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1. Introduction
Stochastic approximation is concerned with schemes converging to some sought value

when, due to the stochastic nature of the problem, the observations involve errors. The
interesting schemes are those which are self-correcting, that is, in which a mistake always
tends to be wiped out in the limit, and in which the convergence to the desired value is
of some specified nature, for example, it is mean-square convergence. The typical ex-
ample of such a scheme is the original one of Robbins-Monro [7] for approximating, under
suitable conditions, the point where a regression function assumes a given value. Rob-
bins and Monro have proved mean-square convergence to the root; Wolfowitz [8] showed
that under weaker assumptions there is still convergence in probability to the root; and
Blum [11 demonstrated that, under still weaker assumptions, there is not only conver-
gence in probability but even convergence with probability 1. Kiefer and Wolfowitz [6]
have devised a method for approximating the point where the maximum of a regression
function occurs. They proved that under suitable conditions there is convergence in prob-
ability and Blum [1] has weakened somewhat the conditions and strengthened the con-
clusion to convergence with probability 1.

The two schemes mentioned above are rather specific. We shall deal with a vastly
more general situation. The underlying idea is to think of the random element as noise
superimposed on a convergent deterministic scheme. The Robbins-Monro and Kiefer-
Wolfowitz procedures, under conditions weaker than any previously considered, are in-
cluded as very special cases and, despite this generality, the conclusion is stronger since
our results assert that the convergence is both in mean-square and with probability 1.
The main results are stated in section 2 and their proof follows in sections 3 and 4.

Various generalizations are given in section 5, while section 6 furnishes an instructive
counterexample. The Robbins-Monro and Kiefer-Wolfowitz procedures are treated in
section 7. Because of the generality of our results the proofs in sections 3 and 4 have to
overcome a number of technical difficulties and are somewhat involved. A special case
of considerable scope where the technical difficulties disappear is discussed in section 8.
This section is essentially self-contained and includes an extremely simple complete proof
of the mean-square convergence result in the special case, which illustrates the underly-
ing idea of our method. In section 8 we also find the best (unique minimax in a non-
asymptotic sense) way of choosing the an in a special case of the Robbins-Monro scheme
[they are of the form c/(n + c')]. The concluding section 9 contains some remarks on ex-
tensions to nonreal random variables and other topics. Since the primary object of this
paper is to give the general approach, no attempt has been made to study any specific
procedures except the well-known Robbins-Monro and Kiefer-Wolfowitz schemes which
serve as imustrations.
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2. Statement of the main results
Let (Q = {X} , ,) be a probability space. X = X(w), Y = Y(w) and Z = Z(w),

as well as the same letters with primes or subscripts or both, will denote (real) random
variables, and the corresponding lower-case letters will denote values assumed by the
random variables. T, T, and T/', n = 1, 2, * - *, will denote measurable transformations
from n-dimensional real space into the reals. Instead of writing Tn(ri,"* *, r.) we shall
often write Tn(r.) exhibiting only the last argument. El I and Pi I will denote the ex-
pected value of the random variable and the probability of the event within the braces,
respectively.

It is difficult to strike the proper balance between generality of result and simplicity
of statement. We shall first state only a moderately general version of our results and fol-
low it by an extension. Further generalizations will be given in section 5.

THEOREM. Let a., fBn and 'y, n = 1, 2,* * *, be nonnegative real numbers satisfying
(2.1) liman=O,

(2.2) E fl <
n=l

and
co

(2.3) I n= 0

n-I

Let 0 be a real number and Tn, n = 1, 2, , be measurable transformations satisfying
(2.4) IT. (ri, * - -, r.) -01 _ max [ a., (1 + n.) 0j- - yn]

for all real ri, *, r.. Let XV,and Yn, n = 1, 2,- -, be random variables and define
(2.5) Xn+1 (co) = Tn [Xi (W) X.***XX (w) I + Y. (w)
for n _ 1.

Then the conditions El X21} < a,
co

(2.6) EI Yn21 < co

ns-i

and

(2.7) El Y. I xi,** xn} =

with probability 1 for all n, imply
(2.8) lim El (Xn- 0) 2} 0

and
(2.9) P{lim Xn= 0} = 1 -

n=co

The main difficulty is in proving (2.8); once this is done (2.9) follows by a simple de-
vice. In the theorem an, fiB and the restoring effect y,, are assumed independent of the
observations xi,* *-, xn. This need not be so and the following statement dispenses with
this assumption.

EXTENSION. The theorem remains valid if a., ,n and 'Yn in (2.4) are replaced by non-
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negativefunctions ac(ri, *, r.), i#n(ri, - - *, r.) and yn(ri, * * *, r.), respectively, provided they
satisfy the conditions: The functions a.(ri, * , rn) are uniformly bounded and

(2.10) lim an (r , , rn) =0
n=¢o

uniformlyfor all sequences r1, r*,r thefunctions i#n(ri,* , rn) are measurable and
co

(2.11) n 0 (ri, , r.)
n=1

is uniformly bounded and uniformly convergent for all sequences r *, r., and the
tunctions yn(ri,* rn) satisfy

(2.12) yn (ri, , r.) =
n=l

uniformly for all sequences r,* r", . ,for which
(2.13) sup Ir,I<L

n1. 2,.---

L being an arbitrary finite number.
We shall refer to the theorem and its extension together as the extended theorem.

Condition (2.13) was introduced for the functions yn because of its use in applications
(see section 7). Further generalizations will be given following the proof.

3. Proof of the theorem
Throughout the proofs, in this and the following section, we assume 0 = 0. This

involves no loss of generality. Let m be any positive integer and A any set in 42 the
definition of which can be made in terms of X1,, Xm. We shall first show that if a is
any number satisfying a > am then

(3.1) f [ (I Xm+l I-a) +] 2dI

<f sm(1+alm + y2n+ (I + ,m)2 (I + a,#.) X. -

Xm a) +] a2} d ,

where, as customary, r+ = (I r + r)/2 denotes the positive part of r.
If Z = Z(w) is any random variable satisfying Z < a for all w then clearly

(3.2) f [(lXm+, -a) +] 2dy-Af (X+i-Z) 2dg

A[Tm (Xm)-Z+Ym] 2ddLL.

If Z is defined in terms of X1, , Xm it then follows from (2.7) that

(3.3) f [Tm (Xm) Z+ Y.] 2di =f [Tm (X.) Z]2ds+f Y2 d,I.
fA fA fA

TakingZ = Tm(Xm) if ITm(Xm) I _ a, Z = a if Tm(Xm) > aandZ = -aif Tm(Xm) <
-a we have

(3.4) f [Tm (Xm) -Z] 2dAu = fA [ (ITm (Xm) I-a) +1 2dg
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Since a 2 a,. we note that, by (2.4), we have | Tm(rm) - a . (1 + j.)a - a = a#m
whenever IrmI< a, while otherwise ITm(rm) -a . (1 + rm)Im -a = (1 + am)
(|rmI - a) + aj#.. Thus we have in all cases

(3.5) 0° (ITm(7m) -a)+ (_(+ (rm -a) +ai+a.
Using the inequality (u + v)2 . (1 + v)u2 + v(l + v) which is valid for any v 2 0 we
obtain

(3.6) [(I T (rm) I-a) +1 2 < (1+ a#.) (1+P) 2 [( m a) +] 2

+a#. (1 +al#m)
Combining (3.2), (3.3), (3.4) and (3.6) we obtain (3.1).

Let now n 2 m and assume that a 2 max a,. Then iterating (3.1) gives imme-

diately

(3.7) J I(IX.I -a) +12d,s.umn,f V,n,n+ 1Y+ [(IX.I a) +12 dM

where
n-1 n-1

(3.8) u n =lj(1 + #) 2 (1+ ajj) v.m,n a : j(1 + aj)
j-ms i-m

[when n = m both sides of (3.7) are identical provided void sums and products are in-
terpreted as 0 and 1, respectively].

Let e> 0 be given. Choose a = a(e) so that

(3.9) O<a6i

Then choose an integer k = k(a, e).> 1 so that

(3.10) max a, . a,

and

(3.11) Uk ('V+ ; El Yf})-8

where
Go co

(3.12) Uk=r (1+ pi) 2 (I + a,B,), vk = a E ,Bj (I + ag,);
is j~~~~~~~~~-k

such an integer k exists in virtue of (2.1) and the fact that, by (2.2) and (2.6), all in-
finite series and products involved are convergent.

For every j and w put

(3.13) sj= sj (w) = sgn T (X,)

where sgn r denotes, as usual, 1 when r > 0, -1 when r < 0 and 0 when r = 0. Forj> 1
let B, and B;' denote the events described by
(3.14) BW= co: sgn Xi& s,-i1

and
(3.15) B' w: ITj-l (X-,-) a).
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Put Bj = B; u B,' and, form > k,

(3.16) Am=Bm- U Bf.

Finally, let
n

(3.17) rn= U Amr, A,=Q-r
m-k

for every n _ k.
From (2.5) and (3.14) it follows that IXm. YIY.- throughout B ,, while from

(2.5) and (3.15) we have IXrn Ga+ IY,-,I in B.". Thus IXmIX -a _ IY,,I
throughout Bm and, in particular, in Am. Hence it results from (3.7), (3.8) and (3.12)
that

(3.18) fA[ (I[.X. Ia) +1] dIug ukLrA+. Y) dL

whenever n _ m _ k. Since the sets A. are disjoint, it follows from (3.10) on summing
the inequalities (3.18) that

(3.19) f [(I X.J -a)+] 2d,ui

As IX.1 < (IXd -a)+ + a, it follows at once from (3.19) and (3.9) that

(3.20) f X2 d,,: 2 (+fa2ad6L >j

for every n > k.
Now let us turn to A.. By (3.14) we have outside B,

(3.21) Xj = Xi sgn Xi = sj-iTj-l (Xi-D) + sf-. Y.-I
= IT,-1 (Xj-1) I + si-i Yj-1,

while outside B;' we have forj > k by (3.15) and (3.10)
(3.22) Tj-T_(Xj-1) (I_ ( pj-1) I Xj_l y-j-1 -

Hence outside B, we have

(3.23) XjI . (1 + Bj-1) Xj-1 I -'Yj-i+ s1-.1Yj-1
whenever j > k. Since A. is contained in the complement of B, for every k < j n, we
can in A. iterate the inequalities (3.23) and obtain for co in A.

n n

(3.24) |XnI <Wk, n I Xk | WmnnYm+ Sm Wm, nY n
m-k m-k

where
n-I

(3.25) Wm, n 71 (1+ )
j-mn

Putting

(3.26) Zn=Wk.IXkl ,W m,n 'Ym Zn= SmW m,nYrY
M-k mr-k
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we obtain from (3.24)

(3.27) f X2 d,u _f [ (Z. +Z) +I 2dI

f (Z++ IZ.') d;an
Hence
(3.28) f Xndls_ 2 f (Z.+)2d,+2f IZ'12dA.

But by (3.26) and (2.7), since Sm is defined by Tm(Xm),

(3.29) f di < dg = WM n Et
ifa nm-k

and hence

(3.30) fAZn |d,u (1+ )2SEE1Ym }-8'
fn __k m=kc

by (3.11) and (3.12).
Finally, we remark that if Z is any random variable with E{Z2} < X then

El [(Z - r)+121 tends to zero as r + . By (3.7) with m = 1 and n = k the random

variable Xk, and hence also Z = rH (1 + Pij) have finite second moments. But,
i-k

n
by (3.26), Zn+ . Z- Ym and it follows from (2.3) and the remark made at the be-

r-Im-

ginning of this paragraph that

(3.31) f (Zd)2d _EI (Z.+) 2} <_

for alln > N = N(e, k).
Combining (3.20), (3.27), (3.30) and (3.31) we have E{Xn} < e for n > N. Since

f > 0 is arbitrary this completes the proof of (2.8).
The proof of (2.9) will now be easily achieved. Applying (3.7) with A = Q we can

obtain for all n > m an inequality of the form
co co

(3.32) Et Xn1 <H(max as, EIj,EI X2I + JEj Y~j),
\ i-rn i-rn

where H is an explicit function of the three exhibited variables, monotone increasing in
each and tending to zero as all three of them tend to zero. The important thing for us is
that H does not depend on Xi, T,, Y, except in the exhibited manner. In particular, the
Yn do not enter into (3.32), and it remains valid even if all of them are zero.

Given 5 > 0 and e > 0 there exists q = q(52e) such that if all three arguments ofHare
smaller than %, then H < 62e. By (2.1), (2.2) and (2.8) there exists m = m(i7) satisfying

(3.33) U(m2ax aj,,1 Pi, E I X' -+EE j < Be
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Let this m be fixed and define X,, T,,lY, as follows: X,' = Xi for j S m, T,= T, and
Y,' = Y, for j < m, while for other values ofj

(3.34) Tj (rl, * * , r,t T} (rl, * *, r,) if ril < a

and Y,f, X,!+i are defined recursively by

(3.35) y1$ Y' ifIXxj < a

and

(3.36) X+1=Ts (X,) + Y; .

Clearly the T satisfy (2.4) with y, = 0 and we also have Et Y2'jx1, x^} = 0 and
El Yn2} _ El Yn}. Since Xi' = Xm it follows from (3.32) and (3.33) that

(3.37) E < 2

for n _ m. According to the definition of Xn the relation Xi _ a for some j _ m im-
plies Xnl t2 for all n > j. Hence we have for all n > m

(3.38) P max X,I..-}P{ I Xn I_ a}

Combining (3.37) and (3.38) we have

(3.39) P{sup lx;l > 61 <e;
i2m

a and e being arbitrary, (2.9) follows and the proof is completed.

4. Proof of the extension

We first remark that (3.1) holds provided a _ sup an(ri, - *, rm) for all r1, * , rm
and #m is considered as a function of Xi, ", Xn. Hence (3.8) also holds provided
a 2 sup ai(ri, * * *, r) for allm _ j < n and all r1, * - *, r, whileum, n andvm,,n are the su-
prema of the expressions on the right side of the equalities (3.8) for all sequences ri,"* *,
rn- . Also, given any e and a, there exists according to the assumptions of the exten-
sion an integer k satisfying a > sup aj(ri, * * *, r,) for allj k - 1 and all r., - * *, r, and
(3.11) where Uk and vk are defined as the suprema of the expressions on the right sides of
the equalities (3.12). Therefore (3.20) holds.

Always considering ,S and yj as functions of Xi,*, Xi and replacing the infinite
product in (3.30) by its sup for all sequences r1, - *, r,** we see that everything up to
and including (3.30) carries through. Had we assumed (2.12) uniformly for all sequences
r7,- , ,,,., (3.31) would have also followed as before; since only a weaker assump-
tion was made, a slightly more sophisticated argument is needed for its proof.
We note that (3.32) remains valid provided the first two arguments are replaced by

their suprema. Let M be a positive number and define X,', Ti' and Y,' as follows:
X'- X1, T22 is given for all j 2 1 by (3.34) with a replaced by M and Y7",xiX1 for
j _ 1 given recursively by (3.35) with X, and 8 replaced by X, I and M, and (3.36) with
primes replaced by double primes. Then, exactly as in (3.37), we have

(4.1) Et Xn,2} < HI
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where

(4.2) H1 = H (sup as, sup j,,E{ XI2} + zEl{YI)(S i~~-1 -

the suprema being taken over all j and all sequences r - rr,*. Hence, as in (3.38)
and (3.39),

PlsupXjl, >M} <su PtIjX' _M} H<H(4.3) 1n1
Thus the sequence X. is bounded with probability 1.

Let us now return to Z. as defined in (3.26). Putting

(4.4) wk= sup 7 [1+ s(ri,**, r) ]

for all sequences r1,**, ri,... we have

(4.5) Zn Wk IXk Ym(X,, . X.)
m-k

(w1, unlike Wk, n and Wm,, is a positive constant). Since Xk has finite second moment
there exists r = t(e, k) > 0 such that

(4.6) X dy < I

whenever %l is a measurable set satisfying P{I a, < P. Let now

(4.7) M=

and denote by ill the set of X for which sup X,, > M and by Q2 the complementary
uk1

set. Then by (4.3), (4.5), (4.6) and (4.7)

(4.8) f (Z:)2d, :w.f X! d,u <-56.
1I

16

On g2, however,I -m(Xi, - * *, X.) diverges uniformly by assumption and hence, by the

argument leading to (3.31), we have

(4.9) fn (Zn+) 2diA <

for n > N' = N'(e, r, k). The inequalities (4.8) and (4.9) imply (3.31) and hence (2.8).
The proof of (2.9) then follows word for word as in the preceding section.

5. Generalizations
The requirements (2.4) are satisfied by most nonstochastic approximation schemes.

Thus (2.4) (with e = 0) is weaker than

(5.1) IT. (ri"* * , r.n) 1I max [a., (1+ n-'y) I r11
with a., a,,, yn satisfying (2.1), (2.2) and (2.3). Indeed, if (2.3) is satisfied then there
exists a sequence p.,, n = 1, 2,**, of positive numbers tending to zero and having the
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property thatzi y,,p, is divergent. The second term under the maximum in (5.1) is al-

ways less than or equal to max [(1 + #,,)p,, (1 + #,,)Ir.I - y,,P,,]. Thus (5.1) implies
(2.4) with a, replaced by max [a., (1 + f,,)pn] and -y. replaced by yp,,. Since these re-
placements do not affect conditions (2.1) and (2.3) it follows that (5.1) is subsumed un-
der (2.4). Of course if we are interested in the rate of convergence it may be better to use
(5.1) directly than to reduce it to (2.4). Some remarks in this direction will be found in
section 8.

Similarly
(5.2) IT. (ri,**, r.) 6 max [ a., (1 + P.) I r.I --.+ B.]

with a., #,,, y, as before and 5,, 2 0 satisfying

(5.3) z 5an<
n-1

is only deceptively more general than (2.4). To see this we remark that in view of (4.3)
there exists a sequence of positive numbers X,, n = 1, 2,* - *, tending to infinity slowly
enough so that E Xj,, is convergent. The second term under the max in (5.2) being al-
ways less than or equal to max [(1 + F,,)/n+ 5,, (1 + f,t + X.,.) 1|r. - 1,,] it fol-
lows that (5.2) implies (2.4) with a, replaced by an = max [a,, (1 + n)/Xn+ 5,] and P.n
replaced by , = jOn + X,,5,,. Since these replacements do not affect conditions (2.1) and
(2.2) our assertion is proved. Similar remarks to those made above concerning (2.4)
apply also to the extension with 5,(ri,", r.) satisfying the same requirements as
8(ri, - * *, r.).
The possibility of deducing our results under the assumption (5.2) has, however, an

important consequence allowing the weakening of condition (2.7). This weakening may
be useful in some applications, especially when dealing with certain rounding-off errors.

GENERALiZATION 1. The Extended Theorem remains valid if (2.7) is replaced by

(5.4) E sup lEl Y.I xi,-- x I}I <c<x
n-I1X z n

or even by the condition that

(.5) JEE Y. Ixi,** X.
n-I

be uniformly bounded and uniformly convergentfor all sequences xi,,- x,-
Indeed, putting Y,' = Y,, - El Y. Ixi,- * -, x,n and Tn(x1, - *, X.) = Tn(xI, * , X.) +

El Y.Ilxi,- * ,xn we have X,+i = T,(Xn) + Y,'. If (5.4) holds, then the transforma-
tions T, satisfy (5.2) with 5, = sup lEt Yn Ixi * * * X xnI} which, by (5.4), satisfy (5.3),
while the Y' satisfy the conditions imposed on Y,, in (2.6) and (2.7) since El Y,' .
2Ef Yn} + 2gn. A similar argument applies when (5.5) holds.

Another sometimes useful extension is the following.
GENERALIZATION 2. Conclusion (2.9) of the Extended Theorem remains valid even with-

out any restrictions on X, and if (2.5) is replaced by

(5.6) X.+I=T. (Xn)+Yn*
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with the random variables Y, n = 1, 2, "* *, satisfying

(5.7) P{ Yn* id Y. for infinitely manyn} = ,

thus, in particular, when
co

(5. 8) EP { Y.* 96 Y.) < a0 .
n=l

Indeed, if Q' denotes the set where X. < M and 12" the set where Y*= Y, for
all n _ m then it follows from the Extended Theorem that P{ X,, -÷ 0 172' n Q/1 = 1.
Since P7Q' nA12} can be made arbitrarily close to 1 the result follows. This simple
generalization may often be used in order to reduce the study to the case when the ran-
dom variables are bounded.

Our proof was arranged in such a manner that it yields also the following.
GENERALIZATION 3. If (2.1) is replaced by

(5.9) lima,,a,

or, more generally, (2.10) by
(5.10) lima. (ri,**, r.) _ a

1-X

uniformly for all sequences ri, *, r,* then the Extended Theorem remains valid pro-
vided (2.8) and (2.9) are replaced by

(5.11) limEI (X- 0)21 _ a2
n=c

and
(5.12) Pt lim I Xn I <-a} = 1.

n-co

Another type of generalization which is useful can be exemplified by the following.
GENERALIZATION 4. The Extended Theorem remains valid if the assumptions concern-

ing an(ri, *', rn) are replaced by the following: ai(Xi) is bounded with probability 1,
an(Xi,* * X.) 2 a.+i(Xi, *- , X., X.+,) with probability 1 and

(5.13) P{liman (Xi,", Xn) =01 = 1.
nsO0

Indeed, denoting by a an upper bound in probability of ai(XI), by 12Q the set where
am(XI,* * *, Xm) < E and by Qm7, its complement we have

(5.14) E{X21 =P{QIm} EIXn2I Um1 +P{ 1 E{Xn2IlQ'
and (5.11), with 0 = 0 for brevity, gives

(5.15) limE{Xn2 _e+aiP{17n1

Since P{IQm} -+0 as m-+ o by (5.13), we have (2.8); the proof of (2.9) is exactly the
same.

The last generalization we wish to present extends the class of transformations Tn.
Instead of considering transformations Tn determined by x1, x2,* * , xn we may consider
random ones depending on the sample point w, that is, measurable mappings of R X 12
into R, R being the real line. In this case xi,* * *, x. do not determine the value t1, as-
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sumed by Tn(Xn). However, except for this fact which necessitates a restatement of (2.7),
nothing is changed in all our arguments. Hence we have

GENERALIZATION 5. The Extended Theorem remains valid also if T,, n = 1, 2,* * *, are
random transformations provided (2.4) holds for all w and (2.7) is replaced by

(5.16) El YuIxi, ** xn, tl,", tn)} =0
with probability 1.

All the above generalizations may be used in conjunction. Many similar ones can easi-
ly be given.

6. A counterexample

The very generality of our results might lead us to suspect that even weak restrictions
of the type of (2.4) or its generalizations on the T,, are entirely superfluous. In other words,
one might be tempted to conjecture that whenever we have a sequence of transforma-
tions T,1(r,.) = T,1(rl,"* *, r,,) of n-space into the reals having the property that for every
m and r1,*, r. the sequence

(6.1) rm+i= Tm(rm) Xr m+n+i= Tm+n (rtm+n) X...

converges to 0 then E{X21 < c, (2.6) and (2.7) already imply (2.8) or (2.9). The fol-
lowing simple example shows that this is not the case.

Let qn and vn, n = 1, 2,- , be two sequences of positive numbers with qn < 1 and

such that both series S q,, andI v2/qn are convergent; for instance, q = v. = 1/(n2+ 1).

Put Sn = v1 + * * *+ vn and let T. depend only on its last argument and be defined by
Tn(rn) = sn-1 for rn = s5,1 and T,(r.) = 0 otherwise. No matter what r1, , rm are,
all members of (5.1) from the second on are zero. Let now Xi, Yi,--, Yn, *, * be mutually
independent with XI = 0 and Y. assuming the two values v. and -(1 - q.)vn/qn with
probabilities 1- q. and qn, respectively. Clearly EI Y.n} = 0 and Et Yn} < 3v,/q., and
thus (2.6) and (2.7) are satisfied. On the other hand, the probability that X,+i = sn for

every n equals the probability that Y. = v. for every n and, being equal to -(1q-),
is positive. Hence not only (2.8) and (2.9) fail to hold but X. does not even converge in
probability to zero. [In this example the Tn are discontinuous; this is easily remedied. All
we have to do is to define Tn(r,) = s.-1 for r. = s,"_, T,(r.) = 0 for r. . s52 or
rn sSn and by linear interpolation for the remaining values of rn.]

7. The Robbins-Monro and Kiefer-Wolfowitz procedures
In this section we deal with a very special case of the general theory. It will be shown

that specializing the general results will, without further ado, improve the best results
previously obtained for the specific procedures.

Let Z, be a one-parameter family of random variables, the parameter space being the
real line, and assume that

(7.1) f (u) =E{Z,}

exists for every u. The Robbins-Monro and Kiefer-Wolfowitz procedures are concerned
with finding, under suitable assumptions, the location of the root f(u) = 0 and of the
maximum of the regression function f(u).
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The Robbins-Monro procedure is based on a sequence of positive numbers a., n = 1,
2,*, satisfying

(7.2) an= 0x an <co.
n-I n-i

Then, starting with an arbitrary xi, it defines recursively a sequence x3, n = 1, 2,*, by

(7.3) xn+ = xn-an;h

where , is an observation on the random variable Zzn
The Kiefer-Wolfowitz procedure is based on two sequences of positive numbers b3 and

cn satisfying

(7.4) b0=w, liMCnc=0, j(bjb <a>

Then, starting with an arbitrary xi, it defines recursively a sequence x3, n = 1, 2,., by

(7.5) n n' n"

where sn' and zn' are observations on Zxn+,3 and Zzn, respectively.
RESuLT 1. If the Z. have uniformly bounded variances and if the regressionfunctionf(u)

is measurable and satisfies
(7.6) If (u) I < A I ul +B<o
for all u and suitable A and B, and

(7.7) inf f (u) >0, sup f (u) <O
l/k<u-O<k 1/k<Ou<

for all integers k; then the Robbins-Monro sequence (7.3) converges to 0 both in mean square
and with probability 1.

Indeed, an underlying probability space can be constructed in which x. is an observa-
tion on the random variable X"; then X1 = xi and
(7.8) X+1= Xn -anf (Xn) + Y

with
(7.9) Y.= a. [Zx- f (X) ].

From (7.1) we have (2.7) while the assumption
(7.10) EIZuJ a2<

for all u gives El Y2j < a2an2 and thus, by (7.2), (2.6) holds. Assume, for simplicity of
writing, 0 = 0 and let p3, n = 1, 2,* * *, be a sequence of positive numbers tending to

zero and for whichEpnan = -; and let r/n be also a null sequence of positive numbers

having the property that inf f(u) > p,n. By (7.6) we have u l- a If(u) I > -Ba,

for all n > no, while given any L > 0 we have IuI - anlf(u) I < IuI - anpn for all
r% < |u| < L and n > nL. Thus the transformations Tn(ri,- * , r3) = rn- anf(rn) oc-

curring in (7.8) satisfy, for large n, condition (2.4) with an = max (qn, Ba3) and lyn = aNP
SinceE anpn is divergent, the result follows from the Extended Theorem. (The argument
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could be somewhat simplified by using generalization 3; the introduction of the se-
quences pn and q7n could then have been avoided.)

Remark 1. Condition (7.6) is necessary in order to dampen the restoring effect of
- a,.z3. This is illustrated by the following simple example: a. = 1/n, Z. = f(u) = uI uI
with probability 1. Taking xi = 3 we have x2 = 3 - 32 = _6, x3 = -6 + 62/2 = 12,
... and it is easily verified that x,, -l X. Condition (7.6) can be shown to be the only
one of its type that will eliminate this phenomenon for all sequences a*; for any specific
sequence this condition can, of course, be somewhat relaxed. However, it should be
emphasized that in practice, condition (7.6) causes no trouble. Indeed, in all practical
situations one knows in advance that the root 8 lies in some finite interval (Cl, C2). Then,
provided f(u) is bounded in (Cl, C2) one can then replace Zu by, say, +1 for u > C2
and by -1 for u < Cl. [Such a replacement also substitutes a stronger version of (7.7);
it is no longer necessary to consider the possibility that lf(u) I may become very small
as u |- c and result 1 would in this case follow directly from the theorem.]
We now proceed to deal with the Kiefer-Wolfowitz scheme. We denote by Df(u) and

Df(u) the upper and lower derivatives of f(u):

Df (u)- lim f (u+ h)-f (u)
opdh >0o h

(7.11) DJ(u)= him f (u+h)-f (u)

RESuLT 2. If the Z. have uniformly bounded variances and if the regression function
f(u) satisfies

(7.12) If(u+ 1) -f (u) I < AIu I +B<
for aU u and suitable A and B, and

(7.13) sup Df (u) <0, inf Df (u) >0
Vk<U-O<k Ilk<O-<k

for all integers k, then the Kiefer-Wolfowitz sequence (7.5) converges to 0 both in mean square
and with probability 1.

Indeed, putting X1 = xi and

(7.14) X3+i= X.+ c-[f (X+ c") -f (X.-c3) I + Y.
Ca

with

(7.15) Y-= b- [Zx"+cf_f (X.+ c") -Zx_-c3+ f (X.-_c)c Xcn

we see, by (7.1), that Y,, satisfies (2.7). Also, since (7.10) holds, we have El ,2} <
2b2bn/cn and hence, by (7.4), condition (2.8) is also satisfied. Thus, again assuming
8 = 0, all that remains to be shown is that the transformations T"(r*, r3) = rn +
bn[f(rn + c") - f(rn - c.)J/c. satisfy (2.4). Since c. tends to zero we have from (7.12) the
inequality lf(u + cn)-f(u - c) I < AIu I + A + B for n > nO. Noticing that u and
f(u + cn)- f(u - cn) have different signs for |u > c, and remembering that b3/c3 -- 0
by (7.4), we see that given p > 0 we have T3(r,) < max [p + b3(Ap + A + B)/c3,
r.] for all n > n,. Also, given any L > p we have lf(u + cn)-f(u-c")I > 2c,,
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where y = min [- sup Df(u), inf Df(u)] for p < lul <L and n > nfL.
p/2<tu<L+1 p/2<-u<L+1

Hence Tn satisfies, for large n, (2.4) with a. = 2p, 8, = 0, and zy. 2 0 satisfying further-
more y.(ri, * * *, r.) > 2'yb. for r. < L. Since p is arbitrary our result follows from gen-
eralization 3. (The use of generalization 3 could have been avoided as in the proof of
result 1; for the sake of variety we illustrated both methods.)
Remark 2. Like (7.6) in the previous result, condition (7.12) here has no practical im-

portance and is necessary for the same reasons.
The conclusion that x. converges to 0 with probability 1 was proved by Blum [1] in

the case of the Robbins-Monro procedure under exactly the assumptions made by us.
He also proved the same conclusion for the Kiefer-Wolfowitz procedure under the fol-
lowing stronger assumptions that f(u) satisfies (7.12) with A = 0 and the condition
obtained from (7.13) on replacing I/k < u - 0 < k and I/k < 0 - u < k by l/k <
u - 0 < - and I/k < 0 - u < - under the sup and inf signs, respectively (Blum, fol-
lowing Kiefer and Wolfowitz, formulates his assumptions somewhat differently but they
are easily seen to be equivalent to those stated here). Blum's results contain those due
to Robbins-Monro [7], Wolfowitz [8], Kiefer-Wolfowitz [6] and Kallianpur [5]. Besides
the stronger conclusion in both cases, our result 2 allows such regression functions as
f(u) = -u2 and f(u) = exp (-u2) which do not satisfy Blum's conditions.

8. A special case

The method of proof of sections 2 and 3 can be adapted to give explicit bounds for
El (X. - 0)21 , etc. Here we shall do it only for a special case, furnishing an extremely
simple proof of the theorem in this case.

ASSUMPTION. The transformations T. of (2.5) satisfy

(8.1) |Tn.(ri,".., r.) - 1 F,jIr,.- 0
F, n = 1, 2X- , being a sequence of positive numbers satisfying

(8.2) F,.= 0.
nl-1

Putting Vn=- E{(Xn,- 0)2} and an= El Y2} we have at once from (2.5) and (8.1)

(8.3) +_FV+ an

On iteration we have

(8@4)~ ~ v<n+_2a+ 2_-lEn+ * * + q2n2n+Fn2 * 2*F

+ . .+ UX24F23*In 122 F .

This is the estimate of E{X,+1 - 0)21. To prove (2.8) we merely have to remark that
by (8.4)

(8.5) V++l: z a *max I+ + )max II
j-m mk:gn j_k+l j-1 ;gk< m j-k+1

B3ecause of (8.2) all partial products Ht F, are uniformly bounded by a finite number A,
i-r
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say. Given any e > 0 choose m so large that AI aj2 < e/2, then (8.5) gives
i-m

(8.6) +max

With m being fixed, the max term in (8.5) tends to zero as n - O by (8.2) and hence
V2+1 5 e for all sufficiently large n. This proves (2.8), and (2.9) can be deduced thence
by a simplified version of the argument at the end of section 3. [If it is assumed that all
Fn are . 1 then the writing can be somewhat abbreviated since the first max in (8.5) is
simply 1 and the second occurs at k = m - 1.]
We shall illustrate the use of (8.3) by proving the following minimax result on the

Robbins-Monro procedure.
RESuLT 3. If the Z, satisfy (7.10) and if the regression function f(u) is measurabl and

satisfies
(8.7) 0<O<A<f(u) 0 B<

and if it is known that

(8.8) lxi- 01 .<C2-o.2

then if we use in the Robbins-Monro procedure the sequence

(8.9) an 2+ A2C2
we shall have

(8.10) Et (Xn- ) 2) < 2C 2
ao2+ (n-i1) A2 C2

For any other sequence an there are Zu and xi satisfying all the above conditions for which
(8.10) does not hold.
By (7.8) the transformation T"(ri, , rn) in the Robbins-Monro scheme is r. -

a.f(rR). Hence (taking 0 = 0 throughout the proof), we have from (8.7)

(8.11) IT.(ri, -, r.) J I r.lIsup 1-a, f()

r,| *max (1 - Aa, Ban-1) .

Thus if a, -+0, (8.1) holds for large n with F. = 1 - Aan. Therefore if the a. satisfy
(7.2) the assumption is verified and hence EIX2) tends to zero. As the sequence (8.9)
clearly satisfies (7.2) the conclusion holds in this case. [So far no use was made of (8.8).
Also all the above follows directly from result 1.]
From (8.11) it follows that if

(8.12) a. A2
then T. satisfies (8.1) with F. = 1 - Aa.; hence we have in this case according to (8.3)

(8.13) V"+1_ (1-Aa )2V'+an
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by (7.9) and (7.10). The minimum of the right side of (8.13) is achieved at

(8.14) n =-A Xan2+A2Vn2
and for this choice of a. we have

(8.15) Vn+l= V

Also, by (8.8), V2 < C2, this and the recursion formula (8.15) give (8.10); and substitut-
ing the right side of (8.10) for V2 in (8.14) we obtain (8.9). Moreover, if the an thus com-
puted satisfy (8.12), and if xi = C, andf(u) = Au for all u, and the equality sign always
holds in (7.10), we have an equality sign also in (8.15). Thus our last assertion will be
proved if we show that the an given by (8.9) satisfy (8.12), but this is evident since they
form a monotone sequence and, by (8.8), a, = AC2/(a + A2C2) . 2/(A + B).

It is also easy to dispose of the case when C does not satisfy (8.8). We merely have to
start with a, = 2/(A + B) and keep using this value until, for the first time, we have
Vm not larger than the right side of (8.8). After that we define a.+,,_ by the right side
of (8.9) with Vm replacing C.

9. Concluding remarks
In all the preceding we have dealt with real random variables. Our methods carry

over, however, to more general situations. Since then it may be impossible to multiply
or square, one has either to operate with a pair of adjoint spaces or with the norm. We
shall show how the latter can be done in the case treated in the beginning of the last
section. Suppose XI and Y. assume values in a normed linear space )4 with ||r|| denoting
the norm of r. Let 0 be an element of 4 and T,,(r1, - * -, r,,) be measurable transformations
from the nth Cartesian power of )t into N and assume that IITn(rl, * * *, r,) - Offl < Fn,
Ifr,, - Oll with F, > 0 satisfying (8.2). Then, if we put X,,+1 = Tn(X,,) + Yn, the as-

sumptions EtIfXi112} +1 Et|IYV,f21 < co and

(9.1) EtI{s, (xi, - -,X,) + Y.ff2} _Et ||fp (Xi* *, x.) 112} +E{ || Y,, 12}
for every measurable function po(xi,* , x,,) imply Et IIX112I1 O+0 and IX - off -0
with probability 1. Except for substituting norm instead of absolute value not one word
in the proof is changed. We replaced the condition (2.7) by (9.1) since, in the case of real
variables, (2.7) was used solely to have E{o,,Y,,} = 0 and thus obtain (9.1) with the
sign of equality. As, in general, we cannot multiply we assumed (9.1) to start with. This
condition is related to orthogonality, and in many important cases may be deduced from
relations similar to (2.7). What has been said here about the special case treated in sec-
tion 7 can be suitably extended to cover the general case. So far as we know, the only
treatment of nonreal random variables in this connection is Blum's study [21 of the
Robbins-Monro and Kiefer-Wolfowitz schemes for random variables assuming values in
finite dimensional Euclidean space.

Chung [3] studied for special cases of the Robbins-Monro procedure the asymptotic
distribution of X,, - 0. Under the general assumptions of our theorem nothing can, of
course, be asserted about asymptotic distributions. Such assertions would certainly
necessitate assumption of lower bounds on the effectiveness of the transformations T,,
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and very much else. Our methods, however, do give bounds for the second moment of
X,,- and, assuming higher moments for X1 and YR, can be used to obtain bounds for
the corresponding moments of X. - 0. In this connection the inequalities of Doob (see
chapter 8, section 3 in [4]) can be useful. (Doob's theorems may also serve to give a
modified proof of our main results.)

The general theory embraces naturally many other schemes besides those of Robbins-
Monro and Kiefer-Wolfowitz. It may also be modified to yield methods of obtaining con-
fidence intervals and the like.

Note added in proof. Since submitting the paper the author became aware of the follow-
ing two studies.

(a) D. L. Burkholder, "On a certain class of stochastic approximation processes,"
Mimeograph Series No. 129, Institute of Statistics, University of North Carolina (1955).

(b) C. Derman, "An application of Chung's lemma to the Kiefer-Wolfowitz stochastic
approximation procedure," to appear in Annals of Math. Stat.

The most relevant results of these papers are a proof of the probability 1 part of
Result 2 of section 7 in (a), and studies of the asymptotic distribution in special cases
of the Kiefer-Wolfowitz procedure in both (a) and (b).
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