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AN INTRODUCTION TO MOVING FRAMES

PETER J. OLVER

School o f Mathematics, University o f Minnesota 
Minneapolis, MN 55455, USA

Abstract, This paper surveys the new, algorithmic theory of moving frames. 
Applications in geometry, computer vision, classical invariant theory, and 
numerical analysis are indicated.

1. Introduction

The method of moving frames (“reperes mobiles”) was forged by Elie Cartan, 
[7,8], into a powerful and algorithmic tool for studying the geometric properties of 
submanifolds and their invariants under the action of a transformation group. How­
ever, Cartan’s methods remained incompletely understood and the applications 
were exclusively concentrated in classical differential geometry, see [12, 13, 15], 
In the late 1990’s, we have formulated in [10, 11] a new approach to the moving 
frame theory that can be systematically applied to general transformation groups. 
The key idea is to define a moving frame as an equivariant map to the transfor­
mation group. All classical moving frames can be reinterpreted in this manner, 
but the new approach applies in far wider generality. Cartan’s construction of the 
moving frame through the normalization process corresponds to the choice of a 
cross-section to the group orbits. Building on these two simple ideas, one may 
algorithmically construct moving frames and complete systems of invariants for 
completely general group actions. The existence of a moving frame requires free­
ness of the underlying group action.
Classically, non-free actions are made free by prolonging to jet space, leading to 
differential invariants and the solution to equivalence and symmetry problems via 
the differential invariant signature. More recently, the moving frame method was 
also applied to Cartesian product actions, leading to classification of joint invari­
ants and joint differential invariants, [26], The combination of jet and Cartesian 
product actions known as multi-space was proposed in [27] as a framework for 
the geometric analysis of numerical approximations, and, via the application of
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the moving frame method, to the systematic construction of invariant numerical 
algorithms.
New and significant applications of these results have been developed in a wide va­
riety of directions. In [1,17,24], the theory was applied to produce new algorithms 
for solving the basic symmetry and equivalence problems of polynomials that form 
the foundation of classical invariant theory. In [19], the differential invariants of 
projective surfaces were classified and applied to generate integrable Poisson flows 
arising in soliton theory. Faugeras [9], initiated the applications of moving frames 
in computer vision, and in [6], the characterization of submanifolds via their dif­
ferential invariant signatures was applied to the problem of object recognition and 
symmetry detection in digital images. The moving frame method provides a di­
rect route to the classification of joint invariants and joint differential invariants 
[11, 26], establishing a geometric counterpart of what Weyl [30], in the algebraic 
framework, calls the first main theorem for the transformation group. The approx­
imation of higher order differential invariants by joint differential invariants and, 
generally, ordinary joint invariants leads to fully invariant finite difference numer­
ical schemes, first proposed in [3, 5, 6, 27], Moving frames have been used to find 
a complete solution to the calculus of variations problem of directly constructing 
differential invariant Euler-Lagrange equations from their differential invariant La- 
grangians [18]. Finally, the theory has recently been extended to the vastly more 
complicated arena of infinite-dimensional Lie pseudo-groups [28, 29].

2. M oving Frames

We begin by outlining the basic moving frame construction in [11], Let G be an 
/•-dimensional Lie group acting smoothly on an m-dimensional manifold M . Let 
G s  =  {g e  G; g ■ S  =  S}  denote the isotropy subgroup of a subset S  c  M , 
and G*s  =  f]zgs G*z its global isotropy subgroup, which consists of those group 
elements which fix all points in S. We always assume, without any significant 
loss of generality, that G acts effectively on subsets, and so Gjy- =  {e} for any 
open U c  M , i.e. there are no group elements other than the identity which act 
completely trivially on an open subset of M .
The crucial idea is to decouple the moving frame theory from reliance on any form 
of frame bundle. In other words,

Moving frames /  Frames!

A careful study of Cartan’s analysis of the case of projective curves [7], reveals 
that Cartan was well aware of this fact. However, this important and instructive 
example did not receive the attention it deserves.

Definition 1. A moving frame is a smooth, G-equivariant map p : M  —> G.
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The group G acts on itself by left or right multiplication. If p(z) is any right - 
equivariant moving frame then p(z) =  p(z)_1 is left-equivariant and conversely. 
All classical moving frames are left-equivariant, but, in many cases, the right ver­
sions are easier to compute. In many geometrical situations, one can identify our 
left moving frames with the usual frame-based versions, but these identifications 
break down for more general transformation groups.

Theorem 2. A moving frame exists in a neighborhood o f a point z  6 M  if and 
only i f  G acts freely and regularly near z.

Recall that G acts freely if the isotropy subgroup of each point is trivial, Gz =  {e} 
for all z  e  M . This implies that the orbits all have the same dimension as G itself. 
Regularity requires that, in addition, each point x  e  M  has a system of arbitrarily 
small neighborhoods whose intersection with each orbit is connected, cf. [22],
The practical construction of a moving frame is based on Cartan’s method of nor­
malization [16, 7], which requires the choice of a (local) cross-section to the group 
orbits.

Theorem 3. Let G act freely and regularly on M , and let K  C M  be a cross­
section. Given z  6 M , let g = p(z) be the unique group element that maps z to 
the cross-section: g ■ z = p(z) ■ z  6 K. Then p : M  —» G is a right moving frame 
for the group action.

Given local coordinates z =  ( z \ , . . . ,  zm) on M ,  let w(g, z) =  g ■ z  be the explicit 
formulae for the group transformations. The right moving frame g =  p(z) associ­
ated with a coordinate cross-section K  =  { z\ =  c \ , . . . ,  zr =  cr } is obtained by 
solving the normalization equations

vj1( g , z ) = c 1, . . .  vjr( g , z ) = c r (1)

for the group parameters g =  (g±,. . .  ,gr ) in terms of the coordinates z  =  
( z \ , . . . ,  Zm). Substituting the moving frame formulae into the remaining trans­
formation rules leads to a complete system of invariants for the group action.

Theorem 4. I f  g =  p(z) is the moving frame solution to the normalization equa­
tions (1), then the functions

h ( z )  = Wr+i{p(z), z), . . .  Im-r(z)  = Wm (p(z),z)  (2)

form a complete system o f functionally independent invariants.

Definition 5. The invariantization of a scalar function F  : M  —> M. with respect 
to aright moving frame p is the the invariant function I  =  l{F) defined by I(z)  =  
F(p(z) ■ z).
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Invariantization amounts to restricting F  to the cross-section, I\K =  F\K, and then 
requiring that I  be constant along the orbits. In particular, if I  (z) is an invariant, 
then l(I) =  I , so invariantization defines a projection, depending on the moving 
frame, from functions to invariants. Thus, a moving frame provides a canonical 
method of associating an invariant with an arbitrary function and more generally 
[18], invariant differential forms with ordinary differential forms.
Of course, most interesting group actions are not free, and therefore do not admit 
moving frames in the sense of Definition 1. There are two common methods for 
converting a non-free (but effective) action into a free action. In the traditional 
moving frame theory [7, 13, 15], this is accomplished by prolonging the action 
to a jet space Jn of suitably high order and the consequential invariants are the 
classical differential invariants for the group [11, 22], Alternatively, one may con­
sider the product action of G on a sufficiently large Cartesian product M x n̂+1'f 
Here, the invariants are joint invariants [26], of particular interest in classical alge­
bra [24, 30]. In neither case is there a general theorem guaranteeing the freeness 
and regularity of the prolonged or product actions, (indeed, there are counterexam­
ples in the product case), but such pathologies never occur in practical examples. 
In our approach to invariant numerical approximations [27], the two methods are 
amalgamated by prolonging to an appropriate multi-space.

3. Prolongation and Differential Invariants

Traditional moving frames are obtained by prolonging the group action to the n-th 
order (extended) jet bundle Jn =  Jn(M,p)  consisting of equivalence classes of 
p-dimensional submanifolds S  c  M  modulo n-th order contact at a single point, 
see [22, Chapter 3] for details. Since G preserves the contact equivalence relation, 
it induces an action on the jet space Jn , known as its n-th order prolongation and 
denoted by G^nh
An n-th order moving frame p(n) : .Jw ' G is an equivariant map defined on 
an open subset of the jet space. In practical examples, for n sufficiently large, the 
prolonged action G becomes regular and free on a dense open subset Vn C J n, 
the set of regular jets.

Theorem 6. An n-th order moving frame exists in a neighborhood o f a point z W 6 
J n if and only i f  z ^  6 Vn is a regular jet.

The normalization construction will produce a moving frame and a complete sys­
tem of differential invariants in the neighborhood of any regular jet. Local coordi­
nates z =  (x, u) on M  -  considering the first p components x  =  (x1, . . . ,  x p) as 
independent variables, and the latter q =  m  — p components u =  (u1, . . . ,  uq) as 
dependent variables -  induce local coordinates z ^  =  (x, ) on J n with compo­
nents u j  representing the partial derivatives of the dependent variables with respect
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to the independent variables [22, 23]. We compute the prolonged transformation 
formulae

w ^ ( g , z ^ )  = gW  • or (y, v(n)) =  g™ ■ ( x , u ^ )

by implicit differentiation of the v's with respect to the y 's. For simplicity, we 
restrict to a coordinate cross-section by choosing r  =  dim G components of 
to normalize to constants:

w-i(g, z(n)) = ci, . . .  wr(g, z(n)) = cr . (3)

Solving the normalization equations (3) for the group transformations leads to the 
explicit formulae g =  p(n) (z M ) for the right moving frame. As in Theorem 4, 
substituting the moving frame formulae into the unnormalized components of wM 
leads to the fundamental n-th order differential invariants

(4)

Once the moving frame is established, the invariantization process will map gen­
eral differential functions F(x,  u^n)) to differential invariants I  =  l(F) =  F o / W .  
As before, invariantization defines a projection, depending on the moving frame, 
from the space of differential functions to the space of differential invariants. The 
fundamental differential invariants I^n) are obtained by invariantization of the co­
ordinate functions

H f x M n]) =  =  y H / n'H x , u ^ ) , x , u )

i U x M k)) = « )  =  v % ( / nH x M n)) , x M k]). (5)

In particular, those corresponding to the normalization components (3) of will 
be constant, and are known as the phantom differential invariants.

Theorem 7. Let pM : Jn —> G be a moving frame o f order < n. Every n-th 
order differential invariant can be locally written as a function J  =  $ ( jM )  of 
the fundamental n-th order differential invariants (5). The function $  is unique 
provided it does not depend on the phantom invariants.

Example 8. Let us illustrate the theory with a very simple, well-known example: 
curves in the Euclidean plane. The orientation-preserving Euclidean group SE(2) 
acts on M  =  R2, mapping a point z = (x,u)  to

y =  x  cos 6 — u sin 0 + a, v =  x  sin 6 +  u cos 6 +  b. (6)

For a general parametrized curve z(f) =  (x(t),u(t)),  the prolonged group trans­
formations

du x  sin 0 +  u cos 6 d2v xu — xii
y d y xcosO — u s m 6 , m  d y2 (x cos 6 — it sin 0)3 (7)
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and so on, are found by successively applying the implicit differentiation operator

—  =  1 A  (8)
dy x  cos 0 — ii sin 0 dt

to v. The classical Euclidean moving frame for planar curves [13], follows from 
the cross-section normalizations

y  =  o ,  V =  0, Vy = 0. (9)

Solving for the group parameters g =  (0, a, b) leads to the right-equivariant mov­
ing frame

i u x x  +  uu z  ■ z  xu  — ux
0 = — tan —, a = ---- . =  ——, b = ,—

X  s j x 2 +  U2 p  V x 2 +  u 2

z A z
(10)

The inverse group transformation g~x =  (0, a, b) is the classical left moving frame 
[7, 13]. One identifies the translation component (a, b) =  (x, u) =  z  as the point 
on the curve, while the columns of the rotation matrix R(0) =  (t, n) are the unit 
tangent and unit normal vectors. Substituting the moving frame normalizations 
(10) into the prolonged transformation formulae (7), results in the fundamental 
differential invariants

xu  — xu z  A z
yy

yyy

k =
(x2 + u2y y 2 p i

d k
ds ’ Jyyyy

d2«
ds2

(11)
+  3k3

where d /d s  =  | |i | |-1 d /d f is the arc length derivative -  which is itself found 
by substituting the moving frame formulae (10) into the implicit differentiation 
operator (8). A complete system of differential invariants for the planar Euclidean 
group is provided by the curvature and its successive derivatives with respect to arc 
length: k , ks , kss, . . .  .

Example 9. Let n /  0,1. In classical invariant theory, the planar actions
a x  -)- 0 
yrc +  5 ’

u = ('yx +  5) nu (12)

of G = GL(2) play a key role in the equivalence and symmetry properties of binary 
forms, when u =  q(x) is a polynomial of degree < n, [14, 24, 1], We identify the 
graph of the function u =  q(x) as a plane curve. The prolonged action on such 
graphs is found by implicit differentiation. Setting a ~/p — S. A  = aS — 07 ^ 0, 
we find

<7UX — n'yu <x2uxx — 2{n — l)"faux +  n(n — l)"f2u
A a n~1 ’ ^  A 2crn~2

a Auxxx — 3>(n—2)^o2uxx +  3(n—l)(n —2Yf2a u x — n(n—l ) (n —2)y3u
A 3o-n—3
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and so on. On the sub-domain

V2 =  {H  /  0} C J 2, where H  =  uux x ---------- ux
n

is the classical Hessian covariant of u, we can choose the cross-section defined by 
the normalizations

Vy = 0, Vyy — 1-y =  o, v = i,

Solving for the group parameters gives the right moving frame formulae
a  =  0  =  _ x u ( l - n ) / n ^ j

=  J-?l(1_n)/n?7 =  —u1 n 5 = U^n -
(13)

lirr

Substituting the normalizations (13) into the higher order transformation rules 
gives us the differential invariants, the first two of which are

T

where

-  4-

Vyyy 1 *
J  i f 3/2:

n — 2
uuxuxx +  2-X X X  3 n

; 2
- u uxuxx +  6

(n — 2 )(n —

v,y y y y K
V_

I P
(14)

(n -  1 )(n -  2) 3̂
f. Urp * V  =  u3u,,

n*
o (n ~  l )(n ~  2)(n ~  3) „.4

n n* n3
and can be identified with classical covariants, which may be constructed using the 
basic transvectant process of classical invariant theory, cf. [14, 24], Using J 2 =  
T 2/ i ? 3 as the fundamental differential invariant will remove the ambiguity caused 
by the square root. As in the Euclidean case, higher order differential invariants are 
found by successive application of the normalized implicit differentiation operator 
D s =  u iJ _1/2D to the fundamental invariant J .

4. Equivalence and Signatures

The moving frame method was developed by Cartan expressly for the solution to 
problems of equivalence and symmetry of submanifolds under group actions. Two 
submanifolds S, S  C M  are said to be equivalent if S  =  g ■ S  for some g £ 
G. A symmetry of a submanifold is a group transformation that maps S  to itself, 
and so is an element g 6 G,s- As emphasized by Cartan [7], the solution to the 
equivalence and symmetry problems for submanifolds is based on the functional 
interrelationships among the fundamental differential invariants restricted to the 
submanifold.
Suppose we have constructed an n-th order moving frame p(n) : Jn —» G defined 
on an open subset of jet space. A submanifold S  is called regular if its n-jet 
jn5  lies in the domain of definition of the moving frame. For any k > n, we
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use jW  =  I®  | S  =  I®  °jfcS to denote the k-th order restricted differential 
invariants. The k-th order signature S'® =  SW (S) is the set parametrized by 
the restricted differential invariants; S  is called fully regular if jW  has constant 
rank 0 < t* < p =  dim S  for all k > n. In this case, S ®  forms a submanifold 
of dimension t* -  perhaps with self-intersections. In the fully regular case, tn < 
tn+\ < tn+2 < ■ ■ ■ < ts = t s+i = ■ ■ ■ = t < p, where t  is the differential 
invariant rank and s the differential invariant order of S.

Theorem 10. Two fully regular p-dimensional submanifolds S, S  C M  are (local­
ly) equivalent, S  = g ■ S, if and only if  they have the same differential invariant 
order s and their signature manifolds o f order s +  1 are identical: S^S+1HS)  =  
5 (s+1)(5).

Since symmetries are the same as self-equivalences, the signature also determines 
the symmetry group of the submanifold.

Theorem 11. I f S  C M  is a fully regular p-dimensional submanifold o f differential 
invariant rank t, then its symmetry group Gs is an (r — t) -dimensional subgroup 
o f G that acts locally freely on S.

A submanifold with maximal differential invariant rank t  =  p, and hence only 
a discrete symmetry group, is called nonsingular. The number of symmetries is 
determined by the index of the submanifold, defined as the number of points in S  
map to a single generic point of its signature:

md<S =  m in j#  ( J (-S+1^)_1{C} ; C G 5 (-s+1^J.

Theorem 12. I f  S  is a nonsingular submanifold, then its symmetry group is a 
discrete subgroup o f cardinality Gs =  ind S.

At the other extreme, a rank 0 or maximally symmetric submanifold has all constant 
differential invariants, and so its signature degenerates to a single point.

Theorem 13. A regular p-dimensional submanifold S  has differential invariant 
rank 0 if  and only if it is the orbit, S  =  H  ■ zq, o f a p-dimensional subgroup 
H  = Gs  C G.

Remark: “Totally singular” submanifolds may have even larger, non-free symme­
try groups, but these are not covered by the preceding results. See [25] for details 
and precise characterization of such submanifolds.
For example, the Euclidean signature for a curve in the Euclidean plane is the 
planar curve S(C)  =  {(k , ks)} parametrized by the curvature invariant k and 
its first derivative with respect to arc length. Two planar curves are equivalent 
under oriented rigid motions if and only if they have the same signature curves.
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The maximally symmetric curves have constant Euclidean curvature, and so their 
signature curve degenerates to a single point. These are the circles and straight 
lines, and, in accordance with Theorem 13, each is the orbit of its one-parameter 
symmetry subgroup of SE(2). The number of Euclidean symmetries of a curve is 
equal to its index -  the number of times the Euclidean signature is retraced as we 
go around the curve.
Thus, the signature curve method has the potential to be of practical use in the 
general problem of object recognition and symmetry classification. It offer several 
advantages over more traditional approaches. First, it is purely local, and therefore 
immediately applicable to occluded objects. Second, it provides a mechanism for 
recognizing symmetries and approximate symmetries of the object. See C. Shak- 
iban’s contribution to these proceedings for a discussion of applications of signa­
ture curves in DNA modeling. The design of a suitably robust “signature metric” 
for practical comparison of signatures is the subject of ongoing research.

Example 14. Let us next consider the equivalence and symmetry problems for bi­
nary forms. According to the general moving frame construction in Example 9, the 
signature curve S  =  S(q) of a function (polynomial) u =  q(x) is parametrized by 
the covariants J 2 and K ,  as given in (14). The following solution to the equiva­
lence problem for complex-valued binary forms, [1,21, 24], is an immediate con­
sequence of the general equivalence Theorem 10.

Theorem 15. Two nondegenerate complex-valued forms q(x) and q(x) are equiv­
alent if and only if their signature curves are identical: S(q) = S(q).

All equivalence maps x  =  p(x)  solve the two rational equations

J ( x f  = J ( x f , K (x)  = K(x) .  (15)

In particular, the theory guarantees ip is necessarily a linear fractional transforma­
tion!

Theorem 16. A nondegenerate binary form q(x) is maximally symmetric if and 
only i f  it satisfies the following equivalent conditions:

a) q is complex-equivalent to a monomial x k, with k  0, n
b) The covariant T 2 is a constant multiple o f i f 3 ^  0
c) The signature is just a single point
d) q admits a one-parameter symmetry group
e) The graph o f q is the orbit o f a one-parameter subgroup o f GL(2).

Binary forms that are not complex-equivalent to a monomial have only a finite 
symmetry group. In [1], Irina Kogan and I gave a practical method for computing 
the discrete symmetries of such forms by solving the rational equations (15). In
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her thesis [17], she further extended these results to forms in several variables. In 
particular, a complete signature for ternary forms leads to a practical algorithm for 
computing discrete symmetries of, among other cases, elliptic curves.

5. Joint Invariants and Differential Invariants

One practical difficulty with the differential invariant signature is its dependence 
upon high order derivatives, which makes it very sensitive to data noise. For this 
reason, a new signature paradigm, based on joint invariants, was proposed in [26], 
We consider now the joint action

g ■ (z0, . . .  ,zn) = (g ■ z0, . . .  ,g ■ zn), g £ G, z0, . . . , z n £ M  (16)

of the group G on the (n +  l)-fold Cartesian product M x n̂+1  ̂ =  M  x • • • x M.  
An invariant I ( zq, , zn) of (16) is an (n + 1)-point joint invariant of the original 
transformation group. In most cases of interest, although not in general, if G acts 
effectively on M , then, for n > 0  sufficiently large, the product action is free and 
regular on an open subset of M x n̂+1\  Consequently, the moving frame method 
outlined in Section 2 can be applied to such joint actions, and thereby establish 
complete classifications of joint invariants and, via prolongation to Cartesian prod­
ucts of jet spaces, joint differential invariants. We will discuss two particular ex­
amples -  planar curves in Euclidean geometry and projective geometry, referring 
to [26] for details.

Example 17. Euclidean joint differential invariants. Consider the proper Eu­
clidean group SE(2) acting on oriented curves in the plane M  =  R2. We begin 
with the Cartesian product action on M x2 ~  R4. Taking the simplest cross-section 
xq =  uq = x i  =  0, u\ > 0 leads to the normalization equations

yo =  a?o cos 6 — uq sin 0 +  a =  0 
vq =  xo sin 0 +  uq cos 0 +  6 = 0  
yi =  x i  cos 6 — u\ sin 6 +  a =  0.

(17)

Solving, we obtain a right moving frame

a =  —xq cos 6 +  uq sin 6, b =  —xq sin 6 — uq cos 6

(18)
along with the fundamental interpoint distance invariant

v\ =  x i  sin 6 +  u\ cos 0 +  6 I  = ||2i  -  Z0 (19)
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Substituting (18) into the prolongation formulae (7) leads to the the normalized 
first and second order joint differential invariants

dvk

d2vk

for k  =  0,1. Note that

Jk — 

K k =

Jo — — cot (j>0,

(21 -  Zp) • Zk 
(21 -  Zq) A z k

IN  -  ^oll3 ( 4  a  zk)
[(21 -  Zq) A 20]3

J i =  +  cot (j) 1

(20)

(21)

where fik = <J (z\  — zq, z k) denotes the angle between the chord connecting zq, 21 
and the tangent vector at zk. The modified second order joint differential invariant

Ko 2i -  2q || 3K q
Zq A 2 q

[(21 -  Zq) A 20]3
(22)

equals the ratio of the area of triangle whose sides are the first and second derivative 
vectors 20, zq at the point zq over the cube of the area of triangle whose sides are 
the chord from zq to 21 and the tangent vector at zq.
On the other hand, we can construct the joint differential invariants by invariant 
differentiation of the basic distance invariant (19). The normalized invariant dif­
ferential operators are

D.Vk TJk = ~
\Z 1 -  2 0 |

(21 -  Zq) A Zk
D-tk (23)

Proposition 18. Every two-point Euclidean joint differential invariant is a function 
o f the interpoint distance I  = \\z\ — zq\\ and its invariant derivatives with respect 
to (23).

A generic product curve C =  C q x C \  c  M x2 has joint differential invariant rank 
2 =  dim C, and its joint signature <S^ (C) will be a two-dimensional submanifold 
parametrized by the joint differential invariants I, Jo, J\, K q, K \ of order < 2. 
There will exist a (local) syzygy $ ( I ,  Jo, J\)  =  0 among the three first order joint 
differential invariants.

Theorem 19. A curve C or, more generally, a pair o f curves Cq, C\ C R2, is 
uniquely determined up to a Euclidean transformation by its reduced joint signa­
ture, which is parametrized by the first order joint differential invariants I, Jq, J\. 
The curve{s) have a one-dimensional symmetry group if and only if their signa­
ture is a one-dimensional curve i f  and only if they are orbits o f a common one- 
parameter subgroup (i.e. concentric circles or parallel straight lines); otherwise 
the signature is a two-dimensional surface, and the curve(s) have only discrete 
symmetries.
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For n > 2 points, we can use the two-point moving frame (18) to construct the 
additional joint invariants

yk i— > H k =  IIZk -  z0 || COS ibk , vk i— ► I k =  ||zk -  z0 || Sin ibk

where //*/,- < (zk — zq, z\ — zq). Therefore, a complete system of joint invariants
for SE(2) consists of the angles ipk, k > 2, and distances \\zk — zq\\, k > 1. 
The other interpoint distances can all be recovered from these angles; vice versa, 
given the distances, and the sign of one angle, one can recover all other angles. In 
this manner, we establish the “First Main Theorem” for joint Euclidean differential 
invariants.

Theorem 20. If n >  2, then every n-point joint E(2) differential invariant is a 
function of the interpoint distances \\zi — Zj\\ and their invariant derivatives with 
respect to (23). For the proper Euclidean group SE(2), one must also include the
sign of one o f the angles, say tp2 =  4  (z2 — zq, z\ — zq).

Generic three-pointed Euclidean curves still require first order signature invariants, 
[26], To create a Euclidean signature based entirely on joint invariants, we take 
four points zq, z\, Z2, z% on our curve (7 c  l 2. There are six different interpoint 
distance invariants

a = \ \ z i - z Q\\, b = \ \ z 2 - z 0\\, c = \ \ z 3 - z 0\\
„ „ „ „ „ „ (24)

d = \ \ Z 2 - Z 1 \\, r  II - : s  - I  | | .  f = \ \ z Z -Z2\\

which parametrize the joint signature S  =  S(C)  that uniquely characterizes the 
curve C  up to Euclidean motion. This signature has the advantage of requiring 
no differentiation, and so is not sensitive to noisy image data. There are two local 
syzygies

$ i ( a , 6 , c , d , e , / )  =  0, $ 2(a, b, c, d, e, f )  = 0 (25)

among the the six interpoint 
Menger syzygy

2a2
det a2 +  b2 -  d2 

a2 + c2 — e2

distances. One of these is the universal Cayley-

a2 +  b2 -  d2 a2 + c2 -  e2

2b2
b2 +  c2 — / 2

b2 +  c2 -  f  
2 c2

=  0 (26)

which is valid for all possible configurations of the four points, and is a con­
sequence of their coplanarity, cf. [2, 20]. The second syzygy in (25) is curve- 
dependent and serves to effectively characterize the joint invariant signature. Eu­
clidean symmetries of the curve, both continuous and discrete, are characterized 
by this joint signature. For example, the number of discrete symmetries equals the 
signature index -  the number of points in the original curve that map to a single, 
generic point in <S.
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A wide variety of additional cases, including curves and surfaces in two and three­
dimensional space under the Euclidean, equi-affine, affine and projective groups,
are investigated in detail in [26], Applications of these methods to the recognition
and detection of symmetries in polygons can be found in [4],
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