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Abstract. The notion of the Jacobian group of graph (also known as Picard
group, sandpile group, critical group) was independently given by many au-
thors. This is a very important algebraic invariant of a finite graph. In partic-
ular, the order of the Jacobian group coincides with the number of spanning
trees for a graph. The latter number is known for the simplest families of
graphs such as Wheel, Fan, Prism, Ladder and Möbius ladder graphs. At the
same time the structure of the Jacobian group is known only in several cases.
The aim of this paper is to determine the structure of the Jacobian group of
the Möbius ladder and Prism graphs.

1. Introduction

We define a Möbius ladder Mn of order n as the cubic circulant graph C2n(1, n)
with 2n vertices. In this case, Mn can be considered as a regular 2n-gon whose n
pairs of opposite vertices are joint by an edge. One can also realize Mn as a ladder
with n steps on the Möbius band. A Prism graph Prn, sometimes also called a
circular ladder graph, is a cubic graph with 2n vertices, which are connected as
shown in Fig. 1. Notice, that Prism graph Pr2n is a double cover of Möbius ladder
Mn. It is a discrete version of the statement that the cylinder is a double cover of
the Möbius band.
The aim of the present paper is to find the structure of the Jacobian group of the
Möbius ladder Mn and Prism graph Prn.
The notion of the Jacobian group of a graph (also known as Picard group, sandpile
group, critical group) was independently given by many authors [1–3, 5]. This is
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a very important algebraic invariant of a finite graph. In particular, the order of
the Jacobian group coinsides with the number of spanning trees for a graph. The
latter number is known for the simplest families of graphs such as Wheel, Fan,
Prism, Ladder and Möbius ladder graphs [4]. In the same time the structure of the
Jacobian group is known only in a several cases (see [9] for references).
Following Baker-Norine [2] we define the Jacobian (or the Picard) group of a graph
as follows.
Let G be a graph. Throughout this paper we suppose that G is finite, connected
multigraph without loops. Let V (G) and E(G) be the sets of vertices and edges
of G, respectively. Denote by Div(G) a free Abelian group on V (G). We refer to
elements of Div(G) as divisors on G. Each element D ∈ Div(G) can be uniquely
presented as D =

∑
x∈V (G)D(x)(x), D(x) ∈ Z. We define the degree of D

by the formula deg(D) =
∑

x∈V (G)D(x). Denote by Div0(G) the subgroup of
Div(G) consisting of divisors of degree zero.
Let f be a Z-valued function on V (G). We define the divisor of f by the formula

div(f) =
∑

x∈V (G)

∑
xy∈E(G)

(f(x)− f(y))(x).

The divisor div(f) can be naturally identified with the graph-theoretic Laplacian
of f. Divisors of the form div(f), where f is as above are called principal divisors.
Denote by Prin(G) the group of principal divisors of G. It is easy to see that every
principal divisor has a degree zero, so that Prin(G) is a subgroup of Div0(G).

The Jacobian group of G is defined to be quotient group

Jac(G) = Div0(G)/Prin(G).

By making use of the Kirchhoff Matrix-Tree Theorem [8] one can show that Jac(G)
is a finite Abelian group of order τ(G), where τ(G) is number of spanning trees
of G. Moreover, any finite Abelian group is the Jacobian group of some graph.
For a fixed base point x0 ∈ V (G) we define the Abel-Jacobi map Sx0 : G →
Jac(G) by the formula Sx0(x) = [(x)− (x0)], where [d] is an equivalence class of
divisor d in Jac(G).

We endow each edge of G by two possible orientations. Since G has no loops it
is well-defined procedure. Let E⃗ = E⃗(G) be the set of oriented edges of G. For
e ∈ E⃗ we denote initial vertex o(e) and terminus vertex t(e), respectively. We
define the flow of e by the formula ω(e) = [t(e)− o(e)]. We note that

ω(e)=[(t(e)−x0)−(o(e)−x0)]=[[t(e)−x0]−[o(e)−x0]]=Sx0(t(e))−Sx0(o(e))

does not depend of the choice of initial point x0. By virtue of Lemma 1.6 in [2]
(see also [1]) the Jacobian group Jac(G) is an Abelian group generated by flows
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ω(e), e ∈ E⃗, whose defining relations are given by the following two Kirchhoff
laws.
I) The flow through each vertex of G is equal to zero. It means that∑

e∈E⃗,t(e)=x

ω(e) = 0, for all x ∈ V (G).

II) The flow along each closed orientable walk W in G is equal to zero. That is∑
e∈W

ω(e) = 0.

Recall that the closed orientable walk in G is a sequence of orientable edges ei ∈
E⃗(G), i = 1, . . . , n such that t(ei) = o(ei+1) for i = 1, . . . , n − 1 and t(en) =
o(e1).

2. Preliminary

Let a1, a2, . . . , am ∈ Z. Denote by GCD (a1, a2, . . . , am) = (a1, a2, . . . , am)
the greatest common divisor of a1, a2, . . . , am in the ring of integers Z. We will
use the following evident properties of GCD.

i) (a, a+ b) = (a, b) = (a, a− b)

ii) (a, b, c) = (a, (b, c))

iii) (k a, k b) = k(a, b).

The Chebyshev polynomials of the first and of the second kind are defined by the
formulas

Tn(x) = cos(n arccos(x)), Un−1(x) = sin(n arccos(x))/ sin(arccos(x)).

respectively. Recall the following basic properties of these polynomials

1◦ Tn(x) = 2xTn−1(x)− Tn−2(x), T0(x) = 1, T1(x) =x

2◦ Un(x) = 2xUn−1(x)− Un−2(x), U0(x) = 1, U1(x) = 2x.

In this paper we will be mainly interesting in particular values of Chebyshev poly-
nomials at the point x = 2. In this case Tn(2) = ((2 +

√
3)n + (2−

√
3)n)/2 and

Un−1(2) = ((2 +
√
3)n − (2−

√
3)n)/(2

√
3).

We will use the following version of the fundamental theorem of finite Abelian
group (see for instance [7], p. 344).

Theorem 1. Let A be a finite Abelian group generated by x1, x2, . . . , xn and
satisfying the system of relations

n∑
j=1

aijxj = 0, i = 1, . . . , m
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where A = {aij} is an integer m×n matrix. Set Bj , j = 1, . . . , r = min(n, m),
for the greatest common divisor of all j × j minors of A. Then,

A ∼= ZB1 ⊕ ZB2/B1
⊕ ZB3/B2

⊕ · · · ⊕ ZBr/Br−1
.

The latter decomposition is known as the Smith Normal Form (see [10], Ch. 3.22
for details of calculations).

3. Main Result

3.1. Calculation of the Structure of Jacobian Group for Prism Graph

Consider the Prism graph Prn as graph shown on the Fig.1 with vertices labeled by
1, 2, . . . , n, n + 1, , . . . , 2n. Denote by di, i = 1, . . . , n the flow along orientable
edge (i, i+n) with initial vertex i and terminal vertex i+n. We also denote by Xi

and xi the flows along orientable edges (i, i+1) and (i+n, i+n+1), respectively.
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Figure 1. Prism graph Prn.

By the first Kirchhoff law we have the following equations

d1 =x1 − xn, di =xi − xi−1, i =2, . . . , n

d1 =Xn −X1, di =Xi−1 −Xi, i =2, . . . , n.
(1)

Applying the second Kirchhoff’s law for the closed walks Wi = (i, n + i, n + i
+1, i+ 1), we get the following system of equations

di + xi − di+1 −Xi =0, i = 1, . . . , n− 1

dn + xn − d1 −Xn =0.
(2)
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Excluding di, i = 1, . . . , n, from first line of system (1) and putting them in (2)
we get the following relations between Xi and xi

X1

X2

. . .
Xn−1

Xn

 =


3 −1 0 0 . . . 0 −1

−1 3 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 −1 3 −1

−1 0 . . . 0 0 −1 3




x1
x2
. . .
xn−1

xn

 . (3)

Substituting these identities into expressions x1 − xn = Xn − X1, xi − xi−1 =
Xi−1 − Xi, i = 2, . . . , n − 1 of system (1)we obtain n − 1 equations of xi, i =
1, . . . , n. Notice that by the second Kirchhoff law for the closed walk (n+1, . . . , 2n)
we have the equation

n∑
i=1

xi = 0.

Thus the Jacobian Jac(Prn) is an Abelian group generated by x1, x2, . . . , xn sat-
isfying the relations

1 −5 5 −1 0 . . . 0 0 0 0
0 1 −5 5 −1 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 1 −5 5 −1
5 −1 0 0 0 . . . 0 0 1 −5

−5 5 −1 0 0 . . . 0 0 0 1
1 1 1 1 1 . . . 1 1 1 1





x1
x2
. . .
xn−3

xn−2

xn−1

xn


= 0. (4)

Now we reduce the number of generators of the group Jac(Prn) from n to 3.
Namely, we will show that the group Jac(Prn) is generated by x1, x2, x3 satisfy-
ing three linear equations. To do this we note that the generators x1, x2, . . . , xn
satisfy the following recursive relation

xj − 5xj+1 + 5xj+2 − xj+3 = 0, j = 1, 2, . . . , n− 3.

The characteristic polynomial for the above equation is

1− 5q + 5q2 − q3 = 0.

The roots of this polynomial are q1 = 1, q2,3 = 2 ±
√
3. Hence, the general

solution of recursion is given by xj = C1 + C2q
j + C3q

−j , where q = 2 +
√
3

and C1, C2, C3 are constants dependant only of initial values x1, x2, x3. As a
result, we obtained x4, x5, . . . , xn as linear combinations of x1, x2 and x3 whose
coefficients can be found explicitly. Substituting the obtained equations into the
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last three lines of system (4) we get

ã11x1 + ã12x2 + ã13x3 = 0

ã21x1 + ã22x2 + ã23x3 = 0 (5)

ã31x1 + ã32x2 + ã33x3 = 0.

We note that Tn(2) = (qn + q−n)/2 and Un−1(2) = (qn − q−n)/(2
√
3). By

straightforward calculations we obtain the following explicit formulae for ãij , i, j =
1, 2, 3.

ã11 = − 7L+ 12U, ã12 =9L− 15U, ã13 = − 2L+ 3U

ã21 =
11

2
L− 19

2
U, ã22 = − 7L+ 12U, ã23 =

3

2
L− 5

2
U

ã31 =n− 2L+
7

2
U − n

2
, ã32 =

5

2
L− 9

2
U + 2n, ã33 = − 1

2
L+ U − n

2

where L = Tn(2)− 1 and U = Un−1(2).

Now we are able to proof the following lemma.

Lemma 2. Let B1 be the greatest common divisor of ãij , i, j = 1, 2, 3. Then

B1 = GCD(n,L, U)/GCD(2, n).

Proof: We have

B1 = GCD(ãij) = GCD(ã11, ã12 − 5ã13, ã13, ã21 − 4ã23, ã22, ã23, ã31, ã32, ã33)

= GCD(ã11,−L, ã13,−
1

2
L− 1

2
U, ã23, ã31, ã32, ã33)

= GCD(−L, 3U,−L+ U

2
,−4U,

7U − n

2
,
L− 9U

2
+ 2n, −L+ n

2
+ U)

= GCD(L,U,−L+ U

2
,
U − n

2
,
L− U

2
+ 2n,−L+ n

2
)

= GCD(L,U,−L+ U

2
,
U − n

2
− L+ n

2
,
L− U

2
+ 2n,−L+ n

2
)

= GCD(L,U,−L+ U

2
, −L− U

2
− n,

L− U

2
+ 2n,−L+ n

2
)

= GCD(L,U, n,
L+ U

2
,
L− U

2
,
L+ n

2
)

= GCD(L,U, n,
U + n

2
,
L+ n

2
).

From the main recursive relations for the Chebyshev polynomials 1◦ and 2◦ we
have the following properties. The numbers L = Tn(2)− 1 and U = Un−1(2) are
of the same parity as n.
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Let us consider two cases n is odd and n is even. In the first case, we have

B1 = GCD(L,U, n,
U + n

2
,
L+ n

2
) = GCD(L,U, n, U + n, L+ n)

= GCD(L,U, n) = GCD(n,L, U)/GCD(2, n).

In the second case, n is even. Using properties of the Chebyshev polynomials 1◦

and 2◦ we obtain

B1 = GCD(L,U, n,
U + n

2
,
L+ n

2
)

= GCD(n,L, U)/2 = GCD(n,L, U)/GCD(2, n).

�

Now our aim is to find the greatest common divisor of two-by-two minors of ma-
trix Ã = {ãij}i,j=1,2,3. Denote by mij the two-by-two minor of Ã obtained by
removing i-th row and j-th column of Ã. By direct calculations we have

m11 =
1

2
(n+ 1)L− nU, m12 = − (

1

2
+ 2n)L+

7n

2
U

m13 =
1

2
(1 + 15n)L− 13nU

m21 = − (
n

2
+ 1)L+

3n

2
U, m22 =(

5n

2
+ 1)L− 9n

2
U

m23 = − (
19n

2
+ 1)L+

33n

2
U, m31 = −m32 = m33 = L.

We assert that the following lemma is true.

Lemma 3. Let B2 be the greatest common divisor of mij , i, j = 1, 2, 3. Then

B2 = GCD(L, nU)/GCD(2, n).

Proof: By virtue of explicit formulae for mij we have

B2 = GCD(m11, m12, m13, m21, m22, m23, m31)

= GCD(m11, m12 + 2nm31, m13 − 7nm31, m21 +m31,

m22 − (2n+ 1)m31, m23 + (9n+ 1)m31, m31)

= GCD(
n+ 1

2
L− nU,

7nU − L

2
,
n+ 1

2
L− 13nU, −n

2
L+

3n

2
U,

n

2
L− 9n

2
U, −n

2
L+

33n

2
U, L)
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= GCD(
n+ 1

2
L− nU,

7nU − L

2
, −12nU,

3nU − nL

2
, −3nU, 15nU, L)

= GCD(4nU,
7nU − L

2
,
3nU − nL

2
, −3nU, L)

= GCD(nU,
7nU − L

2
,
3nU − nL

2
, L)

= GCD(nU,
nU − L

2
, −n

2
L+

n

2
U, L).

Now, let us consider the case n = 2m is even. Then

B2 = GCD(nU,
nU − L

2
, −n

2
L+

n

2
U, L)

= GCD(2mU,
2mU − L

2
, −mL+mU, L)

= GCD(2mU,
2mU − L

2
, mU, L)

= GCD(
1

2
L, mU) = GCD(

1

2
L,

2m

2
U)

= GCD(L, nU)/2 = GCD(L, nU)/GCD(2, n).

On the other hand, if n = 2m+ 1 is odd, then both L and U are odd. We have

B2 = GCD(nU, −1

2
L+

n

2
U, −n

2
L+

n

2
U, L)

= GCD((2m+ 1)U, −1

2
L+

2m+ 1

2
U, −2m+ 1

2
L+

2m+ 1

2
U, L)

= GCD((2m+ 1)U, −L+ (2m+ 1)U, −(2m+ 1)L+ (2m+ 1)U, L)

= GCD((2m+ 1)U, L) = GCD(nU, L).

�

Let B3 be the determinant of matrix {ãij}i,j=1,2,3. By the Kirchhoff Matrix-Tree
Theorem B3 coincides with the number of spanning trees of Prism graph Prn.
This number is well known and was calculated independently by many authors (J.
Sedlácěk, J. Moon, N. Biggs and others) [4]. We represent the result as follows.

Lemma 4. Let B3 be the determinant of matrix {ãij}i,j=1,2,3. Then B3 is given by
the formula

B3 = nL

where L = Tn(2)− 1 and Tn(2) = ((2 +
√
3)n + (2−

√
3)n)/2 is the Chebyshev

polynomial of the first kind.
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By the fundamental theorem of finite Abelian groups (Theorem 1) we have the
following decomposition for the Jacobian group of Prn

Jac(Prn) = ZB1 ⊕ ZB2/B1
⊕ ZB3/B2

.

Taking into account Lemma 2, Lemma 3 and Lemma 4, we have the following
theorem

Theorem 5. The Jacobian group of Prism graph Prn has the following presenta-
tion

Jac(Prn) = Z (n,L,U)
(2,n)

⊕ Z (L,nU)
(n,L,U)

⊕ Z (2,n)nL
(L,nU)

(6)

where (l,m, n) = GCD(l,m, n), L = Tn(2) − 1, U = Un−1(2) and Tn(2) =
((2 +

√
3)n + (2 −

√
3)n)/2, Un−1(2) = ((2 +

√
3)n + (2 −

√
3)n)/(2

√
3)

are Chebyshev polynomials of the first and second kind, respectively.

4. The Structure of Jacobian Group for Möbius Ladder

For details of calculations of the structure of Jacobian group for Möbius ladder one
can see our paper [11].

Theorem 6. The Jacobian group of Möbius ladder Mn has the following presen-
tation

Jac(Mn) = Z (n,T,U)
(2,n)

⊕ Z (T,nU)
(n,T,U)

⊕ Z (2,n)nT
(T,nU)

(7)

where (l,m, n) = GCD(l,m, n), T = Tn(2) + 1, U = Un−1(2) and
Tn(2) = ((2+

√
3)n+(2−

√
3)n)/2, Un−1(2) = ((2+

√
3)n+(2−

√
3)n)/(2

√
3)

are Chebyshev polynomials of the first and second kind, respectively.

Let us notice that L = Tn(2)−1 and T = Tn(2)+1. Formula (7) is obtained from
formula (6) by replacing L with T. This is related to topological fact that Prism
graph Pr2n is a double cover of Möbius ladder Mn.

We note that the structure of the Jacobian groups Jac(Prn) and Jac(Mn) were
independently calculated in [6] and [12], respectively. It was done by completely
different methods.
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