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1. Introduction
In this paper we consider finite sets of independently and identically distributed ran-

dom variables X1, X2, * *, Xn. Our aim is to characterize their common distribution func-
tion F(x) by properties of the set X1, X2, , X,". The problem can best be formulated
by using statistical terminology.
We consider a population and a sample X1, X2,', X, of n independent observations

drawn from this population with population distribution function F(x). As usual, a
measurable and single-valued function S = S(X1, X2, *, Xn) of the observations is
called a statistic. Assumptions concerning the properties of the distributions of certain
statistics, based on a sample from the population, will in general impose restrictions on
the population distribution function F(x). We are interested in assumptions which de-
termine the population distribution function at least to the extent that it belongs to a
certain family of distribution functions. Three different types of assumptions are con-
sidered.

In the first part we make assumptions which either give explicitly the distribution ofS
or which relate it in some specified manner to the population distribution F(x).

In the second we suppose that two suitably chosen statistics Si = Sl(Xl, X2,, X.)
and S2 = S2(X1, X2,* * *, Xn) are given. The assumption that the statistics S1 and S2
are independently distributed can be used to characterize various populations. We also
consider briefly the characterization of a population by the stochastic independence of
more than two statistics. Finally we assume that the conditional expectation of Si, given
S2, equals the unconditional expectation of Si and show that this hypothesis can also be
used to characterize populations. This property is weaker than complete independence
of the two statistics; its use in investigations of this kind seems to be new.

The third part deals with the characterization of populations by means of the property
that two different linear statistics are identically distributed.
We denote the population distribution function by F(x). The characteristic function

f(t) of F(x) is given by
(1.1) f (t) =f eilxdF (x),
while
(1.2) ps(t) =lnf(t)

is called the cumulant generating function (c.g.f.) of F(x). Since every characteristic
function f(t) is a continuous function such that f(O) = 1, we see that So(t) is certainly
defined by (1.2) in an interval of the real axis which contains the origin.
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A characteristic function f(z) is said to be an analytic characteristic function if it coin-
cides with a regular analytic function in some neighborhood of the origin in the com-
plex z-plane.

Analytic characteristic functions were studied by several authors, [36], [37], [20]; a
summary of most of their properties used in the present paper may be found in [31].
The normal distribution with mean A and variance a2 wil be denoted by 4[(x -A)10]

where
(1.3) ¢1(x) = vjyf e-y//2dy.
Moreover, we write

{e-x XI/ ki for x 2 0
(1.4) F(x; X) k _sx

t0 for x< 0

for the distribution function of the Poisson distribution. The parameter X is a real posi-
tive number. The characteristic function of (1.4) is

(1.5) f (t; X) = exp [X (ei'-1)].

Let a, X be two real numbers and assume that X > 0. The distribution
f0 for x< 0

(1.6) F (x; a, X) = t (x) t).1 e-tdt for x> 0

is called the Gamma distribution; its characteristic function is

(1.7) f (t; a, X)

We shall for brevity sometimes refer to the normal (Poisson, Gamma) populations
and shall mean that the population distribution function F(x) is the normal (Poisson,
Gamma) distribution.

PART I. CHARACTERIZATIONS BY MEANS OF
ONE LINEAR STATISTIC

2. Distribution function of statistic specified
In this section we consider a linear statistic

(2.1) L= a1X1+ a2X2+ **+ aX

where a,, a2, , a. are given real numbers which are subject to the restriction
n

(2.2) AI=" (a,) a6 0 for s= 1, 2, 3,*-.
i-1

We denote the distribution function of the statistic L by G(x) and write g(t) and 'y(t)
for its characteristic function, and its cumulant generating function, respectively. We
see then that g (t) = f (alt) f (a2t) f (ant)
(2.3) n

7(t) =o(ait)
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We assume that g(t) is an analytic characteristic function so that 'y(t) = In g(t) is also
analytic in some neighborhood of the origin. An important theorem, due to P. Levy [20]
and A. D. Raikov [361, states that the factors of analytic characteristic functions are
also analytic characteristic functions. From this result and from (2.2) we conclude that
f(t) and p(t) are analytic in certain neighborhoods of the origin. It is also known that
analytic characteristic functions have moments a., and also therefore cumulants Ks, of
any order s and that

a, =E(X) =f xsdF (x) = i-fa (0) = i-d ft(t)
(2.4) (X')=fc0 dta 0

,(i8q, (0) dsp (t)K. = i- ep` (O) = i 8 dtt |=
Differentiating the second equation (2.3) s-times, we obtain

(2.5) vy (t) = (aj) 8f8 (ajt) .

i-1

We write here psp(t) and ya(t) for the derivative of order s of the functions p(t) and y(t).
Putting t = 0 in (2.5) and writing iZ for the cumulant of order s of G(x), we see that

(2.6) K8 = A, Ka -

It follows from (2.2) and (2.6) that all the cumulants K. of the population distribution
function F(x) are determined by the cumulants KJ of G(x). We obtain, therefore, from
(2.4) the following expansion for the c.g.f. of F(x)

(2.7) (o (t) = K! (it)JA. s!

This is the power series expansion for the c.g.f. (p(t). This series converges in a certain
neighborhood of the origin and determines also the characteristic function f(t) in some
neighborhood of the origin. It is known that any analytic characteristic function is com-
pletely determined if it is given in some neighborhood of the origin. Therefore, f(t), and
hence also the population distribution function F(x), are uniquely determined. We
formulate this result in the following manner:
THEOREm 2.1. Let X1, X2, * * , X. be a sample of n observations drawnfrom a population

with population distribution function F(x) and let L = a1Xj + a2X2 + * * * + anX. be a
linear statistic such that (2.2) is satisfied for all s. Assume that the distribution function
G(x) ofL is given and that its characteristic function g(t) is an analytic characteristic func-
tion. Then the population distribution function F(x) is uniquely determined, and the rela-
tion K. = R8/A., s = 1, 2, - *, between the cumulants R. of G(x) and K. of F(x) holds.

Theorem 2.1 is a reformulation of results obtained by A. R6nyi [38]. His interesting
study of the arithmetic of distribution functions also contains other related results which
could be used to characterize populations. We apply theorem 2.1 in two special cases.

First, we assume that G(x) = 4[(x - /)/a]. Then K,; = 0 for s > 2. If all A. F- 0,
we conclude from theorem 2.1 that (p(t) = [lAit/Aul - [a2t2/2A2], so that F(x) =
4[(x - tAr1)A/X2-l]. If we take into consideration that any linear function of nor-
mally distributed random variables is normally distributed, we obtain the following char-
acterization:

COROLLARY 2.1.1. Let X1, X2, , X, be a sample from a certain population, and let
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a,, a2,' a. be given so that they satisfy the relations (2.2) for all s. The distribution func-
tion of the statistic L = a,X, + * * *+ anXw is normal with mean ,u and variance CT2 if, and
only if, the population distribution function is also normal with mean pu/Al and vari-
ance cr2/A2.
We consider next the second special case by assuming that a, = 1, j = 1, 2,.*, n,

and G(x) = F(x; X). Then A, = n and R. = X, so that according to theorem 2.1, ((t) =
X [exp(it) - 1]1/n and F(x) = F(x; X/n). Since the sum of Poisson variables obeys again
Poisson's law, we can state the following:

COROLLARY 2.1.2. Let Xi, X2, *, Xn be a sample from a certain population, and de-
note by A = Xl + X2 + * * + X. the sum of the observations. The population has a Pois-
son distribution with parameter a if, and only if, the statistic A has a Poisson distribution
with parameter na.

Corollary 2.1.1 is a special case of a well-known theorem of H. Cram6r [4], which was
earlier conjectured by P. Levy [19]. Corollary 2.1.2 is similarly implied by a theorem
of D. A. Raikov [36], [35] concerning the Poisson distribution.

If we use, instead of theorem 2.1, Cramer's theorem' in its full generality we are able
to give another characterization of the normal population. This is similar to corollary
2.1.1 but avoids the restriction (2.2) on the coefficients of the statistic L. However, in
this case, neither G(x) nor F(x) are completely specified although their cumulants are
still connected by relation (2.6).
THEOREm 2.2. Let Xi, X2X' - * Xn be a sample from a certain population, and let L =

a,X, +* * + anXn be a linear statistic. The population is normal if, and only if, the sta-
tistic L is normally distributed.

All the populations which we have considered so far had analytic characteristic func-
tions. This is, however, not necessary. We conclude this from the fact that the Cauchy2
population can be characterized by specifying the distribution of the sample mean.
It is indeed easy to see that a population has the Cauchy distribution if, and only if, the
mean of the sample has a Cauchy distribution.

3. A relation between the population distribution function and the distribution
of S is specified
We consider a sample Xi, X2,* *, X, from a population with a nondegenerate distri-

bution function F(x), and a linear statistic L = L(al, a2, * *, an) = a,X, + a2X2 +
+ anX., where a,, a2,"* , a,, are arbitrary real numbers. Instead of specifying the coeffi-
cients of L and the distribution G(x) of L, we make the following assumption: For any
choice of n and of the a,, a2,.* , a, the statistic L is distributed as aX where X has the
distribution function F(x). Here a = a(al, a2,., a,,,) is a real-valued function of the
coefficients of L. If we denote again the distribution function of the statistic L by G(x),
then we can write our assumption as

(3.1) G (x) = F (x)
We discuss, first, a particular case by assuming that n = 2, and that the coefficients

a, and a2 are two arbitrary positive numbers. Our assumption concerning the population
'The theorem and its proof may be found as theorem 19, p. 52 in [5].
' The c.g.f. of the Cauchy distribution is &it - x tI, X > 0.
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implies then that the distribution function F(x) is stable.3 It is known that the c.g.f. of
a stable law can be written in the canonical form

(3.2) p (t) = (- co+i cl -1 )tI

where 0 < a . 2, co > 0, Ic, cos (ra/2)1 < co sin (wra/2). The c.g.f. of any stable law
satisfies for a1> 0, a2 > 0, the functional equation

(3.3) sp (alt) +,p (a2t) = sp (at),
where a depends on a1 and a2.
The assumption concerning the population implies that this relation should be satis-

fied not only for positive, but for arbitrary a1 and a2. It is, therefore, necessary to de-
termine the stable laws for which (3.3) holds for any real a1 and a2.

Let now a1 and a2 be two arbitrary real (not necessarily positive) numbers. Substitut-
ing (3.2) into (3.3), and separating real and imaginary parts, we get

(3.4) I a,I,+ a2IV= |a la

(3.5) cl [a,ia,it-1+a2Ia21-s-talata l] =0.

We show next that the validity of (3.3) for arbitrary real a1 and a2 implies that ci = 0.
The proof is carried indirectly; assume, therefore, that c1 # 0 and choose a1 and a2 so
that ala2 < 0.
Then a2 a1al/la2 a1a -1 and we obtain easily from (3.4) and (3.5),

(3.6) a, JL a, a (2 a,1(jial laT)= 1 a a 1-1 I -I

An elementary discussion of this relation shows that either a1 = 0 or a2 = O in contra-
diction with the choice ala2 < 0. Therefore, cl = 0 and the c.g.f. of the population dis-
tribution is given by
(3.7) lp (t) = coti co> , O< a_ 2.

It is also seen that the dependence of a on the coefficients a, and a2 is determined
by (3.4).

Conversely, if the c.g.f. of a population distribution function F(x) has the form (3.7)
then

nn
(3.8) J (ajt) = - co t tat|J.

j-1 j-=1

Therefore, the linear form L = aiXi + a2X2 + + anX. is distributed as aX, where
X has the distribution F(x), and where

(3.9)~~~~~~~a lo, z aj l
j-1

We obtain, therefore, the following result.
' A distribution function F(x) is said to be stable if to every a, > 0, a2 > 0 belongs an a > 0 such

that F(x/ai)*F(x/a2) = F(x/a). Here the symbol * denotes the operation of convolution. This is the
definition given by P. Levy (see pp. 94 ff., pp. 198 ff. in [21]). The class of these distributions is some-
what narrower than the class which is called stable by Gnedenko and Kolmogorov (see p. 162 in [14]),
which in turn was called auasi-stable by P. Levy (see p. 208 in [21]).
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THEOREm 3.1. Let X1, X2,*, Xn be a sample from a population with distribution

function F(x). Every linear statistic L = L(ai, a2, * , a.) = E a,X, is distributed as
j-1

( aji
a

Xi if, and only if, F(x) is a symmetric stable distribution with characteristic
j-1

exponent a.
For a = 1, this yields a characterization of the Cauchy population; for a = 2, of the

normal population.

PART II. CHARACTERIZATION OF POPULATIONS BY
THE INDEPENDENCE OF TWO STATISTICS

We consider now a sample Xi, X2,'* *, Xn from a certain population with distribution
function F(x), and two statistics Si = S1(X1,* * *, X.), S2 = S2(X1, X2,..*, X,,). Since SI
and S2 are functions of the same observations, they will in general be stochastically de-
pendent. However, for certain populations it can happen that two statistics are sto-
chastically independent although they are functions of the same observations. In such a
case one might wish to investigate whether the independence of these two statistics de-
termines the population. The first problem of this kind which was considered concerned
the normal population and will be the starting point for the following discussion.

4. Normal population characterized by the independence of one polynomial and
one linear statistic
In this section we assume that the two statistics are symmetric and homogeneous

polynomials in the observations. In addition, we suppose that one of the statistics is
linear while the second is at least of degree two.
The best known example of this kind is the case where the statistics are the sample

mean and the sample variance; in this case we obtain the following theorem.
THEOREm 4.1. Let X1, X2, X3, * *, X. be a sample from a certain population and de-

note by X = (XI + X2 + * **+ Xn)/n the sample mean, and by M2 = [(X, - X)2 +...
+ (X.- X)2]/n the sample variance. A necessary and sufficient condition for the nor-
mality of the population is the stochastic independence ofX and M2.

The necessity of the condition was established by R. A. Fisher [10], while its suffi-
ciency was investigated under various assumptions by a number of authors. R. C. Geary
[12] was the first to prove the sufficiency of the condition under the restrictive assump-
tion that the population distribution function had moments of any order. The present
writer [25] gave a different proof and assumed only the existence of the second moment
of the population distribution function. The assumption of the existence of moments in
this and in similar problems is only used to justify the differentiations which are neces-
sary to derive a differential equation for the characteristic function. However, the proof
can be modified and the sufficiency of the condition of theorem 4.1 can be established
without restrictions. This was first done by T. Kawata and H. Sakamoto [16], and some-
what later in a different manner by A. A. Zinger [41].

Theorem 4.1 can be generalized in several ways. One can, for instance, consider, in-
stead of the sample variance, some other quadratic statistic. More generally, one can
determine all populations which have the property that the sampling distribution of
the mean and of a symmetric and homogeneous quadratic statistic is stochastically
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independent. In this case, not only the population distribution but also the quadratic
statistic must be found. This was done in [26] and the following result was obtained.
THEOREm 4.2. Let Xi, X2, * X,X be a sample from a population, and denote by X the

sample mean, and by Q a homogeneous and symmetric quadratic statistic. Assume that the
second moment of the population distributionfunction exists. The statistic Q is stochastically
independent of X if, and only if, one of the following three mutually exclusive conditions
is satisfied.

(a) The population distribution function is a (nondegenerate) normal distribution and
Q is proportional to the variance.

(b) The population distribution is degenerate.4
(c) The population distribution function is a step function with two symmetrically lo-

cated steps and Q = X1 +X+ +X.
This theorem somewhat exceeds the framework of this section since it characterizes

in case (c) also a nonnormal population.
It should not be difficult to give further generalizations, for example, by considering

inhomogeneous quadratic statistics, or by avoiding the assumption that the second mo-
ment of the population distribution function exists.

Another generalization of theorem 4.1 is obtained if instead of the variance one con-
siders symmetric and homogeneous polynomial statistics of higher degree. We select for
this statistic the k-statistic of order p.
DEFETION 4.1. The k-statistic of order p is a symmetric and homogeneous polynomial

statistic of degree p, such that E(kp) = Kpfor any population distribution which has mo-
ments up to the order p.
THEOREm 4.3. Let X1, X2, , X,, be a sample of n observations taken from a population

with population distribution function F(x), and denote by p an integer greater than one.
Assume that the pth moment of F(x) exists. The population is normal if, and only if, the
k-statistic of order p is independent of the sample mean.

Theorem 4.3 was independently proved by this writer [28], and by D. Basu and
R. G. Laha [1]. This theorem generalizes theorem 4.1 by using the polynomial statistic
k, of order p, instead of the sample variance M2. A more obvious approach would have
been to consider the independence of the sample mean X, and the sample moment of
order p about the mean. While it seems likely that this approach could be used to char-
acterize the normal population, the discussion becomes rather awkward, even in the
simplest case p = 4.
We indicate briefly the proof of theorem 4.3. The independence of kp and k1 can be

written as
(4.1) E [exp (itkl+iuk,) I =E (eitki)E (eiukp)
Since, according to the assumptions of the theorem, the pth moment of F(x) exists, one
can differentiate (4.1) with respect to u, and put afterwards u = 0. This yields
(4.2) E (k,eitnkO) = K, [If (t) I n.

We have seen in section 1 that the c.g.f. so(t) of a distribution function, F(x), is always
defined in some neighborhood - A < t < A of the origin. If we restrict ourselves to this
neighborhood we can easily compute the left-hand side of (4.2) by means of Faa di
Bruno's formula [28], [9], and obtain

(4.3) E (*peink, )e i-P [f (t) ] n dPp (t)

4 In this case no restriction is imposed on Q.



202 THIRD BERKELEY SYMPOSIUM: LUKTACS

so that
dp,p (t)(4.4) dt) = ipK forltl <A.

This is a differential equation for the c.g.f. Using the initial conditions (oi(O) =iiKj,
j = 1, 2,**, (p - 1), we obtain the solution

(4.5) s° (t) = , Kj ji(t)

Since equation (4.4) is valid only for It < A, the solution obtained in this manner is
valid so far only for It < A. Its range of validity can, however, be extended to the
full real axis by applying the following lemma.
LEmIA 4.1. Let A(z) be afunction of the complex variable z, which is regular in some

neighborhood z < p of the origin. Let f(t) be a characteristic function, and A > 0 an
arbitrary positive number, and assume that f(t) = A (t) if t is real, and if - A < t < A.
Then f(t) is an analytic characteristic function.

This lemma was found by R. P. Boas [3]; more recently a special case was rediscov-
ered by Yu. V. Linnik (see theorem 4 in [23]). Lemma 4.1 is very useful in work of this
kind, and can often be employed instead of continuity considerations, which some au-
thors used to extend the validity of the solution to all real values of t. In some instances
(see, for example, [17], [25], [26]) the discussion of this extension was not given. A proof
of lemma 4.1 is given in the appendix. We see, therefore, from (4.5) and from lemma 4.1,
that

(4.6) f (t) = exp

In order to find the distribution function whose characteristic function satisfies (4.4),
we must select among the functions (4.6) those which are characteristic functions. This
is done easily by means of the following result [32]:

FIRST THEOREM OF MARCINKIEWICZ.5 No function of theform (4.6) with p > 2, Kp F4 0
can be a characteristic function.

But this means that F(x) is a normal distribution and proves the sufficiency of the
condition of theorem 4.3. The necessity of the condition follows immediately from the
translation-invariance of the k-statistics and from a result due to J. F. Daly [6], who
showed that in a normal population every translation-invariant statistic is stochastically
independent from the sample mean.

This fact suggests the possibility of characterizing a normal population by the inde-
pendence of the sample mean and some translation-invariant statistic, other than a k-
statistic. One could ask for the conditions which a translation-invariant statistic, or a
system of such statistics, must satisfy, in order that its independence from the sample
mean should imply the normality of the population.

The following result was obtained by this writer.
THEOREm 4.4. Let Sr(Xi, X2,.*, Xn)P r = 1, 2, * , (n - 1), be (n - 1) single-valued

and measurablefunctions such that
(i) S7(xl+ a, X2 + a, * * * xn + a) = S,(xI, x2y ..* xn) r = 1,2, ,(n- 1),for any

real a. Suppose that the system of equations
a Actually Marcinkiewicz proved a more general theorem: No entire function of finite order p > 2

whose exponent of convergence q <p can be a characteristic function.
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(ii) SM(yl, Y2, YYn-1, 0) = Z7 r = 1, 2, , (n - 1), has a solution
(iii) y,= h,(ZI, Z2... , Zn-1)j r = 1, 2,, , (n - 1), such that the hr(zi, Z2, Zn-1)

are single-valued and measurable functions. Let Xi, X2, * * * X. be a sample taken from a
certain population. The population is normal if, and only if, the translation-invariant sta-
tistics S1(X1, X2, ,* * Xn), S2(X1, X2, * * * X.), ,* * Sn_l(XI; X2 *, , XjX) are independent-
ly distributed from the sample mean X = (Xi + X2 + ***+ X.)/n.

The proof uses a particular case of theorem 5.1 which will be discussed in the next
section. We remark that it is not necessary to assume the existence of moments of the
population distribution function.

5. Normal population characterized by the independence of two linear statistics
The problem discussed in this section is the determination of the population for which

two linear statistics are independently distributed. The problem was attacked inde-
pendently by several authors, [15], [2], [11], who treated the case of a sample of two,
mostly under various restrictive assumptions (such as existence of a frequency function,
existence of second moments). B. V. Gnedenko [13] and, independently, G. Darmois [7]
used finite differences to avoid differentiation and the need for the assumption of the
existence of moments. The general case, as formulated below in theorem 5.1, can be
treated without any restrictive assumptions. This theorem was first obtained in full
generality by V. P. Skitovich [39]. A detailed proof, and some general results concern-
ing systems of linear forms, may be found in a more recent paper [40] of the same author.
THEOREm 5.1. Let X1, X2, ., X. be a sample from a certain population and consider

the linear forms, Li = a1X1 + a2X2 + * * *+ anXn and L2 = biX1 + b2X2 + * -+ b.X.,
such that a.b. = 0 whiles (a.b,)2 0 0. The population is normal if, and only if,
L1 and L2 are independently distributed.

The theorem was also proved [30] by means of the method used in section 4; how-
ever, this approach required the existence of the nth moment of the population distri-
bution. A proof of theorem 5.1 is also indicated in [8] where connections with problems
of factor analysis are also discussed. Further references may be found in [30] and in [8].

6. Characterization by constant regression
If one examines the various papers, [12], [25], [16], [40], treating theorem 4.1, one

notices that gradually all unessential assumptions were removed, and that finally only
the independence of the two statistics was supposed. However, a close scrutiny of the
proofs reveals that none of them uses the assumption of the stochastic independence of
the sample mean and of the sample variance fully. The same remark applies also to the
proofs of theorems 4.2 and 4.3 (but not to the proof of theorem 4.4 which has a different
structure).

This situation leads very naturally to the question whether the assumptions of theo-
rem 4.1 could not be weakened, or at least be modified, to such an extent that the as-
sumptions are fully used.

The discussion of this approach calls for the introduction of an appropriate termi-
nology.

Let X and Y be two random variables, and assume that the first moment of Y exists.
We denote, as usual, by E( Y) the expected value of Y, and write E(YV X) for the con-
ditional expectation of Y, given the value of X. We introduce the following definition:
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DEFINITION 6.1. A random variable Y, which has finite expectation, is said to have con-
stant regression on a random variable X, if the relation

(6.1) E (Y I X) =E (Y)

holds almost everywhere.
We need the following lemma:
LEMMA 6.1. Let X and Y be two random variables and assume that the expection E(Y)

exists. The random variable Y has constant regression on X if, and only if, the relation
(6.2) E (YeitX) =E (Y)E (eitX)

holds for all real t.
If one multiplies relation (6.1) by exp(itX) and then takes the expectation, one sees

immediately that the condition is necessary.
To prove its sufficiency we assume (6.2), and we must distinguish two cases. First,

we suppose that
(6.3) E(Y) 0.

We can then write (6.2) as

(6.4) E[ei'E (YIX)] E (eitx).

The functions under the first expectation sign depend only on X; it is therefore possible
to take these expectations with respect to the marginal distribution P of the random
variable X. We rewrite (6.4) therefore in the form

(6.5) ei TE (YI x) dP f ei-dPJ41 E(Y) B1
where we integrate over the one-dimensional space R1 of the random variable X. We
introduce the set function

(6.6) v (A) =j E(Y I ) dP

which is defined on the Borel sets of R1. This is a function of bounded variation and we
see from (6.5) and (6.6) that

(6.7) fr e dv rf ei dP.
I I1

Since the uniqueness theorem for characteristic functions is valid for the Fourier trans-
forms of functions of bounded variation, we conclude that v(A) = P(A) or

(6.8) E Yx) AdP

AsPis obviouslyabsolutelycontinuouswith respect to P,we must have E(Y X)/E( Y) =1
almost everywhere; but this means that Y has constant regression on X. We still must
consider the case where
(6.3a) E(Y) =0.

In this case, (6.2) reduces to E[Y exp(itX)] = E[exp(itX)E(Y X)] = 0, or written
as an integral
(6.9) f eit-E (Y I X) dP = 0.

B1
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If we introduce the set function ,u(A) defined on R, by u(A) =f E(YIX)dP, we

can write (6.9) as exp(itx)du = 0. From this we conclude that ,u(A) is constant

so that u(A) = A(R1) = E(Y) = 0. But this means that E(YIX) = 0 almost every-
where. We see then from (6.3a) that Y has constant regression on X. This completes the
proof of the lemma.
We use next lemma 6.1 to obtain a characterization of the normal population related

to the statement (a) of theorem 4.2.
THEOREm 6.1. Let X1, X2, , X. be a sample from a nondegenerate population, and as-

sume that the second moment of the population distribution exists. Denote by A = X, +

X2 + + Xn, the sum of the observations, and by Q = I a,.X7X., a quadratic
r7= *=1

statistic such that
n n n

(6.10) B1=E arr77$0, B2= I ar8= ° -
r=l r=l a=1

The population is normal if, and only if, the statistic Q has constant regression on A.
We first prove the sufficiency of the condition. It follows immediately from lemma

6.1 that E[Q exp(itA)] = E(Q) f(t)]n, where f(t) is the characteristic function of the
population distribution function. A simple computation yields then B1f"(f)n-' -
B (f)2(f)n-2 = - (f)nE(Q) = -B1K2(f)n, where we write, for simplicity, f, f', f", in-
stead of f(t), f'(t), f"(t). We first restrict the variable t to an interval around the origin
in which f(t) has no zeros. We obtain then for the c.g.f. (p(t) the equation so"(t) = -K2
so that so(t) = - K2t2/2 + iKlt. This solution was obtained only for a certain neighbor-
hood of the origin, but can be extended to all real t according to lemma 4.1.
To prove the necessity of the condition we observe that the c.g.f. of the normal dis-

tribution satisfies the differential equation B31(" = -B1cK2 or Bif"(f)-l - B1'(f)2(f),2 =
-E(Q)[f]n. Using (6.10) this can be written as E[Q exp(itA)] = E(Q) E[exp(itA)].
The necessity of the condition follows from this equation and from lemma 6.1. The suffi-
ciency of the condition of theorem 6.1 was recently proved by R. G. Laha [17]. Condi-
tion (6.10) means that the expected value of the statistic Q is proportional to the vari-
ance, in other words, that Q is proportional to an unbiased estimate of the population
variance.
We consider next another quadratic statistic. Here (6.10) is replaced by a different

requirement.
THEOREM 6.2. Let X,, X2,X , Xn be a sample from a nondegenerate population, and

assume that the second moment of the population distribution function exists.
n n

Denote by Q = 1 a,8X7X. a quadratic statistic such that
r3l a51

(6.11) E(Q) =0

and also
n n n

(6.12) B1= a.,-0, B2=E are7 0 -
r1 r=I s-1

The population is a Gamma population if, and only if, the statistic Q has constant re-
gression on A = Xl + X2 + * * + Xn-
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We first prove the sufficiency of the condition. From lemma 6.1 and equation (6.11)
it follows that E[Q exp(itA)] = 0. In the same manner as before we transform this into
a differential equation

(6.13) Bjip '+B2 (so') 2 = 0

for the c.g.f. so(t). Equation (6.13) is valid in an interval It < A. From (6.11) it is seen
that B1K2 + B2K2 = 0; we introduce X = -B1B2 = K2/K2 > 0, and find easily the
solution
(6.14) f (t) I - 3 )

This solution is originally obtained for It| < A; its validity for all real t follows from
lemma 4.1. Clearly, (6.14) is the characteristic function of the well-known Gamma dis-
tribution.

The necessity of the condition follows again almost immediately from lemma 6.1, and
the fact that the c.g.f. of a Gamma distribution satisfies the differential equation p" =
(Yl)2/A,.
The next theorem describes the Poisson population, that is, a population whose dis-

tribution function is given by (1.4). We use again the notation of section 4 and write k,
for the k-statistic of order s. It is also convenient to use the following terminology.

DEFINITION 6.2. A (finite) point a is said to be the left extremity of a distribution F(x),
if F(x) = Ofor x < a, while F(x) > Ofor x > a. We write then a = lext [F].

In a similar manner one could define the right extremity of a distribution.
DEFINITIoN 6.3. A distribution is said to be one-sided if it has one extremity;finite, if

it has both extremities.
G. P6lya [34] has derived formulas which express the extremities of a distribution

F(x) in terms of its characteristic function f(t). P6lya formulated his results for finite
distributions. It is, however, easy to see that his formulas for the extremities apply also
to one-sided distributions with analytic c.f. We shall need the formula, for the left ex-
tremity, namely,
(6.15) lext [F] =-lim r- log f (ir) I.

THEOREm 6.3. Let X1, X2,*, Xn be a sample from a population with population dis-
tribution function F(x) and denote by p _ 1 a positive integer. Assume that the (p + 2)nd
moment of F(x) exists and suppose also that F(x) is a one-sided distribution which has the
point x = 0 as its left extremity. The population distribution function is the Poisson dis-
tribution (1.4) if, and only if, the statistic S = k+2 -k, has constant regression on ki.
We first prove the sufficiency of the condition and assume that kp+2 - k, has con-

stant regression on k1; clearly k,+2 - k, also has constant regression on nk1 and accord-
ing to lemma 6.1 we can write

(6.16) E I (kp1+2- kp,) eil"kl }= ( Kp+2- KP) [ f (t) ]n.

This equation can be simplified by expressing the left-hand side in terms of the c.g.f.
*p(t), and we obtain

(6.17) dP+2,p (t) + d (t) = P+2 (KP+2-KP)
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This relation is again valid in some interval I tI < A. Equation (6.17) is an inhomogene-
ous linear differential equation with constant coefficients. Its solution is

P-i d. (it)"
(6.18) sP (t) = Clei+ C2e-i+do+ ( (Kp+2-Kp)()

The coefficients Cl, C2, do, di,* di can be determined from the initial conditions
I(0) = 0, fJ(O) = PJK. S = 1, 2, *, (p + 1), and we find

(6.19) 2+ K '-i p KP+2- Kp

d,= K- C- (-1) 8C2 for s = 0, 1, 2, , (p - 1)

We conclude from lemma 4.1 that the solution (6.18) is valid for all real t. We use now
the assumption that lext[F] = 0 in order to determine So(t) completely. It is easily seen
from (6.15) and (6.18) that lext[F] = 0 implies that

(6.20) C2 = 0, Kp+2 = Kp, do =-c1, d = 0 for s = 1, 2, ,(p- 1) .

But then (6.18) reduces to

(6.21) so (t) = cl (ei'- 1).

This is the c.g.f. of the Poisson distribution.
The proof of the necessity of the condition is quite analogous to the corresponding

proofs for theorems 6.1 and 6.2. A special case of theorem 6.3 was recently proved by this
writer [29].

7. The Gamma population
In theorem 6.2 the Gamma population was characterized by the fact that a certain

quadratic statistic Q has constant regression on the sample mean X. It can easily be
shown that this particular statistic Q cannot be stochastically independent of I in a
Gamma population. Therefore, the use of the weaker assumption of constant regression
is quite essential in this theorem. In the present section we turn to the characterization
of a Gamma population by two stochastically independent statistics.
An interesting property of Gamma populations was proved by E. J. G. Pitman [33]:

If X1, X2, *, X. is a sample drawn from a Gamma population, then the sum A =
X1 + X2 + * * *+ X. is always distributed independently of any scale-invariant statis-
tic. A statistic S(X1,-, X.) is said to be scale invariant if S(aX,, aX2, aX) =
S(X1, X2,* * *, Xj) for any real a # 0.

This property of the Gamma population suggests the question whether it is possible
to characterize the Gamma population by the stochastic. independence of a scale-invari-
ant statistic and the sample mean. The answer is in the affirmative; an example is given
by theorem 7.1.
THEop.m 7.1. Let X1, X2> **, X.X be a samplefrom a nondegenerate population and as-

sume that the second moment of the population distribution function exists. Denote by A =

X, + X2 +* + X,, a linear statistic proportional to the sample mean, and by Q =

a78XrX. a quadratic statistic with real coefficients a7,. We write B1 = a,
r-1 *-1 r-1
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B2 = ar, and suppose that B2 5 nBi. The population is a Gamma population if,
r-i a&1

and only if, the statistic S = Q/A2 has constant regression on A.
Theorem 7.1 was found by R. G. Laha [181. It can be proved by the method used for

the theorems of the preceding section. It admits an interesting corollary which is also
due to Laha.

COROLLARY 7.1.1. Let X1, X2X , X. be a samplefrom a nondegenerate population and
assume that the second moment of the population distribution function exists. The popula-
tion is the Gamma population if, and only if, the statistics S = (aiXj + a2X2 +
+ a.X.)/A, and A = Xl + X2 +...+ X, are independently distributed.

If S and A are independently distributed, then the same is true for S2 and A, and
therefore S2 has a fortiori constant regression on A. The corollary follows then from
theorem 7.1.

In formulating theorem 7.1 it would have been permissible to replace the requirement
that S has constant regression on A by the assumption that A and S are stochastically
independent. The weaker assumption is, however, sufficient to establish the theorem.

This situation suggests the question whether it is possible to assume in theorems of
this type full independence, but not to require the existence of moments. The present
writer has recently obtained a result in this direction. This concerns the Gamma dis-
tribution rather than the Gamma population but could probably be modified to charac-
terize the population.
THEoREm 7.2. LetX and Y be two nondegenerate and positive random variables, and as-

sume that they are independently distributed. The random variables U = X + Y and
V = XIY are independent if, and only if, both X and Y have Gamma distributions with
the same scale parameter.

It should be noted that it is not required that X and Y be identically distributed. We
finally characterize the Gamma population by the independence of a system of scale-
invariant statistics from the sample mean.

THEoREmi 7.3. Let Sr(xi, X2, * * X.), r = 1, 2, , (n - 1), be (n - 1) single-valued
and measurable functions such that

(i) Sr(axi, aX2. * * *, aX.) = Sr(Xl, X2,* Xn), r = 1, 2,*, (n - 1), for any real a F 0.
Suppose that the system of equations

(ii) Sr(yl, y2, * * *, yn-i, 1) = Zr, r = 1, 2, - * *, (n - 1), has a solution
(iii) yr = hr(Zl, Z2., * *,XZn.), r = 1, 2,, *, (n - 1), such that the hr(zi, Z2 X Zn-1)

are single-valued and measurable functions. Let Xi, X2,* * *, X. be a sample taken from a
population with population distribution function F(x) and assume that F(+O) = 0 and
that lext [F] = 0. The population is a Gamma population if, and only if, the scale-invariant
statistics S(X1, X2, .**, X.), S2(Xl, X2, * Xn), * * *, Sn-1(X1, X2, **, Xj) are sto-
chastically independentfrom the sample mean X = (X1 + X2 + * **+ X.)/n.

The necessity of the condition follows from Pitman's result so that we have to prove
only its sufficiency. We denote by

Xl X2 __X.-i
(7.1) Or r(Xn' X"'' X 1) r= 1, 2, *--, (n- 1)

From the assumption that the statistics Sr(XI, X2,X-, XXn), r= 1, 2,--, (n -1),
are independent ofX and from (i) we conclude that also the statistics 01, 02 *'*, 0,1 are
independent of X. Hence, any single-valued and measurable function of the 01, 02..***
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O,,i wiU also be independent of X, or equivalently, of nX = (X1 + X2 + + Xe). In
particular, the system

(7.2) hr (01, 02,,* -1) r = 1, 2, , (n-1),

is stochastically independent of (X1 + X2 + + Xc). From (ii) and (iii) it follows
that

(7.3) hr ( Oli 02) ..- -On-1) Xr7 r= 1, 2, *-* n1

Therefore, the random variables (Xl/Xn), (X2/Xn), , (X,n_/X3) are independent of
(X1 + X2 + * * *+ X.). If we express this in terms of characteristic functions we obtain

(7.4) Ej exp i

n-
rXrt+itn X,] =El exp [i -IUX r] {E[exp (itz Xr)] -

r-I X" rv-i r-i

Let k be an integer such that 1 < k < n, and put in (7.4) Ur = 0; if r 0 k, then it is
easily seen that

(7.5) E exp [iUkXk+ it (X*+ X") ] =Ejexp iUkX [E{ exp [it (Xk+ X.) I }

This means that the random variables (Xk/Xn) and (Xk + X.) are independent; the
statement of theorem 7.3 follows then immediately from theorem 7.2.

PART III. CHARACTERIZATION OF POPULATIONS BY
IDENTICALLY DISTRIBUTED STATISTICS

We consider in the following two different statistics, SI = S1(X1, X2,*, X*) and S2 =
S2(X1, X2,* , X"). In general they have different distributions; however, it can hap-
pen that for certain populations two different statistics are identically distributed.
A simple example is the normal population where two different linear statistics, L1 =
a1X1 + a2X2 +- + anX. and L2 = b1X1 + b2X2+ * *+ bnX, are identically dis-

n n

tributed provided that S a, = j bj and aj2 = z b2. The possibility exists,
i- 3-1 i-1 j-1

therefore, that a population, which admits two different but identically distributed sta-
tistics, may be characterized by this property.

8. Linear statistics and the normal population
The first study of this kind was undertaken by J. Marcinkiewicz [32] who obtained

the following result:
SEcOND THEOREM oF MARCINKIWICZ. Let X1, X2,* be a finite or infinite sequence

of identically distributed random variables with common distribution function F(x). Sup-
pose that F(x) has moments of any order, and assume that the two (finite or infinite) sums,

E a,X, andy b,X,, exist and are identically distributed. Then either the sequences

aI,ai and I bj } are identical, except for the order of the terms, or the distribution F(x)
is normal (possibly degenerate).

This theorem gives a sufficient condition for the normality of F(x). In statistical in-
vestigations we use only finite samples and therefore we are here interested only in the



2IO THIRD BERKELEY SYMPOSIUM: LUKACS

case of finite sums. This case is much simpler than the case of infinite sums. We formulate
it now as a characterization of the normal population.
THEoREm 8.1. Let X1, X2, * , X,, be a sample from a population with population dis-

tribution function F(x), and assume that all absolute moments

(8.1) Pk=f xlkdF(x), k= 1, 2, 3,

exist. Consider two linear statistics
n ff

(8.2) L1= a,a,X, and L2= S brX,,
v-1 r-i

and suppose that the numbers a , a2 ,***, an are not a permutation of the numbers
lbil, jb2L ' Ibn and that

n n n
(8.3) Ear= br, S ar= b2r

r=l r-1 r=l r-I

The necessary and sufficient condition for the normality of the population is that the statis-
tics L1 and L2 be identically distributed.
We indicate briefly the proof of this theorem and follow closely the method used by

Marcinkiewicz. The necessity of the condition is deduced from elementary properties
of the normal distribution. To prove the sufficiency, we assume that our population has
the property that the two statistics (8.2) are identically distributed. Then the population
with population distribution function G(x) = F(x)*[1- F(-x)] also has this property.
In terms of the c.g.f. fy(t) of G(x), this means that

n n

(8.4) -y (a.,t) y(z(b,t)
*-1 8=1

in a certain neighborhood of the origin.
Since all the moments of G(x) exist, we may differentiate (8.4) any number of times.

Let k be a positive integer; we differentiate (8.4) 2k-times and put then t = 0; in this
manner, we get

(8.5) (a.) 21 , (b,) 2k2k (O) = o .

It is easily seen that the relation

(8.6) E (a.)2k= (b) 2k

*-1 *-1

can hold for infinitely many k only if the al, a2 a,, are permutations of the
bil, lb2 | * *', bn |. Therefore, the relation y2k(o) = 0 must hold for almost all k. Since

G(x) is a symmetric distribution, we have y2k-9(0) = 0 for all k, so that there exists an
integer p such that yk(O) = 0 for k > p. This means, however, that the c.g.f. of G(x)
is a polynomial of degree not exceeding p; hence, by the first theorem of Marcinkiewicz,
G(x) is normal. It follows then from Cram6r's theorem [4] that F(x) is also normal.

Recently Yu. V. Linnik considerably generalized Marcinkiewicz's work. He pub-
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lished several papers [22], [23], [24] dealing with the determination of populations for
which two given statistics are identically distributed. He obtained a necessary and suffi-
cient condition for the equivalence of the statement that the population is normal with
the assertion that two linear statistics are identically distributed. Furthermore, Linnik
derived sufficient conditions for the normality of a population which admits two identi-
cally distributed linear statistics. He also characterized a class of symmetric distribu-
tions which contains the convolutions of symmetric stable laws. While most of this work
concerns linear statistics, [221 contains indications that certain nonanalytic statistics
can be used in a similar manner.

APPENDIX
We give here the proof of lemma 4.1.
Let R be a positive number such that R < min (A, p), and denote by C the circle

z = R. According to the assumptions of lemma 4.1, the nth derivative fn(O) of the
characteristic function exists at the origin, and can be found by means of Cauchy's
formula as

(A.1) f (0) =2TJ7 Zn+1

We denote by an (O.3 respectively) the nth moment (nth absolute moment) of the dis-
tribution F(x), corresponding to f(t), and write M(R) = max A (z) |. Then

(A.2) lnj j A (z) dz <n!M(R)

for all n. Using the inequality 202n-1 _ a2. + a2,-2, we get upper bounds for the absolute
moments. Let r be a real number such that r < R; using these bounds it is easy to show
that the series

(A.3) n

n-0

has a convergent majorant and is therefore convergent for Irf < R. Let a > 0 and
b > 0 be two arbitrary positive numbers; then

(A.4) S=1;n f[ X rIndF (x) ] >-2 X:f dF (x).

Since

(A.5) fbelxtIdF (x) jEf I dF (x)
f-a n-0 n,

we see from (9.4) that

(A.6) 5f etIdF (x) >f exrdF(x)
_a _~~~a

for any finite a and b. This implies the existence of the integralj exp (rx)dF(x) for

rI| <R. From this fact one can conclude that f(t) is an analytic characteristic function.
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ADDENDUM
(Added October 31, 1955)

The author obtained through the courtesy of Messrs. C. R. Rao and R. G. Laha notes
of lectures held by Professor Yu. V. Linnik in Calcutta in the fall of 1954. These notes
[42] indicate that mathematicians at Leningrad University are actively engaged in re-
search leading to the characterization of populations either by the independence or by
the equidistribution of statistics. Some of this work [22], [23], [24], [39], [40] was dis-
cussed in the main body of this paper; the purpose of this addendum is to list two more
recent results.
The first of these relates the characterization of a population by independent statis-

tics (discussed in part II) to the characterization by equidistributed statistics (treated in
part III). The second result deals with the possibility of characterizing the normal popu-
lation by the independence of certain translation-invariant statistics from the sample
mean.
We denote in the following by X = (XI, X2, * , X.) a sample of n independent ob-

servations and write for brevity S(X) = S(X1, X2, X.) for a statistic based on this
sample. Then the following theorem holds.

TMmoREmI Al. Let Xland Y- be two samples of size n taken from an arbitrary population
and denote by S1 and S2 two statistics. The statistics SI(X) and S2(X) are independently
distributed if, and only if, the two statistics t1S1(X) + t2S2(X) and t1S,(Y) + t2S2(V) are
identically distributed for all real ti and t2.

The theorem is proved by writing the condition for equidistribution, respectively, for
independence in terms of characteristic functions. Theorem Al is a slightly specialized
version of the result given in [42].

At the end of section 4 we mentioned the fact that in a normal population every
translation-invariant statistic is independent of the sample mean and we raised the ques-
tion what conditions a translation-invariant statistic, or a system of such statistics, must
satisfy in order that its independence from the sample mean should imply the normality
of the population. A partial answer, referring to systems of translation-invariant statis-
tics, was given by the theorem 4.4; a different approach, yielding also only a partial an-
swer, was used by V. S. Paskevich [43].
A nonnegative statistic S(X1,*, X.) is said to be a tube statistic if it satisfies the

following conditions:
(i) S(xI, x2," , x.) = 0 if and only if xi = X2=**= x.;
(ii) The level surfaces S(xi, x2, x.) = A are cylinders with the line xi = x2*

= x. as their common axis;
(iii) Any level surface S(xi, x2,*, xI%) = A can be obtained from S(xi, X2, , x,,) = 1

by a homothetic extension with xi = x2... = x. as the axis and the homothetic ratio
f(A).
A tube statistic is therefore essentially defined by a geometric property: it provides a

partition of the sample space into homothetic cylinders with common axis X1 = X2 =
*-= X,,. It is easily seen that a tube'statistic is always translation invariant. Many of
the important statistics, for instance the sample range or the sample moments of even

order, are tube statistics.
We now state the theorem of Paskevich; however, we do not specify certain assump-
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tions which still have to be made concerning the smoothness of the tube statistic. For
these we refer the reader to paper [42].
TIEoREM A2. Let X1, X2, *- *, X., be a sample from a population and assume that the

population distribution function F(x) is three times differentiable. A sufficiently smooth
tube statistic is independent of the sample mean if, and only if, the population is normal.

Theorem A2 provides also only a partial answer to the problem of characterizing a
normal population by the independence of the sample mean and one sufficiently special-
ized translation invariant statistic. This is seen if we realize that according to theorem 4.3
the independence of the sample moment of order three and the sample mean characterize
the normal population. This cannot be obtained, however, from theorem A2 since the
sample moment of order three is a translation-invariant statistic but not a tube sta-
tistic.
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