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Abstract. We prove modulo a conjecture due to A. Bolibrukh that 
every monodromy group in which the operators of local monodromy 
in their Jordan normal forms have Jordan blocks of size only < 2 
can be realized by a fuchsian system of linear differential equations 
on Riemann’s sphere without additional apparent singularities. This 
implies that the Gauss-Manin system of a polynomial of two variables 
can always be made fuchsian if a suitable basis in the cohomologies is 
chosen.

1. Introduction

1.1. Regular and Fuchsian Systems

In the present paper we consider regular (resp. fuchsian) systems, i. e. lin­
ear systems of ordinary differential equations depending meromorphically on 
complex time (which runs over Riemann’s sphere), with moderate growth rate 
of the solutions in neighborhoods of the poles (resp. with logarithmic poles). 
Fuchsian systems are always regular. By definition, the growth rate is mod­
erate at a given pole if any solution to the system when restricted to a sector 
with vertex at the pole and of arbitrary opening grows no faster than some real 
power of the distance to the pole. Restricting to a sector is necessary because 
the poles, in general, are ramification points for the solutions.
When a linear change (meromorphically depending on the time) of the depend­
ent variables is performed, then the system changes and the only object which 
remains invariant under such changes is its monodromy group. A monodromy
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operator corresponding to the class of homotopy equivalence of a given lace 
on Riemann’s sphere (one fixes a base point in advance) is the linear opera­
tor mapping a basis of the solution space of the system onto the value of its 
analytic continuation along the lace. The monodromy operators generate the 
monodromy group which is defined not in a completely invariant way but only 
up to conjugacy due to the freedom to choose the base point and the initial 
value of the solution.
One usually chooses as generators of the monodromy group the ones defined 
by laces circumventing counterclockwise only one pole of the system (and 
we call further in the text them and only them monodromy operators). This 
choice is convenient because the monodromy operators will be conjugate to the 
operators of local monodromy (i. e. obtained when a single pole of the system 
is circumvented counterclockwise along a small loop around it), the latter being 
easy to compute algorithmically (see [14] for the case of fuchsian systems; for 
regular ones one first transforms the system locally into a fuchsian one, see 
[11], and then uses [14]).
For a suitable choice of the contours defining the monodromy operators Mj 
one has

M x . . .  M p+1 =  I ( 1 )

where I  is the identity matrix.

1.2. The Riemann-Hilbert Problem and Results

The Riemann-Hilbert problem  is stated like this: prove that for every set 
of poles on Riemann’s sphere and for every monodromy group there exists 
a fuchsian linear system with these poles and with no others and with this 
monodromy group.
In this formulation the problem admits a negative answer due to A. A. Boli- 
brukh, see [2]. Therefore it is reasonable to reformulate the problem like this:
give necessary and/or sufficient conditions for the choice of the poles and of 
the monodromy group so that there exists a fuchsian linear system with these 
poles and with no others and with this monodromy group.

In the present article we announce:
Theorem 1. If every monodromy operator in its Jordan normal form has only 
Jordan blocks of size <  2, then the monodromy group is realizable by a fuchsian 
system for any prescribed set of poles. Moreover; if the group is block upper- 
triangular, its diagonal blocks defining irreducible or one-dimensional matrix 
groups, then the fuchsian system realizing the group can be found of the same 
block upper-triangular form.
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The theorem is proved modulo a conjecture due to A. A. Bolibrukh formulated 
in Subsec. 2.2. The importance of the theorem resides in its geometric corollary: 
the Gauss-Manin system of a polynomial of two variables can be madefuchsian 
if one chooses a suitable basis in the cohomologies. (See Sect. 4 for the details.) 
The paper is organized as follows: in Sect. 2 we discuss the question what 
the local asymptotic behavior of the solutions to a regular system is and how 
one and the same monodromy group can be realized by fuchsian systems with 
different asymptotics of the solutions. Theorem 1 is proved in Sect. 3. In Sect. 4 
we consider the geometric application of the theorem — polynomials of two 
complex variables and their Gauss-Manin systems. We also give the precise 
sense of the above geometric corollary there.

2. Realizing Irreducible Monodromy Groups by Fuchsian Systems 
with Different Asymptotics of their Solutions

2.1. Levelt’s Result

Consider the regular linear system

X  =  A (t)X  (2)

where the n x  n-matrix A  is meromorphic on CP1, with poles at al9 . . . ,  ap+1. 
The form of its solution X  (which is also an n x n-matrix) at its pole dj is 
described in [10]. Here we cite the result:

Theorem 2. In the neighborhood of a pole the solution to the regular linear 
system (2) is representable in the form

X  =  Uj(t  -  aj ) ( t  -  a j ) ° 3 (t  -  cij)EjGj  (3)

where the n x n-matrix Uj is holomorphic in a neighborhood of the pole 
dj, D j =  diag(<^ij,. . . ,  Pnj)> Tv,j £ Z, det Gj  0. The n x n-matrix 
Ej is upper-triangular and for the real parts of its eigenvalues ß kj  one has 
Re(ßkj )  G [0,1) (by definition, (t — a j )Ej =  eEs )m The operator M j of
local monodromy (up to conjugacy) equals exp(27riEj).
The numbers corresponding to equal eigenvalues ß kj  are valuations in 
the solution subspace S  at ctj invariant for the operator M j and on which it 
acts with a single eigenvalue exp(27ri/?fcj). They are defined by the filtration 
of S  into subspaces of solutions with different growth rates at ajy see [10], 
and satisfy the condition (5) formulated below.
System (2) is fuchsian at dj if and only if

det Uj (0) 0 . (4)
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We formulate the condition on Let Ej have one and the same eigenvalue 
in the rows with indices Si, s2,- • •, sq. Then we have

T s x J   ̂ T s 2 i 3 — * * * — T s q J  • (5)

Remark 3.
1) Suppose that system (2) is fuchsian, i. e. of the form

p + i

x  =  ( £ A j / ( t - a j ) ) x .  (6)
3 =1

Then the sums ß uj  +  are the eigenvalues of the matrix-residuum Aj  
at dj. The sum of the residua of a meromorphic 1-form on Riemann’s sphere 
is 0. Hence, the sum of the traces of the matrices Aj  is 0 and one has

n  p + 1

E E ( ^ + f e )  =  0 - (?)
v=l j=l

2) For each subspace K  which is invariant for all monodromy operators one 
has (see [2], Lemma 3.6)

0 >  +  ßu,j) C Z (8)
K

(note that our notation differs from the one in [2]).
3) One can presume (what we do) that equal eigenvalues of the matrices Ej  
occupy consecutive positions and that the matrices are block-diagonal, the sizes 
of the diagonal blocks being equal to the multiplicities of the eigenvalues. The 
blocks themselves are upper-triangular.
4) The local parameter r  =  t — aj in Levelt’s form can be chosen to be a 
global parameter on CP1, i. e. a meromorphic function with a single zero (of 
first order) at aj and a single pole (of first order) which we choose to be at 
some other of the points ai9 say, aq, see [8].
5) In the particular case when the monodromy operator Mj  (hence, the matrix 
Ej  as well) has Jordan blocks of sizes only <  2, one can assume that the above­
diagonal entries of the matrix Ej  are only units and zeros, units occurring only 
in positions (z,j) such that the z-th and j-th diagonal entries of Ej  are equal. 
Moreover, each row and each column of Ej  contains no more than one unit. 
Indeed, it suffices to consider the case when Ej  has a single eigenvalue; more­
over, one can assume that it is equal to 0. Find the lowest row of Ej  (say, 
the z-th one) containing a non-zero entry and choose among these entries the 
left most one (say, (Ej)^k, i <  k). Conjugate the matrix Ej  with an upper- 
triangular matrix Q to annihilate all above diagonal entries in the z-th row and
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in the fc-th column except (Ej ) iik and to make (Ej ) iik equal to 1. As (Ej )2 =  0, 
the matrix Q~xEjQ  has only zero entries in the z-th column. Hence, in the 
union U(i, k ) of entries from the z-th and fc-th columns and rows (4n —4 entries 
in all) (Ej ) ijk =  1 is the only non-zero one. Change in Levelt’s form Gj  to 
QGj  and set (t — aj )DjQ~x =  H (t — aj)( t  — aj )Dj ; H  is upper-triangular, with 
constant non-zero diagonal terms and holomorphic ones above the diagonal 
(this follows from (5)). Change in Levelt’s form Uj to UjH.
Choose then from the non-zero above diagonal entries (if any) not from ?7(z, k) 
the one from the lowest row and among these the one from the left most 
column (say, (Ej )^^,  i /  z', k' /  fc, i f <  kf) and perform a conjugation with 
an upper-triangular matrix Q' so that in the set ?7(z, fc) U U ( ï , k r) the only 
non-zero entries of the matrix (Q')~1Q~1Ej Q Q / be ((Q')~1Q~1Ej QQ') i k̂ =  
( (Qf)~1Q~1Ej QQ') i>k> =  1. Note that the conjugation with Q f does not change 
the entries from U(i ,k)  because its non-zero entries from U(i ,k)  are QG =  
Q fk k =  1. Continuing like this we obtain the desired form of the matrix Ej.  
We call this form quasi Jordan. It is Jordan up to conjugacy with a permutation 
matrix.
6) Hence, in the particular case when the monodromy operator M j and the 
matrix Ej have each Jordan blocks of sizes only <  2, Ej is quasi Jordan and 
Levelt’s condition (5) can be simplified -  one requires only to have

P̂ki,j ^  (Pk2J (^)

whenever Ej  has a unit in position (fci, k2) (fci <  fe2). In such a case we say 
that the numbers tpklj  and ipk2j  correspond to one and the same Jordan block 
of Mj  (or of Ej).

2.2. Quantum States of an Irreducible Monodromy Group

In this subsection we recall some results proved in [8]. Consider the case of 
irreducible monodromy groups, i. e. without proper subspace of Cn invariant 
for all monodromy operators. All monodromy operators Mj  are presumed to 
have Jordan blocks only of size <  2.

Definition 4. A local quantum state at dj is the couple

n-tuple ( ipi j , . . . ,  ipk,j £ Z , quasi Jordan normal form of Ej .

The integers tpkj  are presumed satisfying the inequalities (9). Two (p +  1)- 
tuples of local quantum states are equivalent if they are obtained from one 
another by a change

X  \—> (t — CLif1 . . . (t — CLp+i)lp+1 X  , E Z, /]. +  ••• +  lp+1 — 0 .
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The change results in i—» <pkj + l j .  A quantum state is a class of equivalent
(p +  1)-tuples of local quantum states. When we change the integers p kj  only 
for j  =  jo and we keep them the same for j  /  j 0, then we speak about ajo- 
quantum states. Whenever quantum states are changed, we keep all matrices 
Ej  the same. In the definition of a quantum state we presume that there holds 
equality (7), i. e. that the quantum states are a priori admissible.

Definition 5. An a priori admissible quantum state of a given irreducible mon- 
odromy group is admissible (resp. forbidden) if there exists a fuchsian system 
with the given monodromy group, the given poles and the given local quan­
tum states (resp. if there does not exist such a system). If n =  1, then the 
monodromy group has a single a priori admissible quantum state which is 
admissible.
Example 6. Let n =  2. Assume that ax =  0. Represent in the neighborhood 
of 0 a fuchsian system by its Laurent series:

where (j, x , p are holomorphic functions of t. Assume that a  — ß  /  Z and 
that c / 0 .
The linear change

changes the eigenvalues a, ß  of A 1 to ß  — 1, a  + 1, in this order on the diagonal. 
If c =  0 and trj(t) =  c'tk +  o(tk), d  /  0, then a transformation

with £ being a suitably chosen polynomial of degree k +  1 changes them to 
ß  — k — 1, a  +  fc +  1, but one can’t change them to a  +  Z, ß  — l for 1 <  l <  k 
without changing the eigenvalues of the other residua (we propose to the reader 
to check this oneself). This means that the k corresponding ax -quantum states 
are forbidden.

Definition 7. Call a fuchsian system of type (â -, m, 0), m  G N, m  >  1 if after 
a fractionally-linear change of the time t  the pole aj is mapped on 0 and the 
system is obtained from another fuchsian system (for which t =  0 is a pole) 
after a change

Tm /  (pmTm +  . . . + p 1T + p 0),

T =  t ~  aj0 , Pz e  C , p0 ^  0
(10 )
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Hence, a pole of the initial system will give rise to <  m  poles in the new one, 
with equal matrices-residua if they are exactly m.  If one of the poles of the 
initial system gives rise to <  m  poles, then some of them should be regarded 
as confluences of several poles. Under such a confluence the pole remains of 
first order and the matrices-residua are added.

Remark 8. Any fractionally-linear transformation maps a fuchsian system into 
a fuchsian system with the same matrices-residua and the same monodromy 
group.

Definition 9. A fuchsian system is an (aJ5 m) one if it is either of type 
(a,-, m, 0) or is obtained from such a system by adding a finite number of 
additional logarithmic poles whose matrices-residua are scalar, with zero sum. 
Some or all of the new poles can coincide with the already existing poles of 
the system (in such situations the old and new matrices-residua are added).

Remark 10.
1) An (op m)  system can be obtained from an (aJ 5 m, 0) one by a superposition 
of transformations

X  h-> ( ( t - b ) / ( t - c ) ) sX  , 6, c, s g C.  (11)

2) An (op m, 0) system (and as a result, an (aJ5 m) one) has infinitely many
forbidden aj -quantum states because at 0 the map (10) has multiplicity m; one 
can set r m =  +  . . .  +  p 0) (r is only a local parameter) and thus
in Levelt’s form (3) every entry of the matrix Uj is a germ at 0 of a function 
holomorphic in r m; hence, the valuations can be changed only by multiples 
of mn.

Theorem 11. An irreducible monodromy group has infinitely many forbidden 
aj-quantum states for a given set of poles if and only if it is realized by an 
(a j ,m)  system with this set of poles.

Remark 12. When a monodromy group has infinitely many forbidden ar  
quantum states for a given set of poles, then all admissible -quantum states 
are defined by special systems. Indeed, in this case to obtain the fuchsian 
systems defining all admissible -quantum states (we assume that ctj =  0) 
one finds the admissible quantum states of the fuchsian system which is the 
preimage of the given one under the map (10) and then applies this map.
The theorem is proved in [8]. It is a particular case of Bolibrukh’s conjecture 
formulated below.

Definition 13. Call a fuchsian system 0-special if it is obtained from another 
fuchsian system (S) as a result of a change of time t  i—» r(t)  where r(t)  is a 
rational function one of whose critical points coincides with one of the poles
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of (S). A fuchsian system is called special if it is either 0-special or is obtained 
from a 0-special system as a result of a finite superposition of changes (11).
In the case of (aJ 5 m, 0)-systems which are a particular case of 0-special ones 
the function r(t)  has a critical point of multiplicity m a t a  pole of (S).

Conjecture 14. (A. A. Bolibrukh) For given poles ctj an irreducible mon- 
odromy group has infinitely many forbidden quantum states if and only if it 
can be realized by a special fuchsian system with these and with no other 
poles.
The conjecture was announced in connection with the results from [3]. We 
give below a more precise formulation of it.

Definition 15. When we change the integers p kj  only at aix, . . . ,  ais (where 
1 <  i 1 <  . . .  <  i s <  p  +  1) by keeping the others fixed we speak about 
{aix, . . . ,  ais )-quantum states.

Conjecture 16. For given poles ctj an irreducible monodromy group has infin­
itely many forbidden {aix, . . .  , ais)-quantum states if and only if it can be re­
alized by a special fuchsian system with poles a ly . . . ,  ap+1 and with no other 
poles; the monodromy group has infinitely many admissible (ai l5. . .  , ais)- 
quantum states defined by special systems.

3. Proof of Theorem 1

3.1. Small Blocks

Although the section is subdivided into subsections, we keep a uniform nu­
meration 1°, 2° , . . .  throughout it to refer easily to its different parts in the 
course of the proof. We assume that the monodromy group is reducible (for 
irreducible monodromy groups the answer to the Riemann-Hilbert problem is 
positive, see [4] and [9]) and in block upper-triangular form; its restrictions to 
the diagonal blocks (called further small blocks) are presumed to be irreducible 
or one-dimensional.
1°. One can realize the given monodromy group by a regular system (RS) of 
the same block upper-triangular form. After this one constructs the restrictions 
of the necessary fuchsian system (FS) to the small blocks (they are fuchsian 
systems of the sizes of these blocks). The numbers ß kj  and p kj  corresponding 
to a given small block P  satisfy the equation

E ( ^ . i  +  Ä . i )  =  ° -  ( 12>
p

This means that one finds admissible quantum states of the restrictions of the 
monodromy group to the small blocks. The integers p kj  will be chosen to
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satisfy conditions (9) (for the system as a whole and for its restrictions to each 
of the small blocks). Hence, there exists a change of variables X  i—» V ( t ) X  
with matrix V  meromorphic on CP1 and holomorphically invertible outside the 
poles of system (RS) which transforms it into a regular system (RSI) having 
the same block upper-triangular form and whose restrictions to the small blocks 
are the same as the ones of (FS). The matrix V  is block-diagonal, with diagonal 
blocks of the sizes of the respective small blocks.
After this the possible higher order poles in the blocks above the diagonal 
of system (RSI) are removed by block upper-triangular transformations of the 
form X  i—> W j ( l / ( t —d j ) ) X  where the entries of the matrix Wj  are polynomials 
of l / ( i  — a,j) and its diagonal (i. e. small) blocks equal / .  Hence, det Wj =  1.
To find such matrices Wj  is possible because the numbers p kj  satisfy condi­
tions (9). For the reader familiar with the theory of normal forms we’ll say 
only that due to these conditions no resonant monomials appear; the presence 
of such monomials would imply that the Jordan normal form of at least one 
operator Mj  is not the necessary one. Indeed, to be impossible to eliminate a 
term a(t — (ij)~9, a £ C, g £ N+, in some position (fci, k2) of a block above 
the diagonal, means that ß klj  =  ß k2ij and p kuj — p k2j  =  —g. This implies 
that (pklj  and p k2j  correspond to a Jordan block of size >  2 of Mj  (and not 
to two different Jordan blocks) and that (9) does not hold.
Thus to prove the theorem it suffices to construct system (FS), i. e. to choose 
the integers p kj  satisfying all conditions (9) and (12).

3.2. Good and Bad Small Blocks. (+ )  and (—) Bad Blocks

2°.

Notation: Denote throughout the rest of the proof by (<pqj ,  Psj),  3 =  1, • • •, 
p  +  1, a couple of integers corresponding to one and the same 2 x 2-Jordan 
block of Mj.
Give a “recursive” definition of a good small block:
1) if to the small block there belong two integers (Pk1j 1, (fk2j 2 corresponding 
to Jordan blocks of size 2 (from one and the same or from different matrices 
Mj  and for j 1 =  j 2 from one and the same or from different Jordan blocks), 
the first one of which is first and the second one of which is second integer 
p kj  of their 2 x 2-Jordan block(s), then the small block is good;
2) if for some j  an eigenvalue of a Jordan block of Mj  of size 1 corresponds 
to the small block, then the block is good;
3) if from a couple p sj )  of integers defined as above the two integers
correspond to different small blocks and one of them (say, p qj )  corresponds to a
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good block, then the block to which the second number (i. e. (psj )  corresponds 
is also good.
Good blocks of types 1) and 2) are the basis of the definition, blocks of type
3) are the inductive step.
3°. Small blocks which are not good are called bad. A bad block contains no 
integer ipk  ̂ corresponding to a Jordan block of E:l of size 1 (for all j) ,  see 2). 
If a bad block contains one of the two integers of a couple (y>q,j , <ps,j), then 
the second of these integers also belongs to a bad block, see 3). Finally, a bad 
block never contains a couple of integers y>kuh > ,h like in 1).
Hence, every bad block contains integers which are all either first (in this 
case we say a (+)-block) or second integers r' o f  their 2 x 2-Jordan blocks 
(in this case we say a (—)-block).
The conditions which the integers <pk,j must satisfy are only Levelf s condition 
(9) and the equalities (12). Hence, the set of these conditions splits into two 
sets, Sq and SB, the first of which involving only integers <pk,j from good and 
the second only from bad blocks. This allows one to look for the integers ipk,j 
from the good and from the bad blocks separately.

3.3. How to Find Admissible Quantum States for the Good Blocks?

4°. Explain how one can find admissible quantum states for the good blocks. 
This means that one has first to find sets of integers <pk,j defining for all good 
blocks a priori admissible quantum states and satisfying conditions (12) and 
(9), and then show that among these sets of integers there exists at least one 
defining admissible quantum states for all good blocks.
Denote by Gi the set of good blocks obtained by applying l times rule 3) of 
the definition of a good block. Define l0 G N by the conditions Gt„ f  0, 
Gi0+i — 0- For all good blocks from Gi0 choose admissible quantum states 
arbitrarily. Note that Levelf s condition (9) imposes no restriction at all on the 
choice of the numbers tpkj  belonging to blocks from Gi0 because from every 
couple ((fqj, <Ps,j) one encounters in the block only one of the two integers. 
5°. Suppose that for l > h ( l  < h  <  lo) the integers <pk,j from the good blocks 
from Qi are chosen such that

a) they define admissible quantum states of these blocks;
b) there hold all Levelf s conditions (9) involving both integers from a couple 

(<pq,j, ips,j) the integers <pqj ,  <psj  being among the already defined ones.
Denote by P  a good block from Gi-i with l >  2 (the case l =  1 is considered 
in 9°). Call an integer tpkj  free w.r.t. P  if it is not an integer from a couple 
{fPqj, <Ps,j) ° f  which the other integer is already defined, i. e. belongs to a 
block from Gi2 with h  >  I ~  1. (To be free w.r.t. P  means not yet to be
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obliged to fulfill some of Levelt’s conditions (9).) Hence, P  always contains 
a free integer p kj .  Denote it (or one of them) by p°.
6°. If P  is of size 1, then one can define all integers p kj  from P  except p° 
so that there hold all inequalities (9) encountered when the block P  and the 
blocks from the sets Gi with l >  l1 are considered. After this one defines p° 
so that condition (12) holds for the block P.
7°. Suppose that P  is of size >  1, that p° =  p k  ̂ and that there are only finitely 
many forbidden ax -quantum states of the monodromy group A4 defined by the 
restrictions to the block P  of the monodromy operators Mj.  Then we define 
infinitely many a priori admissible -quantum states out of which all but 
finitely many are admissible; we define them so that there hold all Levelt’s 
conditions (9) mentioned in 6°.
Namely, we define one such a priori admissible ax -quantum state like in 6°. 
Denote by p 1 an integer p k> ̂  with k' /  k. Hence, p 1 is either free w.r.t. P  or 
it must satisfy a single Levelt’s inequality (9). In both cases one can perform 
at least one of the two changes x + or x~ where

x± ■■ (p° ^  (p° ±  g , p 1 1-> p 1 t  g , g e  N ,

(for all g G N) to obtain infinitely many a priori admissible 0 | -quantum states 
of A i. Out of them all but finitely many are admissible.
8°. Suppose now that P  is of size >  1, that p° =  pk,i and that infinitely many 
ai-quantum states of the monodromy group A i  are forbidden. Assume that 
cii =  0. Hence, A i  can be realized by an (ai, m)-system (T) for some m e  N, 
m  >  1. Assume that it is an (a i,m ,0 ) one (in the general case one has to 
take into account the possible scalar changes (11); we leave these details for 
the reader). System (T) in turn is obtained from some system (T) as a result 
of the change (10). System (T') has a pole u\ =  0.
System (T') is not an one, therefore its monodromy group A i' has
at most finitely many forbidden and infinitely many admissible a[ -quantum 
states. (Its monodromy group must be irreducible, otherwise A t  will also be 
reducible.)
The matrices-residua A-, and A[ of (T) and of (T') at 0 are proportional: A i =  
m A \. Therefore one can define in a natural way the preimages of <p° and (p1 
under (10) (denoted by p  and p ' '). One needs not have p ‘ =  rwp'' because 
the condition Re(/?fc j ) G [0,1) is not preserved under multiplication by m. 
Among the admissible a\ -quantum states of A i' there are infinitely many in 
which only p ()l and p 1' change, the changes being analogous to x±- Each 
admissible a [-quantum state of A i' defines through the map (10) an admissible 
ai-quantum state of Ai', in these ai-quantum states only p l change, i =  0 ,1, 
and the change is of the kind x±-
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9°. When l =  1 (i. e. P  G Go) we prove the existence of infinitely many 
admissible a i-quantum states in almost the same way. If we are in case 1) 
(see 2°), then the roles of p l are played by p klj 1, p k2j 2 and either x+ or x_ is 
possible to be done without violating conditions (9). Even if j 1 =  j 2 and these 
two integers correspond to one and the same Jordan block of size 2 of M jx it 
is possible to make one of the changes x±  and one can carry out the proof in 
the same way.
If we are in case 2), then the integer p kj  from the Jordan block of size 1 of 
Mj  is free w.r.t. the block P.  Hence, one can always find integers p kj  of 
the good blocks defining admissible ax -quantum states of the good blocks and 
satisfying conditions (12) and (9).

3.4. How to Define the Integers <pkj  of the Bad Blocks?

10°. We first fix the integers p kj ,  j  >  2, of the bad blocks and then we choose 
their integers ipkil and <£>fej2. Recall that the integers p kj  of the bad blocks can 
be grouped in couples of integers each couple being of the form 
see 2°. We assume that the two integers of every such couple are equal (hence, 
the corresponding inequalities (9) hold — they become equalities). Thus we 
consider as unknown integer variables only half of the integers p kj  and we 
assume that for each j  the index k takes only half of the values from 1 to n.

Lemma 17. The system of equations (12) with unknown variables p kj  can be 
decomposed into subsystems such that

1) in every subsystem every variable p kj  either participates twice (in two 
equations, one corresponding to a (+) and one corresponding to a ( - ) -  
block) or doesn’t participate at all;

2) the subsystems are the minimal possible;
3) every subsystem is of corank l y i. e. there exists a unique up to multipli­

cation by a constant linear combination (A) of its equations which is an 
equation of the form  0 =  0.

4) every subsystem admits an integer solution.
The lemmas from this subsection are proved in Subsect. 3.5.

11°. Fix an integer solution <f> =  { p kj }  to the system of equations (12) (by 4) 
of the above lemma such a solution exists). However, there might be bad 
blocks of size >  1 for which the integers p kj  of this solution define forbidden 
quantum states. Therefore, in general, we change the given solution to another 
one defining admissible quantum states for all bad blocks of size >  1.
We do this separately for every subsystem (defined by the lemma) like this: 
for every bad block P  of size >  1 define a cycle of integers p kj ,  j  =  j f or 
j  =  f , j " ,  j '  /  j", 1 <  <  p  +  1. As every variable p kj  is encountered



Gauss-Manin Systems of Polynomials 117

exactly twice, we speak about its first and about its second copy (one of them 
belongs to a (+ ), the second belongs to a (—)-block). The cycle contains either 
both copies of a given variable tpkj  or none of them; it is defined as follows:
A. choose two integers — ^  and (fik2j 2 — from the block P , with j 1 =

h  = / ;
B. choose the next integers of the cycle also in couples: if an odd number s of

couples is chosen and if the last chosen couple is tpk2s- i j 2s-i and ^k2s,j2s 
(each index equals 1 or 2), then the next two chosen integers are the 
second copies of and p>k2s,h p,

C. if an even number s of couples is chosen, then
C l. if one of the two last chosen integers p k., , ,  is from a bad block 

P ' of odd size from which all integers p>k,j2s~± are already chosen, then 
choose as one of the two next integers of the cycle a not yet chosen 
integer ipk2s+1 ,r+ j" -hs_1 from the block P';

C2. if (Pk2s-i,i2s-i is from a bad block Q containing integers which
are not chosen yet, then we choose as integer <pk2a+1,j2e+1 one of them; 

C3. choose in the same way ^ fc2s+2,i2s+2 after p k,2..n .: as <pka.+1,ja.+1 was 
chosen after

D. the construction of the cycle stops if and only if an even number of couples 
of integers <pkj  are chosen (because if the number is odd, then one can 
apply B) and one of the two things happens:

• the last chosen couple is the couple of two remaining integers from a 
bad block of even size (in this case C2 cannot be performed);

• the last couple is a couple of integers Pk2r:,j2. with j 2s- 1  =
f  +  j"  — j->s from one and the same bad block of odd size and after 
their choice all integers from this block (both for j  =  f  and j ") are 
chosen (in this case Cl cannot be performed).

All cycles constructed in this way (for all possible couples j ' ,  j ") are not 
non-intersecting.
12°. Denote by c1; . . . ,  cs the different non-intersecting cycles defined for 
a given subsystem of equations (12). Each cycle contains an even number of 
couples of integers ipkj ,  see D from 11°. More exactly, it contains an even 
number of variables <pk,j each encountered twice. For a given cycle assign the 
number 1 to the variables tpkj  with odd and the number —1 to the variables 
ifkj  with even indices. Denote by the same cycle in which these numbers 
are changed respectively to and a,, a, g Z.
Fix the integers cr*, i =  1 , . . . ,  s. Change the solution $  by adding to each 
integer <pk  ̂ the integers o, from the cycles to which p kj  belongs. This is 
another solution (we denote it by 3>(<r) =  $  +  J2i=i n<c f  Indeed, each bad 
block contains as many integers <pkj  from the given cycle to which o, is
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assigned as it contains ones to which —Oi is assigned. This can easily be 
deduced from 11°, see B and C.
Observe also that when thus changing <f> one adds to both integers from one 
and the same Jordan block of size 2 of a given operator Mj  one and the same 
integer ± cri9 therefore Levelt’s conditions (9) are preserved under the change.
13°. We prove here some statements concerning special and 0-special systems 
which are necessary to prove the theorem.
(*) A 0-special system (OSS) has >  4 poles with non-scalar matrices-residua.
Indeed, if Aj =  b l , then M j =  exp(27Hb)I. With only two non-scalar operators 
Mj  the monodromy group will be generated by a single monodromy operator, 
see (1), hence, it will be reducible. System (OSS) is obtained from another 
fuchsian system (S) via the map

p : t ^ r ( t ) ,  r  =  q1( t ) /q2( t ) , (13)

the polynomials ^  having no common zero.
This is a rational map CP1 —» CP1 of multiplicity m  =  max(degçi, degq2), 
m  >  1. When one applies it to a fuchsian system, its polar part Aj  /  (t —ctj) gives 
rise to m  polar parts A j / ( t  — b^j) (counted with the multiplicities) where bij  
are all solutions to the equation r(t) =  ap, their set is the level set p~1(aj ). In 
the case of a multiple root of this equation (of multiplicity h) the corresponding 
polar part equals hA j / ( t  — bij).  To prove (*) we need another statement:
(**) The map (13) has at most two level sets consisting each of one point of 
multiplicity m.
Indeed, suppose that there are at least three such level sets corresponding to 
a\ 7̂  a2 7̂  a 3 7  ̂ ai (we assume that aj /  oo which can be achieved by 
a fractionally-linear transformation, see Remark 8). For each of them there 
exists Uj G C and Vj G C* such that q1(t) — ajq2(t) =  Vj(t — u f 171. Hence, 
there exists a non-trivial linear combination of the three polynomials (t — u f 171 
with m  >  2 which is identically 0 — a contradiction.
The monodromy group of system (S) is irreducible, otherwise the one of system 
(OSS) would be reducible. Hence, at least one of the poles with non-scalar 
residua of system (S) (which are at least three) gives rise to >  2 poles when 
the map (13) is applied. This proves statement (*).
(***) A special system has at least 4 poles.
Indeed, a special system is obtained from a 0-special one after a superposition 
of maps (11) which result in adding scalar matrices-residua. The 0-special 
system has at least four non-scalar matrices-residua, hence, so does the special 
one.
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(****) The multiplicity m* of each critical point of the map (13) situated at a 
pole of system (S) is less than p  +  1.
Indeed, assume that at the given critical point v the solution to system (S) is 
represented in Levelt’s form (3), with U:l (0) =  / .  Then the solution to system 
(OSS) (at some pole ajo such that r(a :)l) ) =  v) will have the same form, with
Ujo =  I  +  0 ( ( t  — ajo)mi). Hence, (f/io)_1 =  I  +  0 ( ( t  -  ajo)mi). Suppose 
that m,i >  p  +  1. Then system (OSS) in a neighborhood of ajo looks like this: 
X  =  A ( t ) X  with A(t)  =  X X ~ \  i. e.

A(t)  =  Ù U - 1 +  U D U ~ X j { t  -  aj0) +  U(t  -  ajo)DE( t  -  a ^ U ^ / i t  -  ajo) , 

see (3); we omit the indices j 0 of U, E  and D.  Hence,

A(t)  =  (D +  (t — ajo)DE( t  -  ajo)~D) / ( t  -  ajo) +  0 ( ( t  -  ajo)p) . (14)

On the other hand, the coefficient before (t — ajo)s in the local (at ajo) Lau­
rent series expansion of A(t)  equals B s := (—l ) s A j / ( a jo — aJ)s+1, (to
be checked directly, see (6)). Equality (14) implies that all entries below the 
diagonal of all matrices B s, s =  0 , . . .  — 1, are 0 (because D  and E  are
upper-triangular); hence, the same is true for the matrices Aj  (use Vander­
monde’s determinant defined by the numbers (—l ) / ( a JO — aj)). But then the 
monodromy group of the system would also be upper-triangular, i. e. reducible 
— a contradiction.

14°. Consider the case p >  4.

Lemma 18. For p  >  4 one can choose the integers p kj ,  j  >  % of the bad 
blocks such that for each bad block P  the monodromy group defined by the 
restrictions Mf\P of the monodromy operators M 3 to P  has only finitely many 
forbidden (u i,a 2)-quantum states.
When varying the integers a i9 one obtains infinitely many solutions <&(cr) defin­
ing for each bad block of size >  1 infinitely many a priori admissible quantum 
states (indeed, each bad block of size >  1 contains integers p kj  from at least 
one cycle). Among them infinitely many are admissible (this follows from 
Lemma 18). Hence, the choice of the integers p kj  of the bad blocks satisfying 
the conditions (12) and (9) and defining admissible quantum states of all bad 
blocks is possible. This proves Theorem 1 in the case p >  4.

15°. In the case p =  3 a fuchsian system (FS) is 0-special only if m  =  2. 
Indeed, it is obtained from some fuchsian system (S) with three poles via the 
map (13). Two of these poles (say, at 0 and oo) must define two level sets 
consisting each of a single point. The third (say, at 1) must give rise to two 
poles of (FS). Hence, the map (13) is of the form r(t) =  a t m, a  G C. System 
(FS) will have four poles only if m  =  2.



120 Vladimir P. Kostov

Given system (FS) and knowing that it is 0-special, one knows which of its 
poles (denoted by a3, a4) belong to p 1 ( H (by considering the possible cross­
ratios of the four poles —  their values are —1, ±2, ± 1 /2 ).
The same things hold for system (FS) presumed to be special (it can have no 
scalar matrix-residuum, otherwise system (S) should have one and its mon- 
odromy group would be reducible). To prove the theorem in the case p =  3 
it suffices to construct for each bad block the sets \P4 and ± 3 almost non­
proportional —  hence, no (a4, a2)-quantum state at all of A i | p would be realiz­
able by a special system; by Conjecture 16, only finitely many (a4, a2)-quantum 
states of A i \r  can be forbidden.
16°. If p =  2, then for no bad block P  can one have infinitely many forbidden 
quantum states of A i\p  and the proof is even easier. □

3.5. Proofs of the Lemmas

Proof of Lemma 17:
A °. Construct the minimal subsystems explicitly. For a variable o =  ry : , from 
a (±)-block denote by j l  o ) the variable <pk2j  (from a (—)-block) corresponding 
to the same Jordan block of size 2 of Mj  as <f>. In the notation from Subsec. 3.2 
the couple (<f>,j(<f>)) is a couple Recall that ipkuj =  ipk2j, i. e.
<f> =  j i o ) :  we use the notation <>. to show which of the two equal variables 
is from a (+ ) and which from a (—)-block.
Choose a (±)-block P.  Denote by V  the set of all its variables 0  and by (P)  
the equation (12) corresponding to it. Then the minimal subsystem containing 
(P ) must contain all equations (Nf) which are equations (12) of (—)-blocks 
N % containing at least one variable <pkj  which equals j i o ) ,  0 0  V.  Indeed, 
property 1) claimed by the lemma must hold. Hence, the minimal subsystem 
must contain all equations (Pu) which are equations (12) of (±)-blocks Pv 
containing at least one variable _r/,w hich equals <> with E Mi, etc.
Iterating the procedure “adding the blocks containing variables j(<f>) (resp. </>)” 
( f  (resp. j(4>)) being among the variables of the bad blocks whose equa­
tions (12) are already known to belong to the subsystem) one obtains the min­
imal subsystem containing equation (P ). The minimality follows from the 
construction.
B°.  Property 3) also follows from the construction of the minimal subsystems 
—  if the linear combination must be of the formt) =  0, then the equations (12) 
corresponding to the (± ) and (—)-block containing the variables <l> and j ( 0 )  
must participate in it with opposite coefficients. Hence, up to a non-zero factor 
the equations (P) (resp. (N)) of all (± ) (resp. (—)) blocks of the subsystem must
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participate in the linear combination with coefficient 1 (resp. —1). The details 
are left for the reader.
C°.  Prove 4). To this end one can make the subsystem trapezoidal making use 
of the Gauss method. Recall that by 3) of the lemma, the final system contains 
exactly one equation of the form 0 =  0. When one subtracts upper equations 
(multiplied by suitable coefficients) from lower ones, these coefficients will 
always equal ±1 and all non-zero coefficients of all variables in the final 
system will equal ± 1  (this is proved in D°).  The constant terms of the system 
will be integers (because they are such at the beginning). The existence of 
an integer solution to the system obtained after applying the Gauss method is 
obvious.
D°.  Assume that in the minimal subsystem the equations corresponding to 
(—)-blocks are multiplied by —1. It is obvious that the first subtraction of the 
Gauss method must be done with coefficient —1 (one tries to eliminate from 
an equation (L—) corresponding to a (—)-block a variable hence, one
finds the unique equation (L+)  of a (+ ) -block where f  participates and one 
replaces in the system the equation (L—) by IL ) +  (L+)).  All coefficients 
of unknown variables in equation (L—) +  (L+)  equal 0, 1 or —1.
Suppose that at some stage of applying the Gauss method all non-zero coeffi­
cients of all equations of the system equal ±1 , all signs of the variables f  (resp. 
j (4>)) being positive (resp. negative; this is the case of equation ( L - )  +  (L+)).  
Hence, when one carries out the next subtraction, it will be carried out again 
with coefficient —1.
Suppose that one replaces equation (H2) of the system by (H>) +  (Hi).  Then 
whenever two variables f  and j i o )  participate respectively in (Hi)  and (H2), 
then their coefficients will be opposite and they will not participate in (H2) +  
(Hi).  If only one of them participates (in one of the two equations), then in 
(H2) +  (Hi)  its coefficient will equal 1 if it is a variable 4> and to —1 if it is 
a variable j ( f ) .  □

Proof of Lemma 18:
A0. We choose the integers tpkj  for j  >  2 such that only finitely many a 
priori admissible (ai, a2)-quantum states would be possible to realize by special 
systems. By Conjecture 16, the monodromy group can have only finitely many 
forbidden (alt a2)-quantum states.
For each bad block P  of size l >  1 define the numbers ipkj  as follows:

V’fcJ — P k , j  + ß k , j
^ k i P k J  ~b ß k , j )  

l
(the sum is taken over the integers tfktj from the block P,  j  is fixed). Recall 
that the eigenvalues of A:i equal ß kj  +  <pkti ; the numbers ßk,:i are known and
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the numbers tjjkj define the integers tpkj up to a simultaneous shift of the latter.

Definition 19. Set A = {(«1/ 52); s» £ { 0 ,1 , . . .  , p } , s 2 /  0}. Call two 
sets (j  =  j-\, jo ) of numbers ipkj (for one and the same bad block, for 
two different values of j ) almost non-proportional if either there exists no 
permutation of the elements of after which they become proportional or 
such a permutation exists but the ratio of the sets and its inverse do not belong 
to the set A.
If the two sets tfp+i, ^ p are almost non-proportional, then the matrices ApP1\P 
and AP\P with eigenvalues defined after the sets T^+i, p, cannot be matrices- 
residua of a special system such that the poles ap+1, ap belong to one and the 
same level set of the map (13). Indeed, for a 0-special system with ap+1, 
ap from the same level set the ratio A P+1\P /  AP\P must equal the ratio of the 
multiplicities of two points of the map (13) (a non-critical point has multiplicity 
1). The ratio of these multiplicities belongs to A (statement (****) from 13° of 
the proof of Theorem 1). When constructing a special system after a 0-special 
one by means of maps (11) the sets do not change.
B°.  Choose as integers p k,p+1 the ones from <t> (see 11° from the proof of 
Theorem 1). We assume that the numbers (pk,p+i +  ßk,p+i are n°t all equal 
(i. e. ApPi is not scalar); if this is not the case, then we can change T> to <h(cr) 
with ai from some cycle with f  =  p +  1, j" =  1. Consider all cycles q (see 
11° from the proof of Theorem 1) with j '  =  p, j" =  1. It is possible to find 
integers a* such that the sets and ^ p computed after the integers p kj
from <h(cr) be almost non-proportional.
Indeed, for each bad block of size >  2 there exists such a cycle containing 
two integers p k p̂ from P , to which one assigns the integers ± <7*. If ai is big 
enough, then and ^ p are almost non-proportional (^ p+i does not depend 
on ai). Moreover, one can choose the integers so that the sets and ^ p 
be almost non-proportional for all bad blocks simultaneously.
C°. After this one considers the cycles with f  =  p — 1, j" =  1 and chooses 
their integers such that every two of the sets p and be almost
non-proportional, for all bad blocks simultaneously (in this case p and 
do not depend on the choice of the integers of the cycles with f  =  p — 1, 
j" =  1). Continuing in the same way, one makes every two of the sets \&3,
. . . ,  almost non-proportional. Hence, no two of the matrices A 3 |P, . . . ,  
Ap+i\P with eigenvalues defined after the respective sets can be matrices- 
residua of a special system at two poles belonging to one and the same level 
set of the map (13).
D°.  If a fuchsian system with >  5 non-scalar matrices-residua is special, then 
for everyone except at most two of its matrices-residua Aj  there exists another 
matrix-residuum A p such that the poles aj and ap belong to one and the same
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level set of the map (13) (see 13° from the proof of Theorem 1, statement (**)). 
Hence, the sets and will not be almost non-proportional.
E°.  Fix the integers p kj  for j  >  3 like they were defined in A 0 -  C° and 
vary ipkil, p k 2̂ (by considering the cycles with f  =  2, j" =  1 like this was 
done for f  >  2). Their integers define (for each bad block P ) infinitely 
many a priori admissible (ai, a2)-quantum states of the restriction A4\p of the 
monodromy group A4 to the block P.  Only for finitely many of them each of 
the sets and is not almost non-proportional to everyone of the sets 
for j  >  3, i. e. only for finitely many of them each of the matrices A^p,  A 2\p 
with eigenvalues defined after can be a matrix-residuum resp. at al9
a2 of a special system.
Indeed, by D°,  each of the points al9 a2 must belong to one and the same level 
set of the map (13) as some of the points a3, . . . ,  ap+1 — each two of the 
sets being almost non-proportional for j  >  3, if or ^ 2 is also almost 
non-proportional with j  >  3, then the map (13) will have more than one 
level set consisting each of a single point which contradicts statement (**) from 
13° of the proof of Theorem 1.
Hence, for all but finitely many choices of the integers the corresponding 
(a i, a2)-quantum states will not be realizable by special systems. Conjecture 16 
implies that only finitely many of them can be forbidden. □

4. Gauss-Manin Systems of Polynomials of Two Variables

4.1. Definition of the Gauss-Manin System

In this section we recall some facts from singularity theory. We recall them 
only in the case of two variables, for the general case good references are [1],
[6], [12] and [13] (and the list is very far from being exhaustive).
Denote by f ( x , y )  G C[x,y\  a polynomial of two complex variables, with only 
isolated singularities if any; a singularity or a singular point in C2 is a point 
(x o,Vo) at which d/  vanishes. Denote by the singular points of /
and by =  /(a^ y*) its corresponding critical values. The level sets / _1(t), 
t G C, are algebraic curves in C2 all but finitely many of which (namely, except 
for t  =  U) are non-singular. The projectivizations of these curves might have 
singularities at infinity.
In the neighborhood of all but finitely many values of t  the fibration of C2 
over C with fibre f ~ 1(t) is locally trivial. The exceptional values of t  include 
all critical values ^ of /  and there might be a finite number of values Sj for 
which the fibre f ~ 1(sj ) is non-singular but the fibration in the neighborhood 
of Sj is not trivial. Denote by E the set of all values ti and Sj.
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Given a value t' £  E, one can fix a basis of H 1( f ~ 1(t'), C), i. e. cycles 5k on 
of real dimension 1. The local triviality of the fibration allows to define 

families (continuously depending on t) of such cycles for all t  close to t'.
Denote by ^ =  p(x,  y ) dx  A dy  a holomorphic differential 1-form where p  is 
a polynomial of (x, y). Then the relative form p)j d f  is well-defined on every 
non-singular level set; it is closed on it. The integrals f  ïp/ d f  are well-defined

<5fc
functions of t. For t  close to /' these integrals depend holomorphically on /.

Set l = d im iJ i( /_1(t'), C). Choose l forms tpi such that the corresponding 
relative forms are a basis of H 1( f ~ 1(t') ,C)  dual to {X/,.}. Hence, for the 
period matrix X =  |  /  ^ /  d / |  one has det T\t=t> =  1. (The k-th column of

<5fc
the period matrix consists of the integrals of the forms ipv/  d f  over ök.)
The matrix 1  can be defined for nearby values of t  and its dependence on t  will 
be holomorphic. It is a fundamental solution to a system of linear differential 
equations d l /  dt  =  A ( t ) l  called the Gauss-Manin system. This system has 
finitely many poles among which the points from E. There might be some more 
poles at the points where det 1  vanishes (indeed, one has A(t)  =  ( d 1 /  d 
these singularities are apparent, i. e. with trivial local monodromy; denote their 
set by 0 .
One can continue the solution 1  to the Gauss-Manin system along any path in 
C not passing through any point from E U 0 . Thus globally on C the matrix 
I  will be a multivalued matrix-function with branching points at ^ and Sj and 
with poles on 0 . All these points turn out to be regular singularities of the 
Gauss-Manin system (in general, oo is also a singular point of the system; it 
is also regular).
The monodromy operators corresponding to these singular points have (in their 
Jordan normal forms) Jordan blocks of size only <  2 (in the case of n variables 
of size only <  n). This fact is known to specialists but a complete proof 
(including all cases) is hard to find. Good references are [7] and [5].

4.2. A Geometric Corollary from Theorem 1

Theorem 1 implies that the monodromy group of the Gauss-Manin system 
(GM) of any polynomial of two variables with only isolated singularities if any 
can be realized by some fuchsian system (F); if the monodromy group is block 
upper-triangular, its diagonal blocks defining irreducible or one-dimensional 
matrix groups, then system (F) can be presumed to be of the same block upper- 
triangular form. System (F) has poles only on E.
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Hence, there exists a change of variables

X h-> W{t )X (15)

transforming (GM) into (F). The matrix W  has, in general, poles on E U 0 .  
It is holomorphic and holomorphically invertible outside this set because both 
(GM) and (F) are holomorphic outside it.
This means that one can choose l differential 1-forms ^9 such that the Gauss- 
Manin system of /  constructed after them will be fuchsian, with poles only from 
E (this system is in fact (F)). However, these forms will not be polynomials 
and not even holomorphic in x and y. They will be finite combinations of 
terms of the form p{x, y ) / ( f  — aj )9 where p  G C[æ, y], a,j G (S U  0 ) ,  g G N.

Indeed, the change (15) transforms every integral j  f>v/ d/  into a linear com-
<5fc

bination of such integrals with coefficients of the form d j { t  — ctj)9, d G C (it 
transforms it into one and the same combination for every k fixed). Note that 
one has

because the integration is performed in the fibre Hence, the new ba­
sis of H 1( f ~ 1(t), C) will be of forms i/jjdx A d y  with ifj G C [x,y\ [(f  — 
ai ) - 1 , . . . , ( /  — ar)_1] where { a i , . . . ,  ar} =  (E U 0 ) .
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