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1. Introduction
When dealing with data as they come from nature, the applied statistician is fre-

quently faced with the prospect of selecting and modifying theoretical mathemati-
cal methods to fit the special conditions imposed by the data themselves. Since the-
oretical mathematical tools are developed for specific situations they may become
unsafe for applications outside the framework for which they were originally in-
tended. Observations on natural phenomena cannot usually be controlled in the
sense of a controlled laboratory experiment, and for obvious reasons, they are finite
in scope. Hence, some form of experimental modification of theoretical formulae is
usually essential if the maximum correct information is to be obtained from the
data.

Data dealing with time variations of natural phenomena usually leave much to
be desired in that the lengths of observed series may be woefully short, they are
masked by various degrees of error and are sometimes sporadic and disconnected.
Furthermore, the dynamics of the generating mechanisms are frequently not
known, so that a priori considerations are purely speculative. A further compli-
cation concerns the length of the time series to be utilized for computation. The
individual members of the series being dependent, one on the other, so that re-
gardless how many are chosen, within practical limits, the number becomes small
in light of the requirements imposed by random sampling. A further point of
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640 SECOND BERKELEY SYMPOSIUM: SEIWELL

significance is that the observed sequence of events may be stationary only for
brief intervals and, hence, imposes a limit to the length of series entering into
the analysis.

Experience has indicated the superiority of the correlogram method in certain
analyses of geophysical time series. However, it is new and practical experimenta-
tion is required to interpret the results revealed by its application to natural data.
Hence, at a risk of being considered not too fashionable, an experimental study of
correlogram analyses of several artificially generated series has been undertaken.
The following is a descriptive account of the first results of these researches on
four mathematical models. The information obtained has been very useful in the
interpretation of correlogram analyses of natural data with which we are con-
cerned. Although experience with many analyses has revealed the power of the
correlogram method, general conclusions have at this time been avoided. It is to
be hoped that the following results will stimulate additional research.

2. Computational procedure
Both hand and machine procedures for computation of autocorrelation coeffi-

cients, as undertaken in this laboratory, have been previously described [7].
The large amount of computation required for the investigation was under the

supervision of Mr. Thomas C. Duke and Mrs. Mary M. Hunt.

3. Experimental model I

3.1. Pattern of analyses. Model I is an analysis of the function

( 1) y = sin 237rx + E

where e is an assumed rectangularly distributed random variable.
The object of the study was to obtain general information on the correlogram of

the function and to observe the effect of a changing stochastic variable on statistical
properties of both the basic data and the correlogram. Variations in the function
studied were:

Series A = e

Series B = 5e
Series C = 8e

Series D = 10e.

Each series, composed of a sine wave plus added random numbers, may be
likened to a message containing a basic signal masked by a degree of noise. A
fundamental problem is to isolate the signal from the message and to discover as
much as possible about its physical properties. Although the models have no par-
ticular physical significance, they may approximate a type of function underlying
natural time series. In the special case of Oceanography, it appears reasonable that
at times the sea surface roughness pattern may be represented by a single cyclical
component (sea swell) plus random disturbances (local sea) [5]. However, regard-
less of the exact nature of the phenomenon, it is significant in the beginning to dem-
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onstrate that for series of the type represented by model I, conclusions regarding
the physical properties of the phenomena require special transformations of the
basic data.

3.2. Properties of the basic data. Statistical properties of the basic data (figure 1)
tabulated in table I are based on a minimum of twenty-five complete cycles (200
units). The computed means and variances for the series do not differ significantly
from theoretical values and the samples closely approximate properties of the
parent.

The presence of the random disturbances masks the underlying rhythmic cycle

Series A

Series B

Series B
Series C

Series D

FIGURE 1

Graphs of model I data

and it will not be recognized by the distances between successive peaks or succes-
sive upcrosses. Thus, for series A, where the cosine variance is 86 percent of the
total variance, the mean distance between peaks is not 10, but 4.86 units. This
distance between peaks becomes less as the magnitude of randomness is increased,
and at the five fold mark, its mean value is but little more than the theoretical
value of 3 units, characteristic of a random sequence.

Distances between upcrosses indicate essentially the same situation; for series A,
the mean distance of 8.76 units rapidly diminishes with increased randomness to the
theoretical value of 4 units, characteristic of a random series.

Hence, it is apparent that when the underlying rhythmic component of a simple
time series is disturbed by a random influence (noise), the properties of the com-

ponent (or even its presence) are not revealed by the method of measuring dis-
tances between peaks or upcrosses in the basic data. This information is not new.

It has been discussed by other investigators, and in particular, M. G. Kendall [2]
has shown its unreliability for several well known economic series. The argument
that selective methods may be used for identifying peaks appears equally unsound
unless the effect of the randomness can be first eliminated.
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To carry the above a little further, theoretical distances between peaks and
upcrosses of the four series were computed by the method of M. G. Kendall, which
is applicable to a simple linear autoregressive series of the type

(2) ut+2+ aul, + but = e+2

where e is a random variable, and ut normally distributed. This method and pro-
cedure is discussed in detail in the section on autoregression, to which it is appli-
cable. The results obtained from its application to model I are tabulated in table I.
They do not, as expected, throw any particular light on the subject and are pre-
sented only for future reference. However, it is to be noted that for series A, the

5 6 7 e 9 10 15 20 30 40

3" PER MIN PERIOD OF WAVES IN SECONDS. 11- 16-46

FIGURE 2

Periodogram model I, series A; period scale 2 X units

computation, based on the first two autocorrelations, gives correct period for dis-
tance between upcrosses.

The masking effect of the random component on amplitudes of the trigonometric
is also revealed by data in table I, where the sine amplitude C computed by least
squares for a ten unit period in the basic data, attained 99 percent of its value
for series A, and diminished to 78 percent for series D.

Other statistics of the basic data are tabulated in table I for reference purposes.
The ratio of the average deviation to the standard deviation is significant in that
it lies between 0.84 and 0.87, a value fairly close to the theoretical AD/ar ratio for
cosines. This property is discussed in a later section.

3.3. Periodogram analyses. Classical periodogram analysis of natural time series,
for which there is no a priori knowledge of periodicity, has fallen into more or less
disrepute. The results of periodogram analyses performed on each of the four
series (figures 2 to 5) by means of a mechanical periodogram analyzer [4], are
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3- PER MIN PERIOD OF WAVES IN SECONDS 11-26-46

FIGuRE 3

Periodogram model I, series B; period scale 2 X units

5 6 7 8 9 10 15 20 30 40

3' PER MIN PERIOD OF WAVES IN SECONDS 11-26-46

FIGURE 4

Periodogram model I, series C; period scale 2 X units
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presented to illustrate the danger of misinterpreting fundamental properties of
natural time series.

In the case of series A (variance of random component 14 percent of the total
variance) the ten unit peak is clearly defined in its periodogram and provided minor
peaks are ignored, the analysis could be correctly interpreted. However, as the
magnitude of the randorn component increases, as in series B (variance of random
component 81 percent of total or about five times the cosine variance) the rela-
tive magnitudes of the spurious peaks increase, and although the ten unit peak
is still superior, there is danger of interpreting the periodogram as representing an
interference pattern comprised of other frequencies, particularly those between 5
and 30 units.

5 6 7 8 9 10 15 20 30 40

3' PER MIN PERIOD OF WAVES IN SECONDS 11- 26-46

FIGURE 5

Periodogram model I, series D; period scale 2 X units

As the magnitude of the random component increased still further, the periodo-
gram became more complex, and for series C (variance of random component ap-
proximately 12 times the cosine variance) the dozen or more principal peaks could
be interpreted as indicating an equal number of harmonic components in the
basic data.

In the final case of series D (variance of random component approximately 17
times the cosine variance), the ten unit peak is completely masked and unrecog-
nizable in its periodogram.

Periodograms similar to these frequently result from the analyses of natural
data for which there is no a priori knowledge of periodicity and have been in-
terpreted as providing clues to physical properties of the data [1]. The subject is
not new and various investigators have discussed the fallacy of conclusions from
periodogram analyses of economic and natural time series [2], [8]. Our experiments
indicate that periodogram analyses of finite data may possibly be interpreted with
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a degree of reliability only when the random component is absent or of very low
magnitude, and only then by the point location of the most prominent peak on the
frequency scale. Its breadth is not sufficient evidence of a train of waves in the
basic data.

The above analyses were undertaken on finite series comprised of 215 units. Al-
though some deleterious effects of periodogram analyses are eliminated by using
larger and larger amounts of data, a situation is rapidly approached where the
computational labor becomes prohibitive.
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-FIGuRE 6
Correlogram model I, series A
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FIGuRE 7
Correlogram model I, series B

3.4. Correlogram analyses. (a) Basic data. In these analyses we follow a pattern
developed for ocean wave observations. After preliminary study, the basic data
are subjected to autocorrelation analyses, the correlogram is drawn and then
evaluated. The particular procedure applied to model I is applicable to natural
data only in the special case where its correlogram clearly reveals a single rhythmic
component and when it damps to a terminal amplitude. When this is the case, the
amplitude, associated with the frequency determined by autocorrelation, is com-
puted and the residue, remaining after its subtraction from the basic data, is again
subjected to autocorrelation analyses.

The correlograms of the four series (figures 6 to 9) when viewed together clearly
demonstrate the power of autocorrelation analysis as a means of revealing the pe-
riod of the rhythmic component in the basic data, provided it is not completely
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masked by the random component. Thus, for series A and B, the ten unit period
is clearly defined by the correlogram; in series C, it may be estimated with reason-
able accuracy; but, in series D, the random variable is too large to permit period
identification. When natural data are being investigated, periods revealed in this
fashion are utilized for determining the amplitude of the rhythmic component.

The correlograms.of series A, B and C, are characteristic of those for a single

FIGuRE 8

Correlogram model I, series C
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FIGURE 9
Correlogram model I, series D

trigonometric with added random noise. They damp to terminal amplitudes and
remain constant. This, together with the uniform correlogram period of ten units,
provides information on physical properties of unknown series and is similar to a

type of correlogram which has been obtained for sea surface wave heights [5], [6].
The terminal amplitudes observed for the correlograms agree well with their theo-
retical values (table I) and demonstrate the reliability of the autocorrelation com-

putation on finite amounts of data for this type of function when not completely
masked by random noise.

The theoretical terminal amplitude rT of a sine with added random component is
(3) ~~~~~~~~variance cosine

total variance
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It expresses the percent reduction due to the cyclical component and is an impor-
tant property of the data.

(b) Residual data. The correlogram for the residuals of series A (figure 10) is
similar to that for a series of random (or nearly so) numbers. It demonstrates that
practically complete removal of the cosine from the basic data is possible under
the circumstances outlined.
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FIGURE 10

Correlogram of residuals model I, series A

4. Experimental model II

4.1. Pattern of analyses. Model II is concerned with analyses of combinations
of a sum of sines:

2w 2r 2
(4) y = a, sin k+ a2 siny7 k+a3 sin- k.

T, T2 T3
It is known that the correlogram of a series of several harmonic terms will have

a sinusoidal form which does not damp to zero. However, the form of the correlo-
gram varies according to the combination of cyclical components making up the
original series. It is important that the properties of correlograms of such combina-
tions be examined for distinguishing characteristics to provide a general guide in
correlogram analyses of natural series.

In this section we are concerned only with the forms of the correlograms drawn
in each case from sixty theoretical autocorrelation coefficients rk in one unit steps,
and computed according to the general equation:

2 2r 2 CS27r 2 CS2ial cos - k + a2 cosT k + a3 cosT k
(5) rk= a2+ a2+a2_-.

The various combinations of harmonic terms considered in this section are as
follows. Key characteristics of their correlograms (illustrated in figure 11) are
tabulated in tables II and III.
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FIGURE 11

Correlograms of combinations of sums of two sines of model II. See table II for period and
amplitude combinations. In each correlogram, abscissa is scale of units from 0 to 60 and ordinate
is scale of r from -1.0 to +1.0. Left column-series I-A to IX-A; middle column-series I-B to
IX-B; right column-series I-C to IX-C.
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Series A. Nine combinations of two sines

a, = a2,

T1= 10, T2 =12 to 40.

Series B. Nine combinations of two sines

a,= 1 , a2= 0-5,

T, = 10, T2 =12 to 40.

Series C. Nine combinations of two sines

a,= I, a2= 2,

Ti = 10, T2 =12 to 40.

Series D. Seven combinations of three sines
a,, a2, a3 = combinations of 1 and 2,

T1= 10, T2= 12, T3= 14.

Series E. Seven combinations of three sines
a,, a2, a3 = combinations of 1 and 2,

T1= 10, T2= 12, T3= 40.

Series F. Three combinations of three sines
a,, a2, a3 = combinations of 1 and 2,

T1= 10, T2= 20, T3= 30.

4.2. Summary of correlogram characteristics for series composed of more than one
cyclical component. The correlograms of series consisting of two sines with various
amplitude and period combinations have unequal distances between cycles, they
do not damp to zero, but show alternating damping and growth. Series of this type
generally are recognizable within the first few correlogram cycles, as distinguished
from correlograms of series having a single cyclical component. Unequal distances
between correlogram peaks always occurred within the first four cycles, the usual
difference of 1 to 3 units occasionally attained 23 units. As the periods of the two
sine combinations diverge, distances between successive peaks of the correlogram
tend to become more uniform but the alternate damping and growing increases. In
the case where the longer period wave has the larger amplitude, the correlogram
is less symmetrical, and damping is consistent through 1 to 3 cycles only. It is the
irregular nature of the damping and growth and the unequal distances between
peaks, usually occurring within the first 3 to 4 cycles, and the occurrence of rip-
ples, which permit identification of the correlogram as representing a basic series
containing more than one trigonometric.

Correlograms of series composed of three sines appear to be, in general, more
symmetrical than the above; although rippling increases and asymmetry increases
when the longer period sine has the larger amplitude. Damping is consistent only
through the first 1 to 4 cycles and distances between individual cycles range up to
16 units within the first 2 to 5 cycles. Differences in distances within the first 2
cycles are generally of the order of 0.5 to 3.5 units. In these cases, as in the above,
the nature of the damping and of the differences in distances between peaks and
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the occurrence of ripples permit some discrimination of the correlogram within
the first 3 or 4 cycles.

In practice correlograms of natural time series which indicate the presence of
more than one cyclical component are subjected to a Fourier transform of their
autocorrelation coefficients. In this manner it is frequently possible to identify the
frequencies of the components and evaluate their other properties.

TABLE II

PROPERTIES OF CORRELOGRAMS OF Two SINES: a, sin k + a2 sin T k

Series A: a, = a2; Series B: a1 = 1, a2 = 0.5; Series C: a, = 1, a2 = 2

Column: 1 2 3 4 5 6 7 8 9 10 11
First Consist-

cDresga Unit
Mx in

Two ent
Desa UPeriods Unit Distances between Peaks for Cycles: Max. MO cycle Damp-

tion Differ- No. ~~~~~~~~~~~~Differ- ing to
Ti T2 1 2 3 4 5 6 ence Cycl ence Cycle

I A 10 12 11 10.5 8.5 8.5 10.5 11 2.5 3 0.5 3
II A 10 14 11 8 10.5 11 10.5 8 3 2 3 2
III A 10 16 11 8 11.5 9.5 9.5 .... 3.5 3 3 1
IV A 10 18 10.5 9.0 11.5 8 12 8 3.5 4 1.5 1
V A 10 20 10 10 10 10 10 10 0 ... 0 1
VI A 10 25 9.5 11 9 11 9.5 9.5 2 3 1.5 1
VII A 10 30 9.5 11 9.5 9.5 11 9.5 1.5 2 1.5 .1
VIII A 10 35 9.5 11 10 9 10 10.5 1.5 2 1.5 1
IX A 10 40 9.5 10.5 10.5 9.5 9.5 10.5 1 2 1 1

IB 10 12 10.5 10 9.5 9.5 10 10.5 1 ,3 0.5 3
II B 10 14 10.5 9.5 9.5 10.5 10 9.5 1 2 2 2

III B 10 16 10.5 9.5 10.5 10 10 10 1.5 2 1.5 1
IV B 10 18 10 9.5 10.5 9.5 10.5 9 1 3 0.5 1
VB 10 20 10 10 10 10 10 10 0 ... 0 1
VI B 10 25 10 10 10 10 10 10 0 ... 0 1
VII B 10 30 10 10 10 10 10 10 0 ... 0 1
VIII B 10 35 10 10 10 10 10 10 0 ... 0 1
IX B 10 40 10 10 10 10 10 10 0 ... 0 1

I C 10 12 11.5 12 12.5 12 11.5 .... 1 3 0.5 3
II C 10 14 13.5 15 13 15 .... .... 2 3 1.5 1
III C 10 16 17 14 17.5 .... .... .... 3.5 3 3 1
IV C 10 18 19 19 14 .... .... .... 5 3 0 1
VC 10 20 20 20 20 .... .... .... 0 ... 0 0
VI C 10 25 22 6 22 .... .... .... 16 2 16 1
VII C 10 30 30 30 .... .... .... .... 0 ... 0 0
VIIlC 10 35 31 8 .... .... .... .... 23 2 23 1
IXC 10 40 20 20 .... .... .... .... 0 ... 0 1

Tables II and III list the data discussed above. The first column tabulates the
periods of the two sine combinations (table II) and amplitudes (table III) of the
three sine combinations. Columns 2 to 7 tabulate the unit distances between suc-
cessive correlogram peaks for six cycles and column 8 gives the maximum differ-
ence in unit distance between correlogram peaks. Then column 9 lists the mini-
mum number of correlogram cycles in which the column 8 range occurred and in
column 10 appears the differences in the first two correlogram peak distances.
Finally, the last column tabulates the number of peaks (cycles) over which the cor-
relogram consistently damped before growth.
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TABLE III

PROPERTIES OF CORRELOGRAMS OF THREE SINES: a, sin T k + a2 sin T k + a3 sin T k

Top group: T, = 10, T2 = 12, T3 = 14; Center group: T, = 10, T2 = 12, T3 = 40
Bottom group: T, = 10, T2 = 20, T3 = 30

Column: 1 2 3 4 5 6 7 8 9 10 11
First Consist-

Amplitudes Max. Min. ~~~~~~~~Two ent
Amplitudes Unit Distances between Peaks for Cycle: Differ- Mn. Cycle Damp-

- -______________- ence_CyclesDDfffer- Ng to
a, a2 a3 1 2 3 4 5 6 ence Cycles er- inglt

1 1 1 11.5 10.5 6.5 11.0 9.5 10.0 5 3 1 2
1 1 2 13 15 13 16.5 .... .... 3.5 5 2 2
1 2 2 12.5 13.5 13 9 10.5 .... 4.5 4 1 4
1 2 1 11.5 12.5 13 11.5 11 .... 2 5 1 3
2 1 1 10.5 9 5 9.5 10.5 9.5 9.0 1 2 1 2
2 1 2 11.5 8 10 11 10 8.5 3.5 2 3.5 2
2 2 1 11 10.5 8.0 9.0 10.5 10.5 3 3 0.5 3

1 1 2 10 13 16 9 12 .... 7 4 3 1
1 1 1 10.5 11 10.5 6.5 10.5 11 4.5 4 0.5 1
2 1 1 10.5 10 9.5 9.5 10 10.5 1 3 0.5 1
1 2 2 11 13 13 11 12 .... 2 2 2 1
1 2 1 11.5 12 13 12 11.5 .... 1.5 3 0.5 1
2 1 2 10 10.5 10 9 10 10.5 1.5 4 0.5 1
2 2 1 10.5 11 9 8 10.5 11 3 4 0.5 3

1 1 1 9.5 12 8.5 9.5 11 9.5 3.5 3 2.5 0
1 1 2 23 7 7.5 22.5 .. 16 2 16 1
2 1 2 9.5 I1 9.5 9.5 11 9.5 1.5 2 1.5 1

5. Experimental model III

5.1. The autoregressive scheme. Knowledge of the autoregressive scheme is due
primarily to the work of Maurice Kendall [2], [3]. We consider a series defined by
the difference equation:
(6) Uj+2 =-aut+l-but + f1+2,
which may be regarded as expressing the regression of ut+2 on ug+1 and ut. The term
et+2 being a residual error.
The theoretical correlogram for a series generated by this difference equation

will be damped and is given by
p7=P sin (kO +i)

(7) r~~~~~~~~=~~sin k
where the damping factor

(8) p= V/b
and

(9) cos a=

(10) tan 4, = + tan _.I -~tab
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The autoregressive period is:

(11) 27r

Kendall points out that typical series of this kind have no "periods" in the strict
sense. The lengths from peak to peak or from upcross to upcross vary and experi-
ments indicate that the distributions are unimodal having central values some-
where near the mean distances. Hence, this central value of the distribution is
considered the "period" of an autoregressive series.

The first two theoretical autocorrelations ro = 1 in terms of the coefficients are:

(12) r -

(13) r= a2-b (1+ b)

Also,

(14) ar=r2

(15) b 1 +- r

The estimate of the coefficients is quite sensitive to superimposed errors and it
is unsafe to estimate the autoregressive period without reference to the correlo-
gram. In our practical wave record analyses we base estimates of the autoregressive
periods on values of the autocorrelations as well as on locations of the first valley
and first peak of the correlogram.

The theoretical total variance of the autoregressive series is:
2

(16) 2 a br1-I-r+b r2

where o-2u is the random variance.
In the practical applications of the autoregressive scheme to natural time series,

certain properties of the basic data, as the mean distances between peaks and up-
crosses, are important to identify properties of the series. For the normal series,
the theoretical mean distance between peaks is given by:

(1 7) M.D. peaks= 2r
arc cos r

where
(18) -1+ 2 r -r2

or
(19) b2- (1+a)2 b-a_-

!2(1+a+b) 2

The theoretical mean distance between upcrosses is
2

(20) M.D. uprse cos
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Thus, for a random series the theoretical mean distance between peaks is 3 and
that between upcrosses is 4.

5.2. Pattern of analyses. This section is concerned with an experimental correlo-
gram analysis of eight autoregressive series of the type

(21) Xn+2 = -ax,+, - bx. + fn+2 -

Computations of autocorrelations of each series were based on a minimum of 180
to 500 terms. Duplicate computations were carried out on one series (G) using
180 and 500 terms, respectively. Two of the series (I and J) were identical with
the exception of the stochastic variable being rectangularly distributed between -1
and 1 in one case and normally distributed between 0 and 1 in the other. Principal
variations within the model, each indicated by a series letter, were produced by
changing the damping coefficient (b) and holding the autoregressive period con-
stant at 10 units. In table IV are tabulated the coefficients and the data pertinent
to describe the various series. Properties of the series are tabulated in table V.

TABLE IV

Series Constants Perod Dist. No. Terms
a be

B -1.62 1.00 10 R(-2,2) 215
F -1.54 0.90 10 R(-3,3) 215
G -1.45 0.80 10 R(-1,1) 180
G-1 -1.45 0.80 10 R(-1,1) 500
I -1.14 0.50 10 R(-1,1) 180
J -1.14 0.50 10 N( 0, 1) 180
K -0.89 0.30 10 N( 0,1) 180
L -1.35 0.70 10 N( 0, 1) 500
M -1.25 0.60 10 N( 0,1) 400

5.3. The mean distance between peaks and upcrosses. From equations of the auto-
regressive period (11), the mean distances between peaks (17) and between up-
crosses (20) in the basic data, we have as the ratio of mean distance between peaks
T, and autoregressive period T

(2 2) T =T (arccos b + 2v/Wcos T )

and as the ratio of mean distance between upcrosses T. and autoregressive pe-
riod T
(23) T. 2i___r

T arc cos[ 1 + b cosT

The theoretical Tp/T and TU/T ratios for all possible values of the coefficient, b,
and the frequency range encountered in our research are illustrated by figures 12
and 13.

It is apparent that only in certain cases will either T, or T. alone, provide a
reasonable estimate of the autoregressive period. On the other hand, the Tp/T
and TUIT ratios may assist in discovering facts about unknown natural series,
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particularly when they are used in conjunction with another statistical property.
The mean distances between successive peaks and successive upcrosses scaled

from curves of the basic data, and those computed from equations 17 and 20
(theoretical) for the nine artificial autoregressive series are tabulated in table V.
The autoregressive period 27r/6 was identical for all series, and the results together
with figures 12 and 13 permit the following conclusions.

1. The mean distances between upcrosses are greater than those between peaks
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and provide considerably better estimates of the autoregressive period for larger
values of the coefficient b.

2. The computed and the observed mean distances between upcrosses were very
close to the autoregressive period for values of the coefficient b = 0.8 and above.
Departures will become greater for increased values of T and for diminishing values
of b (figure 13).

3. The agreement between observed and theoretical values is, in general, good;
the latter being usually the larger.

The above findings are similar to those from Kendall's [2] experimental study of
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four autoregressive series. For completeness, we tabulate certain of his results in
table VI showing the ratios of computed peak and upcross distances to the auto-
regressive periods. With the exception of series 2, there is good agreement with
theoretical expectancy (figures 12, 13).

5.4. Correlogram analyses. Each of the series was subjected to analysis and the
autocorrelation coefficients rk plotted against the interval, k, form the correlograms

'FABLE VI

RATIOS OF COMPUTED PEAK AND UPCROSS DISTANCES
TO AUTOREGRESSIVE PERIODS*

Series Coefficients Auto Period M.D. (Peaks) M.D. (Upcrosses)
a b T Tp Tp/T T. T./T

1 -1.2 0.4 9.25 4.96 0.536 8.40 0.908
2 -1.5 0.8 19.53 4.96 0.254 11.61 0.594
3 -1.0 0.6 6.92 5.69 0.822 6.87 0.993
4 -0.8 0.8 3.00 2.60 0.866 2.73 0.910

* Data from Kendall's four experimental autoregressive series.
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FIGURE 14

Correlogram model III, series B with superimposed theoretical values

of figures 14 to 22. They are referred to as computed correlograms. The theoretical
correlograms superimposed on the computed correlograms were obtained from
theoretical autocorrelation coefficients computed as follows:

(24) rk= pk {sin(k+1) 0-p2 sin(k- 1) }(It+p2)sin 0

In considering the general properties of the correlograms, figures 14 to 22 reveal
that significant differences may exist between the theoretical and those computed
from finite amounts of data. However, similarities in key properties of both need
be studied for the purpose of inferring, in so far as possible, the physical properties
of correlograms of natural time series. In particular, the nature of the damping
and the symmetry of the computed correlograms permit certain inferences to be
made concerning properties of the basic series.

The theoretical correlogram of an autoregressive series (equation 24) will damp
very close to zero within a very few cycles; the rate of damping depending on the
magnitude of the coefficient b. In our experiments, theoretical correlograms
damped to less than r = 0.05 by the end of the fifth cycle for a value of the
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Correlogram model III, series F with superimposed theoretical values
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Correlogram model III, series G with superimposed theoretical values
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coefficient b = 0.9 (series F) and by the end of the first cycle when the coefficient b
was 0.5 or less.
On the other hand, the computed correlograms of autoregressive series of finite

length, may be less strongly damped than expected from theory. This, in general,
will depend on the length of the series analyzed and on its damping factor. Our
experiments show that when the coefficient b is large, longer series of observations
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Correlogram model III, series I with superimposed theoretical values
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FIGURE 19

Correlogram model III, series J with superimposed theoretical values

are required to approach theoretical damping than when b is small. This is demon-
strated (figures 16 and 17) by the series G (b = 0.80) correlograms based on 180
and 500 terms, respectively. The correlogram computed from 180 terms damped
only to the second cycle and then grew, whereas that of the 500 unit series damped
very nearly in accordance with theoretical expectations; at the third cycle, the
computed rk was 0.1 as compared with a theoretical rk of 0.04. The computed cor-
relogram was completely damped at the end of the fifth cycle.

In the case of the autoregressive series with coefficient b = 0.5, or less, correlo-
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grams damped to near zero by the end of the first cycle and then grew with irregu-
lar oscillatory features. In this, they tend to resemble the theoretical correlograms
of mixed sine waves, although the phenomenon results from finiteness of the data.

In series with coefficient b = 0.6 and b = 0.7, the correlograms based on 400
and 500 units, respectively, damped very nearly in accordance with theoretical
expectations (figures 21 and 22).

It appears reasonable that good approximations to theory are obtained by using
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Correlogram model III, series K with superimposed theoretical values
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Correlogram model III, series L with superimposed theoretical values
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400 to 500 (40 to 50 cycles) terms in an autoregressive series. However, when
data are not available, failure of the computed correlogram to damp according to
theory is not grounds for rejection of the theory of autoregression. This confirms
the evidence of Kendall, and it is apparent that the correlogram itself must serve
as the final guide for estimating properties of unknown natural time series.

Earlier it was shown that the correlogram for series consisting of a single cyclical
component and not completely masked by a random component, symmetrically
defines the period, and its terminal amplitude damps close to that required by
theory. On the other hand, the correlogram of series composed of several cyclical
components is not necessarily symmetrical, it frequently shows minor humps or
ripples in the first cycle, but the period is not revealed and a Fourier transform of
the autocorrelation is required for additional information. The correlogram of the
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FIGuRE 22

Correlogram model III, series M with superimposed theoretical values

autoregressive series is somewhat similar to that of the first case and the auto-
regressive period usually indicated by the location of the first valley and frequent-
ly, also, by its first peak when not too strongly damped.

Estimation of the autoregressive period from the first two computed autocorrela-
tions (equation 11) is so sensitive to departures from theory that in event of signifi-
cant difference with the period indicated by the first correlogram cycle it should be
viewed with suspicion. Tabulation of computed autocorrelation coefficients (table
V) shows that at times agreement may be poor, as for instance, for series L and M.

6. Experimental model IV

6.1. Pattern of analyses. This section is concerned with an experimental correlo-
gram analysis of five series, each consisting of an autoregressive function to which
are added cosine waves of different amplitudes and periods. The autoregressive
function (series G of model III) was identical for the first four series (A to D);
namely,
(25) X.+2 = 1.45xn+1 - 0.80xn + fn; 2

with e rectangularly distributed between -1 and + 1. The autoregressive function
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of series E was strongly damped (series J of model III). Namely,

(26) x+2 1. 14xn+-.SOx'+e+2

with e normally distributed between 0 and 1.
The five artificial series analyzed in this section were formed as follows:

27rx
Series A: y = X,42 + cos 10 180 units;

Series C: y = x-t+4-
cos 5, 180urxnits;

Series B: y = x,,±2 + 4 cos 180 units;

2wrx
Series C: y = X,,,2 + 4 cos , 180 units;

Series D: y =X,,,2 + 4 cos 20r 180 units;
20x

Series E: y = Xn,2 + 4 cos 10 360 units.

In three of the above cases the period of the cosine was identical with the auto-
regressive period (10 units). Statistical properties of the series are tabulated in
table VII.

TABLE VII

PROPERTIES OF ARTIFICIALLY GENERATED MODEL IV SERIES

Property Series A Series B Series C Series D Series E

Mean -0.01 -0.08 -0.08 -0.08 -0.19
Average deviation 1.24 2.65 2.70 2.73 2.57
Standard deviation 1.53 3.12 3.13 3.19 3.08
Deviation ratio 0.81 0.85 0.86 0.86 0.84
Mean dist. peaks 7.23 9.41 5.00 9.81 7.64
Mean dist. upcrosses 9.93 9.97 5.10 16.03 9.77
Total variance
computed 2.35 9.73 9.81 10.15 9.50
theoretical 3.19 10.69 10.69 10.69 11.15

Cosine variance
computed 0.50 8.01 8.01 8.00 8.04
theoretical 0.500 8.00 8.000 8.000 8.00

Autoregressive variance
computed 1.89 1.89 1.89 1.89 2.84
theoretical 2.68 2.68 2.68 2.68 3.16

ri 0.79 0.79 0.27 0.85 0.71
72 0.35 0.27 -0.54 0.68 0.19

6.2. Properties of the basic data. The mean distances between peaks and up-
crosses for the autoregressive series G and J of model III are:

Computed Theoretical
Series G M.D. peaks 6.56 7.02

M.D. upcrosses 9.42 9.91
Series J M.D. peaks 4.85 5.05

M.D. upcrosses 7.20 8.88
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The computed and theoretical values agreed within one half unit, except for the
M.D. upcrosses of the strongly damped series J. The addition of a cosine to the
autoregressive changes the mean distances between peaks and upcrosses (table
VII) in a fashion that they approach the value of the cosine period. This is partic-
ularly noticeable for the series having a cosine period of 5 (series C) and of 20
(series D) units which masks the ten unit autoregressive period.
A property of pure autoregressive series is that the ratio of average deviation to

standard deviation lay between 0.78 and 0.81 or very close to 2/r, a ratio
usually characterizing unimodal curves approaching symmetry. The addition of a
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Correlogram model IV, series A
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Correlogram model IV, series B

cosine to the autoregressive increased this ratio, 0.81 to 0.86, to approximate the
AD/o ratio of 2V-r for cosines.

6.3. Correlogram analyses. Each of the five series was subjected to analysis
as in previous models and the autocorrelation coefficients rk plotted against the
interval k to form the correlograms of figures 23 to 27. We briefly consider their
properties and variations from those of pure autoregressive series.
A prominent correlogram feature is the regulation of its period by the cosine.

Thus, while the correlogram for the pure autoregressive series G (figure 16) indi-
cated a period of 10 units only for the first cycle (after which, distances from peak
to peak and valley to valley became irregular) the addition of a 10 unit cosine
strengthened its symmetry. Again, the series E correlogram had uniformly spaced
(10 units) peaks and valleys, though more than six cycles, while the series C
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Correlogram model IV, series C
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correlogram is striking with equally spaced five unit peaks and valleys. Series D
revealed its twenty unit cosine period in the first correlogram cycle.

The correlograms of this model will not damp to zero except in the case where a
trigonometric should be completely masked by the autoregressive. In this respect,
they are similar to those for a sum of sines (model A) and the autoregressive ap-
pears to exert the influence of a single trigonometric of like period. The magnitude
bf the influence is related to its coefficient b and its autoregressive period in rela-
tion to the period and amplitude of the trigonometric.

The effect of the added cosine on damping of the correlogram is illustrated from
autocorrelation values at the first valley (half cycle, rk/2) and the first peak (first
cycle, rk) tabulated in table VIII. Both series B and E correlograms are similar to

TABLE VIII

Model rr (tb) rr (comp) rT (obs) rk/2 rk

III-G .... .... ...... -0.58 0.33
IV-A 0.16 0.20 (0.15) -0.67 0.41

B 0.75 0.81 (0.8) -0.88 0.87
C 0.75 0.81 ...... -0.70 0.66
D 0.75 0.82 ...... -0.76 0 87

III-J .... .... ...... -0.17 . .0.13
IV-E 0.72 0.72 (0.7) -0.80 0.72

those for the combination of a single trigonometric and a random component and
damp to terminal amplitudes at the first cycle; series B to about 0.85 and series E
to 0.7. On the other hand, series A (smaller amplitude) correlogram damps con-
tinuously to the sixth peak when it attains a terminal amplitude of about 0.15.
The series C (cosine one half the period of the autoregressive) correlogram shows
alternate damping and growth, similar to a combination of two cosines. A similar
situation is indicated for the series D correlogram (cosine period twice that of the
autoregressive).
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