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1. Introduction

There are several theorems guaranteeing the existence of fixed points of differ-
ent classes of transformations in various types of spaces. In the case of locally
convex linear spaces and families of linear mappings, two of them, due to
Markov-Kakutani and Kakutani himself (quoted as theorems 1 and 2 in this
paper), are especially prominent.
The main purpose of this paper is to show a generalization (theorem 3) of the

second theorem. However, our method of proof is quite different from that of
Kakutani. It appears very strange to the author that this theorem which has a
"deterministic" content has a "probabilistic" proof, which is based on a kind of
Monte Carlo method. Let us mention that this paper is related to an earlier work
of the author [6] on random ergodic theorems and their applications. In par-
ticular, theorem 5 from [6] was an intermediate form between the theorem of
Kakutani and theorem 3 from this paper. Paper [6] is an announcement (some
proofs are only sketched there), and the complete proof was never published.
Later the author has observed that the most interesting part of [6], namely
theorem 5, can be generalized using a more direct method independent of ergodic
theory, and this is presented here.
Theorem 3 from this paper gives, of course, the consequences which the earlier

theorem 5 from [6] had. For the sake of completeness we reproduce here, as
corollaries from theorem 3, the existence of invariant mean for weakly almost
periodic functions (which was conjectured, for example, by K. Deleeuw and
I. Glicksberg ([1], pp. 88-89)). For other corollaries, see [6].

2. General assumptions and notation

Let G be a semigroup of endormorphisms of a locally convex linear topological
spaceX (that is, every element T E G is a linear continuous operator fromX into
X and superposition is the semigroup operation). Let Q be a convex and closed
subset of X which is G-invariant (namely, T(Q) C Q for every T c G).
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These assumptions are used throughout this paper; additional assumptions,
whenever necessary, will be explicitly given.

DEFINITION. We will say that the semigroup G is inot contracting in Q if for
every pair of different elements x, y from Q the null vector of X does not belong to the
closure of the set {Tx - Ty: T c GI, or equivalently, there is a continuous seminorm

(depending on x and y) such that

(1) inif || Tx - Tyll > 0.
TCzG

The condition formulated above means not oinly that every T from G is
one-to-oine on Q, but moreover, that images (under G) of every two points of Q
remain distant each from the other.

It is easy to see that every equicontinuous group of endomorphisms of X is
not contracting in X. Moreover, the following well-known remark will be useful
ini this paper. First, for any group G let FG denote the family of all closed convex
symmetric and G-invariant neighborhoods of the null vector 0.

PROPOSITION. A group G is equicontinuous if and only if FG is a basis of
neighborhoods of 0.

,Now we will quote the two classical theorems concerninig the existenice of fixed
points in linear spaces which we have menltionied in the introduction.

(See [5] and [4] or [2], pp. 456-457. Our version of theorems 1 and 2, ad-
justed better for our purposes, differs unesseintially from the original.)
THEOREM 1 (Markov-Kakutani). If a semigroup G is commutative and Q is

weakly compact, then there exists a fixed point p of G in Q (that is, Tp = p for each
7T E G).
THEOREM 2 (Kakutani). If G is a group equicontinuous on Q and Q is compact,

then there is a fixed point of G in Q.
It is visible how the rejection of the assumption of coimmutativity in G in

theorem 2 is compensed by heavy assumptions of regularity imposed oni G and Q.

3. Main result

The main result of this paper is the following generalization of theorem 2.
THEOREM 3. If a semigroup G is not contracting on Q and Q is weakly compact,

then there is a fixed point of G in Q.
PROOF. First of all, we may always assume that G is finitely generated, for

example, by T'0, T1, . . ,; In fact, denotinlg by Iz the set of all Z-invarianit
points of Q where Z is a subset of G, it is easy to see that we have IG = nGl IG,
wNhere Go runs over all finitely generated subsemigroups of G; moreover, eaclh
IG, is a weakly closed (hence, a weakly compact!) subset of Q, and the family
{IG,} is directed by the relation of inclusion D.
Now let us observe that the "mean operator" STI 1/m (T0 + * + Tm-i)

tranisforms Q into itself so that theorem 1 yields the existence of an S-invariant
elemenit x0 E Q:

(2) x0 = S.X0 = - +(T0+ -I+rJ)x
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It will be shown that formiiula (2) imlplies (under our assumption on G and Q)
that the element x0 is Tk-invariant (0 < k < m - 1) which will complete the
proof.

In view of the definition, there is a continuous seminorm on X and a
positive number a such that
(3) if xO $d T'kX, theni I T('(O- Tkx0) I > a for each T c G and

k = O, 1, * *,n-1.
At this point we shall introduce temporarily the followinig conditioni.
CONDITION (C). The seminorm 11 (from (3)) is a norm, and the pair (X, 1 )

is a separable Banach space.
Let us consider now the expansions of reals t E [0, 1]:

(4) t= E
mJ where E, = 0, 1, **,m-1.

Let J,.,... deniote the elementary interval of all t wlhose first s digits are
, .... , es. We will construct an auxiliary countably additive vector-valued
measure y(.) defined on Lebesgue measurable subsets of the iiiterval [0, 1] with
values in X anid such that
(5) Y(J4,.e = m ...1 * E,Xo
where x0 satisfies (2) and

(6) y(E) QJEl
for each Lebesgue measurable E C [0, 1], whose Lebesguc measure JEl is
positive; if JEl = 0, then y(E) = 0.
To see this, let us first ascertain that there exists a uniique measure yo(Q)

defined on the field generated by all elementary intervals J,L.1,. , and satisfying
(5). In fact, this follows from formula (2) which clearly implies the additivity
law

rn-1
(7) Y0(J.'. .e.) = E Y0(JeI,e.k).

k=O

Since Q is convex, closed, and bounded (in view of its weak compactness), the
measure yo(*) admits the unique extensioii to a countably additive measure
y(.) defined for all Lebesgue measurable subsets of [0, 1]. Of course, y(.) is Iot
only absolutely coIntiInuous, but it is in some sense Lipschitzian (see (6)).

Using standard arguments, we will show that y(.) has an integral represen-
tation y(E) = fE u(t) dt, where the density function u(t), (0 < t < 1) is strongly
measurable, and u(t) e Q for almost every number t E [0, 1].
To this purpose it suffices to show that

(8) z(t)=y([O0, t]) = f| u(r) dT.
Let us observe that

(9) z(t') -z(t) E Q for all 0 < t < t' < 1.t, -t_
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Further let be a denumerable set of linlear coiitiiiuous functionials separat illg
points of X (such a - exists since X is a separable Banach space). Since Q is
bounded, in view of (6), the function (z(t), (0 < t < 1) is Lipschitz for each
t e Z. Hence, there is a null set N C [0, 1] such that all functions (z(t) are
differentiable for each t t N. By weak compactniess of Q, the weak derivative
z'(t) = u(t) exists for t j N aind u(t) E Q. Mloreover, iy(t) is stronigly measurable,
sinice it is weakly measurable anid the space X is separable. We have (z(t) =
fo (u(t) dt which yields (8). Obviously, the inttegral ill (8) is taklie ill the 3ochnler
senise as the density funietion u(t), (O < t < 1) is strontgly measurable aild
bounded. By the vector versioni of the Lebesgue theorem (see [2], p. 217,
theorem 8) it follows that, the strong derivative of z(t) exists a.e., or more ex-
plicitly, for a.e. real t c [0, 1], the stronig limit of y(J)/.J exists as 11JI -O0 where
J denotes an arbitrary initerval such that, t e J. Takinig the expanisioni (4) of such
a "good" t and puttinig J = Jt,..., in view of (5), wve finid that the se(iuenice
7...* * * Tf,Xo is stronigly coniver'genit. Hencie,
(10) lim 17' * * 7 ',(x - 7'T,-0) 1= 0.

8-:

On the other hanid, we kniow that every digit k = 0, 1, , m - 1 occuIs
infiniitely many times ini the mn-adic expanisioni of almost every nlullber t. There-
fore, the properties (3) and (10) are comipatible onily if (3) holds vacuouisly, that
is xo = TkXo for all k = 0, 1, , m - 1.

Let us point out here that the separability of X is irrelevant. In aniy case, we
can restrict our argunmenits to the separable subspace genlerated from .(X, by
To, - * * 1Tm-1-
iNow to complete the proof of theoremii 3 it stuffices to shiow that our additionial

coiiditioni (C) can always be initroduced without loss of genierality. For this pur-
pose let us take an infiniite sequence of continuous seiiiioi-rns {H j4n for
which there exists an increasing se(luenice of positive initegers po < Pl < P2 < ...

such that

(11) Il llo = 11 11 anid IlTkXlln < [!xflP for k = 0, 1, x,xc X,
n = 0, 1, *.

The set Q is bounided (being weakly comiipact); hence supxeQ Ilx!,, = N,, < xC.
We deniote now by XI the linear span of Q enldowed wvitlh thle seminorm

(12) iiix lll 2~~~~~____________- III I,".(12) fl||x|H = Eofl2(wi!n + 1)
Let us consider the factor space X2d!!Xl/N where N'Lf {X: x e X1 and I |li =

and its completion X3 with respect to the niorm * (more exactly with respect
to the image of the seminorm 111 111 in X2)-

It is not hard to verify that, Q/N (the image of Q in X2) is a wveakly compact
convex set. On the other hand, some difficulties occuIr wVitli T0, * - - , T,_,; they
cannot be defined in a natural way in the whole space X3, but, it is easy to see
that the transformations Tk/N, (k = 0, * , m - 1) aire vell-defined oni X2 (since
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Tk(N) C N) anid are litncar oni X2. However they ale niot niecessarily conltiniuous.
Onie can easily observe that onily the linearity of Tk anid the property (3) were
used in the precedinig part of the proof. Henice, the conditioni (C) does iiot restrict
argumenits, anid this completes the proof of theorem 3.
REMARK. The authlor realizes that the method used in the proof miiglt appear,

for somiie readers, to be old-fashionied. In fact, inistead of Lebesgue ilmeasure (see
(4)), onie cani conisider product spaces anid product iimeasures anid thell apply a
theoreii oni the conivergenice of inartiiigales with values in Baniach (or more
geiieral) spaces. In this w-ay onie cani prove that (unider the assuiilptioins of
theoremi3) if {f UEit, is a stronigly measuiable operator funictioin frnom a proba-
bility space IV inito the seim-igroup G anid

(2') f=|TWv dw, where x c Q,

tlheii . = T,YX for aliimost every w E I.
Obviously (2) is a very particular case of (2'), bnt it w\as sufficienit for our

pr oof.

5. Applications

Applyinig theorem 3 we will prove (see [6]) the followinig theoriem.
THEOREM 4. If a function (real or complex) f (*) defined on an abstract group

U is weakly almost periodic (that is, the left shifts {f (u )} euuform a conditionally
weakly compact set in the space B (U) of bounded functions on U), then

(1) there exists a leJ't mean value M1 of f satisfying the condition that for each
E > 0 there exists a finite system of numbers ci (ciO and Y_ ci = 1) and elements
uti c U such that
(1:3) |I c1f(ntil) -.ll < e for all u e U;

(2) there exists a right mean value of J satisfyiny an anialogous condition;
(3) all right and leJ't means are equal (and their common value will be denoted

by 3I(f) or 31,,(f(u)). T'he functional 31 is linear, nonnegative, normalized, left and
right invariant.

PItOOF. In theoremii 3 let X = B(U), let G = the group of left sllifts, anid let
Q = the closed coinvex hull of all left shifts of a giveni w.a.p. funietionl f. We obtaii
(1) sinice left anid right almost-periodicity are equivalenlt (this fact is proved by
A. Grothenidieck [3], pr'opositioII 7). F'inially, (3) follow^s from (1) anid (2) ill a
well-known way.
The niext theorem gives the uiuicity of niivariaiit vectors.
THEOIREM 5. IJ (G is an equicontinuous group oJ undomo)rphisms of a locally

cotmtpact linear space X an(l if OG(X) denotes the conivex G-orbit of an element
x G X (that is, the convex and closed hull of all vectors of tihe form Tx where T runs
over G), then

(i) If OG(x) is weakly comipact, thien there exists exactly one G-invariant element
inl OG(X) (it will be denioted by Mx);
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(ii) the set XO of all vectors x E X such that OG(X) is weakly compact fornis a
closed subspace of X;

(iii) the operator M1 (defined in (i)) has the following properties on XO: it is linear
continuous and TM = MT = M2 = M.

PROOF. (i) The existence of such a vector follows from theorem 3. For the
proof of uniqueness we remark that the function of 7' given by t(Tx) (t is a
linear functional over the space X) is a right w.a.p. function on the group G.
Consequently, we may write
(14) M1 (Tx) = Ml (TSx) for each S G G,

T T
and further,
(15) M ((TX) = M (Ty) for each y G OG(Z).

T T

Finially, for each pair of G-iinvariant vectors yl, Y2 G OG(X), we have

(16) t(Yi) = M t(Ty1) = M11 t(Ty2) = t(Y2)
T T

for each functionial t. Hence y, = Y2.
(ii) The set XO is linear since

(17) 0G(clxl + c2x2) = ClOG(XI) + c20G(x2).
Also XO is closed since for every neighborhood V G FG (see proposition 1), we
have OG(Xl) - OG(X2) C V, provided xl- x2 G V.

(iii) The proof is obvious and identical to the proof in the case of stronig
almost-periodicity.

6. Problems

Finally, we want to formulate a conijecture contcerniing a nionliniear case. Let Q
be a metric compact space, and let us assume that a semigroup G of continuous
mappings of Q into Q satisfies the followinig condition of noncontractibility:
CONDITION (P). For each pair of different points x, y e Q we havc

inlfTeG p(Tx, Ty) > 0, where p is a metric on Q.
Must there exist a probability measure IA on the field of Borel subsets of Q

such that ,1(T-1(E)) = ,u(E) for each T e G and each Borel set E C Q?
At the end we repeat once more the followinig questioni: is it possible to

eliminiate the ranidomization method from the proof of theorem 3?
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