

stationary processes, which always have N = 1, and then try to generalize the
definition, still keeping sufficiently near the property of stationarity to conserve
the multiplicity characteristic N = 1. We propose to give in the sequel an exam-
ple of a generalization of this type. In order to do this, we must first recall some
of the relevant properties of stationary processes.
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4. Stationary processes

Let x(t) be a (second-order) stationary process, satisfying (A) and (B). It then
follows that the covariance function

(4.1) r(t) = Ex(t + h)x(h)
is everywhere continuous, and has the spectral representation

(4.2) r(t) = f| ei'tf(X) dX

with a spectral density f(X) > 0 for almost all X (Lebesgue measure), such that
f(X) E Ll(-oo,oo ), and

(4.3) f log f(X) dX > -
oo.

1 1+X2
The random variable x(t) has the corresponding spectral representation

(4.4) x(t) - e"t dw(X),

where w(X) is a process with orthogonal increments such that
(4.5) E dw(X) = 0, El dw(X) 12 = f(X) dA.
Further, there exists a complex-valued function h(X) e L2(- 00, 0 ) and a process
z(t) of orthogonal increments such that

(4.6) E dz(t) = 0, El dz(t) 12 = dt, lh(X)12 = f(X),
while the Fourier transform g(t) of h(X) reduces to zero for t < 0, and we have
the representation

(4.7) x(t) = J g(t - u) dz(u)
with
(4.8) H(x, t) = H(z, t)

for all t. The functions h(X) and g(t) are uniquely determined, up to a constant
factor of absolute value 1. Comparing this with the general representation for-
mula (2.9), it is seen that the stationary process x(t) has the multiplicity charac-
teristics N = 1 and N(t) = 1 for all t.

5. A class of harmonizable processes with N = 1

We shall now define a class of harmonizable processes containing the stationary
process x(t) given by (4.4) or (4.7) as a particular case, and such that the multi-
plicity characteristics are the same as for x(t), that is N = 1 and N(t) = 1 for
all t.

Let Q(p) be a never-decreasing function of the real variable p such that Q has
a jump of size 1 at p = 0, whereas Q(-oo) = 0, Q(+o0) < 2, and

(5.1) Q(p) + Q(-p) = Q(+00)
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in all conltinuity points p of Q. The lFourier-Stieltjes tranisform of Q wN-ill thlei be
real and positive, so that we may define an everywhere positive, coilitilUous alnd
bounded functioni q(u) by the relation

(5.2) [q(U)]2 = f e-iPU dQ(p)
We now definie a stochastic process X(t) by writinig

(5.3) X(t) = f g(t - u)q(u) dz(u),
wlhere g(t) aind z(ut) are the same as in (4.7). As q(u) is bounded, anid
g(t) e L2(0, x ), the integral in (5.3) exists as a quadratic meani integral. Wiheni Q
is idenitically constant except for the jump at p = 0, it is secen that X(t) reduces
to the stationary process x(t) given by (4.7).
We shall niow first show that X(t) has the required multiplicity characteristics.

According to (2.8) anid (2.9), we have to show that H(X, t) = H(z, t) for all t.
As it evidently follows from (5.3) that H(X, t) C H(z, t), it will be sufficienit
to show that the opposite inclusioin relatioin is also true. If, for soIme 1, this wiere
not so, there wouild be a nonzero elemenit in H(z, t) orthogonal to X(u) for all
1 < t. Now every nionizero Clemenlt in H(z, t) is of the form

(5.4) i m(v) dz(v),

withl a (juadiatically inltegrable mn(v) not almost everywlhere e(lual to zero. lf this
is orthogonial to X(u) for u < t, we have

(5.5) f| g(u - v)q(v)m(v) dv = 0

for all u < t. However, since q(v) is bounded and positive, it would follow that
there is a nionzero element in H(z, t) orthogonal to x(u) for all it < t, in coilt radic-
tion with the relation (4.8). Thus our assertioni is proved.
We nlow proceed to prove that X(t) as defined by (5.3) is a harimioniizable

)rocess, anid to deduce an expressionl for its spectral distributioln. Fromll (5.3:) wve
obtaini for the covariance funietion R(s, t) of X(t) the expressioil

(5.6) I(s, t) = EX (s)X(t) = f g(s - it)g(t - U) [q(1)]2 (1u/

= |_ g(s - u) g(t- u) (di e-ipu dQ(p).

As g(t) = 0 for t < 0, anid g(t) c L2((, X), it follows that the double initegral is
absolutely convergent, so that

(5.7) R(s, t) = f| dQ(p) f ee-i'g(8 - u)g(t - u) dlat.

By the Parseval formula, this giv-es

(5.8) I?(.s, t) = |~ |~ (XCi[.-t(X+P)IIi(X)j8(X + p) dX (iQ(p).
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SuIbstituting lhere ,U for X + p, it will b)e scin that this is thc cxpression of a

harmonizable covariance function. The corresponding spectral mass is distributed
over the (X, A)-plane so that the infinitesimal strip between the lines ,u = X + p
and it = X + p + dp contains the mass dQ(p), whlereas t-he distribution within the
strip has the relative density h(X)h7(). Again we see tlhat, in the particular case
when Q(p) is identically constant except for the jumiip at p = 0, the whole spec-
tiral mass is situated on the diagonal X = ,u, so that we have the covariance func-
tion of a stationiary process with spectral density lh(X)I2 = f(X). As soon as Q(p)
has some -ariatioi outside the point p = 0, we-chave the two-dimiienisionial spectral
distributioni of a harmionizable covarianice.
Thus the covrariance function of the X(t) process, given by (3.3), is lharmiioiiiza-

ble, and it then follows from known properties of harmonizable processes that
X(t) itself is harmonizable; that is, we have

(;;).9) X(t) = C i'x /Z(X),

whliere tlie covariance funcetioni E,'Z(X)Z(A) is obtained from (lhe expression (5.8)
wvith ,u = X + p. At the same timl-e, we lhave seen that the lhirmonizable process
X(t) hia-s the iutiltiplicity characteristics T = 1 anid N(t) = 1 for all t.
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