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Abstract. Physical properties of gravitational waves, belonging to the larger
class of exact solutions of Einstein field equations which are invariant for a

non-Abelian two-dimensional Lie algebra of Killing fields, are described. It

is shown that in the would be quantum theory of gravity they correspond to

spin
\342\210\2221 massless particles. The gravitational interaction of two pencils of

light is analyzed.

Introduction

The aim of this talk is to illustrate some interesting and, in a sense, surprising

physical properties of special solutions of Einstein field equations, belonging to

the large class of Einstein metrics invariant for a non-Abelian two-dimensional Lie

algebra of symmetries, which throw new light on the following problem.

A long time ago Tolman, Ehrenfest and Podolsky [30] and later Wheeler [33] ana-

lyzed the gravitational field of light beams and the corresponding geodesics in the
linear approximation of Einstein equations. They discovered that null rays behave

differently according whether they propagate parallel or antiparallel to a steady,

long, straight beam of light, but they did not provide a physical explanation of this
fact. The result was clarified in part by Faraoni and Dumse [14] using an approach

based on a generalization to null rays of the gravitoelectromagnetic Lorentz force

of linearized gravity. They also extended the analysis to the realm of exact pp-wave
solutions of the Einstein equations.

Since the problem of the gravitational interaction of two photons is still unsolved, it

appears necessary to take into full account the nonlinearity of Einstein\342\200\231s equations

when studying the generation of gravitational waves from strong sources [12, 29].
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On the other hand, some decades ago, Belinski and Zakharov have shown [4] that
there exist metrics such that the corresponding vacuum Einstein field equations

reduce to a system of non-linear partial differential equations, whose generalized
Lax form is characteristic for integrable systems. Then, by using a suitable gener-
alization of the Inverse Scattering Transform, they were able to find solitary waves

solutions.

A geometric inspection of mentioned metrics shows that they are invariant under

translations along the x, y-axes, i.e., they admit two Killing fields, \342\210\202xand
\342\210\202y, clos-

ing on an Abelian two-dimensional Lie algebra A2 . Moreover, the distribution D

generated by \342\210\202xand
\342\210\202y

is two-dimensional and the distribution D\342\212\245orthogonal to

D is integrable and transversal to D.
Since a two-dimensional Lie algebra is either Abelian (A2) or non-Abelian (G2), it

has been natural to consider [24\342\200\22326]the problem of characterizing all gravitational
fields g admitting a Lie algebra G of Killing fields such that

I the distribution D, generated by vector fields of G, is two-dimensional.

II the distribution D\342\212\245,orthogonal to D is integrable and transversal to D.

The condition of transversality can be relaxed [9, 10], so that in order to distinguish

the different cases, the notation (G, r) is used. Metrics satisfying the conditions I

and II are called of (G, 2)-type. Metrics satisfying conditions I and II, except the

transversality condition, are called of (G, 0)-type or of (G, 1)-type according to the

rank of their restriction the leaves of D which are also called Killing leaves.

All the possible situations corresponding to a two-dimensional Lie algebra of iso-
metries, are described by the following Table 1 in which the cases indicated with
bold letters are essentially solved [2, 9, 10, 24\342\200\22327]where a non integrable two-

Table 1

D\342\212\245,r=0 D\342\212\245,r=1 D\342\212\245,r=2

G2 integrable integrable integrable

G2 semi-integrable semi-integrable semi-integrable

G2 non-integrable non-integrable non-integrable

A2 integrable integrable integrable

A2 semi-integrable semi-integrable semi-integrable

A2 non-integrable non-integrable non-integrable

dimensional distribution has been called semi-integrable if it is part (i.e., a suitable

restriction) of a three-dimensional integrable distribution.

The study of A2-invariant Einstein metrics goes back to Einstein and Rosen [13],
Kompaneyets [16], Geroch [15], Belinsky, Khalatnikov, Zakharov [3, 4], so that
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some exact solutions already known in the literature [28] have been rediscovered.

Nevertheless, the geometric approach allows to perform in a natural way the choice

of coordinates, i.e., the coordinates adapted to the symmetries of the metrics, even

if they do not admit integrable D\342\212\245distribution. Usually, the standard techniques
to find exact solutions assume, from the very beginning, that there exist natural

vector fields, surfaces forming, which simplify the choice of the coordinates sys-
tem. These assumptions are strong topological constraints on the space-time. The
method developed in [2, 9, 10, 24\342\200\22327]can be applied also when such topological

assumptions do not hold.

The paper is organized as follows. In Section 1 gravitational fields invariant for a

non Abelian two-dimensional Lie algebra, when the commutator of generators of
the Lie algebra is of light-type, are characterized from a geometric point of view.

In Section 2, the canonical and the Landau energy-momentum pseudo-tensors are
introduced and a comparison with the linearized theory is performed. The role of

(realistic) sources for such gravitational waves is also described. Eventually, the

analysis of the polarization leads to the conclusion that these fields are spin \342\210\2221

gravitational waves. In Section 3, spin
\342\210\2221 and spin

\342\210\2222 gravitational waves are

compared from a gravitoelectromagnetic perspective. Section 4 is devoted to the

analysis of the photon-photon gravitational interaction.

1. Geometric Aspects

Let g be a metric on the space-time M and G2 one of its Killing algebras whose

generators X , Y satisfy [X, Y
]

= sY , s = 0, 1. The Frobenius distribution D

generated by G2 is two-dimensional and in the neighborhood of a non-singular

point adapted coordinates (x, y , p, q) exist ([9, 10, 24\342\200\22327])such that

X=
\342\210\202

\342\210\202p

, Y = exp(sp)
\342\210\202

\342\210\202q

\302\267

In these coordinates, the general solution of vacuum Einstein equations, in the case
in which the Killing field Y is of light type, is given by

g = 2f(dx
2

\302\261dy2) + \316\274[(w(x, y)
\342\210\222

2sq)dp2 + 2dpdq] (1)

where \316\274
= A\316\246+ B with A, B \342\210\210R, \316\246(x,y) is a non-constant harmonic function,

f =
( \316\246)2 |\316\274|/\316\274,w(x, y) is the solution of the Euler-Darboux equation

\342\210\206\302\261w+(\342\210\202xln|\316\274|)\342\210\202xw\302\261(\342\210\202yln|\316\274|)\342\210\202yw
= 0

where \342\210\206\302\261is the Laplace (d\342\200\231Alembert) operator in the (x, y)-plane. Metrics (1)
are Lorentzian if the orthogonal leaves are conformally Euclidean, i.e., the positive

sign is chosen, and Kleinian otherwise. Only the Lorentzian case will be analyzed
and these metrics will be called of (G2, 2)-isotropic type.
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In the particular case s = 1, f = 1/2 and \316\274
= 1, the above (Lorentzian) metrics

are locally diffeomorphic [7] to a subclass of the vacuum Peres solutions [20, 28],
that for later purpose we rewrite in the form

g=dx
2

+ dy2 + 2dudv + 2(\317\206,x
dx + \317\206,ydy)du. (2)

The correspondence between (1) and (2) depends on the special choice of the func-

tion \317\206(x,y , u), which, in general, is harmonic in x and y. In our case

x\342\206\222x, y\342\206\222y, u\342\206\222u, v\342\206\222v+\317\206(x,y,u), h=\317\206,u.

In the case \316\274
= const, the Euler-Darboux equation reduces to the Laplace equa-

tion. For \316\274
= 1, in the harmonic coordinates system (x, y , z , t) defined in [6], the

above Einstein metrics take the particularly simple form

g = 2f(dx
2

+dy2)+dz
2 \342\210\222dt2 + d(w)d(ln |z

\342\210\222
t|). (3)

This shows that, when w is constant, the Einstein metrics given by equation (3) are

static and, under the further assumption \316\246= x \342\210\2322,they reduce to the Minkowski
one. Moreover, when w is not constant, gravitational fields (3) look like a distur-
bance propagating at light velocity along the z direction on the Killing leaves. In

the following we will only consider the case \316\246= x \342\210\2322.

More precisely, the wave character and the polarization of gravitational fields (2)
can be checked by using the covariant Pirani\342\200\231scriterion. To use this criterion the

Weyl scalars must be evaluated according to the Petrov-Penrose classification [19,

21].

To perform the Petrov-Penrose classification, one has to choose a tetrad basis with

two real null vector fields and two real spacelike (or two complex null) vector

fields. Then, according to the Pirani\342\200\231scriterion, if the metric belongs to type N of

the Petrov classification, it is a gravitational wave propagating along one of the two
real null vector fields. Since \342\210\202uand \342\210\202vare null real vector fields and \342\210\202xand

\342\210\202y
are

spacelike real vector fields, the above set of coordinates is the right one to apply

for the Pirani\342\200\231scriterion.

Since the only nonvanishing components of the Riemann tensor, corresponding to
the metric (2), are

Riuju
= \342\210\222\342\210\202

2

ij \342\210\202u\317\206,i,j =x,y

this gravitational fields belong to Petrov type N [11, 34]. Then, according to the

Pirani\342\200\231scriterion, the metric (2) does indeed represent a gravitational wave propa-

gating along the null vector field \342\210\202u.

2. Physical Properties

In the following, physical properties of metrics (1) will be analyzed only in the case

of Lorentzian signature. In previous section, the wavelike nature of gravitational
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fields (1) has been checked [6] by using covariant criteria. Now, we will shortly
review the most important properties of these waves which will turn out to have

spin
\342\210\2221.

Let us remark that the definition and the meaning of spin or polarization for a

theory, such as general relativity, which is non-linear and possesses a much big-
ger invariance than just the Poincar\303\251 one, deserve a careful analysis. It is well
known that the concept of particle, together with its degrees of freedom like the

spin, may be only introduced for linear theories. In these theories, when Poincar\303\251

invariant, the particles are classified in terms of the eigenvalues of two Casimir op-

erators of the Poincar\303\251 group, P
2 and W 2

where
P\316\274

are the translation generators

andW\316\274=1 2 \316\274\316\275\317\201\317\203P

\316\275M \317\201\317\203is the Pauli-Ljubanski polarization vector with M \316\274\316\275

Lorentz generators. Then, the total angular momentum J = L + S is defined in

terms of the generators M\316\274\316\275
as J i = 1

2 0ijkMjk . The generators P\316\274
and

M\316\274\316\275span

the Poincar\303\251 algebra, ISO(3, 1). When P 2 = 0, W 2 = 0, W and P are linearly

dependent of each other
W\316\274

=
\316\273P\316\274;

the constant of proportionality \316\273is given by

\316\273=

\342\210\222\342\206\222

P\302\267

\342\210\222\342\206\222

J /P0 and defines the helicity for massless particles like photons.
Let us turn now to the gravitational fields represented by equation (3). As it has
been remarked, they represent gravitational waves moving at the velocity of light,

that is, in the would be quantised theory, particles with zero rest mass. Thus, if

a classification in terms of Poincar\303\251 group invariants could be performed, these
waves would belong to the class of unitary (infinite-dimensional) representations

of the Poincar\303\251 group characterized by P 2 = 0, W 2 = 0. Recall that, in order

for such a classification to be meaningful P 2
and W

2 have to be invariants of the

theory. This is not the case for general relativity, unless we restrict to a subset of

transformations selected for example by some physical criterion or by experimen-
tal constraints. For the solutions of the linearized vacuum Einstein equations the

choice of the harmonic gauge does the job [32]. There, the residual gauge freedom

corresponds to the sole Lorentz transformations.

2.1. The Standard Linearized Theory

The standard analysis of linearized theory and the issue of the polarization will

be analyzed. In particular, the usual transverse-traceless gauge in the linearized
vacuum Einstein equations and the (usually implicit) assumptions needed to reduce

to this gauge play an important role: the generality of the usual claim \342\200\234thegraviton

has spin
\342\210\2222\342\200\235(that, of course, is strictly related to the possibility of achieving this

special gauge in any \342\200\234reasonable\342\200\235physical situation) is strictly related to these

assumptions.

The gravitational field is said to be weak (in M ) if there exists a (harmonic) co-

ordinates system and a region M \342\212\202M of space-time in which the following
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conditions hold

g\316\274\316\275
=

\316\267\316\274\316\275+h\316\274\316\275,|h\316\274\316\275| 1, |h\316\274\316\275,\316\261|
1. (4)

As it is known, in the weak field approximations in a harmonic coordinates system

the Einstein equations read

h\316\274\316\275=0. (5)

The choice of the harmonic gauge plays a key role in deriving equation (5). No

other special assumption either on the form or on the analytic properties of the

perturbation h has been done. It is commonly believed that, with a suitable gauge
transformation preserving the harmonicity of the coordinate system and the \342\200\234weak

character\342\200\235 of the field, one can always kill the \342\200\234spin
\342\210\2221\342\200\235components of the grav-

itational waves. However, even if not explicitly declared, the standard textbook

analysis of the polarization is performed for globally square integrable solutions
of the wave-equation (5) (that is, solutions which are square integrable everywhere
on M ) but, as we will see in the following, some very interesting solutions do not

belong to this class.

What is lacking in our case is, obviously, the global square integrability due to

the presence of the harmonic function solution of the two-dimensional Laplace
equation. Therefore, non-globally square integrable spin \342\210\2221 perturbations are

not pure gauge because they cannot be killed by infinitesimal diffeomorphisms.

Even if global square integrability is lacking, there exist solutions of this form that
far away the singularities are perfectly well-behaved. In other words, spin

\342\210\2221

perturbations which are square integrable on a submanifold M \342\212\202M of the whole

spacetime can be found: thus, in order to exist, spin
\342\210\2221 perturbations necessarily

need some singularities and/or some region with non trivial topology.
A transparent method to determine the spin of a gravitational wave is to look at its

physical degrees of freedom, i.e ., the components which contribute to the energy.
One should use the Landau-Lifshitz (pseudo)-tensor t\316\274\316\275which, in the asymptoti-

cally flat case, agrees with the Bondi flux at infinity [8].

It is worth to remark that the canonical and the Landau-Lifchitz energy-momentum

pseudo-tensors are tensors for Lorentz transformations. Thus, any Lorentz trans-

formation will preserve the form of these tensor; this allows to perform the anal-

ysis according to the Dirac procedure. A globally square integrable solution
h\316\274\316\275

of the wave equation is a function of r =
k\316\274x\316\274

with
k\316\274k\316\274

= 0. With the choice

k\316\274
= (1, 0, 0, \342\210\2221),we get for the energy density t00 and the energy momentum t30

the following result

16\317\200t00=

1

4 (u11 \342\210\222
u22)

2
+u

2
12, t00=t3 0

where
u\316\274\316\275

\342\211\241
dh\316\274\316\275/dr. Thus, the physical components which contribute to the

energy density are h11 \342\210\222
h22 and h12 . These amplitudes are eigenvectors of the
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infinitesimal rotation generator R, in the plane x\342\200\223ybelonging to the eigenvalues
\302\2612i. Thus, the components of

h\316\274\316\275
which contribute to the energy correspond to

spin
\342\210\2222.

In the case of the prototype of spin
\342\210\2221 gravitational waves (3), for f = 1/2, we

have

\317\204
0
0

\342\210\274
c1(h0x,x)

2
+ c2 (h0y,x)

2
, t00=t3 0

where c1 and c2 are constants, so that the physical components of the metric are h0x
and h0y. Following the usual analysis one can see that these two components are

eigenvectors of iR belonging to the eigenvalues \302\2611.In other words, metrics (3),
which are not pure gauge since the Riemann tensor is not vanishing, represent

spin \342\210\2221 gravitational waves propagating along the z-axis at light velocity.

This is related to the harmonic function of the transverse coordinates: in order

to have an asymptotically flat wave, singularities or some sort of non triviality in
the spacetime topology are necessary. The question is, can reasonable sources be

found to smooth out the singularities? The answer is positive as we will see in more

details in the next sections. Now we will show a simple and interesting example of

such solutions.

As a simple example let us consider perturbations, as in equation (3), of the form

h = dw(x, y)
\302\267

df (z
\342\210\222

t) which are not globally square integrable. The metric

g=\316\267+dw(x,y)\302\267df(u), u=z\342\210\222t, \342\210\2022x +\342\210\2022
y

w=0 (6)

being spatially asymptotically flat for a wide choice of harmonic functions w. In-

deed, it represents a physically interesting gravitational field: gravitational waves

propagating along the z-axis at light velocity. Besides to be a solution of the lin-
earized Einstein equations on flat background, it is an exact solution of Einstein

equations too.

It is trivial to verify that metric (6) is written in harmonic coordinates and has

an off-diagonal form, that is, the perturbation h has only one index in the plane

x\342\200\223yorthogonal to the propagation direction z . For this reason the above gravi-
tational wave has spin equal to one and is not a pure gauge [6]. With a suitable

transformation it is possible to bring the above gravitational wave in the standard

transverse-traceless form, however one can check that the new coordinates are not

harmonic anymore.

Summarizing: globally square integrable spin \342\210\2221 gravitational waves propagating
on a flat background are always pure gauge. Spin \342\210\2221 gravitational waves which

are not globally square integrable are not pure gauge.
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2.2. Asymptotic Flatness and Matter Sources

In the vacuum case, the coordinates (x, y , z , t) of the metrics (6) are harmonic. Be-

ing z the propagation direction, the physical effects manifest themselves in the x\342\200\223y

planes orthogonal to the propagation direction. In order these metrics be asymp-

totically Minkowski for x2 + y2 \342\206\222\342\210\236,the function w is required to satisfy the

condition

lim
x2+y2 \342\206\222\342\210\236

(w\342\210\222c1x+c2y\342\210\222c3)=0

where c1 , c2 and c3 are arbitrary constants and the behaviour of w can be easily

recognized by looking at the Riemann tensor of the metrics (6)

Ruiuj =
f,u

w ,ij (7)

which depends on the second derivatives of the harmonic function w.

Therefore, to have an asymptotically Minkowski metric, the function w must be

asymptotically close to a linear functions. But, due to standard results in the theory

of linear Partial Differential Equations, this is impossible unless w is a linear func-

tion everywhere and this would imply the flatness of the metrics (6). However, if
we admit \316\264-like singularities in the x\342\200\223yplanes, non trivial spatially asymptotically
Minkowski vacuum solutions with w = const can exist [7]. Of course, it is not

necessary to consider \316\264-like singularities: it is enough to take into account mat-

ter sources. For example, in the presence of an electromagnetic wave propagating

along the z axis, with energy density equal to \317\201which vanishes outside a compact
region of the x\342\200\223yplanes, the exact non vacuum Einstein equations for metrics (6)

read (see, for example [7])

f,u \342\210\202
2
x +\342\210\2022

y w=\316\272\317\201

where \316\272is the gravitational coupling constant. Thus, one can have non-singular

spin \342\210\2221 gravitational waves by considering suitable matter sources which smooth

out the singularities.
From the phenomenological point of view, it is worth to note that these kind of
wave-like gravitational fields, unlike standard spin

\342\210\2222 gravitational waves which

can be singularities free even in the vacuum case, have to be coupled to matter

sources in order to represent reasonable gravitational fields. The observational

consequence of this fact is that spin \342\210\2221 gravitational waves are naturally weaker

than spin
\342\210\2222 gravitational waves [18]. Typically, if the characteristic velocity of

the matter source is v, the spin
\342\210\2221 wave is suppressed by factors (v/c)n with re-

spect to a spin \342\210\2222 wave. It is worth to note that a gravitational field may also
have a repulsive character. For instance, a Kerr black hole is \342\200\234morerepulsive\342\200\235 than

a Schwarzschild black hole with the same mass. This is obviously related to the
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angular momentum. Roughly speaking, this effect may be attributed to the \342\200\234grav-

itomagnetic\342\200\235 part of the Kerr metric which, in our terminology, is the \342\200\234spin
\342\210\2221\342\200\235

part. On the other hand, the Kaluza-Klein mechanism allows to construct in pure
five-dimensional gravity, solutions with spin

\342\210\2221 excitations (which in four dimen-
sions may be interpreted as electromagnetic and, therefore, repulsive-degrees of

freedom. Of course, the Kaluza-Klein mechanism also works when reducing from
four to three dimensions. Solutions we are calling spin \342\210\2221 gravitational waves

when reduced to three dimensions (considering as extra dimension the propaga-

tion direction of the wave) give rise to purely electromagnetic fields.

3. A Gravitoelectromagnetic Perspective

A different point of view, which is useful in clarifying the nature of spin \342\210\2221 grav-

itational waves is provided by the gravitoelectromagnetism, henceforth GEM (see,

for example, [17]). In this scheme one tries to exploit as much as possible the

similarities between the Maxwell and the linearized Einstein equations. To make

this analogy evident it is enough to write a weak gravitational field fulfilling con-

ditions (4) in the GEM form (see, for example, [17, 22])

ds2
=c

2
1+2

\316\246(g)

c2
dt2+

4

c A(g)\302\267dx
dt\342\210\222 1 \342\210\2222

\316\246(g)

c2
\316\264ij

dxidxj (8)

with

h00 = 4\316\246(g)

c2
, h0i=\342\210\222

4A(g)i

c2

(in this section the speed of light c will be explicitly written). Hereafter, the spatial

part of four-vectors will be denoted in bold and the standard symbols of three-
dimensional vector calculus will be adopted. In terms of

\316\246(g)
and A, the harmonic

gauge condition reads

1

c

\342\210\202\316\246(g)

\342\210\202t
+

1

2
\302\267

A(g)=0 (9)

and, once the gravitoelectric and gravitomagnetic fields are defined in terms of

GEM potentials, as

E(g)=\342\210\222 \316\246(g)
\342\210\222

1

2c

\342\210\202A(g)

\342\210\202t
, B(g)

= \342\210\247
A(g) (10)

one finds that the linearized Einstein\342\200\231s equations resemble the Maxwell equations.
Consequently, being the dynamics fully encoded in Maxwell-like equations, the

GEM formalism describes the physical effects of the vector part of the gravitational

field. The situations which are usually described in this formalism are, typically,
static. In fact, when this assumption is dropped, GEM gravitational waves are also

possible.



On the Polarization of Gravitational Waves 329

The energy-momentum content of gravitational fields of form in (8) is well de-

scribed, in the asymptotically flat case, by the Landau-Lifshitz pseudo-tensor
t\316\274\316\275[17].

Spin
\342\210\2221 gravitational waves, as one could expect on the basis of the Kaluza-Klein

theory, can be put in an \342\200\234almost\342\200\235GEM form. This can be understood recalling

that they have only one index in the plane transversal to the propagation direction.
A generic spin \342\210\2221 gravitational wave, propagating along the z axis on flat space-

times,hastheforminequation(2)withu=z \342\210\222tandv=z+t,andthisis
almost the same form of equation (8) provided one replaces the time-like index
0 with the light-like index u representing the propagation direction of the wave.

The analogous of the gravitomagnetic potential reads in this case A(g)(x, y , u) =

(\317\206,x, \317\206,y, 0) and the harmonic gauge condition is

\302\267
A(g)=\342\210\202

2
x +\342\210\2022

y \317\206=0. (11)

Thus, the analogue of the gravitoelectric and magnetic fields are

E(g)=\342\210\222

1

2c
(\317\206,xu, \317\206,yu, 0), B(g)

=
(\317\206,yu, \342\210\222\317\206,xu,0) (12)

and the Einstein equations reduce to

\302\267
E(g)

=
\342\210\2224\317\200G\317\201 (13)

so that, outside the matter sources, the harmonic gauge condition implies the vac-

uum field equations.

4. Back to Tolman-Ehrenfest-Podolsky-Wheeler Problem

A steady light beam lying along the z-axis is described by electromagnetic field

F\316\274\316\275
whose non vanishing components are

Ex =
\342\210\222F01=E0cos(kz\342\210\222\317\211t)=By=F31.

The only non vanishing components of-the energy momentum tensor
T\316\274\316\275

are

T00 =T33 =
\342\210\222T03

=
\342\210\222T30=E02cos2(kz\342\210\222\317\211t)/4\317\200.

Taking the time average over a time grater than \317\211\342\210\2221and localizing the waves in a

beam, we get

T00
= T33 =

\342\210\222T03
=

\342\210\222T30
=

E02\316\264(x)\316\264(y)/8\317\200

where the Dirac delta-function \316\264has been introduced.

Thus, it is natural to consider a metric perturbation whose non vanishing compo-

nents are

h00=h33=\342\210\222h03=\342\210\222h30, h\316\274
\316\274=0, \342\210\202th\316\274\316\275

=
\342\210\202zh\316\274\316\275

= 0.
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Then, the gravitoelectric and the gravitomagnetic components of the metric are

given by

E(g)\316\274
=

F(g)\316\2740, B(g)m
= \342\210\222\316\265

\316\274abF(g)\316\261\316\262/2

where

F(g)\316\274\316\275
=

\342\210\202\316\274A(g)\316\275
\342\210\222

\342\210\202\316\275A(g)\316\274,A(g)\316\274
=

\342\210\222h0\316\274/4
=

(\316\246(g), A(g)).

It turns out that

\342\200\242the first order geodesic motion for a massive particle in the light beam grav-

itational field is determined by the force

f(g)
=

\342\210\2222E(g)
\342\210\2224v \342\210\247

B(g)

where v is the velocity of the particle.

\342\200\242the first order geodesic motion for a photon propagating, in the light beam

gravitational field, parallel(anti) to z -axis
(uj

=
\302\261\316\264j3)

is lightly different

f(g)
= \342\210\2224

E(g)+v\342\210\247B(g)
.

In previous section, we have seen that a gravitational wave generated by the light

is described by the exact Einstein metric

g=dx
2

+dy2+2dudv+wu
\342\210\2222

du
2

.

In that case, the perturbation is given by

h00=h33=\342\210\222h03=\342\210\222h30=wu
\342\210\2222

and we have

E(g)=\342\210\222

1

4
wx, wy,

w

u
u \342\210\2222

, B(g)
=

1

4 wy, \342\210\222wx,

w

u
u

\342\210\2222
.

The gravitational force acting over a massless particle is given by

f(g)
=

\342\210\222[wx(1\342\210\222vz)i+wy(1\342\210\222 vz)j+(wxvx + wyvy)k]/4u
2

.

If the photon propagates parallel to the light beam, v =
(0, 0, 1), then

f(g)=0

and there is not attraction or repulsion. It is worth to address that this result holds at
first order approximation; the analysis in the strong gravity regime will be exposed
in a forthcoming paper [31].

Thus, if the photon propagates antiparallel to the light beam v =
(0, 0, \342\210\2221),then

f(g)
= \342\210\222

w/2u
2

and the force turns out to be attractive.
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However, it is known from Quantum Field Theory that one consequence of spin
\342\210\222

1 messengers is that particles with the same orientation repel and particles with

opposite orientation attract.

Thus, the apparent lacking of attraction must be ascribed to the linear approxima-

tion since, according to our results, photons generate spin
\342\210\2221 gravitational waves

and, as a consequence, two photons with same helicity must repel one another [31].

Are these effects observable?

It can be seen that the transversal acceleration per unit length for two laser beams

in VIRGO interferometer (W = 1 watt, separation d = 10 cm) is only dv/dl =

2.10\342\210\222110cm\342\210\2221which is too small to be detected with the actual technology.

For a gravitational wave coming from Virgo cluster with dimensionless amplitude

h = 10\342\210\22221and frequency \316\275= 1 KHz, it turns out that

dv/dl
= h\316\275/c

= 3.3 .10\342\210\22229cm
\342\210\2221

.

Thus, even if the effects cannot be certainly observed in the Laboratory, they may

be relevant at cosmic scale.

Acknowledgements

The author wishes to thank F. Canfora, L. Parisi, G. Sparano, S. Vilasi and A. Vino-

gradov for their contributions to the subject.

References

[1] Aichelburg P. and Sexl R., On the Gravitational Field of a Massless Particle, Gen.
Rel. Grav. 2 (1971) 303\342\200\223312.

[2] B\303\244chtold M., Ricci Flat Metrics with Bidimensional Null Orbits and Non-Integrable

Orthogonal Distribution, Diff. Geom. Appl . 25 (2007) 167\342\200\223176.

[3] Belinsky V. and Khalatnikov I. , General Solution of the Gravitational Equations
with a Physical Singularities, Sov. Phys. JETP 30 (1970)1174\342\200\2231183.

[4] Belinsky V. and Zakharov V., Integration of the Einstein Equations by Means of the
Inverse Scattering Problem Technique and Construction of the Exact Soliton Solu-

tions, Sov. Phys. JETP 48 (1978) 6; Stationary Gravitational Solitons with Axial

Symmetry, Phys. JETP 50 (1979)1\342\200\2239.

[5] Bondi H., van der Burg M. and Metzner A., Gravitational Waves in General Rela-

tivity. VII. Waves from Axi-symetric Isolated Systems, Proc. Roy. Soc. 269, 21 (1962)

21\342\200\22352.

[6] Canfora F., Vilasi G. and Vitale P., Nonlinear Gravitational Waves and Their Polar-

ization, Phys. Lett. B 545 (2002) 373\342\200\223378.

[7] Canfora F. and Vilasi G., Spin
\342\210\2221 Gravitational Waves and Their Natural Sources,

Phys. Lett.B 585 (2004) 193\342\200\223199.



332 Gaetano Vilasi

[8] Canfora F., Vilasi G. and Vitale P., Spin \342\210\2221 Gravitational Waves, Int. J. Mod. Phys.
B 18 (2004) 527\342\200\223540.

[9] Catalano Ferraioli D. and Vinogradov A., Ricci-Flat 4-Metrics with Bidimensional
Null Orbits, Part I. General Aspects and Nonabelian Case, Acta Appl. Math. 92

(2006) 209\342\200\223225.

[10] Catalano Ferraioli D. and Vinogradov A., Ricci-Flat 4-Metrics with Bidimensional
Null Orbits, Part II. Abelian Case, Acta Appl. Math. 92 (2006) 226\342\200\223239.

[11] Chandrasekar S., The Mathematical Theory of Black Holes, Clarendon Press, Oxford,

1983.

[12] Christodoulou D., Nonlinear Nature of Gravitation and Gravitational-Wave Experi-

ments, Phys. Rev. Lett. 67 (1991) 1486\342\200\2231489.

[13] Einstein A. and Rosen N., On Gravitational Waves, J. Franklin Inst. 223 (1937) 43\342\200\223

54.

[14] Faraoni V. and Dumse R., The Strong Interaction of Light: From Weak to Strong

Fields, Gen. Rel. Grav. 31 (1999) 91\342\200\223105.

[15] Geroch R., A Method for Generating New Solutions of Einstein\342\200\231sEquation, II. J.

Math. Phys. 13 (1972) 394\342\200\223404.

[16] Kompaneyets A., Strong Gravitational Waves in Free Space, Sov. Phys. JETP 7
(1958)659\342\200\223668.

[17] Mashhoon B., Gravitoelectromagnetism, Talk at EREs2000, gr-qc/0011014.
[18] Neto E., Geodesic Deviation in pp-Wave Spacetimes of Quadratic Curvature Gravity,

Phys. Rev. D 68 (2003) 124013\342\200\223124020.

[19] Penrose R., A Spinor Approach to General Relativity, Ann. of Phys. 10 (1960) 171.

[20] Peres A., Some Gravitational Waves, Phys. Rev. Lett. 3 (1959)571\342\200\223572.

[21] Petrov A., Einstein Spaces, Pergamon Press, New York, 1969.

[22] Ruggiero M. and Tartaglia A., Gravitomagnetic Effects, Il Nuovo Cim. B 117 (2002)

743\342\200\223768.

[23] Sakharov A., Cosmological Transitions with Changes in the Signature of the Metric,

Sov. Phys. JETP 60 (1984)214\342\200\223218.

[24] Sparano G., Vilasi G. and Vinogradov A., Gravitational Fields with a Non-Abelian,

Bidimensional Lie Algebra of Symmetries, Phys. Lett. B 513 (2001) 142\342\200\223147.

[25] Sparano G., Vilasi G. and Vinogradov A., Vacuum Einstein Metrics with Bidimen-
sional Killing leaves. I . Local Aspects, Diff. Geom. Appl . 16 (2002) 95\342\200\223120.

[26] Sparano G., Vilasi G. and Vinogradov A., Vacuum Einstein Metrics with Bidimen-
sional Killing Leaves. II . Global Aspects, Diff. Geom. Appl . 17 (2002) 15\342\200\22335.

[27] Sparano G., Vilasi G. and Vinogradov A., Vacuum Einstein Metrics with Bidimen-
sional Killing Leaves. III. Semi-integrable Case (in preparation).

[28] Stephani H., Kramer D., MacCallum M., Honselaers C. and Herlt E., Exact Solutions

of Einstein Field Equations, Cambridge University Press, Cambridge, 2003.

[29] Thorne K., Gravitational-Wave Bursts with Memory: The Christodoulou Effect,

Phys. Rev. D 45 (1992) 520\342\200\223524.



On the Polarization of Gravitational Waves 333

[30] Tolman R., Ehrenfest P. and Podolsky B., On the Gravitational Field Produced by
Light, Phys. Rev. 37 (1931) 602\342\200\223605.

[31] Vilasi G. and Vilasi S., Is the Light too Light? (in preparation).

[32] Weinberg S., Gravitation and Cosmology, J. Wiley & Sons, N. Y., 1972.

[33] Wheeler J., Phys. Rev. Geons 97 (1955) 511\342\200\223536.

[34] Zakharov V., Gravitational Waves in Einstein\342\200\231sTheory, Halsted Press, N. Y., 1973.


