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1. Introduction and summary

As we pointed out in the Fourth Berkeley Symposium [4], an infinite dimen-
sional version of the complex measure in the k-space £\,

1) Fi(dz) = N\(dx)/(V 2mhi)F, A = Lebesgue measure

is useful for a mathematical formulation of the Feynman integral [1]; & is a
positive constant which is supposed to indicate the Planck constant in its
application to quantum mechanies and Vz, (z > 0) denotes the branch for which
—r/2 < arg Vz < 7/2 throughout this paper. Since neither A, nor (Vv 2rhz)*
has any meaning when k = «, we cannot directly extend this measure to the
infinite dimensional space E, (Hilbert space). Therefore, we shall consider a
linear funectional F\.(f) induced by the measure Fy, in (1):

)\L(d.l)
2 F.(t) =
© 0= [ g0 30
and extend this by putting convergent factors as
@ A=t [ g ew[ g 07— 0,0 o) | 200

where a is any clement of I, and V is a strictly positive-definite symmetric
operator. The domain D(F;) of definition of F, is the space of all Borel meas-
urable functions for which the limit in (3) exists for every (a, V) and has a
finite value independent of (a, V). We shall rewrite (3) as

(3" Fu(f) = lim T1 /1 + ”i" / J@)N(da: a, nV),
n—x p=1
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where {v,} are the eigenvalues of V and N(dz: a, V) denotes the Gauss measure
with the mean vector a and the covariance operator V. Since the Gauss meas-
ure N(dz: a, V) can be defined in the real Hilbert space E, if V is positive-
definite symmetric operator with the sum of eigenvalues < « [3], [7], we can
define F,, by putting k = « in (3); notice that the infinite product in (3') is
convergent by virtue of >, v, < .

IFollowing an important suggestion of 1. Gross we shall modify (3’) to make
the approximating measures more uniform and define F; as follows. We introduce
a directed semiorder in the class U of all strietly positive-definite symmetric
operators of finite trace by

() Vi< Vs if and only if V., — V; € V.

DEerFINITION. Denoling with limy the limit along this directed system U, we
shall define Fy(f) as follows:

(5) Fi(f) = lim I \/1 4+ Z— / f@)N(dz: a, V),
V v=1 1 JE:

where the domain D(F) of definition of Fy is the class of all Borel measurable func-
tions for which this limit exists for every a and has a finite value independent of a.

In order to discuss this functional we shall introduce some notions.

Let A be a bounded positive-definite symmetric operator. Then 3_, (Ae,, €.),
{e. being an orthonormal basis, is independent of the special choice of the
basis {e.} and is called the trace of A, in symbol Tr A. If Tr A < «, then 4 is
completely continuous and Tr A is equal to the sum of all eigenvalues of 4.

Let A be a bounded operator. We shall define the trace norm of class a (> 0)
of A by

(6) [A]la = [Tr ((A*A)=")]V=

If A is symmetric, then ||4]], = [Tr (|4]*]"=. The uniform norm of A is defined
by |A]| = supp <1 |Ax|. Tt is easy to see that

(7.2) [Alla < o0 = [lAllg < oo if a<§g
and
(7.b) [Afa <o =[A] <.

We shall call A a trace operator if ||A]l; < « and call it a Hilbert-Schmyidt
operator if ||A|l: < <. Beeause of (7.a) we can see that if |4l < » for some
a < 1, then A is a trace operator, but not vice versa.

If |A|l, < «, then Y (Ae,, ¢.) is also convergent for every orthonormal basis
{e.} and has a value independent of {e,}. This is also called the trace of 4, in
symbol Tr A.

A bounded operator is called nearly orthogonal if A is one-to-one and if
1(4*A)2 — Ill, <  for some a < 1. The first condition is equivalent to the
condition that (A*A)Y? is strictly positive-definite.

A one-to-one transformation from E; onto itself is called nearly isometric if
C is expressed as Cx = a + A - z, where A is nearly orthogonal.
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Writing the eigenvalues of (A*A)Y2 — [ as {a,}, we shall define J(C) by
8) J(C) =11+ o).

This is well-defined and does not vanish because A is nearly orthogonal. It is
needless to say that every isometric transformation from k£, onto £, is nearly
isometric. In case k < «, every one-to-one linear transformation ' from £ onto
E, is nearly isometric and J(C) turns out to he the absolute value of the Jacobian
of C.

We are now in a position to state the main properties of Fi.

THEOREM 1. The linear space D(Fy) is invariant under nearly isometric
transformations, and we have

(i) [ =afit afi=FJ(f) = al(fi) + «F.(f);
(ii) if g(x) = f(Cx) and C is nearly isometric, then Fi(g) = J(C)~'Fi(f).

The functional F is not trivial. In other words D(F) is a fairly large class of
functions, as the following theorem shows.
THEOREM 2. [f f(x) is of the form

) f@) = exp [%l lzl‘-’] /E eu(dy)

where u is a complex measure of bounded absolute variation defined for all Borel
subsets of Ey, then

(10) feDF) and Fi(f) = / kexp[%. 1y|2]u<dy>.

Combining this with theorem 1, we can sce that all functions f(Cx), f being
of the form (9) and C being nearly isometric, and their linear combinations
belong to D(Fy).

In view of these facts, we shall call the functional Fi a generalized uniform
complex measure and write it as

(1) Fuf) = [, F@Fuda).

In case k < «, every Borel measurable function f that is Ae-summable on I,
belongs to ®(Fy), and we have (1). Therefore, we call Fy, (k = 1,2, --- , o) a
generalized uniform measure with index V2rhi.

We shall write & for the class of all functions f of the form in theorem 2. It
is casy to see thal & s a linear space tnvariant under isometric transformations.

The space Egty, (k, £ = 1,2, ---, o) is considered as the Cartesian product
of K, and E,. Any point z of Ej4, is written as the pair (y,2), y € E, 2 € E,.
Then we can easily prove the following theorem.

THEOREM 3. Suppose that f € &gy Then f(x) = f(y,z) belongs to & as a
Junction of y for cach z and { [(y, 2)Fi(dy) belongs to & as a function of z. Further-
more,



148 FIFTH BERKELEY SYMPOSIUM: ITO

(12) Juy, J@Feddr) = [, [ [, 50 Fu) ] Pud.

Similarly, we have

(13) ﬁ;kﬂf(‘r)p’"““(dx) = /;k I:/;ﬁ(f(y, 2) I, (dz)] F(dz).
If g € 6. and h € &, then f(y, z) = g(y)h(z) belongs to &4, and

(14) Jiy, JOFeddn) = [ o@Fudy) [, @F).

A metric space M, is called Hilbertian with dimension & if there exists an
isometric mapping ® from M, onto E,. If there are two such mappings ®; and
®,, then @@, ' will be an isometric mapping from £, onto itself. Because of this
fact, all notions in £, invariant under isometric transformations can be trans-
planted into the Hilbertian metric space M,: for example, Gaussian measure,
nearly isometric transformations, J(C'), the function class &, the generalized
uniform complex measure Fy, and so on.

Theorems 1, 2, and 3 can be restated in terms of the Hilbertian metric space.
The statement does not change for theorem 1. Theorem 2 should be stated as
follows.

THeorEM 2. If f(x) is of the form

@) J@) = /Cxp l:)l_h IT/{I v(dy), :I_z/_ = distance (x, y),
then we have
(10°) S EDWFY and Fi(f) = »(l).

In order to state theorem 3 for M, we need some notions. The concept of a
linear mapping with a translation from I, onto E, is invariant under isometric
transformations, so that we can define such a mapping from My, onto Ay,
which we shall call a lincar mapping from My, onto M, Let C' be such
a mapping. Then

(15) d(yy, y2) = inf {Tre: 11 € C~ (1), 22 € C~(y2)}

defines a new metric on 1/, so that there exists a linear mapping 7' from I/,
onto itself such that

(16) d(y, y2) = (Ty)(Tys).
We shall call C normal, or nearly normal, according to whether 7' is isometric
or nearly isometric. If € is nearly normal, then we shall define J(C) to be J (7).
There are many 1’s for a single C, but these notions are independent of the
choice of T. Now we shall state theorem 3 for the Hilbertian metric space,
omitting the statements about the domain of definition.

THEOREM 3'. Let C be a normal linear mapping from My, onto M,. Then
C~Yy) 1s a k-dimensional Iilbertian metric subspace of My, and we have, for
J € &ty
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(7 Ju, J@Fssetdn) = [, [, S@FdF ).

Combining theorem 3’ with theorem 2, we shall obtain a slight generalization
of theorem 3'.
THEOREM 3. Let C be nearly normal from My4, onto M,. Then we have

(18) [‘[W F@) Fry(dz) = J(C) fM( [C vy P Fe(dy).

Let us now formulate the IFeynman integral in terms of F..

Consider a classical mechanical system of a particle of mass m moving on the
real line — < ¢ < « where the field of force is given by a potential «(q). The
Lagrangian of this system is

(19) L(g, 4) = 5 ¢ — mu(g)
and its action integral G(y) along a motion v = ¥(7), s < r < {, is given by
@0 @M = [[La, v dr =3 ['my' @ dr — [Tmutr() ar.

Let T = TI'(t, bls, a) be the space of all motions v = v(r), s < 7 < ¢, starting
at v(s) = a and ending with y({) = b such that the velocity function ’(7) is
square summable on s < 7 < . The space T is a Hilbertian metric space M,
with the metric

(21) et = [ mri(r) = vh(r)? dr.

Thus we can define the generalized measure on F,, on I'. The Feynman principle
of quantization of this mechanical system is that the function

vVm
Vorhi(t — s) Jv
is the Green function of the corresponding quantum mechanical system, namely

that exp [(¢/h)Q(y)] belongs to D(F.,), and the function G(¢, bjs, a) defined above
is the elementary solution of the Schrddinger equation

(22) G, bls,a) = exp I:% @(v):l Fo(dy)

(23) U T

for the quantum mechanical system; the right side of (22) is called the Feynman
integral. We shall prove this for the following cases.

Case 1: u is the Fourier transform of a complex measure of bounded absolute
variation on (—o, ),

Case 2. u(q) = ¢i-q, where ¢, is a real constant.

Case 3: u(q) = coq% where ¢, is a positive constant.

Let us mention one word about the index ¢ = V2rhi. As a matter of fact,
we can carry out the same argument in the case where ¢ = 0 and Re ¢? > 0 by
replacing A7 in (5) with ¢2/2w, and the case where ¢ = V27 turns out to be
in close connection with the Wiener measure.
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In the course of writing this paper we found a gap in our argument based on
definition (3’). We also found that we were able to overcome the difficulty by
adopting definition (5) suggested by Professor L. Gross, and by using Kuroda’s
theory on infinite determinants [5] to which Professor T. Kato drew our atten-
tion. We would like to express our hearty thanks to them.

2. Properties of the generalized uniform complex measure F,

We shall start with some preliminary facts.

Lemma 1. Suppose that V is a positive-definite symmelric trace operator with
the eigenvalues {v,} and the eigenvectors {¢,}. Then £(x) = (z,e,), v =1,2, ---
are independent random variables on the probability space (Ey, N(dx: a, V)), each
(z, e,) having a Gaussian distribution with the mean a, = (a, e,) and the variance v,.

Proor. It is enough to observe that

(24) / exp [z é:l 2(x, e,):l N(dzx,a, V) = / exp [2(z, > z,0,]N(dz, a, V)
exp {’[((l, Z ZV(’V) - %(V Z 2Ly, Z 2767)}

n
=exp [X (z,a, — 30,2))] = II exp (tza, — 1v,22).
v=1

LEMMA 2. For —w <y < 4% and Re a > 0, one has

(25) / eirvg= @/ dp = | /—21 e~ v/
— o

Proor. This is well known for @ > 0. By analytic continuation we can see
that it holds for Re @ > 0.

LemMA 3. Let H be a real or complex Hilbert space and suppose that Vi and V,
are bounded symmetric linear operators. If

(26) |Viz|2 > |Vaz|2 > clal?, ¢ is a positive constant,
then
(27 [Vitz)2 < |V 'z < e Yol

Proor. Tt follows from the assumption that |V,Vi'z|2 < |z]2, that is,
V2Vl <1, s0 that [|[Vi'Vyl| = [[(Vi'Vo)¥| = ||V.Vi| < 1. Thus we have
|[Vi'Va| < |x|2, that is, |Vi'z| < |V:'z|. It is obvious that |Vi'z|? < ¢ Vx|

LemMa 4. For any bounded Borel measurable function f(x) defined on Ey, any
linear operator A: E, — E, and any b € K\, we have

(28) [E 7(b + Ax)N(dz: a, V) = f1 J@N(dz: b+ Aa, AVA),

Proor. If f(x) is of the form e'@¥) y being any fixed element in I}, then
this is true by virtue of

(29) [ éenN@e: a, V) = exp fi(a, y) — 3(Vy, )}
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Taking linear combinations and limits, we can see that it is true in general.

In section 1 we defined Tr 4, ||4||., and ||4]| for the real separable Hilbert
space E;. We have analogous concepts for the complex separable Hilbert space
H, of dimension k. Any linear operator A from E; into itself induces an operator
A on H, by A(x + ity) = Az + iAy. Tt is easy to see Tr 4 = Tr A, |4, =
||A.]|, and ||A]| = ||4]||. Therefore, we write A for A without any ambiguity.
We summarize some known facts about norms and determinants. Kuroda’s paper
[5] is to be referred to concerning the definition and the properties of the deter-
minant of a linear operator A such that ||4 — I||; < .

LemMa 5. The following relations hold:

(30.2) Al < flAll,

(30.b)  |lAB|l = [[(A4%)*(B * B){l, < [|A[l|[Bllx < [|All: [|B]]s,
(30.¢) ITr Al = [|Al],,

(30.d) det 4 = lim det (de,, e)fa-1,

where ||A — I||, < 1 and {e,} is any orthonormal basis;
(30.e) det AB=detAdetB if ||[A—1I]i<1 and ||B-1I| <1,

0

@0 et +D)=ew| £ ELmeon] i o<1

n=1

With these facts in mind we shall discuss the properties of Fy.

Proof of theorem 1. It is clear by the definition that D(Fy) is a linear space
and F is a linear functional on D(F}).

Using lemma 4 and the fact that OVO* has the same eigenvalues as V for
any orthogonal transformation O, we can easily verify the invariance of D(F)
and F; under translations and orthogonal transformations.

Let C be nearly isometric. Then we have Cx = a 4+ 4 -x, where A is nearly
orthogonal. Applying Neumann’s decomposition to 4, we can write C as

31) Cx = a + BOzx

where O is orthogonal and B is a strictly positive definite symmetric operator
with

(32) |B—1Il|la < for some « such that 0 < a < 1.

Since we have already proved the invariance under translations and orthogonal
transformations, it is enough to discuss the case C = B in (31).

Let {8,} be the eigenvalues of B — I. Then we have 8, > —land 3, |B,]* < .
The second inequality implies that 0 < v, <1 + 8, < v* < « with v, and +*
independent of ». Thus we have

(33) [|BY — I||la < |{|B — I||la < forevery n=1,2, .-,
and
(34) |B=2n — Il =X |14+ 8) —1] <1 for n sufficiently large.
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If we can prove our theorem for C = B'/» then we can verify it for C = B by
applying BY* n times and noticing J(B) =1 (1 + 8,) = (II (1 + B,)V/*)" =
J (BY")». Therefore, in order to prove that

(35 S E€DFy) =fp=f(Bx) € DFy) and Fi(fs) = J(B)F(f),
we can assume, in addition to (32), that
(36) 1B —1I|| <1.

Let {v.}, {8}, and {w,} be the eigenvalues of V, B — I, and BV B respectively.
By the definition of Fi, we can derive (35) easily from the fact that

- [1 n 2 :Im
(37) lim 2=

v 172
IT [1 T ln:l

To prove this, we shall consider the complexified Hilbert space Hy = Iy, + I
and denote the complexification of ¥V and that of B with the same notations as
we remarked before.

First, we shall derive the identity

=11 (1 +8), (=delB).

n[i+ ) o 1
(38) "—— = det Bexp+3 Z '1 (1)")J
H [1 + ] L n=1
hi
where
{tV\!
(39) D, = ([ + %) (b=2—1).

Using lemma 7, for 0 < ¢t < 1 we have
11 (1 +

tw.”) det <[+£§E> de thct( +”>dctB
” hi
(40) N\ = tV
I}(“’E‘) det([—l-ﬁ) det<I+E>
2 o N e . BV
= (det B)? det [(1 4 hi) <1§ + hz)]

= (del B)*det [ + D/]

= (det B)%exp i (=1 1) Tr (D")}

where we should notice

It | "tVH
(41) p—wm—z\ =B =l G <
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(42) 1 = (1 + ae) e

t2V2> —1/2
<I(r+%=
—H( e

<|B2 -1 <1,

|B=* = Il],,

and so
(43) ITr (D] < |IDH: < |[DJit L (1B~ = 1|4,

153

by (30.b),

by (30.b),

by (30.b).

It follows from (40) that (38) holds with the sign + or — in front of det B.

By our convention for Vz (section 1), the left side of (38) is continuous in
t € [0, 1]. The right side of (38) is also continuous in ¢ € [0, 1], because the
infinite series is convergent uniformly on 0 < ¢ < 1 by virtue of (42) and (43).
Since the right side of (38) never vanishes, the d- sign remains unchanged as ¢
moves from 0 to 1. But both sides of (38) are positive at ¢t = 0 and so (38) holds

for every ¢t € [0, 1].
Setting t = 1, we have

W, 1/2
I [1 + E]
(44)

1?[”7%]

where D(V) = (I + V/h)™(B=* — I).
Since we have, by (43),
0 _1 n
> CW e vy
n=1 n

(43) < T IOl

<IDWI s = 1

ID)|[x

< PR | S S § B,
: — B>~ 1l

the proof will be ecompleted, if we prove

(46) lixvp ID(V)|]1 = 0.

Using (30.b), we shall evaluate D(V) obtaining

1
|
|
i

|

1

an = |(1+45) B

<a

(r+42) 1B =11 @=lpm + D) <)

— det B exp z (=1 1) Tr (D(I)")}n

<ear|(T49z) 1B =107 (= 1B = Telly = 1B = To < ).
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Using the spectral decomposition of V and noticing 2(1 4+ A% > (1 4+ A)?, we

have

49 0+ 22y < v (r+ ) 4]
and so

(49) 1Dl < \/50102 (I + %/)_1 |IB — I|i—=.

Hence, it follows by lemma 3 that V' > ¢|B — I| implies that

(50) IDV)|ly £ V2 cres

¢ -1
(1 +41B - 1|> B — 1|

Using the spectral decomposition of B, we have
—1 1—a
G D) € V2 e sup (1 + %) N—e < V3 cier (%) .
220
Taking £ = {(¢) large enough, we have ||D(V)||s < ¢ for V > {(¢)|B — I|, which

proves (46).
PROOF OF THEOREM 2. Setting

(652)  F(a, V) =TI4/1 + %5 / exp (i |1|2> / ¢@Vu(dy)N(dz: a, V),
v 1 JEx 2h Ex

and changing the order of integration, we have

(53) Fla,V) = [, I(y: a, Vu(dy),
where

(59  I@:a V) =T41+5 / exp | o Il + iz, 1) | N(do: o, 1)
v 1] Ex 2h
=1;[,}1+%;./;kexp[%llx+a|2+i(x+a,y)]N(dx: 0, V). ‘

Let {e,} be the eigenvectors of V corresponding to {\,} and write z,, ¥,, and a,
for (z, e,), (y, &), and (a, e,), respectively. Noticing that

(55) exp [ﬁ lz + a|? + i(z + q, y):l = II exp [;—h (x, + @) + iz, + a,)y,:]
and using lemmas 1 and 2, we can get

- . - h 1 a\* kb
(56) I(y: a, V) = exp [Zi ; gy (y, + hi) ] exp I:Qi |y|2:|

by usual computation. Therefore,

6 WPV~ [ e (1) )

h 1 a\?
S /exp [Z{ ; m (yv + Z) - 1] ll"l(dy)>
where |u| is the absolute variation of p.
Writing A(y: a, V) for the inside of the bracket, we have
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(58.a) ReA(y: a,V) <0, andso |edweV) — 1] <2,
and ,
\ .
68 A e VISHE S (w+E) Gyo+h< 2+ ),

.

<h

v+ he (y+ 5)

In order to prove our theorem, it is enough to find Vo = V,(e) for every e > 0
such that the integral in (35) is less than ¢ for every V > V,.

Since |u| is a measure with |u|(E,) < «, we have a compact subset K of E,
such that

(59) lul (B — K) < §

by a theorem due to Prohorov [6]. Take § > 0 such that e¥* — 1 < ¢/2, or
find a finite set {y’, y"’, - - - , y™} such that every y € K is within the distance
h1/2§ from some ¥, and choose Vy € U such that

—12f .o a

Such a V, can be constructed easily.
If |y — y*| < 8k, we have

o0 |k hn (v +5)

(60) < 9, v=12---,m

< l(V° + RI)-v2 (yo) + %)
+ |(Vo + hI)72%(y — y@)|
<[ (vo + )| + by — ol <28

Hence, we have

(62) '(Vo + hI)-12 (y + %) <2 for y € K.
Therefore,
(63) |(V + RI)-12 (y + %) <25 for ye K and V>V,

by lemma 3, observing that ¥V > V, implies

(Vz, z) + h(z, z) > (Voz, z) + h(z, ) 2 h(z, 7),
|(V 4+ hD)Y2x|2 > |(Vo + hI)Y2x|? > hlz|%

Using (58.a) and (63), we have, for V > V,,

(64)

) [ letwsn — 1lutay

< / + / S @ = DuE) + 2B~ K) S @ =1+ 5< 6
K o —

which completes the proof.
Since theorems 3, 3/, and 3" can be easily proved, we shall omit the proof.
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3. Application to the Feynman integral

In section 1 we formulated the Feynman integral in terms of our generalized

measure F,. We shall now carry out the computation in the three cases men-
tioned there.

Let Li[s, t] be the space of all square summable functions 2(r) on the interval
s< 1<

(66) f C2(r) dr = 0.

Li[s, ] is a Hilbert space I, with the usual norm in the space L[5, {]. Recalling
the definition of the metric in T in section 1, we can see that

&: T — Lis, 1],

67) — b — a
@) = Vi [«/w ~b- é] s<r<t
defines an isometric mapping from I onto Li[s, t]. Introducing es,,, € Li[s, (] by
[ty s<o<r<y,
e ) -3
(68) Cspqrl0) =
I s<r<ae <Y
t—s

for € L[s, t], we have the following relations:

(69.a) /: 2(0) do = (Csp,0y ),
— — 9l
©90) 1) = %) + = (), () = LTI
Vm t B
t — )2
(69.¢) / my ()t dr = |o|* + Bl"'(:)f_; “:‘I') :
Therefore,
mb — a)* ! 1
@d) = e+ 30T [+ G ]
-8 s m

Let 91, denote the class of complex measures of hounded absolute variation
on Li[s, t] and 9, the class of all functions

(70) gx) = Tu@) = [

where § denotes the Fourier transform. The following fact will be useful here:

w ¢ uldy), g € M,

(71) g €ETM= oly) € FM,, for every entire function ¢;

in fact, if ¢ = Fuand o(§) = T aug", then v = 3 aup*, (u** = n times convolu-
tion of p) converges in the norm of total absolute variation and o(f) = F-».

Case 1. Assume that u(q) = [ e€0(dg), where 9 is a complex measure of
bounded absolute variation on (—w, ).
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First we shall prove that

(72) exp (% @(7)) ce
According to theorem 2, it is sufficient to prove that
[ _im ’ 1
(73) exp " /: u [‘y"(r) + (/; (e, a-)] dr} € FM,,.

By virtue of (71), it is also enough to show that

(74) /; u [’Yn(f) + \—/17—-; (Cs,ry a)] dr € FN.

The left side is

(75) / / (\\p = Cotiry "r>] et (dg) - dr,
m

and so it is the Fourier transform of {he measure p € 91,

(76) p(-) = /’t /’w 6 <-, ;/§= (’8,t,r> etrg(dg) dr,
Js J - m

8(-, y) being the s-measure concentrated at y. Therefore, we shall have (74).
Using theorem 2 we can see that

Vo .
77 G(t, bls, a) = \/#_85 / exp <%(i(’y)> F.(dv)

_ Vm m(b — a) " /

~ Vamhit = P [~Sha=" ] = / Qi
where

(78) Q.= Q. (1,1 - ,7u;t, 0,8, a)

t

8 wzl \/— 81"

= [_: < | exp {i ; w(n)sy-i-gi dcr}l)(dfl)  0(dEy).

If t — s is small, then

(79 G, bls, @)

Vm i m(h — a) im ., u(a) + u(b) B
R "[ 2hi(t — s)] [1 — g =R =y T el s)]

where o does not depend on (a, b) as long as they stay in a compact set. Henee,
it follows that if ¢ is a Ce-function with compact support, we have

(80) lim _l—s [/ G(t, bls, a)p(a) da — cp(’))] = — ") — — u(b)<p(b)

l,st
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We have a composition rule

(81) G, bls, a) = f_‘: G(t, blu, )G (u, cls, a) de

where _the integral is to be understood in an improper sense, hamely
(82) Vonhi fL G(t, blu, G (u, cls, a)Fy(do)

or

(83) lim f_”., G(t, blu, )G, cls, a)e—/2» de.

The composition rule can be written in terms of F:

81') / exp (3' am) F.(d)
r(tbls,a)

m(t — s) i
e T i fm,blm exp (5 0l ) Pl

% / exp (% a(72)> Fo(dys)Fi(do),
T (u,cls,a)

which we can get by applying theorem 3"’ first to

B8  C:T—E; O =vw; JO) = \/(7"‘(2)—@_’7)

and then to
(85) Ci: T = {y € Tiy(u) = ¢} = T(ycls, a);
Ci(y) = restriction of ¥ onto [s, ], J(Cy) = 1.

Case 2. This case, u(g) = ¢-q, —» < ¢ < =, is not included in the first case,
because u(g) is unbounded. By a simple computation, we have

(b a)?
t—s

86)  @(y) = dzP 4+ 32 — $me(a + b)(t — s) — Vmely, 2),

where y(¢) = (1/2)(t + s) — o. Therefore, it is obvious that exp {(i/h)G(y)} € &,
and we get

87 G, bls, a)

= WT\/?—-:-SS Xp (i G(*/)) F(dvy)
VWT @ { =g =5~ =9ty -~ e o]f

observing that

(88) w=/j(t;”-a)”dmﬁa-s)s.
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Case 3. In the case where u(g) = cg? ¢ > 0, we can prove that

(89) —6(7) = f(Ax), € 8,; A is nearly isometric,

and so this belongs to D(F,,).
Applying (69.d) to our case, we have

0 @ = del + 370 e[ + )|

= 3z|* + % ’l'(b_s_) mely — 2V'm Iy — cls,

where
91) I = f " yo(r)? dr = 3(t — 8)(a® + ab + b?),
(92) L= [ %) ot 2) dr = [ vo(r) [ 2(0) do d,
(93) I = f " (Conny D) dr = f ‘( / " 2(0) da)2 dr.
Let us set
_ 2 nw(r — 8) _ )
94) Cu(r) = P n=012...,

_ 2 . n1r(1'—s) _
(95) S"(T)_"t—ssm R n=1,2,

Then each of {Cu(r),n =10,1,2, ---} and {S,(r),n = 1,2, ---} is a complete
orthonormal system in L2[s, {] and {C.(z), n = 1,2, ---} is a complete ortho-
normal system in L3[s, t]. Expanding z as

(96) 2(r) = % (@ C)-Cal),

we can express I and I3 as follows.

O L= 2), y= 3 Y2 —9at (-0

ne=l nir?

@) L=@nn, Bi=3 P60
Thus we have

99)  a() = $l=* + %

b= O T (4 5)(at + ab + bY)
— 2Vmoly, ) — o(Bx, 2) = Hdalt + § 2L
— F = )@+ ab+ 1) + c(z, 42),

where 12
(100) Az = (I — 2¢B)Vi%x = 3, (1 - 2}@—-_3)) (z, C.) - Ca,

n=1 niwr?
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(101) 2= (I — 2cB)y
3 2e(t — )*\™* V2(t — 9¥*(a + (=1)*'b)
= ngl (1 - nir? ) nix2 CM

asfarast — s < w/\/EE. Since we have

(102) (|4 = Il = Tr[|4 — I|*]
_ o _ 2C(t — 8)2 —1/2 _
N ngl (1 nir? ) 1

we get |4 — Il <  forevery a > 1/2. Therefore, it is obvious |4 — Iz < o,
which shows that A is nearly isometric because A is a bounded symmetric
operator. By theorems 1 and 2 we have exp ((z/h)G(y) € D(F,)) and

Vim
Vorhi(t — s) Jr
___VYm -
" Vorhi(t — ) Ji4)

a o
~ n—?a,

n=1

(103) G, bls, ) = exp (} (i)

) I 2 licl?

X oxp o PO Ty g a6 + [ lzlz}.
Using

N © 2
(104) - (1- i)
we have
2(t — s))w \/sin [V2(t — 5)]

(105) J(A) I}( nr? V(t — s)

Observing that
= 2t — )2\~ 2(t — s)%(a + (—1)*b)?
(106) JoJ2 20—0<f» G

e nir nirt

t—s & 1 _ __1__ 2 2

e (DD
#2000 G S e )
and using
o 1 1 /1
(107) ngl nin?— 12 21 (5 — cot x);
> (=D 1 <_1_ - l)
(108) ngl nir:— z2 2z \sinz z/)
=1 _ = = (=Dt
(109) w6 & w1
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we have

, _t—s 1 1 Vot — . 2 e
(110) s =12 [2 \/2?@—3)( Vi L (Ve s))) w] (a2 + 1Y)

+9t—s[ 1 (7 1 _ 1 )—r‘]ab.
“Te Love(t — s) \sin [2ct — 9] V2c(t — s) 12
Puttling (105) and (110) in (103), we get

(111) G, bls, a)

_ \/ mv2e ox {im\/2—c (a®+ b?) cos [\/2_c(t —8)] — 2ab}
~ Vorkisin [V2e(t — s)] P12 sin [\/20_(} —8)]
fori — s < =w/ V2.
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