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1. Introduction

There are several theorems guaranteeing the existence of fixed points of differ-
ent classes of transformations in various types of spaces. In the case of locally
convex linear spaces and families of linear mappings, two of them, due to
Markov-Kakutani and Kakutani himself (quoted as theorems 1 and 2 in this
paper), are especially prominent.

The main purpose of this paper is to show a generalization (theorem 3) of the
second theorem. However, our method of proof is quite different from that of
Kakutani. It appears very strange to the author that this theorem which has a
“deterministic’”’ content has a ‘“probabilistic’’ proof, which is based on a kind of
Monte Carlo method. Let us mention that this paper is related to an earlier work
of the author [6] on random ergodic theorems and their applications. In par-
ticular, theorem 5 from [6] was an intermediate form between the theorem of
Kakutani and theorem 3 from this paper. Paper [6] is an announcement (some
proofs are only sketched there), and the complete proof was never published.
Later the author has observed that the most interesting part of [6], namely
theorem 5, can be generalized using a more direct method independent of ergodic
theory, and this is presented here.

Theorem 3 from this paper gives, of course, the consequences which the earlier
theorem 5 from [6] had. For the sake of completeness we reproduce here, as
corollaries from theorem 3, the existence of invariant mean for weakly almost
periodic functions (which was conjectured, for example, by K. Deleeuw and
I. Glicksberg ([1], pp. 88-89)). For other corollaries, see [6].

2. General assumptions and notation

Let G be a semigroup of endormorphisms of a locally convex linear topological
space X (that is, every element T' € G is a linear continuous operator from X into
X and superposition is the semigroup operation). Let @ be a convex and closed
subset of X which is G-invariant (namely, 7(Q) € Q for every T € G).
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These assumptions are used throughout this paper; additional assumptions,
whenever necessary, will be explicitly given.

DeriniTiOoN. We will say that the semigroup G is not contracting n Q if for
every pair of different elements x, y from Q the null vector of X does not belong to the
closure of the set {Tx — Ty: T € G}, or equivalently, there is a continuous seminorm
1| (depending on x and y) such that

(1) inf ||[Tz — Ty|| > 0.
T€G

The condition formulated above means not only that every T from @G is
one-to-one on @, but moreover, that images (under ) of every two points of @
remain distant each from the other.

It is easy to see that every equicontinuous group of endomorphisms of X is
not contracting in X. Moreover, the following well-known remark will be useful
in this paper. First, for any group G let F¢ denote the family of all closed convex
symmetric and G-invariant neighborhoods of the null vector 0.

ProrosiTiON. A group G s equicontinuous if and only if Fg is a basis of
netghborhoods of 0.

Now we will quote the two classical theorems concerning the existence of fixed
points in linear spaces which we have mentioned in the introduction.

(See [5] and [4] or [2], pp. 456—457. Our version of theorems 1 and 2, ad-
justed better for our purposes, differs unessentially from the original.)

TueoreM 1 (Markov-Kakutani). If a semigroup G is commutative and Q is
weakly compact, then there exists a fixed point p of G in Q (that is, Tp = p for each
T e G).

Tueorem 2 (Kakutani). If G is a group equicontinuous on Q and Q is compact,
then there is a fixed point of G in Q.

It is visible how the rejection of the assumption of commutativity in ¢ in
theorem 2 is compensed by heavy assumptions of regularity imposed on GG and Q.

3. Main result

The main result of this paper is the following generalization of theorem 2.

THEOREM 3. If a semigroup G is not contracting on Q and Q ts weakly compact,
then there is a fixed point of G in Q.

Proor. Tirst of all, we may always assume that G is finitely generated, for
example, by T, T, -+ -, T_1. In fact, denoting by Iz the set of all Z-invariant
points of @ where Z is a subset of G, it is easy to see that we have I¢ = Na [
where G, runs over all finitely generated subsemigroups of (7; moreover, each
Ig, is a weakly closed (hence, a weakly compact!) subset of @, and the family
{I g} is directed by the relation of inclusion 2.

Now let us observe that the “mean operator” S¥ 1/m (To+ -+ + Twa)
transforms @ into itself so that theorem 1 yields the existence of an S-invariant
element x, € Q:

1
(2) 29 = Sty = ;Z (To+ -+ + T 1) X0
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It will be shown that formula (2) implies (under our assumption on ¢ and Q)
that the element x, is Ti-invariant (0 < k¥ < m — 1) which will complete the
proof.

In view of the definition, there is a continuous seminorm ||-|] on X and a
positive number 8 such that

3) if @y 5% Thry, then [[T(xo — Twao)|| > 8 foreach 7€ G and

k=01,-,m—1.
At this point we shall introduce temporarily the following condition.
ConbprtioN (C). The seminorm ||- || (from (3)) is a norm, and the pair (X, || ||}

18 a separable Banach space.
Let us consider now the expansions of reals t € [0, 1]:

(4) =Z_’ Where es=0;1y”'!m—1'

Let Jo,...., denote the elementary interval of all ¢ whose first s digits are
€, * & We will construct an auxiliary countably additive vector-valued
measure y(-) defined on Lebesgue measurable subsets of the interval [0, 1] with
values in X and such that

(5) Y(J e o) = m Ty -+ Texo
where x, satisfies (2) and

y(E)
(6) il Q

for each Lebesgue measurable £ C [0, 1], whose Lebesgue measure [E| is
positive; if [E| = 0, then y(&) = 0.

To see this, let us first ascertain that there exists a unique measure y,(-)
defined on the field generated by all elementary intervals J,,...., and satisfying
(5). In fact, this follows from formula (2) which clearly implies the additivity
law

m—1
7 Yol ey v o) = k‘éo Yo(J e, enk)-

Since @ is convex, closed, and bounded (in view of its weak compactness), the
measure yo(-) admits the unique extension to a countably additive measure
y(-) defined for all Lebesgue measurable subsets of [0, 1]. Of course, y(-) is not
only absolutely continuous, but it is in some sense Lipschitzian (see (6)).

Using standard arguments, we will show that y(-) has an integral represen-
tation y(E) = fE u(t) dt, where the density function u(t), (0 < t < 1) is strongly
measurable, and u(t) € Q for almost every number ¢ € [0, 1].

To this purpose it suffices to show that

®) 20%y(0, 1) = [ u() dr.
Let us observe that
) MGQ forall 0<t<t <1

v —t
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Further let = be a denumerable set of linear continuous functionals separating
points of X (such a = exists since X is a separable Banach space). Since Q is
bounded, in view of (6), the function £2(f), (0 < ¢ < 1) is Lipschitz for each
& € E. Hence, there is a null set N C [0, 1] such that all functions £z(f) are
differentiable for each ¢ ¢ N. By weak compactness of Q, the weak derivative
Z(t) = u(t) exists for t ¢ N and u(f) € Q. Moreover, u(f) is strongly measurable,
since it is weakly measurable and the space X is separable. We have £2(f) =
fé fu(?) dt which yields (8). Obviously, the integral in (8) is taken in the Bochner
sense as the density function u(f), (0 < ¢ < 1) is strongly measurable and
bounded. By the vector version of the Lebesgue theorem (sce [2], p. 217,
theorem 8) it follows that the strong derivative of z(f) exists a.c., or more ex-
plicitly, for a.e. real t € [0, 1], the strong limit of y(J)/J exists as |J| — 0 where
J denotes an arbitrary interval such that t € J. Taking the expansion (4) of such
a “good” { and puiting J = Jq ..., in view of (3), we find that the sequence

T -+ T is strongly convergent. Hence,
(10) lim [T -+ Te (2o — Texo)|| = 0.
88—
On the other hand, we know that every digit k = 0,1, ---,m — 1 occurs

infinitely many times in the m-adic expansion of almost every number ¢. There-
fore, the properties (3) and (10) are compatible only if (3) holds vacuously, that
1829 = Thxgforallk =0,1, --- ,m — 1.

Let us point out here that the separability of X is irrelevant. In any case, we
can restrict our arguments t{o the separable subspace generated from x, by
To, ++ ) Tt

Now to complete the proof of theorem 3 it suffices to show that our additional
condition (C) can always be introduced without loss of generality. IFor this pur-
pose let us take an infinite sequence of continuous seminorms {||-||.}x-o for
which there exists an increasing sequence of positive integers py < p1 < p2 < - -
such that

an o= 1-II and [[Teall. < [2llp. for k=01, ,2€X,
n=201,---.

The set Q is bounded (being weakly compact); hence sup,eg [|x]], = M. < .
We denote now by X, the linear span of @ endowed with the seminorm

= 1
(12) “|.TH| = nX=:O I—IEU[——,L—FIS H.’l‘”n

Let us consider the factor space X;¥ X /N where N¥ {x: x € X, and |||2]|| = 0},
and its completion X; with respect to the norm |||||| (more exactly with respect
to the image of the seminorm |||-]|| in X3).

It is not hard to verify that Q/N (the image of Q in X») is a weakly compact
convex set. On the other hand, some difficulties occur with 7, - -+, T,_1; they
cannot be defined in a natural way in the whole space X, but it is casy to see
that the transformations T'./N, (k = 0, - - - , m — 1) are well-defined on X, (since
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T«(N) & N) and are lincar on X,. However they are not necessarily continuous.
One can easily observe that only the linearity of 7 and the property (3) were
used in the preceding part of the proof. Hence, the condition (C) does not restrict
arguments, and this completes the proof of theorem 3.

ReEMark. Theauthor realizes that the method used in the proof might appear,
for some readers, to be old-fashioned. In fact, instead of Lebesgue measure (see
(4)), one can consider product spaces and product measures and then apply a
theorem on the convergence of martingales with values in Banach (or more
general) spaces. In this way one can prove that (under the assumptions of
theorem 3) if {T'.}wew is a strongly measurable operator function from a proba-
bility space W into the semigroup ¢ and

2" =/, T.,% dw, where £ € Q,

then & = T, for almost every w € W.
Obviously (2) is a very particular case of (27), but it was sufficient for our
proof.

5. Applications

Applying theorem 3 we will prove (see [6]) the following theorem.

TrEOREM 4. If a function (real or complex) f(-) defined on an abstract group
U is weakly almost periodic (that is, the left shifts {f (u +)}uev form a conditionally
weakly compact set in the space B(U) of bounded functions on U), then

(1) there exists a left mean value M of f satisfying the condition that for each
€ > 0 there cxists a finite system of numbers ¢; (¢.0 and Y_;¢c; = 1) and elements
u; € U such that

(13) 120 cf (wa) — M| < e forall weU;

(2) there exists a right mean value of f satisfying an analogous condition;

(3) all right and left means are equal (and their common value will be denoted
by M(f) or M. (f(w)). The functional M 1s linear, nonnegative, normalized, left and
right invariant.

Proor. In theorem 3let X = B(L), let ¢ = the group of left shifts, and let
) = the closed convex hull of all left shifts of a given w.a.p. function f. We obtain
(1) since left and right almost-periodicity are equivalent (this fact is proved by
A. Grothendieck [3], proposition 7). Iinally, (3) follows from (1) and (2) in a
well-known way.

The next theorem gives the unicily of invariant vectors.

THEOREM 5. If G is an equiconlinuous group of cndomorphisms of a locally
compact linear space X and if Og(x) denotes the convex (-orbit of an element
x € X (that 1s, the convex and closed hull of all vectors of the form Tx where T runs
over (), then

(i) If Og(z) vs weakly compact, then there exists exactly one G-tnvariant element
in 0g(X) (@t will be denoted by Mz);
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(ii) the set Xo of all vectors x € X such that O¢(x) is weakly compact forms a
closed subspace of X ;

(iii) the operator M (defined in (1)) has the following properties on Xy: it is lincar
continuous and TM = MT = M? = M.

Proor. (i) The existence of such a vector follows from theorem 3. For the
proof of uniqueness we remark that the function of 7' given by £&(Tz) (¢ is a
linear functional over the space X) is a right w.a.p. function on the group G.
Consequently, we may write

(14) M §(Tx) = M ¢(T'Sx) for each S €@,
T T

and further,

(15) M ETx) = M £(Ty) for each y € Og(x).
T T

Finally, for each pair of G-invariant vectors yi, ¥ € O¢(x), we have

(16) Ey)) = M &(Tyy) = M ETy2) = £Qy)
T T

for each functional £ Hence y; = ys.
(ii) The set X, is linear since

(17) 06(012}1 + ngz) = Clog(lfl) + 020(;(:1:2).

Also X is closed since for every neighborhood V € F¢ (see proposition 1), we
have Og(z;) — Og(xs) C V, provided #; — 2 € V.

(ii1) The proof is obvious and identical to the proof in the case of strong
almost-periodicity.

6. Problems

Finally, we want to formulate a conjecture concerning a nonlinear case. Let Q)
be a metric compact space, and let us assume that a semigroup G of continuous
mappings of @ into @ satisfies the following condition of noncontractibility:

ConprrioN (P). For each pair of different points z,y € Q we have
infreg p(Tz, Ty) > 0, where p is a metric on Q.

Must there exist a probability measure u on the field of Borel subsets of @
such that u(T-1(E)) = u(E) for each T € G and each Borel set & & Q?

At the end we repeat once more the following question: is it possible to
eliminate the randomization method from the proof of theorem 3?
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