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1. Introduction
It is well known that the maximum likelihood estimates of the parameters of a rec-

tangular distribution are extremely efficient. In fact, these estimates differ from the
parameter by an amount which is of the order of magnitude of l/n where n is the sample
size. In this paper a similar result is obtained for the maximum likelihood estimate of
a where a is one of a set of parameters determining the family of distributions and a is
the location of a point of discontinuity of the density of the random variable observed.
The estimate & is approximately one of the observations in the neighborhood of a.

The limiting distribution of n(a- a) is related to a random walk problem. One part
R

of this random walk problem involves the distribution of E zi where R is the value of r

r i=1

which minimizes z( -w), the zi are independent and have the exponential distri-
i-1

bution with mean 1 and 0 < w < 1. The limiting distribution depends only on B and -y
where these are the one-sided limits of the density at a.

This type of problem arises naturally whenever one considers a population which has
two subpopulations and one of these is truncated. For example, a teacher may have stu-
dents who can afford to pay tuition or those who cannot pay but have obtained a scholar-
ship on the basis of a mark in a competitive examination. If he does not know the passing
mark or which students have scholarships, the problem of estimating the passing mark
is of the above type.

Consider the family of distributions given by the density

f (x, a, ySr) = , , 0 5 x5 aa,
(1)

f (x, a, ,S y) =ry , a <1<1

where
(2) a+,y (l-a) =1,

and 0 < a < 1.
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20 THIRD BERKELEY SYMPOSIUM: CHERNOFF AND RUBIN

The likelihood based on n independent observations is

(3) [ M Fn(a) 81-Fn(a) ] n
where Fn(x) is the sample cumulative distribution function. Maximizing with respect to
, and y, we find that the maximum likelihood estimate a of a maximizes

(4) F. (a) log Fn()+ [ 1-F. (a) I log 1-F. (a)
a a

It is easy to see that the above expression attains its maximum at a = 0, a = 1 or
at one of the n observations. In this section we shall proceed heuristically, replacing the
above expression by a first-order expansion in a and Fn(a) about ao and F.(ao) 1 #oao
where ao, Po and yo are the true values of the parameters. We obtain

(5) F.F(ao)log .ao) 1-F. (ao)(S)Fna0)0g a0 +[1-F^(ao)I log-1-
+ (a- aO) (7yo- go) + [F. (a)-F. (ao) I log ° -

Now let us assume that go > 70> 0. One might then expect that the maximum likeli-
hood estimate would maximize
(6) M (a) = F. (a) -F (ao) - co(a-ao)

where
(7) CO

o% -to
( log Po-log To

and it is easy to see that'

(8) ,o> co> 0.
This expression decreases between observations but has a positive jump at each ob-

servation. Let us order the observations and label them

( 9) *--XX (1f2 XX(n)9 XX(n) X$2f) ...-

so that2

(I 0) x(n)2 < x(I)l < x(n) = aO < X(,f) < X(n) < *--.

Then

M ( x(n)) = r_-c ( X(n) - Xo()) Xr > O,r n r

(11)
M (x(")) = r+1 -co (Xtn)- X(n)) r <0.

We shall study the behavior of a by studying that of xtn) - x() whereR is the value of
r which maximizes M(x(")). It is convenient to introduce
(12) y(n) = n (x(Q)- x(_))

I It is of interest to note that an estimate proposed by Karlin has a similar behavior except that co is re-
placed by one. In fact Karlin's estimate is the simple one of finding that a which maximizes IFn(a) -a I.

2 We may use strict inequalities since the observation will differ with probability 1. Furthermore, no
observation will correspond to xo = ao.
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since the y$(n) have asymptotically independent exponential distributions. In fact, if we
define E(cw) as the exponential distribution with density e-i/w/w for y > 0

, (y(n)) -* (yr) =E(i-) for r >0

(13)
AP (y(n)) - (Yr) =E (O) for r <0 .

Then, asymptotically, the distribution of n(a- ao) behaves like that of AR where R
minimizes Br and

(14) A,=y1+y2+ +y, for r>0

A,= - [Yr+l+Yr+2+** +Yo] for r <0 .

B ( - )+( - )++(-T1)for r > 0
(15)

Br -yo[ (Y-1 for r < 0.

Detailed proofs will be presented for the above assertions which reduce the asymptotic
distribution of n(a- ao) to the solution of the above random walk problem. The ran-
dom walk problem will also be studied.
Now suppose that our problems were modified so that the densities in the neighbor-

hood of ao were allowed to vary but had a right-hand limit yo > 0 and a left-hand limit
Po > -yo> 0. If there were available a consistent estimate of ao, one should be able to
obtain an interval whose length approaches zero but which contains ao and many ob-
servations with large probability. The density in this interval is very similar to that in
the original problem. We may transform our small interval to (0, 1), forget all observa-
tions not in this interval and apply the estimate a which is maximum likelihood for the
original problem. It is reasonable to expect this "quasi-maximum likelihood estimate"
to have the asymptotic distribution discussed above.

One may now ask whether the "true" maximum likelihood estimate would have a
better distribution. We shall show that under certain regularity conditions, this is not so.
In fact, the two estimates differ by a quantity which is small compared to 1/n.

In the general problem the case where -y = 0 introduces technical difficulties and has
not been treated.

2. Consistency for the special problem
We shall later treat the generalized version of the problem introduced above under

certain regularity conditions. One of these conditions will be the consistency of the
maximum likelihood estimate. In this section we shall prove that the maximum likeli-
hood estimate is consistent for the special problem of the introduction. In doing so we
shall make use of the 0, and o, notation of Mann and Wald [1] and a paraphrase due to
Pratt of a section of one of their theorems [2]. Roughly speaking, this theorem states
that the calculus of 0, and o, is the same as that of 0 and o. In later sections we shall
make use of a slight extension of another of their theorems which states that /L[g(y,2)] -*
2[g(y)] if _(y(n)) /X.(y) and the set of discontinuities of g is of probability measure
zero with respect to the limiting distribution ._(y).
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Since & maximizes (2) we may treat a as a function of the sample c.d.f. Fn.

(16) a=-b(F.)

Let Fo denote the "true" c.d.f. That is,

Fo (x) =Pox for 0 - x < ao
(17)

Fo(x) = 1-yo(1-x) for ao_ x 1.

The function

( 18) Ho(x) =Fo (x) log x )+ [ 1-Fo (x)] log 1 -Fo(x) 0

reaches a positive peak at x = ao. Both right-hand and left-hand derivatives exist at
x = ao, but they are not in general equal to zero. It can be shown that for a sequence
of nonrandom c.d.f.'s Gn(x) such that

(19) supI X =0(1),

(20) sup 1 _ x =0 (1),

and

(21) sup IG.(x) -Fo(x) =o (1),
0<z<1

it follows that
4) (G.) aoa+ O (1

Furthermore, we shall show that for the sample c.d.f.'s (which are random)

(22) sup xF(x) = (1)

(23) Sup 1-F (x) (1)

and

(24) sup IF.(x) -Fo(x) =o, (1) .

Hence, it follows by the above-mentioned result of Mann and Wald that

(25) a =4 (F.) = a+ o(1),

that is, & is a consistent estimate.
The left-hand side of (24) is the Kolmogorov-Smirnov statistic. It is well known that

this statistic is 0,,(1//nV) see [3]. To prove (22) and (23), it suffices to establish (22) for
the uniform distribution. In fact we shall find it slightly more convenient to show that
sup IF(x)/x - 1 = 0,(1) for the uniform distribution. Select an e > 0. Since the

0<x<1
reciprocal of the smallest observation is 0,(n), there is an a such that

(26) P F,,(a)=0 P IFi (X)-1 I= - for x- > 1- .
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By Chebyshev's inequality

~Ix ~ M2nX'(27)~ ~~~I|F, (x)In _ I I > Mi :!
I{nn(27) p } suI|Fn (2; a/n) _ t<Maz2 2 2<

i9;P?I2'a/n Wa kPa 2

for M large enough. But if

(28) _F1(x)1 <M and 1F5(2x) l <M,
then for x < y < 2x,

(29) | -1| <2M+1.
Hence,
(30) s |x) -I I > (2M+ 1) <,

which is the desired result.

3. The general problem
In section 1, we discussed the special problem and heuristically indicated that we ex-

pected our maximum likelihood estimate to be close to the value of a which maximizes
M(a). In this section we shall obtain a similar result for the general problem.

Several regularity conditions will be used. A brief discussion of them is presented in
the appendix.

Let a family of distributions be specified by the parameters 0 and a where 0 may be
multidimensional and the densityf(x, 0, a) satisfies
(31) lim f (x, 0, a) = (0, a)

(32) lim f(x, 0, a) =y(0, a).

We shall assume that the regularity conditions of the appendix hold. We also assume
that if (0o, ao) is the "true value" of the parameter, then the maximum likelihood esti-
mate (G, a) based on n independent observations converges in probability to (0o, ao).
Let X = (X1, X2,"*, X") represent n independent observations with density given by
f(x, Oo, ao). The logarithm of the likelihood function is given by

(33) L (X, 0, a) =-I log f (Xi, 0, ao) +- I [log f (Xi, 0, a)
-log f (Xi, 0, ao)]

Let

(34) S = S1+S2
where
(35) S1=) [log f(Xi, 0, a) -log f(Xi, 0, ao)]

n xiE B([sao)

(36) 52=-I [log f (Xi, 0, a) -log f (Xi, 0, ao)
nXi< B(at. Co)
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and B(a, ao) is the set of points between a and ao. We now apply condition R1 to SI (see
appendix)

(37) S= [log ,B0, ao) - Ig y ( 0, ao) + o ( 1)]I [F. (a) -F.(ao)]

[Hereafter and in equation (37), the o and 0 will be understood to hold uniformly in 0 in
some interval about Oo. In almost all cases o and 0 refer to a -* ao while o, and ), refer
to n - co. We shall point out any nontrivial situations where this is not the case.] Con-
dition R2 gives us

(38) S2= 1 ( ) a log f (Xi, 0 ao) +O,(1) o (1) O( a-aol)n xiff B(a, aL) (da

(a-n a log f (Xi, 0, ao)_ + o a -a-o | ) Op (1)

+O(I aa-ao 1) [F. (a) -F.(ao)] .

Let

(39) a (0) =E pI log f(X, 0, ao)

where the above expectation is relative to the "true" distribution. Applying Rs
(40) S2=5(0)(a-ao)+(a-ao)o,(l)+o(la-aol)0,(1)

+°( I a-ao) [F. (a) -F.(ao)]
(41) S(0, a) = S1+S2= [log , (0, ao) -log y (0, ao) + o (1)]M(0, a)

+ (a-ao)[o,(1) +o( )]+o(Ia-aol)O,(1)
where
(42) M ( 0, a) = [F. (a)-F. (ao)]C ( 0) (a- ao) I

and
(43) c (0) =-a(0)log , (0, ao) -log'y (0, ao)
We remark that
(44) c (00) = 0 (0o, ao) -y (0o, ao)

log # ( Oo, ao) -log y ( Oo, ao) I

and

(45) (0o, ao) > c(0O) >(y0o, ao) >0 .

Since a is consistent, there is a sequence {a^, of positive real numbers which con-
verges to zero such that & - ao = o,(a.). Let a be that value of a in the closed interval
[ao - a, ao + an] which maximizes M(8o, a). This function is the analogue of M(a) in
the introduction and is maximized at an observation or at an end point of the interval.
This section wil be concluded when we prove that a = a + o,(1/n) so that our study
of a is essentially reduced to that of a.
LEmmA 1.

(46) a -aO =0° (-).

PROOF. Since M(Oo, ao) = 0, we need only show that M(0o, a) is negative for n(a - ao)
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large enough. More specifically, we shall show that for each e > 0 there is a K and v >0
such that

(47) pK sup M(0o, a) < 4 >1-
IR/n< la-aO <an a -aO-

For a > ao,

(48) F (a) -F (ao) = [Ly (Oo, ao) + o (1)](-ao) .

If we can show that with large probability [F.(a) - F.(ao)]/[F(a) - F(ao)] is arbitrarily
close to one for n(a - ao) large enough, we would then have M(Oo, a)/ a - ao is ar-
bitrarily close to y(Oo, ao) - c(Oo) + o(1). Since y(Oo, aO) - c(6O) < 0, there would be
an q > 0 such that
(49) M (0, a) <-,Ia- aolI
for n(a -ao) large enough but also less than nan. A similar argument applies for a < aO
since P(6o, aO) - c(Oo) > 0. Hence it suffices to prove

LEMMLA 2. For the uniform distribution, for each e > 0 and 7i > 0, there is a K such
that

(50) P I SUP,,OX)- < lq11 > 1-,e.
PROOF. The proof of this lemma is similar to that of (22). For b > 1,

(51) P SUP I >((btK/n) -1|> 72 E b-i=b 1
_:i5c (biK/n) 72K 7n2K(I-1/b)

If

(52) |Fn( -11<772 and |F (bx) -11 <'2

then for x < y . bx

(53) - 2+(b )<F(x) - 1 <___
1 <Fs(bx) -1 <b772+ (b-I).(lb -

bx ~ y x

We may select 772 and b > 1 such that b772 + (b - 1) < n7 and - 772/b + (l/b - 1) >
-71. Then select K such that q2 K(l- 1/b) > l/e and the lemma follows.

If (0, a) is the maximum likelihood estimate of (0, a) we have upon substituting in
(41) and using M(O, a) = Op(l/n)
(54) 0 S(0, a) -S(0, a)

<_ [log,8S ao) -log y(0, ao) + o (l) I[M (0, a)M(, a)]

+ (a-a) o,(1) +°(n

If we can show that for a $ a, M(O, a) - M(O, a) must be negative and not of smaller
order of magnitude than a - a |, it would follow that a-a = op(1/n). To do this we
first treat M(Oo, a) - M(Oo, a).
LEMMA 3.

(55) Yn = sup M a-a (I
,l ; M(0o, i) aM-(o, a) =O
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We divide the interval I a - aol a. into Ia - ao < K/n and K/n I a - aol
_ a. where K is selected so that (47) holds. Then, since M(9o, a) > 0, the supremum
over the second set is less than 1/ti with probability greater than 1- e. We now treat
the supremum over la - ao K/n while a coincides with one of the observations in
this interval. There is an R such that with probability greater than 1- e, X(^ < ao -
K/n and ao + K/n < xR"). Then the supremum over a - ao K/n is dominated by

(~n) x(n)
(56) Z. R IM ( 0 x I)M ( 0 x,(")

i-j1+1
=sup

where y() = n(x(,")- x2i.), j* = j ifj > 0 andj* = j+ 1 if j 5 0. It suffices to prove
that Z. = O,(1). Now Z. can be expressed as a function ' of y^), -R . i _< R, where
'I is continuous except on a set of measure zero. The y(i) have a joint continuous limit-
ing distribution. This distribution is that of the independent exponentially distributed
variables yi, -R . i . R. With respect to the limiting distribution the set of discon-
tinuities have probability zero and Z = I(y;, -R < i S R) is a random variable. A
slight extension of a theorem due to Mann and Wald tells us that _£(Zn) -- P(Z) and
hence Zn = 0,(1).
We shall now extend lemma 3 to obtain the same property uniformly in e for some in-

terval about e0.
LEMMA 4. There is a 6> 0 such that

(57) Y* = sup iM(Ii-al-0a P

1°-0,163

and
(58) PIM (0, ) -M(0,a) > 0for a54f,Ia-aoI<_an, I (O - 0) S }

asn - x.
PROOF.

(59) M (O, a)-M (O, a) = [M (Oo, E)-M (Oo, a) ]+ [c (o) -c (O) 1(a-a) .

For e> 0, there is a 6> 0 such that
(60) PI2Y.Ilc(Oo)-c(O) I1I>1-e for IOo-OI a.

But then
(61) Yn : 2 Y.
and
(62) M(O,&) -M(O,a) > I aI
and lemma 4 follows.
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The remark following equation (54) now furnishes a proof of the desired result.
LEMMA 5.

(63) =o,p(-).

It might be remarked that lemma 4 practically implies that with large probability a
simultaneously maximizes M(0, a) for all 0 in some interval about 60. [In fact a com-
plete proof would require a slight extension of the proof of lemma 1 to show that there is
a K independent of 0 such that (47) holds with 0o replaced by 0.]

4. Reduction to the random walk problem
In this section we shall prove that the asymptotic distribution of n(a- ao) is related

to a random walk problem. Because of lemma 5 it will suffice to treat the distribution
of n(a- ao).

Let

(64) A,(y) =Yl+Y2+* +Yr for r > O,

Ar(y) =- [yr+l+Yr+2+* *+YOI for r <O,

B, (y) Yi +=+ (Yr- Ar(Y) for r >O
(65)

Br (Y) = -[yo+(Y-1-+TO)+ +(yr+ Co+)] r=A(y) co

for r < 0, where
(66) CO= c (0) = (00 ao) -y (00, ao)

log ,B (0o, ao) -logy (0o, ao)

Let R(y, b) be that value of r which minimizes B,(y) subject to r b,
(67) S (y, b) =BR(V, b) (Y)

and

(68) T (y, b) = AR(V, b) (Y) -

It should be remarked that R(y, b) and T(y, b) may fail to be uniquely defined. This may
be remedied by a suitable convention but we shall see that it is of little importance to
do so.

Suppose that the components of y = . , y-1, yo, y.,1**) are independentlydistributed
random variables where

Z' (ye) =E[ (0o, ao) for i>0

(69)
_P(yt) =E[ 01] for i.-0ze(Yi) [j (80, ao)]

and E(,u) is the exponential distribution with mean , and density exp (-x/$)/L for
x > 0.

In section 7 we shall discuss the distribution of R(y, cc), S(y, cc) and T(y, X-). For
the time being we shall merely use the fact that these are well defined random variables,



28 THIRD BERKELEY SYMPOSIUM: CHERNOFF AND RUBIN

that is, they are measurable functions and except on a set of probability measure zero
they are uniquely defined and finite. The object of this section is to prove that

(70) E2 [n (a&- ao) I [T (y, X ) ] .

Let y(ti) = n(x(n) -x(nk)) wherever this definition makes sense, that is, for - nFn(ao) S
i . n[1- P(ao)]. Let y(i) = 1/co otherwise. We first prove
LEMMA 6. Given any e > 0, there is a K' such that

(71) P{n (a-ao) =T (y(n), b) I > 1-2e for b> K'.
PROOF. A comparison of M(Oo, a) with Br(y(n)) clearly establishes the desired result

once it is shown that there is a K' such that

(72) P!Fn(ao+-n)-Fn(ao- >>I-nE

where K is the constant in the proof of lemma 1. [There we proved that n(a- ao) . K
with large probability.] The above inequality follows immediately upon applying
Chebyshev's inequality.
LEmmA 7. Asn-+ c-

(73) , [R (y(), b) , S (y(), b) ,T (y(n), b) / [R (y, b) ,S (y, b) ,T (y, b)]

PROOF. It is easily shown that

(74) z(yfn), i _- b) --+- (y jXI _i b) X b < co.

R(y, b), S(y, b) and T(y, b) are continuous functions of yi, i_ b, except possibly at
those y where R(y, b) is not uniquely defined. This set clearly has probability zero with
respect to the limiting distribution. The lemma foliows.
LEmmA 8.

(75) [n(a-ao)] -+.[T(y,c)].

PROOF. In view of lemmas 6 and 7 it suffices to prove that

(76) ..e[T (y, b) I -2 [T (y, :) I as b o

Since R(y, cc), S(y, X ) and T(y, - ) are random variables, there is for each e > 0 a K"
such that

(77) P{ IR (y, ) I _ K"I> 1-e .

But then for b _ K"

(78) PIT(y, b) =T(y, co) } >1-f

which implies the desired result. [In fact, T(y, b) T(y, co) with probability one as
b-- co.]

Applying lemmas 5 and 8 we have
THEOREm 1. If the maximum likelihood estimates (0, Q) converge to (O0, ao) when these

are the true values of the parameters and conditions RI, R2 andR3 are satisfied and j3(Oo, ao) >
ry(Oo, ao) > 0, then

(79) [n(-ao) I- [T (y, )].
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Remarks.
1. Essentially we have also proved that a is close to x(n) with probability almost

equal to P{R(y, co) = r .

2. The case where 'y(Oo, aO) > jP(Oo, ao) > 0 is trivially related to the one we treated.
3. Except for a scale factor, the distribution of T(y, -) depends only on

3(Do, ao)/y(0o, aO).
4. It is clear that the special problem discussed in section 2 satisfies the regularity

condition with 0 = j3. Since consistency was established in section 3, it follows that theo-
rem 1 applies to this example.

5. Because of technical difficulties, it was decided not to treat the case where
'y(Oo, ao) = 0. One would expect that in this case a tends to be very close to the largest
observation to the left of aO.

6. A variation of this problem arises when several related points are discontinuity
points of the density. For example, we may be interested in the parameters of a rec-
tangular distribution of known range. In general suppose that I'i(a), #,2(a), , Am(a)
are the location of m discontinuities. Then a reasonable modification of condition R3
would require that

(80) X dx= ' (aO) Pyj (0, aO) -i (0, ao)

where I3i and y; represent the left-hand and right-hand limits at the ith discontinuity
point. Then M(0, aO) would be naturally replaced by

(81) h[log ,li (0, aO) -log yi (0, ao) I {F" [46i (aO) + (a-GO) #i (Go) I
s=1

-F. [4,i (ao) ] }-6 (ao) [ pi (0, ao) -7i (0, ao) ] (a -a) .

The value of a which is close to ao and maximizes this expression has an asymptotic dis-
tribution which is determined by the natural extension of the random walk problem we
treated in this section.

5. Quasi-maximum likelihood estimates
In this section we shall define the quasi-maximum likelihood estimate and examine its

properties. This estimate tends to be insensitive to irregularities in the distribution
function and its properties can be shown to be the expected ones without the applica-
tion of involved regularity conditions.

Suppose that a* is a consistent estimate of a. Then there is a sequence {a} 0
such that nan--+ o and a*-aO = oM(an). Map the interval [a* - an, a* + an] into
[0, 1] by a linear transformation. If m observations fall in [a* - an, a* + an], they give
rise to a sample c.d.f. F.* on [0, 1] under the above transformation. It would seem natu-
ral to define the quasi-maximum likelihood estimate with respect to a* and {an,} by

(82) a* +an [2 b (F*) -1]

where 4 is defined in equation (16). [4D(F,,) is the true maximum likelihood estimate of a
for the special problem of section 2.] However, this estimate has the following short-
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coming. Suppose a* is selected so that there is some observation within a*- an and
a*- a. + n"-. Then 4)(F.*) is likely to be close to 0 instead of 1/2. To avoid this pos-
sibility we define c1*(F*) to be that value of r in r - 1/21|. an which maximizes

(83) S (T) =F*m (T) log + [I -F* (T) log' Fm (T)
T 1T

Let our quasi-maximum likelihood estimate be

(84) a**= a*+an[24 b* (F*) -11.

THEOREM 2. If a* converges in probability to ao and

lim f (x, Oo, ao) =j (0o, ao)
(85) XLO

lim f (x, GO, ao) = y (0o, ao)

where

(86) 0 (0o, aO) >v (0o, ao) >0 ,

then

(87) l[n (a**-ao) ] . [T (y, o)].
PROOF. Let ro be that value in (0, 1] which corresponds to ao, that is, aO- a* + an -

2an,ro. Then To - 1/2 = o,(a,). Expanding S(T) about T = TO and F*(r) = F*(ro) we
have for Ir-1/21 S a,,

(88) S (r) = S (TO) + [log to-log 7lo+ o, (1) I [Fm (T) -F* (TO) ]
to[ -10+ O,(1) (T Tro)

where

(89) to=
2

,B (0o, ao)(89)~~~~~~~o#0(eo, ao) +y-j( o, ao)

(90) 710 =3(o 2vy (0o, ao)
# ( o, ao) +'y (Do, ao)

(91) Fm (T) -Fsn ( TO) =-{ F [aO+ 2an (r - TO) ] Fn (aO) Jm
Let

(92) a= ao+2a (r-r7o).

Then
(93) m

(93) -=ana (Do, ao) +7(0o, ao) 1[l+o, (1)1

and

(94) S(rT) = Sa7) +S(gylog-(-Og 70 + [1 +'7 (1) M* (T)

+ (a- ao) o,,()
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where

(9 5) M* (T) = [F. (a) -F. (aO) ]co (a- ao)

(96) CO =
P (0o, ao) -y (0o, ao)

log * (90o, ao) -log y (G0, ao)

Now a** corresponds to that value of a which maximizes S(r) subject to T - 1/21 5
an. Let a be that value of a which maximizes M*(T) subject to I T- 1/21 9 a.. The
proofs of lemmas 1, 3, 5 and 8 (lemma 4 can be bypassed in this case) apply giving the
desired result.

6. The random walk problem

In this section we shall discuss the distribution corresponding to the random walk
problem. In doing so, we shall consider two associated problems. These problems may be
attacked from a general point of view which does not essentially involve the fact that
the distributions are exponential. However, the process of getting reasonable expressions
for the solution involves a certain amount of ingenuity and makes heavy use of the ex-
ponential distribution. In particular, we may, at one point, apply the fundamental iden-
tity of sequential analysis because of the special properties of the exponential distribu-
tion.

The results in this section are closely related to some as yet unpublished work by J. V.
Breakwell and Lionel Weiss who independently of us and each other treated the O.C.
curve for the sequential probability ratio test with exponential variables.

Let X1, X2, * *, X., * * *, ZI, Z2, * *, Zn, * * * be independently and exponentially distrib-
uted with mean 1, that is, _(X,) = .e(Z1) = E(1). Let R1 be that value of r for which

r
S (Xi -c1) attains its minimum where 0 < coi < 1. We shall later show that R1 is
i-1 R

RI

uniquely defined with probability one. Let S1 =i (Xi-WI) . Now let R2 be that value
i-1

f ~~~~~~~~~~~~~~~R,
of r for which z (Zi- w2) attains its maximum where W2> 1. Let S2= z (Zi - 2) .

i-. i-1

LEMMA 9. The vectors (R1, S1) and (R2, S2) are random variables and the conditional
distributions of SI given R1 and S2 given R2 are continuous.

r RIM
PROOF. Let RlM minimize (Xi -w) for

1
.

r _ M and let SiM = z (Xi - w).
-i- i-1

Since the joint distribution of v z (Xi-wD), 1 _ r _ Mi is continuous and non-

degenerate, Rim is uniquely determined with probability one, (RiM, SiM) is a random
variable and the conditional distribution of SiM given RiM is continuous.

Given any e > 0, there is, by the law of large numbers, an M such that

PI 1: (Xi-wi) >O for all r > Ml > 1-e. Hence

(97) 1- e< P IR =R1M and Ri is unique)} P{R1 is unique }.
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Since e is arbitrary, P{R1 is unique} = 1. Furthermore, for M > ri, P{S1 < si IR1 = rl}
= P{S1M < siIRim = r1}. The proof for (R2, 52) is similar.

Examining equation (65), it becomes evident that we are interested in (R, 5, T)
where col = YO/CO, W2 = OICO

(98) R=R1, S=- S1, T= S+ if S -S2 I
'Yo CO 'Yo

- o8 CO
- S2 1 R___ S1 -S2 1(99) R=-R2, S= S 1, T=S+R+1 if ->-
#0 co CO Yo flo co'

Suppose that the densities of (R1, S1), (R2, S2) and (R, S) are given by f,(s), gr(s) and
h,(s), respectively. Suppose also that the cumulative distribution functions of Si and S2
are F(s) and G(s). We express hr(s) in terms of the other quantities.
LEMMA 10. For r > 0

(100) h, (s) = yof, (yos) G (-flOs- 2)

and

(101) h,(s) = 0og--W(|oS-W2)I[1-F(yos)] for r<0.

The density of (R, T) is given by

k (t) 'h (t- o), r >0,
(102)

kr(t) =h7(t-r+±), r<0,

and the density of T is

k (t) =,h, (t--r), t> 0,
(103)

k(t) = , h,(t_-+ ), t<0.

To obtain expressions forf,(s) and gr(s) we shall establish recursion relations. Suppose
Xo and Zo are also exponentially distributed with mean one. Let

(104) R = 1 and Si = (Xo- w1) if S1 >0
R1* =R,+1 and S* = (Xo-,w) +S, if Si<0

(105) R2* =1 and S* = (Xo-w2) if S2 - 0

R2*=R2+1 and S* = (Xo-w2) +S2 if S2>0.

It is clear that (R*, S*) and (R*, S*2) have the same distributions as (R1, SI) and (R2, S2)-
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Hence we have
LEMMA 11.

fi (s*) = xrl e~8*-w, for s* > -

(106) min(*+w1)f,+ f(s*)f=| eia*-+we)fr(s) ds for s*> - (r+1) w

(107) w7 =P{R, = 1 1 =P{S12 0 1
(108) gi (s *) = Wr2 e-8*-' for s * > -C2

(109) g,+1 (s*) =ff e-(8*-+2)g, (s) ds for S*> -C02

(110) 72=PIR2= 11 =P(S2<_0.
We shall transform the above recursion relationships to a slightly more suitable form.

Let

(111) ,r(u) = f,+i [WI (u - r-1)] euw
Corlr

then

no(u)=1 for u>0
(112) pmin(r+l,u*)

111r+l (U"*) = f| ir (u) du for u* >0.

Since q1,(u) is an r-i fold integral for 0 < u < i + 1, i < r, it must have r-i con-
tinuous derivatives on this interval. On the other hand, 77,(u) is clearly a polynomial of
degree r - i for i < u < i + 1, i . r. We use the fact that

(113) 1r (u) = ! for 0<u <1

together with the relatively easily established identity (a special case of an identity due
to Abel [4])

Ur_ (u-1) r (u- 2)r-l++ (u r)+
(114) r! r! +a

-( )! +a

where
(115) a,= (i+ 1).

(i+ 1) I

It is clear then that for i < u < i + 1, i . r,

u' (u-1)' (u- 2) r-I (u-i) r-i+1
(116) '7r(U) =r- r a, r-) a,- r-+ )

=ar+ ar- (u - r) +...+aj (u-ji+ 1) r

and

(117) r,(u) =ar for u>r.
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Furthermore,

(118) ir1=P{S1>0}=1fff7(s) ds = qr1 (u) e-i wl1ldu

(119) 1 = o(e )+1= 71r (e wd'WI r0o WI-

and

( 1 20) 1- 21 = PI{S, < ° } = I,l f 71, (u) e-, cwt+Idu
r 0

Ti c=o co- '+(121)-= z S ( i) 4 (u-i- 1) r-ie-w cr+ldu

co

- ai (iee) i+1 (i+1)
i-o

(12i-T= dr(wle)* Wie)(e) Sr

(123) W e

(124) Wr=1-co1.

Now we observe that the density of Si is given by

(I 125) f ( s) = fr,+I ( s) = 1r/ [+ ( r + 1 ) ]e-' (W1 e-1)r+

(126) f (s) =7re-§ for s> -cW

(127) f (s) = ' za7(w1e.) 7+1
(AlI

I
a,

1!ae,wi.a 71 ca+ Y

+E a,-, (Cw)e- ) r+lI '1 + ***+ ar-i (WI e- ) '+ j

for -(j+1)wc<s<-j

(128) f(s) =irieI{1+ (WIer") (- +*) + (e )i _j!)
for -(j+ 1) w, < s <-jw .

The densities g, are easily obtained from the recursion relationships. However, to
co

obtain the over-all density g = S g, from g, seems to involve considerable work. On the
r-i
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other hand, we shall find that the fundamental identity of sequential analysis is appli-
cable here and furnishes a simple derivation that S2 has an exponential distribution.

Consider the truncated process where

(129) W= (Zi-02)
i-,

r r

if n is the first index r less than N for which z (Zi -w2) s. If z (Zi- 2) _ s

for 1 . r . N - 1, let n = N. Then the fundamental identity is

(130) El etW o(t) }=1

where
(131) s (t) =E(et('--)) =etw (I

Note that because Zi has an exponential distribution, the conditional distribution of Z
given Zi > a is exponential. Hence

(132) E(etwIn=r<N) = et8(1-t)-l, s>-C21

tE(Zi-W,)}
(133) E(eawIn=N) =E e i-l In=N (1-t)-1.

N-i

But under the condition n = N, 0 .5 Zi < (N -1)(W2 + s. Hence
i-1

E[exp(1W),(t)- n = N] 0 as N -* X for t> 0 and exp(tw2)(1 - t) < 1. Then

(134) zp(s) elw- -t)Iet8(I-t)-=I for t>0, elws(I-t) <1,
r-1

where

(135) P, (s) =P (Zi-co) exceeds s for the first time at j = r.
i-1

Let t1-12+ where t2 is uniquely defined by

(136) eea (Il-(t2) =1,IO<t2<1I

Then

(137) 1-G(s) =P{S2.s}= p, (s) =(1-t2) e-s, S >W-g,
r-1

which means that S2 has an exponential distribution. In particular

(138) 72= t2 .

To obtain the densities gr(S), one may use equation (134) but we shall do so by the
recursion formulas.

Let
(139) r (u) -gr+ (uw(2) e(+r±l),

22
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Then

(140) p0(u) =1 for u>-1

and
ru*+l

(141) r+l (u*) = fJ (u) du for u* > -1.

It is easy to check that

(142) r, (u) (u+ 1) (u+ r+ 1) (u+r+l)r (u+r+1)1-I > _ 1

- (r-)

(143)gAs) (~~~~~~+1) (+ )r-2
(143) g, (5S) = t2 (O2e-) " e-' (°2 ) t ) > - W2 -

W2 ~~~(r- 1)! > 2

The closed form expression for k(t), t < 0, seems to be difficult to obtain. The authors
hope that the difficulty may be resolved in the near future so that the moments of the
asymptotic distribution can be conveniently computed. It may be remarked, however,
that replacing c0 by one (as Karlin's method does for the special problem) may lead to a
relatively poor asymptotic distribution in the case where go/-yo is large.

APPENDIX. REGULARITY CONDITIONS

CONDITION R1. The following limits

(144) limf (x,0,a) =(0 ,ao) >0
:1: DLO

::< aL
and
(145) limf (x0, a) =7y (0,ao) >0

Z> a

hold uniformly in 0 for 0 in some neighborhood about Oo. Also 0(0, ao) and y(0, aO) are
continuous in 0 at 0o. We may assume without loss of generality that g(0o, ao) >
'y(0o, ao).

CONDITION R2. For x { B(a, ao) (x not between a and aO)

14)log f (x, Op a) -log f (x, 0, ao) d9 log f (x, 0, ao) H(xo(1(146) - f X 1
a-ao cl a

where ElIH(X) IIOo, ao} < - -

For x and 0 in some intervals about ao and Oo, 0 logf(x, 0, ao)/aa is bounded.
CONDITION R3. For some interval about Oo,

(147) 1 log f (Xi, 0, ao)

converges uniformly in probability to

(148) a (0) =E cllog f (XX 0ao) Oo) ao

where b(0) is continuous at Oo and 3(Oo) = y(0o, ao) - f(Oo, ao).
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The last part of R3 is related to some simple interchange of derivative and integral
conditions which are apparent from the following argument.

(149) jf-f (x,6 , a) -f (x,O, ao) dx= 0.
_co a-ao

Suppose a > ao. Consider the intervals (- -, aO), (ao, a), (a, -). Then

(150) f cf (x, 0, ao) dx+o (1) +f f (x,o,ao) dx

+o(1)+[o(0,ao) -'y(0,ao) ]+o(1) =0

(151) -y (D,ao) -B(0,a0) =f f (x, 0,ao) dx=Ea log f (XX ao) |, ao.

It is clear that the special problem treated in section 2 satisfies the regularity conditions.
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