
Nineteenth International Conference on
Geometry, Integrability and Quantization
June 02–07, 2017, Varna, Bulgaria
Ivaïlo M. Mladenov and
Akira Yoshioka, Editors
Avangard Prima, Sofia 2018, pp 168–187
doi: 10.7546/giq-19-2018-168-187

ON A CLASS OF LINEAR WEINGARTEN SURFACES

VLADIMIR I. PULOV, MARIANA TS. HADZHILAZOVA† and
IVAÏLO M. MLADENOV†

Department of Physics, Technical University of Varna, Studentska Str. 1, 9010 Varna
Bulgaria
†Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria

Abstract. We consider a class of linear Weingarten surfaces of revolution
whose principal curvatures, meridional kµ and parallel kπ , satisfy the re-
lation kµ = (n + 1)kπ , n = 0, 1, 2, . . . . The first two members of this
class of surfaces are the sphere (n = 0) and the Mylar balloon (n = 1).
Elsewhere the Mylar balloon has been parameterized via the Jacobian and
Weierstrassian elliptic functions and elliptic integrals. Here we derive six al-
ternative parameterizations describing the third type of surfaces when n = 2.
The so obtained explicit formulas are applied for the derivation of the basic
geometrical characteristics of this surface.
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1. Introduction

Surfaces whose principal curvatures obey a functional relation are called Wein-
garten surfaces. The surfaces we are interested in belong to the class of linear
Weingarten surfaces of revolution whose meridional kµ and parallel kπ principal
curvatures satisfy the equation

kµ = (n+ 1)kπ, n = 0, 1, 2, . . . . (1)

Hereinafter such surfaces are referred to as LW(n) surfaces or LW(n) balloons. The
first two members of this class of surfaces are the sphere (n ≡ 0) and the Mylar
balloon (n ≡ 1). The problem of finding the shape of the Mylar balloon was raised
by Paulsen [21] in calculus of variations settings: Find a surface of revolution,
enclosing maximum volume, for a given arclength of the directrice. This variational
characterization of the Mylar balloon was generalized later by Mladenov and Oprea
[14, 15] for all surfaces LW(n) associated with arbitrary natural number n.
Recently the authors of [23] have introduced another interesting class of the so
called constant skew curvature surfaces. In order to give a rigorous formulation
behind the equation (1) we assume that the OZ-axis is the axis of revolution and
the curve, z = z(x), lying in the XOZ-plane, is the upper half part of the right
hand side of the profile curve of the LW(n) balloon (Fig. 1). Similarly to the case
of the Mylar balloon (cf. [11, 13, 19, 22]) we impose that the curve is smoothly
decreasing from its maximum height on the OZ-axis to a point on the OX-axis,
crossing the OX-axis at a right angle. In order to meet these requirements we
assume that z(r) = 0 for some positive r, that the derivatives satisfy the conditions
ż(x) < 0 for 0 < x < r, ż(0) = 0 and limx→r ż(x) = −∞. We demand also that
the arclength from x = 0 to x = r is fixed to a, a > 0. It follows from symmetry
considerations that the bottom half of the balloon is obtained by reflection of its
upper half part through the XOY -plane.
The LW(n) surfaces, defined above, are uniquely characterized as solutions to the
following calculus of variations problem [14,15]. Find the profile curve (directrice)
of a surface of revolution (with OZ line taken as an axis of revolution)

z = z(x), z(r) = 0, ż(x) ≤ 0, 0 ≤ x ≤ r
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Figure 1. A typical profile curve in the XOZ-plane of the LW(n) bal-
loon where a is a quarter of the circumference of the profile curve, r is
the radius and τ is the thickness of the balloon.

by extremizing the n-th moment of the function z(x)

Jn[z(x)] =

r∫
0

xnz(x)dx, n = 0, 1, 2 . . .

subject to the constraint

r∫
0

√
1 + ż2(x)dx = a, a > 0

and satisfying the transversality conditions

ż(0) = 0, lim
x→r

ż(x) = −∞.

As it is shown in [15] the respective Euler-Lagrange equation takes the form

dz

dx
= − xn+1√

r2(n+1) − x2(n+1)
· (2)

The last equation is readily integrated in terms of special functions (for the used
special function, cf. [1, 3, 25]). One of the resulting representations [14] of the
profile curve of the LW(n) balloon is given by the formulas
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z(x) =
r

2(n+ 1)
[B1(

n+ 2

2n+ 2
,

1

2
)−Bτ(x)(

n+ 2

2n+ 2
,

1

2
)]

(3)

τ(x) =
(x
r

)2n+2
, x ∈ [0, r], n = 0, 1, 2, . . .

where Bτ (p, q) is the incomplete beta function of the real variable τ and the pa-
rameters p and q

Bτ (p, q) =

τ∫
0

tp−1(1− t)q−1dt.

By making use of the Gaussian hypergeometric function 2F1(α, β; γ; τ) in which
τ ∈ R is the argument, α, β and γ are three real parameters and the relation

Bτ (p, q) =
τp

p
2F1(p, 1− q; p+ 1; τ)

the parameterization (3) can be rewritten in the form [15]

z(x) =
r

n+ 2
2F1(

n+ 2

2n+ 2
,

1

2
;

3n+ 4

2n+ 2
; 1)

(4)

− xn+2

(n+ 2)rn+1 2F1(
n+ 2

2n+ 2
,

1

2
;

3n+ 4

2n+ 2
; τ(x))·

Relying on another useful relation

2F1(α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

connecting 2F1(α, β; γ; 1) with the gamma function

Γ(ζ) =

∞∫
0

tζ−1e−tdt, ζ ∈ C, Re ζ > 0 (5)

the representation (4) of the profile curve can be transformed also in the form [15]

z(x) =
r
√
π Γ

(
n+2
2n+2

)
2(n+ 1)Γ

(
2n+3
2n+2

) − xn+2

(n+ 2)rn+1 2F1(
n+ 2

2n+ 2
,

1

2
;

3n+ 4

2n+ 2
; τ(x)).

The Gamma function is an extension of the factorial operation to complex numbers
given by the formula ζ ! = Γ(ζ + 1). In the derivation of the above formulas we
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have availed of its special value Γ(1/2) =
√
π and the recurrence relation

Γ(1) = 1, Γ(ζ + 1) = ζ Γ(ζ).

In the next sections (after some preliminaries on the differential geometry of sur-
faces), a collection of alternative parameterizations of LW(1) (Section 3) and LW(2)
balloons (Section 4) are presented. Some geometrical characteristics of these sur-
faces are given as well (Section 5).

2. Some Preliminaries on the Geometry of Surfaces

A parameterized surface S ⊂ R3

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U ⊂ R2

is determined almost uniquely by its first I and second II fundamental forms [18]

I = Edu2 + 2Fdudv +Gdv2, II = Ldu2 + 2Mdudv +Ndv2

where the coefficients are defined by the formulas

E = xu · xu, F = xu · xv, G = xv · xv
(6)

L = xuu · n, M = xuv · n, N = xvv · n
and n is the unit vector which is normal to the surface S

n =
xu × xv
|xu × xv|

·

Here, we have used the standard notation xu = ∂x/∂u, xuu = ∂2x/∂u2, etc.
The mean H and the Gaussian K curvatures of the surface are calculated by the
classical formulas (cf. [18])

H =
EN +GL− 2FM

2(EG− F 2)
, K =

LN −M2

EG− F 2
·

The parallel kπ and the meridional kµ principal curvatures are related with H and
K through the equations H = (kπ + kµ)/2 and K = kπkµ, whereby

kµ = H +
√
H2 −K, kπ = H −

√
H2 −K.

If S is a surface of revolution given by

x(u, v) = (h(u) cos v, h(u) sin v, g(u))

then its principal curvatures can be found via the classical formulas

kπ =
g′

h(g′2 + h′2)1/2
, kµ =

g′′h′ − g′h′′

(g′2 + h′2)3/2
(7)
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where g′ ≡ dg/du, etc.

3. The Mylar Balloon

The Mylar balloon is the LW(1) balloon – the second representative of the LW(n)
class of surfaces (the first one being the sphere for n = 0) that according to the
definition (1) obeys the relation

kµ = 2kπ.

The name “Mylar balloon” was coined in [21] by Paulsen, as the shape of this
surface almost perfectly approaches the shape of the balloon made of two sewn
together circular disks of the Mylarr foil. Paulsen had observed that the obtained
Euler-Lagrange equation has no closed form solution in elementary functions. The
first fully analytical description of the Mylar balloon was presented in [9] in the
form

x(u, v) = r cosu cos v, y(u, v) = r cosu sin v

(8)

z(u, v) = r
√

2[E(u,
1√
2

)− 1

2
F (u,

1√
2

)], u ∈ [−π
2
,
π

2
], v ∈ (0, 2π]

where

F (ϕ, k) = u1 =

ϕ∫
0

dt√
1− k2 sin2 t

(9)

E(ϕ, k) = E(amu1, k) =

ϕ∫
0

√
1− k2 sin2 t dt

are the normal elliptic integrals of the first and the second kind, respectively, with
argument ϕ and modulus k (for more details see [3]). The function

ϕ = amu1 ≡ am (u1, k) (10)

is the so-called Jacobian elliptic amplitude function, defined as the inverse of the
first kind elliptic integral F (ϕ, k). For the coefficients of the first and the sec-
ond fundamental forms the machinery of the differential geometry, after lengthy
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computations, produce the result [9]

E =
r2

1 + cos2 u
, F = 0, G = r2 cos2 u

L =
2r cosu

1 + cos2 u
, M = 0, N = r cos3 u.

Then it is quite easy to obtain the two principal curvatures

kµ =
2 cosu

r
, kπ =

cosu

r

and respectively the mean and the Gaussian curvatures are given by the formulas

H =
3 cosu

2r
, K =

2 cos2 u

r2
·

As it has been shown in [13] (see also [16, 20]), by making use again of the Jaco-
bian elliptic functions, the representation (8) can be rewritten in the form

x(u, v) = r cn(u,
1√
2

)cos v, y(u, v) = r cn(u,
1√
2

)sin v

(11)

z(u, v) = r
√

2[E(sn(u,
1√
2

),
1√
2

)− 1

2
F (sn(u,

1√
2

),
1√
2

)]

in which u ∈ [−K(1/
√

2),K(1/
√

2)], v ∈ (0, 2π], and where sn (u, k), cn (u, k)
and K(k) denote the sine and the cosine Jacobian elliptic functions

sn (u, k) = sin(am (u, k)), cn (u, k) = cos(am (u, k))

and respectively, the complete elliptic integral of the first kind

K(k) = F
(π

2
, k
)

=

π/2∫
0

dt√
1− k2 sin2 t

·

Then, the corresponding coefficients of the first and the second fundamental forms
are given by the expressions [13]

E =
r2

2
, F = 0, G = r2 cn2(u,

1√
2

)

L = r cn(u,
1√
2

), M = 0, N = r cn3(u,
1√
2

)
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and the principal, the mean and the Gaussian curvatures are respectively

kµ =
2cn
(
u, 1/

√
2
)

r
, kπ =

cn
(
u, 1/

√
2
)

r

H =
3cn
(
u, 1/

√
2
)

2r
, K =

2cn2
(
u, 1/

√
2
)

r2
·

By introducing isothermal (conformal) coordinates (u, v), the parameterization of
the Mylar balloon takes the form [10, 11]

x(u, v) =
r√

cosh 2u
cos v, y(u, v) =

r√
cosh 2u

sin v,

(12)

z(u, v) =
√

2r[E(

√
2 sinhu√
cosh 2u

,
1√
2

)− 1

2
F (

√
2 sinhu√
cosh 2u

,
1√
2

)]

where u ∈ (−∞,∞), v ∈ [0, 2π]. The corresponding fundamental forms are

I =
r2

cosh 2u
(du2 + dv2), II =

r

cosh3/2 2u
(2 du2 + dv2).

In Whewell representation the profile curve of the Mylar balloon is given by the
formulas (see [6])

x(θ) = r
√

sin θ

(13)

z(θ) =
√

2r[E(arccos
√

sin θ,
1√
2

)− 1

2
F (arccos

√
sin θ,

1√
2

]

where θ ∈ [0, π] is the angle between the tangent line to the profile curve and
the OX-axis. Another alternative parameterization of the Mylar balloon has been
obtained in [22] by employing the Weierstrassian functions

x(u, v) = r
2℘(u)− r2

2℘(u) + r2
cos v, y(u, v) = r

2℘(u)− r2

2℘(u) + r2
sin v

(14)

z(u, v) = 2ζ(u) +
2℘′(u)

2℘(u) + r2
, u ∈

[
− ω̃

2r
,
ω̃

2r

]
, v ∈ (0, 2π]



176 Vladimir I. Pulov, Mariana Ts. Hadzhilazova and Ivaïlo M. Mladenov

where ℘(u) ≡ ℘(u; −r4, 0), ℘′(u) ≡ ℘′(u; −r4, 0) and ζ(u) ≡ ζ(u; −r4, 0)
are respectively the Weierstrassian ℘-function ℘(u), its derivative ℘′(u) and the
Weierstrassian zeta function ζ(u) built with the invariants [1, 25]

g2 = −r4, g3 = 0

and ω̃ is the lemniscate constant

ω̃ ≈ 2.6220.

The basic geometrical characteristics of the Mylar balloon in terms of the Weier-
strassian functions are as follows [22]. The coefficients of the first fundamental
form are

E = r4, F = 0, G = r2

(
2℘(u)− r2

2℘(u) + r2

)2

and that ones of the second fundamental form are respectively

L = 2r3

(
2℘(u)− r2

2℘(u) + r2

)
, M = 0, N = r

(
2℘(u)− r2

2℘(u) + r2

)3

.

Therefore, one can easily find the mean and the Gaussian curvatures

H =
3

2r

(
2℘(u)− r2

2℘(u) + r2

)
, K =

2

r2

(
2℘(u)− r2

2℘(u) + r2

)2

along with the principal curvatures

kµ =
2

r

(
2℘(u)− r2

2℘(u) + r2

)
, kπ =

1

r

(
2℘(u)− r2

2℘(u) + r2

)
·

In this section we have presented the LW(1) balloon (the Mylar balloon) by in-
troducing five alternative parameterizations (8), (11), (12), (13) and (14) derived
elsewhere by making use of the elliptic functions and elliptic integrals.

4. The LW(2) Balloon

The LW(2) balloon is the third representative of the LW(n) surfaces defined uniquely
by the relation

kµ = 3kπ. (15)

From some other perspective, the LW(2) balloon coincides with the surface of
revolution formed by the rotating liquid drop – an equilibrium state of an incom-
pressible fluid mass subjected to a surface tension and rotated with constant angular
velocity about a fixed axis of revolution. The outer surfaces of such rotating liquid
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drops as shown in [12, 17], belong to the class of linear Weingarten surfaces of
revolution for which

kµ = 3kπ + c, c ∈ R. (16)

Accordingly, the LW(2) balloon is obtained for c = 0. Six parameterizations of
the profile curves of the LW(2) balloon starting with

γ(u) = (h(u), 0, g(u))

will be obtained below and now we proceed with their description.

4.1. Monge Parameterization

Let us start with the Monge parameterization, viz., h(u) = u ≡ x

γ(x) = (x, 0, g(x))

and relying to equation (7) we get the expressions

kπ =
g′

x(1 + g′2)1/2
, kµ =

d(xkπ)

dx
·

Then, by imposing the condition (15) the principal curvatures of the LW(2) surface
take the form

kπ =
x2

r3
, kµ =

3x2

r3
, r > 0

and the function g(x) is expressed by the elliptic integral

g(x) =
r

2

1∫
(x/r)2

tdt√
1− t3

· (17)

Passing to the canonical representation of the latter integral (cf. formulas (9) and
the handbook [3]) we arrive at the Monge parameterization

z(x) = r(

√
3− 1

2 4
√

3
F (ϕ(x), k)− 4

√
3E(ϕ(x), k) +

√
1− (x/r)6

1 +
√

3− (x/r)2
)

(18)

ϕ(x) = arccos

√
3− 1 + (x/r)2

√
3 + 1− (x/r)2

, k =

√
2 +
√

3

2
, x ∈ [0, r].

Note that the profile curve, parameterized by (18), is traced counterclockwise from
S (the South Pole corresponding to x ≡ 0), to the equator E (where x ≡ r).
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4.2. Parameterization Via the Amplitude

The second parameterization of the profile curve of the considered Weingarten sur-
face LW(2) is derived from (18) by taking the elliptic amplitude ϕ as a parameter,
viz., u ≡ ϕ = amu1 (cf. (10))

x(ϕ) = r

√
1−
√

3 + (1 +
√

3) cosϕ

1 + cosϕ

z(ϕ) = r(
1−
√

3

2 4
√

3
F (ϕ, k) +

4
√

3E(ϕ, k)−
4
√

3 sinϕ
√

1− k2 sin2 ϕ

1 + cosϕ
) (19)

ϕ ∈ [− arccos

√
3− 1√
3 + 1

, arccos

√
3− 1√
3 + 1

t], k =

√
2 +
√

3

2
·

The profile curve obtained by (19) is traced counterclockwise starting from the
South Pole S, running through the whole range of the amplitude, with ϕ = 0 at the
equator E, and ending at the North Pole N.
The coefficients of the first fundamental form of the balloon, corresponding to the
elliptic amplitude parameterization (19), follow directly by applying the defini-
tion (6)

E =
4r2 cos2(ϕ/2)√

3
((

1 +
√

3
)

cosϕ−
√

3 + 1
) ((

2 +
√

3
)

cos 2ϕ−
√

3 + 6
)

F = 0, G =
r2
((

1 +
√

3
)

cosϕ−
√

3 + 1
)

cosϕ+ 1
·

4.3. Arclength Related Parameterization

We start with a parameterization of the profile curve, performed with respect to the
arclength parameter s, viz. u ≡ s

γ(s) = (h(s), 0, g(s))

so that the coordinate functions

x = h(s), z = g(s)

satisfy the Frenet-Serret equations

ẍ− 3x2

r3
ż = 0, z̈ +

3x2

r3
ẋ = 0 (20)
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where the curvature k of γ is taken to be equal to the principal curvature kµ of S
(as γ is actually a meridional curve)

k ≡ kµ =
3x2

r3
·

Here and henceforth, the differentiation with respect to the arclength parameter is
denoted by dots: ẋ ≡ dx/ds, etc. By integrating once, the system (20) takes the
form

ẋ2 = −x
6

r6
+ 1, ż = −x

3

r3
· (21)

In obtaining the above equations we have considered the unit speed equation

ẋ2 + ż2 = 1

and the transversality condition at x = 0 (cf. Section 1). We proceed with the
integration of the system (21) in terms of the Weierstrassian functions. From (21)
we deduce

dz

dx
= − x3

√
r6 − x6

(22)

and then by introducing the new variables s̃ and χ on writing

χ = − x2

4r2
,

dχ

ds̃
=

√
4χ3 +

1

16
(23)

the equation (22) is transformed to
dz

ds̃
= −2rχ(s̃). (24)

The second equation in (23) is equivalent to the relation

χ(s̃) = ℘(s̃+ C; 0,−1/16), C ∈ R

connecting χ with the Weierstrassian ℘-function [25]. The solution of the equation
(24) is now readily expressed by the help of the Weierstrassian ζ-function, resulting
in a parameterization via the arclength related parameter s̃ (C = 0)

x(s̃) = 2r
√
−℘(s̃), z(s̃) = 2r ζ(s̃), s̃ ∈ [0, 2π) (25)

where ℘(s̃) ≡ ℘(s̃; 0,−1/16) and ζ(s̃) ≡ ζ(s̃; 0,−1/16). It should be remem-
bered that the two parameters s and s̃ are related (implicitely) through the differ-
ential connection (

ds̃

ds

)2

= −16℘(s̃)

r2

which is readily obtained by substituting the solution (25) in either one of the two
equations of the system (21). The first and the second fundamental forms follow
by direct calculation



180 Vladimir I. Pulov, Mariana Ts. Hadzhilazova and Ivaïlo M. Mladenov

E = − r2

16℘(s̃)
, F = 0, G = −4r2 ℘(s̃)

L =
3r

4
, M = 0, N = 16r ℘2(s̃).

4.4. Whewell Parameterization

The fourth parameterization of the LW(2) is accomplished by taking the u-parameter
to be the angle θ between the tangent line to the profile curve γ and the OX-axis,
viz. u = θ

γ(θ) = (h(θ), 0, g(θ)).

In order to obtain the coordinate functions h(θ) and g(θ) we at first integrate once
the second one of the Frenet-Serret equations (20)

ż = −x
3

r3
(26)

and combining the so obtained expression with the second one of the two defining
equations for the angle θ

ẋ = cos θ, ż = sin θ (27)

we arrive at the desired expression for the x-coordinate of γ

x = h(θ) = −r 3
√

sin θ. (28)

On the other hand, from (27) it follows the relation

ẍ = −θ̇ż

which together with the first one of the Frenet-Serret equations (20) immediately
leads to

θ̇ = −3x2

r3
· (29)

Then, on writing
dz

dθ
=
ż

θ̇

and substituting with (26) and (29) it is straightforward to obtain the following
integral representation of the z-coordinate of γ

z = g(θ) = −r
3

π/2∫
θ

3
√

sin τ dτ.
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Under the change of the integration variable

t =
3
√

sin2 τ

this latter integral is reduced to the same elliptic integral found previously with
regard to the Monge representation (cf. formula (17))

g(θ) = −r
2

1∫
3√

sin2 θ

tdt√
1− t3

· (30)

Finally, by carrying out the process of reduction to canonical elliptic integrals as
in Section 4.1, the Whewell parameterization of the profile curve γ of the LW(2)
balloon takes the form

x(θ) = r
3
√

sin θ

z(θ) = r(

√
3− 1

2 4
√

3
F (ϕ(θ), k)− 4

√
3E(ϕ(θ), k) +

cos θ

1 +
√

3− 3
√

sin2 θ
) (31)

ϕ(θ) = arccos

√
3− 1 +

3
√

sin2 θ
√

3 + 1− 3
√

sin2 θ
, k =

√
2 +
√

3

2
, θ ∈

[
0,
π

2

]
where x has been replaced by −x (cf. the minus sign in (28)). We should note that
the parameterization (31) can be obtained directly by combining the formulas (18)
and (28).
The profile curve parameterized by (31) is traced counterclockwise from S (the
South Pole corresponding to θ ≡ 0) to the equator E (where θ ≡ π/2).

4.5. Alternative Whewell Parameterization

The integral in (30) can be also expressed via the so-called Gaussian hypergeomet-
ric function 2F1( a, b; c; ζ) [1], resulting in another representation of the profile
curve via the tangential angle θ – an alternative Whewell parameterization

x(θ) = r
3
√

sin θ, z(θ) = −r cos θ

3
2F1(

1

2
,

1

3
;

3

2
; cos2 θ), θ ∈ [0, π] (32)

and the formulas ensued for the geometrical characteristics of the LW(2) balloon.
Starting with the first and second fundamental forms

E =
r2

9 sin4/3 θ
, F = 0, G = r2 sin2/3 θ

L = − r

3 sin2/3 θ
, M = 0, N = −r sin4/3 θ
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one easily finds the principal curvatures

kπ = −sin2/3 θ

r
, kµ = −3 sin2/3 θ

r

and then the mean and the Gaussian curvatures

H = −2 sin2/3 θ

r
, K =

3 sin4/3 θ

r2
, H2 −K =

sin4/3 θ

r2
·

The profile curve, parameterized by (32), is traced counterclockwise from the
South Pole S (θ = 0) through the equator E (θ ≡ π/2) to the North Pole N
(θ ≡ π).

Figure 2. The profile curves of three linear Weingarten surfaces of rev-
olution with radius r = 1. From outside in, the sphere LW(0) with
kµ/kπ = 1, the Mylar balloon LW(1) with kµ/kπ = 2 and the LW(2)
balloon with kµ/kπ = 3. Right: 3D view of the LW(2) balloon.

4.6. Isothermal Parameterization

In the sixth parameterization of the considered LW(2) surface, we introduce an
isothermal coordinate system (u, v) on S by imposing the relation with the tan-
gential angle θ

sin θ cosh 3u = 1 (33)

leading us to the following integral representation of the profile curve γ of LW(2)

x(u) =
r

3
√

cosh 3u
, z(u) = r

u∫
0

dt

cosh 3t 3
√

cosh 3t
, u ∈ (−2π, 2π)
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(compare with the formulas in Section 4.4 and Section 4.5). By substituting for
sin θ from (33) into the Whewell representation (31), we arrive at an explicit
isothermal parameterization of the LW(2) balloon, i.e.,

x(u, v) =
r

3
√

cosh 3u
cos v, y(u, v)=

r
3
√

cosh 3u
sin v

z(u, v) = r(
1−
√

3

2 4
√

3
F (ϕ(u), k)+

4
√

3E(ϕ(u), k)− sinh 3u

(1 +
√

3) cosh 3u− 3
√

cosh 3u
) (34)

ϕ(u)=arccos
(
√

3− 1)
3
√

cosh2 3u+ 1

(
√

3 + 1)
3
√

cosh2 3u− 1
, k =

√
2 +
√

3

2
, u ∈ [0, 2π]

for which the first and second fundamental forms are given by

I =
r2

cosh2/3 3u
(du2 + dv2), II =

r

cosh4/3 3u
(3du2 + dv2).

When parameterized by (34) the profile curve of the LW(2) balloon is traced coun-
terclockwise starting from the equator (for u ≡ 0) and reaching to the North Pole
where u ≡ 2π.
Thus far, we have presented a pure geometrical depiction of the LW(2) balloon
in terms of elliptic and Gaussian hypergeometric special functions. The LW(2)
balloon is the third representative of a class of linear Weingarten surfaces LW(n)
which principal curvatures obey the relation kµ = (n + 1)kπ. The profile curves
of the first three surfaces obtained for n = 0, 1, 2 are plotted in Fig. 2 together
with a 3D view of the LW(2) balloon, both of them drawn by Mathematicar. In
the next section some geometric and compactness measures of these three balloons
are evaluated and compared.

5. Metric Relations and Compactness Measures

Having the explicit parameterizations of the LW(1) (Section 3) and the LW(2)
(Section 4) balloons, we calculated some truly geometric quantities – the circum-
ference l = 4a of the profile curve, the thickness τ , the area Σ of the meridional
section, the surface area A and the volume V , characterizing the surfaces via met-
ric relations (Table 1 and Table 2), and two other quantities – sphericity and homo-
geneity, indicating for the compactness of their shapes (Table 3).
From the approximate numerical values (in the right sides of the tables), it is seen
that, with the increase of n, all the characteristic measures monotonically decline,
which is clearly confirmed by the plots of the three, placed in each other (starting
from the sphere) profile curves (Fig. 2).
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Details about the derivation of the metric dependencies for the LW(1) balloon ver-
sus r (cf. Fig. 1) can be found in [6,9,11,13,22]. By making similar operations for
the LW(2) balloon we ended up with expressions in Table 1 and Table 2, involving
the gamma function (cf. formula (5)). We should mention that in his investigation
of the Mylar balloon (LW(1)) Paulsen [21] has expressed l, τ and V via the gamma
function, i.e.,

l

2r
=

Γ2(1/4)

2
√

2π
,

τ

2r
=

√
2π3/2

Γ2(1/4)
,

V

r3
=

√
π Γ2(1/4)

6
√

2
·

Yet, given that for LW(1) the Euler-Lagrange equation (2) is directly reduced to
elliptic integral, it is quite natural to expect that the most compact expressions
for this surface can be obtained in terms of elliptic integrals and elliptic functions
(cf. Section 3 and the papers cited therein). Here are three of the characteristics
measures for LW(1) in all of which the factor K

(
1/
√

2
)

is present

l

2r
=
√

2K

(
1√
2

)
,

τ

2r
=

π

2
√

2K
(
1/
√

2
) , V

r3
=
π
√

2

3
K

(
1√
2

)
·

Table 1. Two characteristic measures of the LW(n) balloons
(n = 0, 1, 2) versus the diameter 2r for the circumference l and the
thickness τ of the profile curve. Right: Approximate values.

LW(0) LW(1) LW(2)

l/2r π ω̃
√
π Γ( 1

6)
3 Γ( 2

3)

τ/2r 1 π
2ω̃

√
π Γ( 2

3)
6 Γ( 7

6)

LW(0) LW(1) LW(2)

l/2r 3.1416 2.6220 2.4286

τ/2r 1 0.5991 0.4312

The constant that plays a key role in the whole description of the LW(1) balloon
and most contributes for the compactness of the expressions is the lemniscate con-
stant ω̃ (for more details see [22]). By comparing the above expressions with those
for the LW(1) in Table 1 and Table 2, a chain of connections between the lemnis-
cate constant and certain values of the special functionsK(k) and Γ(ζ) is obtained
(see [1])

ω̃√
2

= K

(
1√
2

)
=

Γ2(1/4)

4
√
π
·

From Table 2 we observe also that the volume of the LW(2) balloon diminishes
twice, compared to the volume of the sphere, and the three volumes are related as
follows

V0 : V1 : V2 = 4 : ω̃ : 2.
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Table 2. Three characteristic measures of the LW(n) balloons
(n = 0, 1, 2) versus the radius r. The area of the meridional section Σ,
the surface area A and the volume V. Right: Approximate values.

LW(0) LW(1) LW(2)

Σ/r2 π 2
2
√
π Γ( 5

6)
3 Γ( 4

3)

A/r2 4π π2 2π3/2 Γ( 1
3)

3 Γ( 5
6)

V/r3 4
3π

1
3
πω̃ 2

3
π

LW(0) LW(1) LW(2)

Σ/r2 3.1416 2 1.4937

A/r2 12.5664 9.8696 8.8102

V/r3 4.1888 2.7457 2.0944

From Table 3 one can track the change of two compactness measures – spheric-
ity and homogeneity applied to the LW(n) surfaces, according to their definitions:
given an arbitrary surface S with surface area A and volume V , the sphericity Ψ is
the ratio of the surface area of a sphere of the same volume V , to the surface area
A and the homogeneity Θ is the ratio of the volume of a sphere of the same surface
area A to the volume V

Ψ =
3
√

36π V 2/3

A
, Θ =

A3/2

6
√
π V
·

The “compactness” measures have important practical use. Sphericity was intro-
duced by Wadell in 1935 [24] in order to evaluate how closely the shape of an
object approaches that of the “mathematically perfect object” – the sphere.
For example, sphericity of the balls inside a ball bearing is used as a measure for
the quality of the bearing, such as the load it can bear or the speed at which it can
turn without failing.

Table 3. Compactness measures (sphericity Ψ and homogeneity Θ) for
the LW(n) balloons, n = 0, 1, 2. Right: Their approximate values.

LW(0) LW(1) LW(2)

Ψ 1
(2ω̃)2/3

π

3 3
√

2 Γ( 5
6)√

π Γ( 1
3)

Θ 1
π3/2

2ω̃

π3/4 [Γ( 1
3)]

3/2

3
√

6 [Γ( 5
6)]

3/2

LW(0) LW(1) LW(2)

Ψ 1 0.9608 0.8985

Θ 1 1.0618 1.1741
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As it can be inferred from the definitions, and clearly seen from the approximate
values in Table 3, the sphericity and the homogeneity act in a “reciprocal” way:
while the values of Ψ become smaller (with increasing of n), Θ acquires larger
values. This is obviously due to the fact that, in view of the shape of the LW(n)
surfaces (cf. Fig. 2), the sequence of the surface areas {An}∞n=0 is bounded by
2πr2, while the sequence of volumes {Vn}∞n=0 vanishes when n goes to infinity.

Conclusion

Here we have presented explicit parameterizations of the linear Weingarten sur-
faces LW(n) for n = 0, 1, 2. While the first two are well documented in the litera-
ture the third one is relatively new. Besides the purely geometrical interest in this
surface it should be noted that the LW(2) balloon presents an example (together
with the sphere and the right circular cylinder) of the surface which can be de-
formed by uniform pressure without bending [8]. One should point out that this is
not of entirely academic interest as there are many instances in practice in which
one looks for a flexible but inextensible membrane of a specified shape, which is
to be filled to capacity with incompressible fluid [4, 5]. And there are many fa-
miliar examples of this situation. The inverse problem, in which the final shape
is specified and that of the unfilled membrane is sought, is also of interest, with
applications to the design of high-altitude scientific balloons [2] and possibly to
the construction of automobile airbags [26] and sport hall domes [7, 14].
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