VII. Advanced Structure Theory, 433-522

DOI: 10.3792/euclid/9798989504206-8

from

Lie Groups
Beyond an Introduction
Digital Second Edition, 2023

Anthony W. Knapp

Full Book DOI: 10.3792/euclid/9798989504206
ISBN: 979-8-9895042-0-6

LIE GROUPS
BEYOND
AN INTRODUCTION

Digital Second Edition

Anthony W. Knapp

euclid

Distributed by Project Euclid.

For copyright information, see the following page.


https://doi.org/10.3792/euclid/9798989504206
https://doi.org/10.3792/euclid/9798989504206-8

Anthony W. Knapp

81 Upper Sheep Pasture Road

East Setauket, N.Y. 11733-1729

U.S.A.

Email to: aknapp@math.stonybrook.edu
Homepage: www.math.stonybrook.edu/~aknapp

Lie Groups Beyond an Introduction, Digital Second Edition

Pages vii—xviii and 1-812 are the same in the digital and printed second editions. A
list of corrections as of June 2023 has been included as pages 813—-820 of the digital
second edition. The corrections have not been implemented in the text.

Cover: Vogan diagram of s[(2n,R). See page 399.

AMS Subject Classifications: 17-01, 22-01

©1996 Anthony W. Knapp, First Edition, ISBN 0-8176-3926-8
©2002 Anthony W. Knapp, Printed Second Edition, ISBN 0-8176-4259-5
©2023 Anthony W. Knapp, Digital Second Edition, ISBN 979-8-9895042-0-6

All rights reserved. The Author (Anthony W. Knapp) has granted a license to the
original Publisher (Birkhéduser Boston, c/o Springer Science+Business Media, 233
Spring Street, New York, NY 10013, USA) for the full and exclusive rights covered
under the copyright of this book and all revisions of it insofar as they concern print
media. These rights include the right to publish and distribute printed copies of the
book throughout the world in English and in all other languages. Accordingly this
work may not be transcribed or translated in whole or in part without the written
permission of the Publisher, except for brief excerpts in connection with reviews or
scholarly analysis and except for other fair use as understood in the copyright law.

The Author has reserved to himself all electronic rights to this book. The electronic
file of the book is made available throughout the world for limited noncommercial
use for purposes of education, scholarship, and research, and for these purposes only,
or for fair use as understood in the United States copyright law. Users may freely
download this file for their own use and may store it, post full pages of it online, and
transmit full pages of it digitally for purposes of education, scholarship, and research.
They may not convert it from PDF to any other format (e.g., EPUB), they may not
edit it, and they may not do reverse engineering with it. In transmitting full pages
of the file to others or posting pages online, users must include the copyright page,
they must charge no fee, and they may not include the file in any collection of files
for which a fee is charged. Any exception to these rules requires written permission
from the author.



CHAPTER VII

Advanced Structure Theory

Abstract. The first main results are that simply connected compact semisimple Lie
groups are in one-one correspondence with abstract Cartan matrices and their associated
Dynkin diagrams and that the outer automorphisms of such a group correspond exactly to
automorphisms of the Dynkin diagram. The remainder of the first section prepares for the
definition of a reductive Lie group: A compact connected Lie group has a complexification
that is unique up to holomorphic isomorphism. A semisimple Lie group of matrices is
topologically closed and has finite center.

Reductive Lie group$s are defined as 4-tuple$s, K, 6, B) satisfying certain com-
patibility conditions. HereG is a Lie group,K is a compact subgroup,is an involution
of the Lie algebragyy of G, andB is a bilinear form orge. Examples include semisimple
Lie groups with finite center, any connected closed linear group closed under conjugate
transpose, and the centralizer in a reductive groupéstable abelian subalgebra of the
Lie algebra. The involutios, which is called the “Cartan involution” of the Lie algebra, is
the differential of a global Cartan involutia® of G. In terms of®, G has a global Cartan
decomposition that generalizes the polar decomposition of matrices.

A number of properties of semisimple Lie groups with finite center generalize to re-
ductive Lie groups. Among these are the conjugacy of the maximal abelian subspaces of
the —1 eigenspace, of 9, the theory of restricted roots, the Iwasawa decomposition, and
properties of Cartan subalgebras. The chapter addresses also some properties not discussed
in Chapter VI, such as thé A,K decomposition and the Bruhat decomposition. H&ge
is the analytic subgroup corresponding to a maximal abelian subspgage of

The degree of disconnectedness of the subghdyp= Zx (A,) controls the disconnect-
edness of many other subgroupsaf The most complete description bf,, is in the case
thatG has a complexification, and then serious results from Chapter V about representation
theory play a decisive role.

Parabolic subgroups are closed subgroups containing a conjudae’eN,,. They are
parametrized up to conjugacy by subsets of simple restricted roots. A Cartan subgroup is
defined to be the centralizer of a Cartan subalgebra. It has only finitely many components,
and each regular element@flies in one and only one Cartan subgrougofWhenG has
a complexification, the component structure of Cartan subgroups can be identified in terms
of the elements that generéig, .

A reductive Lie groups that is semisimple has the property ttK admits a complex
structure withG acting holomorphically if and only if the centralizer gg of the center of
the Lie algebra, of K is justg,. In this caseG/K may be realized as a bounded domain in
someC" by means of the Harish-Chandra decomposition. The proof of the Harish-Chandra
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434 VIl. Advanced Structure Theory

decomposition uses facts about parabolic subgroups. The spa&esf this kind may be
classified easily by inspection of the classification of simple real Lie algebras in Chapter VI.

1. Further Properties of Compact Real Forms

Some aspects of compact real forms of complex semisimple Lie algebras
were omitted in Chapter VI in order to move more quickly toward the
classification of simple real Lie algebras. We take up these aspects now
in order to prepare for the more advanced structure theory to be discussed
in this chapter. The topics in this section are classification of compact
semisimple Lie algebras and simply connected compact semisimple Lie
groups, complex structures on semisimple Lie groups whose Lie algebras
are complex, automorphisms of complex semisimple Lie algebras, and
properties of connected linear groups with reductive Lie algebra. Toward
the end of this section we discuss Weyl'’s unitary trick.

Proposition 7.1. The isomorphism classes of compact semisimple Lie
algebragy, and the isomorphism classes of complex semisimple Lie alge-
brasg are in one-one correspondence, the correspondence beingishat
the complexification ofip andg, is a compact real form qf. Under this
correspondence simple Lie algebras correspond to simple Lie algebras.

REMARK. The proposition implies that the complexification of a com-
pact simple Lie algebra is simple. It then follows from Theorem 6.94 that
a compact simple Lie algebra is never complex.

PROOF. If a compact semisimplg, is given, we know that its complex-
ification g is complex semisimple. In the reverse direction Theorem 6.11
shows that any complex semisimpl@as a compact real form, and Corol-
lary 6.20 shows that the compact real form is unique up to isomorphism.
This proves the correspondence. If a compléx simple, then it is trivial
that any real form is simple.

Conversely suppose thgtis compact simple. Arguing by contradiction,
suppose that the complexificatigris semisimple but not simple. Wrige
as the direct sum of simple ideagjsby Theorem 1.54, and l€t;; ), be a
compact real form of;; as in Theorem 6.11. The Killing forms of distinct
gi's are orthogonal, and it follows that the Killing form of the direct sum of
the (gi)o’s is negative definite. By Proposition 4.27, the direct sum of the
(gi)o'sis acompact real form gf. By Corollary 6.20 the direct sum of the
(gi)o’s is isomorphic togy and exhibitsg, as semisimple but not simple,
contradiction.
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Proposition 7.2. The isomorphism classes of simply connected compact
semisimple Lie groups are in one-one correspondence with the isomor-
phism classes of compact semisimple Lie algebras by passage from a Lie
group to its Lie algebra.

PrROOF. The Lie algebra of a compact semisimple group is compact
semisimple by Proposition 4.23. Conversely if a compact semisimple Lie
algebrag, is given, then the Killing form ofg, is negative definite by
Corollary 4.26 and Cartan’s Criterion for Semisimplicity (Theorem 1.45).
Consequently Ingo is a subgroup of a compact orthogonal group. On the
other hand, Propositions 1.120 and 1.121 show tha &t (Aut go), and
hence that Ing, is closed. Thus Inf, is a compact connected Lie group
with Lie algebra ag, = go. By Weyl's Theorem (Theorem 4.69) a uni-
versal covering group of I is a simply connected compact semisimple
group with Lie algebray. Since two simply connected analytic groups
with isomorphic Lie algebras are isomorphic, the proposition follows.

Corollary 7.3. The isomorphism classes of

(a) simply connected compact semisimple Lie groups,

(b) compact semisimple Lie algebras,

(c) complex semisimple Lie algebras,

(d) reduced abstract root systems, and

(e) abstract Cartan matrices and their associated Dynkin diagrams

are in one-one correspondence by passage from a Lie group to its Lie
algebra, then to the complexification of the Lie algebra, and then to the
underlying root system.

PROOE The correspondence of (a) to (b) is addressed by Proposition
7.2, that of (b) to (c) is addressed by Proposition 7.1, and that of (c) to (d)
to (e) is addressed by Chapter II.

Proposition 7.4. A semisimple Lie grougs whose Lie algebrg is
complex admits uniquely the structure of a complex Lie group in such a
way that the exponential mapping is holomorphic.

REMARK. The proof will invoke Proposition 1.110, which in the general
case made use of the complex form of Ado’s Theorem (Theorem B.8). For
semisimpleG, the use of Ado’s Theorem is not necessary. One has only
to invoke the matrix-group form of Proposition 1.110 for the matrix group
Ad(G) and then lift the complex structure from Ad) to the covering
groupG. As a result of this proposition, we may speak unambiguously of
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acomplex semisimple Lie groupas being a semisimple Lie group whose
Lie algebra is complex.

PROOF. For existence, suppose thats complex. Then the converse
part of Proposition 1.110 shows th@tadmits the structure of a complex
Lie group compatibly with the multiplication-blymapping withing, and
the direct part of Proposition 1.110 says that the exponential mapping is
holomorphic. For unigueness, suppose Bas complex with a holomor-
phic exponential mapping. Since exp is invertible as a smooth function on
some open neighborhood of the identity,(V, exp?) is a chart for the
complex structure ofs, and the left translated. 4V, exp* oL ;') form an
atlas. This atlas does not depend on what complex structure r@aikes
a complex Lie group with holomorphic exponential mapping, and thus the
complex structure is unique.

Proposition 7.5. A complex semisimple Lie group necessarily has finite
center. LetG andG’ be complex semisimple Lie groups, and ktand
K’ be the subgroups fixed by the respective global Cartan involutions of
G andG’. ThenK andK’ are compact, and a homomorphismkofinto
K’ as Lie groups induces a holomorphic homomorphisr afto G'. If
the homomorphisnK — K’ is an isomorphism, then the holomorphic
homomorphisnG — G’ is a holomorphic isomorphism.

ProoF. If G has Lie algebra, then the most general Cartan decom-
position of g® is g® = go ® igo, Whereg, is a compact real form of
by Proposition 6.14 and Corollary 6.19. The Lie algebsds compact
semisimple, and Weyl's Theorem (Theorem 4.69) shows that the corre-
sponding analytic subgrou is compact. Theorem 6.31f then shows that
G has finite center.

In a similar fashion leg’ be the Lie algebra d&’. We may suppose that
there is a Cartan decompositigf = g, @ i g, of g’ such thatk’ is the
analytic subgroup o6’ with Lie algebrag,. As with K, K’ is compact.

A homomorphisnmp of K into K’ yields a homomorphismy of g, into
g0, and this extends uniquely to a complex-linear homomorphism, also
denoteddy, of g into g’. Let G be a universal covering group &, let
e:G—> G _be the covering homomorphism, and letbe the analytic
subgroup ofG with Lie algebragg. SinceG is simply connectedjy lifts
to a smooth homomorphisfof Ginto G'.

We want to see thdi descends to a homomorphism®@finto G'. To
see this, we show théatis 1 on the kernel oé. The restrictior|; and the
compositiornpo(e|z) both havely as differential. Therefore they are equal,



1. Further Properties of Compact Real Forms 437

andg is 1 on the kernel oé|z. Theorem 6.31e shows that the kerneéof

in G is contained irk , and it follows thafy descends to a homomorphism
of G into G’ with differentialdg. Let us call this homomorphisg. Then

¢ is a homomorphism between complex Lie groups, and its differential is
complex linear. By Proposition 1.110,is holomorphic.

If the given homomorphism is an isomorphism, then we can reverse the
roles of G andG’, obtaining a holomorphic homomorphisin: G' — G
whose differential is the inverse afp. Sincey o ¢ and g o v have
differential the identityp andyr are inverses. Therefogels a holomorphic
isomorphism.

Corollary 7.6. If G is a complex semisimple Lie group, th&h is
holomorphically isomorphic to a complex Lie group of matrices.

PROOF. Let g be the Lie algebra o6, let g® = go @ igo be a Cartan
decomposition ofy®, and letK be the analytic subgroup @& with Lie
algebragy. The groupK is compact by Proposition 7.5. By Corollary
4.22, K is isomorphic to a closed linear group, sky, and there is no
loss of generality in assuming that the member& oére inGL (V) for a
real vector spac¥. Let g, be the linear Lie algebra df’, and write the
complexificationg’ of g, as a Lie algebra of complex endomorphisms of
VE, If G'is the analytic subgroup @L (V°) with Lie algebrag’, thenG’
is a complex Lie group by Corollary 1.116 sinGa (V°) is complex and
g’ is closed under multiplication by Applying Proposition 7.5, we can
extend the isomorphism & ontoK’ to a holomorphic isomorphism &
ontoG’. ThusG’ provides the required complex Lie group of matrices.

Let G be a semisimple Lie group, and suppose tRatis a complex
semisimple Lie group such th@&tis an analytic subgroup &° and the Lie
algebra ofG® is the complexification of the Lie algebraGf Then we say
that G® is acomplexification of G and thatG has a complexificatioG®.
ForexampleSU (n) andSL (n, R) both haveSL (n, C) as complexification.
Because of Corollary 7.6 it will follow from Proposition 7.9 below thabif
has a complexificatios®, thenG is necessarily closed iG¢. Not every
semisimple Lie group has a complexification; because of Corollary 7.6, the
example at the end of §VI.3 shows that a double coveiaR, R) has no
complexification. IfG has a complexification, then the complexification
is not necessarily unique up to isomorphism. However, Proposition 7.5
shows that the complexification is uniquedfis compact.

We now use the correspondence of Corollary 7.3 to investigate automor-
phisms of complex semisimple Lie algebras.
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Lemma7.7.Let G be a complex semisimple Lie group with Lie algebra
g, leth be a Cartan subalgebragfand letA* (g, h) be a positive system
for the roots. IfH denotes the analytic subgroup @Gfwith Lie algebra
b, then any member of Igtcarryingh to itself andA* (g, h) to itself is in
Ad,(H).

PROOF The construction of Theorem 6.11 produces a compact real
form go of g such thatg, N h = by is a maximal abelian subspace gf
The decompositiog® = go @ igo is a Cartan decomposition @ff by
Proposition 6.14, and we lét be the Cartan involution. LeK be the
analytic subgroup o6 with Lie algebrag,. The subgrougK is compact
by Proposition 7.5. I is the analytic subgroup d€ with Lie algebrah,
thenT is a maximal torus oK.

Let g be inG, and suppose that Agd) carriesh to itself andA* (g, b)
to itself. By Theorem 6.31 we can writg = kexpX with k € K and
X € igo. The map Ad®g) is the differential at 1 of) — (©g)x(©g)~! =
O(g(®x)g™Y), hence isAd(g)d. Sincedh = h, Ad(®g) carriesh to
itself. Therefore so does AdPg)~1g) = Ad(exp 2X).

The linear transformation Aeéxp 2X) is diagonable og® with positive
eigenvalues. Since it carriésto b, there exists a real subspageof g*
carried to itself by Adexp 2X) such thag® = h @ b'. The transformation
Ad(exp 2X) has a unique diagonable logarithm with real eigenvalues, and
there are two candidates for this logarithm. One is dd&nd the other
is the sum of the logarithms dnandl’ separately. By uniqueness we
conclude that ad2 carriesh to ). By Proposition 2.7X is in §.

Therefore ex)X is in H, and it is enough to show thktis in T. Here
k is a member oK such that Adk) leavesh, stable andA* (g, ) stable.
Since AdKk) leaved, stable, Theorem 4.54 says that&ylis in the Weyl
groupW(g, h). Since Adk) leavesA™ (g, h) stable, Theorem 2.63 says
that Ad(k) yields the identity element iW (g, h). Therefore Adk) is 1 on
b, andk commutes withT . By Corollary 4.52kisinT.

Theorem 7.8. If go is a compact semisimple Lie algebra ands its
complexification, then the following three groups are canonically isomor-
phic:

(@) Autz go/Int go,
(b) Autc g/Intg, and
(c) the group of automorphisms of the Dynkin diagrangof

PROOF. By Proposition 7.4 leGG be a simply connected complex Lie
group with Lie algebra, for example a universal covering group of gnt



1. Further Properties of Compact Real Forms 439

The analytic subgrougK with Lie algebrag, is simply connected by
Theorem 6.31, an#l is compact by Proposition 7.5.

Fix a maximal abelian subspaég of go, let A*™(g, h) be a positive
system of roots, and |€F be the maximal torus oK with Lie algebra
ho. Let D be the Dynkin diagram ofi, and let AutD be the group of
automorphisms ob. Any member of Aut go extends by complexifying
to amember of Aut g, and members of Iny yield members of Ing. Thus
we obtain a group homomorphisin: Autggoe/Int gy — Autc g/Intg.

Let us observe thab is onto. In fact, if a membep of Autc g is given,
theny(go) is acompactreal form @f. By Corollary 6.20 we can adjugtby
a member of Ing so thaty carriesg, into itself. Thus some automorphism
of go is carried to the coset @f underd®.

We shall construct a group homomorphidm Autc g/Intg — Aut D.
Lety € Autc g be given. Sincg is a Cartan subalgebrag{by Proposition
2.13),¢(h) is another Cartan subalgebra. By Theorem 2.15 there exists
Y1 € Intg with Y19 (h) = h. Thenyrp mapsA(g, h) to itself and carries
A*(g, b) to another positive syste\ ™)' (g, h). By Theorem 2.63 there
exists a uniqgue membar of the Weyl groupN (g, ) carrying(A*) (g, b)
to A*(g, h). Theorem 4.54 shows thatis implemented by a member of
Ad(K), hence by a membaepf, of Intg. Thenv,y1¢ mapsA®(g, h) to
itself and yields an automorphism of the Dynkin diagram.

Letus see the effect of the choices we have made. With different choices,
we would be led to somg; ;¢ mappingA*(g, h) to itself, and the claim
is that we get the same member of Aut In fact the compositiony =
(Yoo o(Prayp)~tisinIntg. Lemma 7.7 shows that acts as the identity
on b, and hence the automorphism of the Dynkin diagram corresponding
to ¢ is the identity. Thereforg,y,¢ andy,y;¢ lead to the same member
of Aut D.

Consequently the above construction yields a well defined fundtion
from Autc g/Intg into AutD. Since we can adjust any € Autc g by
a member of Ing so thath maps to itself and\* (g, h) maps to itself, it
follows thatw is a homomorphism.

Let us prove thatl o @ is one-one. Thus leb € Autg go lead to the
identity element of AuD. Write ¢ also for the corresponding complex-
linear automorphism og. Theorem 4.34 shows that we may adjudty a
member of Infy, So thaty carriesh, to itself, and Theorems 2.63 and 4.54
show that we may adjust further by a member of Ini, so thaty carries
A*(g, b) to itself. LetE, be root vectors for the simple roats, . . ., o
of g. Sincey is the identity on, ¢(E,,) = ¢ E,, for nonzero constants
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C,...,G. For eachj, let x; be any complex number with = g;.
Choose, for 1< i < I, membersh; of h with «;(hj) = §;, and put
g= exp(Z'j:l xih;). The elemeng is in H. Then Adg)(E,,) = G E,,

for eachi. Consequently A@)) is a member of Ing that agrees withp
on b and on eaclE,,. By the Isomorphism Theorem (Theorem 2.108),

¢ = Ad(Q).
To complete the proof tha¥ o ® is one-one, we show thatis in T.
We need to see that;| = 1 for all j, so thatx; can be chosen purely

imaginary. First we show thixj is a root vector for-¢; if bar denotes
the conjugation ofy with respect togo. In fact, write E,, = X; + 1Y
with X; andY; in go. If his in ho, thene; (h) is purely imaginary. Since
[6o, go] < go, it follows from the equality

[h, X]] +|[h, YJ] = [h, Eaj] = Qj (h)Eaj = |O(J(h)Y] —|—O(j(h)Xj

that [, X;] = ie;(h)Y; andi[h,Y;] = «;(h)X;. Subtracting these two
formulas gives

[h, X]' - |YJ] = iO{j (h)YJ — (h)X] = —oz,-(h)(X]- - |YJ)

and shows thaE,, is indeed a root vector fora;. Hence we find that
[Ea,,Ea,] isin h. Sincegy is complex linear and carrigg to itself, ¢
respects bar. Therefoqﬁ(Eaj) = C,-Eai. Sincey fixes every element df,
o fixes [E,,, Eaj], and it follows thatc;C; = 1. We conclude thagisin T
and that¥ o ® is one-one.

Since® is onto and o ® is one-one, botlkb andW are one-one. The
fact that¥ is onto is a consequence of the Isomorphism Theorem (Theorem
2.108) and is worked out in detail in the second example at the end of §l1.10.
This completes the proof of the theorem.

Now we take up some properties of Lie groups of matrices to prepare
for the definition of “reductive Lie group” in the next section.

Proposition 7.9. Let G be an analytic subgroup of real or complex
matrices whose Lie algebgg is semisimple. Thefs has finite center and
is a closed linear group.

PrROOF. Without loss of generality we may assume t@as an analytic
subgroup of5L (V) for areal vector spacé. Letg, be the linear Lie alge-
bra of G, and write the complexificatiomof g, as a Lie algebra of complex
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endomorphisms of €. Letgy = £,®po be a Cartan decomposition, and let
K be the analytic subgroup @ with Lie algebrat,. The Lie subalgebra
ug = & P ipp of End: V is a compact semisimple Lie algebra, and we let
U be the analytic subgroup &L (V°) with Lie algebrau,. Proposition
7.2 implies that the universal covering groupof U is compact, and it
follows thatU is compact. Sinc& has discrete center, the ceni&y of

U must be finite.

The centerZg of G is contained irK by Theorem 6.31e, and C U
sincet, C uo. Since AQ(Zg) acts as 1 omg, we conclude thaZg < Z.
ThereforeZg is finite. This proves the first conclusion. By Theorem 6.31f,
K is compact.

SinceU is compact, Proposition 4.6 shows tNdt has a Hermitian inner
product preserved by . ThenU is contained in the unitary group(V ).

Let p(V®) be the vector space of Hermitian transformation¥ 6fso that
GL(V©) has the polar decompositidaL (V) = U (V®) expp(V°). The
members ofiy are skew Hermitian, and hence the memberg afe skew
Hermitian and the members @f are Hermitian. Therefore the global
Cartan decompositio® = K expp, of G that is given in Theorem 6.31c
is compatible with the polar decomposition®t. (V).

We are to prove tha is closed inGL (V®). Letg, = k, expX, tend to
g € GL(V®). Using the compactness Bf and passing to a subsequence,
we may assume thif tends tk € K. Therefore exjX,, converges. Since
the polar decomposition &L (V) is a homeomorphism, it follows that
exp X, has limit expX for someX € p(V®). Sincepy is closed inp(V°),

X isinpo. Thereforeg = kexpX exhibitsg as inG, andG is closed.

Corollary 7.10. Let G be an analytic subgroup of real or complex
matrices whose Lie algebgg is reductive, and suppose that the identity
component of the center @& is compact. Thefs is a closed linear group.

REMARK. In this result and some to follow, we shall work with analytic
groups whose Lie algebras are direct sums i§ an analytic group whose
Lie algebrag, is a direct sunmgy = ao ® by of ideals and ifA and B are
the analytic subgroups correspondingig@ndb,, thenG is a commuting
productG = AB. This fact follows from Proposition 1.122 or may be
derived directly, as in the proof of Theorem 4.29.

PROOF. Write go = Z,, @ [go, go] by Corollary 1.56. The analytic
subgroup ofG corresponding t@,, is (Zg)o, and we leG be the analytic
subgroup corresponding t@ql go]. By the remarks before the prods is
the commuting produdatZs)oGss. The groupGgs is closed as a group of
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matrices by Proposition 7.9, aiidg)o is compact by assumption. Hence
the set of products, which (S, is closed.

Corollary 7.11. Let G be a connected closed linear group whose Lie
algebragg is reductive. Then the analytic subgro@®s of G with Lie
algebra §o, go] is closed, ands is the commuting produ® = (Zg)oGss.

PROOF. The subgroups; is closed by Proposition 7.9, arid is the
commuting productZg)oGss by the remarks with Corollary 7.10.

Proposition 7.12.Let G be a compact connected linear Lie group, and
let go be its linear Lie algebra. Then the complex analytic gr@fpof
matrices with linear Lie algebrga= go @ i go is a closed linear group.

REMARKS. If G is a compact connected Lie group, then Corollary 4.22
implies thatG is isomorphic to a closed linear group. & is realized
as a closed linear group in two different ways, then this proposition in
principle produces two different grougs®. However, Proposition 7.5
shows that the two groufga® are isomorphic. Therefore with no reference
to linear groups, we can speak of the complexificat@nof a compact
connected Lie grouf®, andG€ is unique up to isomorphism. Proposition
7.5 shows that a homomorphism between two such gréupelG’ induces
a holomorphic homomorphism between their complexifications.

PROOF. By Theorem 4.29 let us writ€ = (Zg)Gss With G5 compact
semisimple. Proposition 4.6 shows that we may assume without loss of
generality thats is a connected closed subgroup of a unitary grayp)
for somen, and Corollary 4.7 shows that we may tgl&&; ), to be diagonal.

Let us complexify the decompositiogy = Z;, @ [go, go] to obtain
gt = Z,, ®iZ, & [g,g]. The analytic subgroup correspondingg,
is G1 = (Zg)o and is compact. SinceZ,, consists of real diagonal
matrices, Corollary 1.134 shows that its corresponding analytic subgroup
G, isclosed. In addition the analytic subgro@pwith Lie algebra§, g]is
closed by Proposition 7.9. By the remarks with Corollary 7.10, the group
Gt is the commuting product of these three subgroups, and we are to show
that the product is closed.

For Gs, negative conjugate transpose is a Cartan involution of its Lie
algebra, and therefore conjugate transpose inverse is a global Cartan in-
volution of G;. ConsequentlyG; has a global Cartan decomposition
G; = Gg exp(ps)o, Where(ps)o = i[go, go]. Sincei Z,, commutes with
(p3)o and since the polar decomposition of all matrices is a homeomor-
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phism, it follows that the produds,Gs; is closed. Sincés; is compact,
G® = G;G,G; is closed.

Lemma 7.13.0n matrices le® be conjugate transpose inverse, and let
6 be negative conjugate transpose. Gebe a connected abelian closed
linear group that is stable undér, and letg, be its linear Lie algebra,
stable undeé. Let g, = £y ® po be the decomposition gf into +1 and
—1 eigenspaces under and letKk = {x € G | ®x = x}. Then the map
K x po — G given by(k, X) — kexpX is a Lie group isomorphism.

PrROOF. The groupK is a closed subgroup of the unitary group and
is compact with Lie algebr&. Sincep, is abelian, expg is the analytic
subgroup of5 with Lie algebrap,. By the remarks following the statement
of Corollary 7.10,G = K exppo. The smooth maK x po — G is
compatible with the polar decomposition of matrices and is therefore one-
one. It is a Lie group homomorphism sinG andp, are abelian. Its
inverse is smooth since the inverse of the polar decomposition of matrices
is smooth (by an argument in the proof of Theorem 6.31).

Proposition 7.14. On matrices let® be conjugate transpose inverse,
and leté be negative conjugate transpose. Gebe a connected closed
linear group that is stable undér, and letg, be its linear Lie algebra,
stable undeé. Let g, = ¢, @ po be the decomposition gf into +1 and
—1 eigenspaces under and letKk = {x € G | ®x = x}. Then the map
K x po — G given by(k, X) — kexpX is a diffeomorphism onto.

PrROOF. By Proposition 1.59, is reductive. Therefore Corollary 1.56
allows ustowritgyo = Z,4,P[go, go] With [go, go] SEmMisimple. The analytic
subgroup ofs with Lie algebraZ,,, is (Zg)o, and we leG¢ be the analytic
subgroup ofs with Lie algebra §o, go]. By Corollary 7.11,(Zg)o andGgg
are closed, an® = (Zg)oGss. It is clear thatZ, and [go, go] are stable
underf, and henc&Zg), andGg; are stable unde®.

Because of the polar decomposition of matrices, the Kapp, —> G
is smooth and one-one. The parts of this map associated &gy and
G4 are onto by Lemma 7.13 and Theorem 6.31, respectively. $SigR
andGg commute with each other, it follows thEt x po — Gisonto. The
inverse is smooth since the inverse of the polar decomposition of matrices
is smooth (by an argument in the proof of Theorem 6.31).

Proposition 7.15(Weyl's unitary trick). LetG be an analytic subgroup
of complex matrices whose linear Lie algelsas semisimple and is stable
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under the map given by negative conjugate transpose. dset ¢, po be

the Cartan decomposition g defined by, and suppose thégN ipo = 0.

Let U andG® be the analytic subgroups of matrices with respective Lie
algebrasuy = € @ ipo andg = (¢ @ po)*. The groupU is compact.
Supposethat is simply connected. N is any finite-dimensional complex
vector space, then arepresentation of any of the following kindsleads,

via the formula

(7.16) g=0g0Digo=1uoDiu,

to a representation of each of the other kinds. Under this correspondence
invariant subspaces and equivalences are preserved:

(a) arepresentation @ onV,
(b) arepresentation &f onV,
(c) a holomorphic representationGf onV,
(d) arepresentation @f onV,
(e) arepresentation of onV,
(f) a complex-linear representation @bn V.

PrROOF. The groups$5, U, andGF are closed linear groups by Proposition
7.9, andJ is compact, being a closed subgroup of the unitary group. Since
U is simply connected and its Lie algebra is a compact real forgy 6
is simply connected.

We can pass from (c) to (a) or (b) by restriction. Since continuous
homomorphisms between Lie groups are smooth, we can pass from (a)
or (b) to (d) or (e) by taking differentials. Formula (7.16) allows us to
pass from (d) or (e) to (f). Sinc&C is simply connected, a Lie algebra
homomorphism as in (f) lifts to a group homomorphism, and the group
homomorphism must be holomorphic since the Lie algebra homomorphism
is assumed complex linear (Proposition 1.110). Thus we can pass from (f)
to (c). If we follow the steps all the way around, starting from (c), we
end up with the original representation, since the differential at the identity
uniquely determines a homomorphism of connected Lie groups. Thus
invariant subspaces and equivalence are preserved.

ExaMPLE. Weyl's unitary trick gives us a new proof of the fact that
finite-dimensional complex-linear representations of complex semisimple
Lie algebras are completely reducible (Theorem 5.29); the crux of the new
proof is the existence of a compact real form (Theorem 6.11). For the
argument let the Lie algebgabe given, and leG be a simply connected
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complex semisimple group with Lie algelgaCorollary 7.6 allows us to
regardG as a subgroup d&L (V®) for some finite-dimensional complex
vector spac® ©. Letuy be a compact real form @f so thag® = uy @iy,

and letU be the analytic subgroup @& with Lie algebrau,. Proposition
7.15 notes that) is compact. By Proposition 4.6 we can introduce a
Hermitian inner product intd&/© so thatU is a subgroup of the unitary
group. If a complex-linear representation gfs given, we can use the
passage (f) to (b) in Proposition 7.15 to obtain a representatibn dhis

is completely reducible by Corollary 4.7, and the complete reducibility of
the given representation gffollows.

The final proposition shows how to recognize a Cartan decomposition
of a real semisimple Lie algebra in terms of a bilinear form other than the
Killing form.

Proposition 7.17. Let g, be a real semisimple Lie algebra, tebe an
involution of gg, and letB be a nondegenerate symmetric invariant bilinear
form on go such thatB(@ X, 0Y) = B(X,Y) for all X andY in g,. If
the form By (X, Y) = —B(X, 0Y) is positive definite, thed is a Cartan
involution of g.

PROOF. Let gy = € & po be the decomposition af, into +1 and
—1 eigenspaces undér, and extendB to be complex bilinear on the
complexificationg of go. Sinceé is an involutionuy = € @ ipg is a Lie
subalgebra off = (go)®, necessarily a real form. Hetgis semisimple,
and then so isy. SinceBy is positive definite B is negative definite on
£, and onip,. Also £, andipy are orthogonal sincX € € andY € ipg
implies

B(X,Y) = B(#X,0Y) = B(X, —Y) = —B(X, Y).

HenceB is real valued and negative definite mn

By Propositions 1.120 and 1.121, Igt = (Autg ug)o. Consequently
Intu, is a closed subgroup d@bL (1p). On the other hand, we have just
seen that-B is an inner product omg, and in this inner product every
member of ad, is skew symmetric. Therefore the corresponding analytic
subgroup Inty, of GL (1) acts by orthogonal transformations. Sinceunt
is then exhibited as a closed subgroup of the orthogonal group, Ist
compact. Hence, is a compact real form af. By the remarks preceding
Lemma 6.27¢ is a Cartan involution ofo.
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2. Reductive Lie Groups

We are ready to define the class of groups that will be the objects of study
in this chapter. The intention is to study semisimple groups, but, as was
already the case in Chapters IV and VI, we shall often have to work with
centralizers of abelian analytic subgroups invariant under a Cartan involu-
tion, and these centralizers may be disconnected and may have positive-
dimensional center. To be able to use arguments that take advantage of
such subgroups and proceed by induction on the dimension, we are forced
to enlarge the class of groups under study. Groups in the enlarged class
are always called “reductive,” but their characterizing properties vary from
author to author. We shall use the following definition.

A reductive Lie group is actually a 4-tupl€G, K, 6, B) consisting of
a Lie groupG, a compact subgrouk of G, a Lie algebra involutio® of
the Lie algebra, of G, and a nondegenerate, &8l invariant,d invariant,
bilinear formB on g, such that

(i) gois areductive Lie algebra,

(i) the decomposition ofy, into +1 and—1 eigenspaces undeéris
go = to D po, Wheret, is the Lie algebra oK,

(iii) €, andpy are orthogonal undds, andB is positive definite ompg
and negative definite o,

(iv) multiplication, as a map froniK x exppg into G, is a diffeomor-
phism onto, and

(v) every automorphism Ad) of g = (go)© isinner for g € G, i.e.,
is given by some in Int g.

When informality permits, we shall refer to the reductive Lie group
simply asG. Thend will be called theCartan involution, go = & ® bo
will be called theCartan decomposition of gy, K will be called the
associatednaximal compact subgroup(a name justified by Proposition
7.19a below), and will be called theinvariant bilinear form .

The ideais that a reductive Lie gro@s a Lie group whose Lie algebra
is reductive, whose center is not too wild, and whose disconnectedness is
nottoo wild. The various properties make precise the notion “not too wild.”
In particular, property (iv) and the compactnesdogay thatG has only
finitely many components.

We write G4 for the semisimple analytic subgroup®fwith Lie algebra
[g0, go]. The decomposition ofs in property (iv) is called theglobal
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Cartan decomposition Sometimes one assumes about a reductive Lie
group that also

(vi) Ggs has finite center.

In this case the reductive group will be said to be inttagish-Chandra
classbecause of the use of axioms equivalent with (i) through (vi) by
Harish-Chandra. Reductive groups in the Harish-Chandra class have often
been the groups studied in representation theory.

EXAMPLES.

1) G is any semisimple Lie group with finite centéris a Cartan invo-
lution, K is the analytic subgroup with Lie algebi@ andB is the Killing
form. Property (iv) and the compactnesskofollow from Theorem 6.31.
Property (v) is automatic sin€égconnected makes AG) = Intgy C Intg.
Property (vi) has been built into the definition for this example.

2) G is any connected closed linear group of real or complex matrices
closed under conjugate transpose inveése negative conjugate trans-
pose,K is the intersection o6 with the unitary group, and(X, Y) is
Re TrXY). The compactness df follows sinceK is the intersection
of the unitary group with the closed group of matricgs Property (iv)
follows from Proposition 7.14, and property (v) is automatic Sices
connected. Property (vi) is automatic for any linear group by Proposition
7.9.

3) G is any compact Lie group satisfying property (v). Then= G,

6 = 1, andB is the negative of an inner product constructed as in Propo-
sition 4.24. Properties (i) through (iv) are trivial, and property (vi) follows
from Theorem 4.21. Every finite group is trivially an example where
property (v) holds. Property (v) is satisfied by the orthogonal gioup)

if nis odd but not byO(n) if nis even.

4) G is any closed linear group of real or complex matrices closed
under conjugate transpose inverse, given as the common zero locus of
some set of real-valued polynomials in the real and imaginary parts of the
matrix entries, and satisfying property (v). Heérés negative conjugate
transposeK is the intersection o6 with the unitary group, an&(X, Y)
is Re TXY). The compactness d¢f follows sinceK is the intersection
of the unitary group with the closed group of matri¢gs Properties (iv)
and (vi) follow from Propositions 1.143 and 7.9, respectively. The closed
linear group of real matrices of determinaint satisfies property (v) since

Ad(diag(—1, 1, ..., 1)) = Ad(diage™ /" e 7/n e/,
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But as noted in Example 3, the orthogonal graD) does not satisfy
property (v) ifn is even.

5) G is the centralizer in a reductive gro@ of a 6 stable abelian
subalgebra of the Lie algebra &f. HereK is obtained by intersection,
and @ and B are obtained by restriction. The verification tiatis a
reductive Lie group will be given below in Proposition 7.25.

If G is semisimple with finite center andk, 6, andB are specified so
thatG is considered as a reductive group, titeis forced to be a Cartan
involution inthe sense of Chapter VI. This is the content of Proposition 7.17.
Hence the new terms “Cartan involution” and “Cartan decomposition”
are consistent with the terminology of Chapter VI in the case @&
semisimple.

An alternative way of saying (iii) is that the symmetric bilinear form

(7.18) B,(X,Y) = —B(X, 8Y)

is positive definite omyo.
We use the notatiop, ¢, p, etc., to denote the complexifications gaf
£, po, etc. Using complex linearity, we exteddrom g, to g andB from

go X gotOg X g.

Proposition 7.19.If G is a reductive Lie group, then

(d) K is a maximal compact subgroup Gf

(b) K meets every component &, i.e.,G = KGy,

(c) each member of AK) leavesty andp, stable and therefore com-
mutes withd,

(d) (adX)* = —ado X relative toB, if X is in g,

(e) 0 leavesZ,, and [go, go] stable, and the restriction 6fto [go, go]
is a Cartan involution,

(H the identity componenG, is a reductive Lie group (with maxi-
mal compact subgroup obtained by intersection and with Cartan
involution and invariant form unchanged).

PrROOF. For (a) assume the contrary, and Kf be a compact sub-
group of G properly containingK. If k; is in K; but not K, write
ky, = kexpX according to (iv). Then exj is in K;. By compactness
of Ky, (expX)" = expnX has a convergent subsequencésinbut this
contradicts the homeomorphism in (iv).
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Conclusion (b) is clear from (iv). In (c), AK) (o) < & sinceK has Lie
algebrat,. SinceB is Ad(K) invariant, AdK) leaves stable the subspace
of go orthogonal tcty, and this is jusp,.

For (d) we have

By((@dX)Y, Z) = —B((@adX)Y, #Z) = B(Y, [X, 6Z])
= B(Y, 0[6X, Z]) = By (Y, —(add X)2),

and (d) is proved. Conclusion (e) follows from the facts thas an
involution andB; is positive definite, and conclusion (f) is trivial.

Proposition 7.20. If G is a reductive Lie group in the Harish-Chandra
class, then

() G is a closed subgroup,
(b) any semisimple analytic subgroup®f; has finite center.

REMARK. Because of (b), in checking whether a particular subgroup of
G is reductive in the Harish-Chandra class, property (vi) is automatic for
the subgroup if it holds fo6.

PROOF.

(a) Write the global Cartan decomposition of Theorem 6.31&fgras
Gss = KssexplpoN[go, go]). This is compatible with the decomposition in
(iv). By (vi)and Theorem 6.31K is compact. HencK« x (poN[go, go])
is closed inK x po, and (iv) implies thatGg is closed inG.

(b) Let Sbe a semisimple analytic subgroup®§; with Lie algebras,.
The group Ag(S) is a semisimple analytic subgroup of the linear group
GL(g) and has finite center by Proposition 7.9. Undeg Adls maps into
the center of Ag(S). Hence the image oZs is finite. The kernel of
Ad, on S consists of certain membexsof Gg for which Ad,(x) = 1.
Thesex’s are inZg_, and the kernel is then finite by property (vi) fGr.
Consequentlys is finite.

Proposition 7.21. If G is a reductive Lie group, then the function
® : G — G defined by

OkexpX) = kexp(—X) fork e K andX € pg

is an automorphism d& and its differential i%.

REMARK. As in the semisimple cas€) is called theglobal Cartan
involution.
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PrOOF. The function® is a well defined diffeomorphism by (iv). First
consider its restriction to the analytic subgrdegwith Lie algebra§, go].
By Proposition 7.19e the Lie algebrg[ go] has a Cartan decomposition

[90, 80l = ([0 8ol N £o) @ ([go, o] N Po)-

If Kss denotes the analytic subgroup @fs whose Lie algebra is the first
summand on the right side, then Theorem 6.31 shows3hatonsists ex-
actly of the elementsiK s eXp([go, go] NPo) @and thatd is an automorphism
on G with differential 6.

Next consider the restriction @ to the analytic subgrouZg,)o. By
Proposition 7.19e the Lie algebra of this abelian group decomposes as

Zgo = (Zgo n EO) S (Zgo N Po)

Since all the subalgebras in question are abelian, the exponential mappings
in question are onto, an@g,)o is @ commuting product

(Zgy)o = eXp(Zg, N Ey) EXP(Zg, N Po)

contained inK exppo. Thus® on(Zg,), is the lift to the group o on the
Lie algebra and hence is an automorphism of the subgtdgpo.

The subgroupsss and (Zg,)o commute, and henc® is an auto-
morphism of their commuting product, which @, by the remarks with
Corollary 7.10.

Now conside® on all of G, where itis given consistently by (kgo) =
k®(go) for k € K andgy € Go. By Proposition 7.19¢c we haviAd(k) =
Ad(k)@ on gy, from which we obtair® (kexpX k=1) = kO (expX)k~1 for
k € K andX € go. Therefore

O (kgok™) = kO(go)k* fork € K andg e G,.

On the product of two general elemelty andk'g, of G, we therefore
have

O (kgok'gy) = O (KKK ~*gok'gy) = Kk'® (K *gok'gp)
= kk'© (K gok) O (gy) =k® (go)K O (g)) = O (ko) O (K'D),

as required.
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Lemma 7.22. Let G be a reductive Lie group, and lgt= kexpX
be the global Cartan decomposition of an elemgiof G. If sqis a6
stable subspace gf such that Adg) normalizessy, then Adk) and adx
each normalize,. If Ad(g) centralizesso, then Adk) and adX each
centralizes,.

PrROOF. Forx € G, we have(©g)x(0g)~! = B(g(©x)g~1). Differen-
tiating atx = 1, we obtain

(7.23) Ad©g) = HAd(Q)6.

Therefore AQ®g) normalizess,. Since®g = k exp(— X), it follows that
Ad of (©g)~'g = exp 2X normalizess,. Because of Proposition 7.19d,
Ad(exp 2X) is positive definite relative td3,, hence diagonable. Then
there exists a vector subspaggof g, invariant under Adexp 2X) such
thatgo = so @ s,. The transformation A@xp 2X) has a unique logarithm
with real eigenvalues, and aXds a candidate for it. Another candidate
is the logarithm on each subspace, which normakgesds,. These two
candidates must be equal, and thereforeXdd@rmalizes, ands;,. Hence
the same thing is true of a&l. Then AdexpX) and Adg) both normalize
so ands;, and the same thing must be true of(ky

If Ad (g) centralizess,, we can go over the above argument to see that
Ad(k) and adX each centralize,. In fact, Adlexp 2X) must centraliz,,
the unique real logarithm must be 0 a4y and adX must be 0 orsy. The
lemma follows.

Lemma 7.24. Let G be a reductive Lie group, and le§ = £, @ ipo.
Then Ad,(K) is contained in Inf(uo).

PrROOF. The group Ing is complex semisimple with Lie algebradd).

If bar denotes the conjugation gfwith respect tqgyo, then the extension
By(Z1, Z,) = —B(Z1,0Z,) is a Hermitian inner product og, and the
compact real form gduo) of ad,(g) consists of skew Hermitian transfor-
mations. Hence Igtuy) consists of unitary transformations and, ad,)
consists of Hermitian transformations. Therefore the global Cartan de-
composition of Ing given in Theorem 6.31c is compatible with the polar
decomposition relative t&,, and every unitary member of Igtis in the
compact real form Intuo).

Letk be inK. The transformation AgK) is in Intg by property (v)
for G, and Ad, (k) is unitary sinceB is Ad(k) invariant and since Ag)
commutes with bar and (Proposition 7.19¢c). From the result of the
previous paragraph, we conclude that,Ad is in Inty(uo).
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Proposition 7.25. If G is a reductive Lie group anbl, is af stable
abelian subalgebra of its Lie algebra, th&g(h,) is a reductive Lie group.
Here the maximal compact subgroup &£ (o) is given by intersection,
and the Cartan involution and invariant form are given by restriction.

REMARK. The hypothesis “abelian” will be used only in the proof of
property (v) forZs(ho), and we shall make use of this fact in Corollary
7.26 below.

PrROOF. The groupZg(ho) is closed, hence Lie. Its Lie algebra is
Z,,(ho), which isp stable. Then it follows, just as in the proof of Corollary
6.29, thatZ,,(ho) is reductive. This proves property (i) of a reductive Lie
group. SinceZ,, (ho) is 0 stable, we have

Zy,(ho) = (Z4,(ho) N Eo) @ (Z4,(ho) N po),

and the first summand on the right side is the Lie algebragho) N K.
This proves property (ii), and property (iii) is trivial.

In view of property (iv) forG, what needs proof in (iv) foZg(ho) is
that Zg (ho) x (Z4,(ho) N po) Maps ontaZg(ho). That is, we need to see
that if g = kexpX is the global Cartan decomposition of a membef
Zs(ho), thenkisin Zg(ho) andX isin Z,, (ho). But this is immediate from
Lemma 7.22, and (iv) follows.

For property (v) we are to show that Ady, carriesZg (ho) into Int Z, (b).

If X € Zg(ho) is given, then property (iv) allows us to write= kexpX
withk € Zg (ho) andX € Zy (ho)Npo. Then Adz, ¢, (expX)isinintZ,(h),
and it is enough to tredt. By Lemma 7.24, Agd(k) is in the subgroup
Int, (1), wWhich is compact by Proposition 7.9.

The element Agl(k) centralizesh, and hence centralizes the variant
(hoNto) ®i(hoNpo). Since(hyNty) B i(hoNpo) is an abelian subalgebra
of g, the centralizer of, in Int,(uo) is the centralizer of a torus, which is
connected by Corollary 4.51. Therefore 4&K) is in the analytic subgroup
of Int g with Lie algebraZ,,, ((hoNEo) ®i (hoNpo)). By Corollary 4.48 we can
write Ad, (k) = expad Y with Y in this Lie algebra. Then Agd (k) =
expag, Y, andY isin Z,(h). Then Ad, ) (K) is in IntZ,(h), and (v)
is proved.

Corollary 7.26. If G is a reductive Lie group, then
(@) (Zgy)o € Za,
(b) Zg isareductive Lie group (with maximal compact subgroup given
by intersection and with Cartan involution and invariant form given
by restriction).
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PrOOF. Property (v) forG gives Ad,(G) < Intg, and Intg acts trivially
on Z,. Hence AdG) acts trivially onZ,,, andG centralizegZg,)o. This
proves (a).

From (a) it follows thatZs has Lie algebraZ,,, which is also the
Lie algebra ofZg(go). Therefore property (v) is trivial for botZg and
Zc(go). Proposition 7.25 and its remark show t&af(go) is reductive, and
consequently only property (iv) needs proof #¢. We need to see that if
z € Zg decomposes i under (iv) asz = kexpX, thenk is in Zg N K
andX isin Z,. By Lemma 7.22 we know that is in Zg(go) and X is
in Zg,. Then expX is in (Zg,)o, and (a) shows that expis in Zg. Since
z and expX are inZg, so isk. This completes the proof of (iv), and (b)
follows.

Let G be reductive. Since gg carries f, g] to itself, Intg carries f, g]
to itself. By (v), Ad(G) normalizes §o, go]. ConsequentlyG = K G is
a subgroup of5.

The vector subspagg N Z,, is an abelian subspace @f, and therefore
Z,ec = €Xp(ho N Z,,) is an analytic subgroup @.

Proposition 7.27.1f G is a reductive Lie group, then

(@) °G = K exp(po N [go, ga]), and°G is a closed subgroup,

(b) the Lie algebrdg, of °G is £ @ (ho N [go, ga]),

(c) °Gisreductive (with maximal compact subgroii@nd with Cartan
involution and invariant form given by restriction),

(d) the center ofG is a compact subgroup &,

(e) Z,« is closed, is isomorphic to the additive group of a Euclidean
space, and is contained in the centeGof

(f) the multiplication map exhibit8G x Z,.. as isomorphic td.

REMARK. The closed subgroug,.. is called thesplit component
of G.

PROOF.

(a) If we write the global Cartan decomposition Gf; as Gss =
Kss €Xpho N [go, go]), then®G = K exp(po N [go, g0]), and we see from
property (iv) thafG is closed.

(b) Because of (a)’G is a Lie subgroup. SincgG containsk and
Gss, its Lie algebra must contaity @ (po N [go, go]). From property
(iv) for G, the formula®G = K exp(po N [go. go]) Shows that dinfgy =
dim &, + dim(po N [go. gol). S0%g0 = €0 & (po N [go. go))-
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(c) From (b) we see thdly is 6 stable. From this fact all the properties
of a reductive group are clear except properties (iv) and (v). Property (iv)
follows from (a). For property (v) we know thatany Ad) forg € °Gisin
Intg. Therefore we can write Adg) as a product of elements exp,&¥;)
with Xj in[g, g]or Z,. WhenX; isin Z,, exp ad(X;) is trivial. Therefore
Ad,(g) agrees with a product of elements exp@) with X; in [g, g].
Restricting the action tag[ g], we see that Ad 4 (9) isin Int[g, g].

(d) Conclusion (c) and Corollary 7.26 show that the cente?®fis
reductive. The intersection of the Lie algebra of the center w4tts O,
and hence property (iv) shows that the center is contain&d in

(e) SincepoNZ,, is aclosed subspacemyf, property (iv) implies thaZ
is closed and thaZ . is isomorphic to the additive group of a Euclidean
space. Since Ingacts trivially onZ,, property (v) implies that Ath) = 1
onpo N Z,, for everyg € G. HenceZ . is contained in the center G.

(f) Multiplication is a diffeomorphism, as we see by combining (a),
property (iv), and the formula exX + Y) = expX expY for X in
po N [go, go] andY in po N Z,,. Multiplication is a homomorphism since,
by (e), Z. is contained in the center @&.

Reductive Lie groups are supposed to have all the essential structure-
theoretic properties of semisimple groups and to be closed under various
operations that allow us to prove theorems by induction on the dimension
ofthe group. The remainder of this section will be occupied with reviewing
the structure theory developed in Chapter VI to describe how the results
should be interpreted for reductive Lie groups.

The first remarks concern the Cartan decomposition. The decomposi-
tion on the Lie algebra level is built into the definition of reductive Lie
group, and the properties of the global Cartan decomposition (generalizing
Theorem 6.31) are given partly in property (iv) of the definition and partly
in Proposition 7.21.

It might look as if property (iv) would be a hard thing to check for
a particular candidate for a reductive group. It is possible to substitute
various axioms concerning the component structui® tiat are easier to
state, but it is often true that ones gets at the component structure by first
proving (iv). Proposition 1.143 and Lemma 7.22 provide examples of this
order of events; the global Cartan decomposition in those cases implies
that the number of components of the group under study is finite. Thus
property (iv) is the natural property to include in the definition even though
its statement is complicated.

The other two general structure-theoretic topics in Chapter VI are the
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Iwasawa decomposition and Cartan subalgebras. Let us first extend the
notion of an lwasawa decomposition to the context of reductive Lie groups.
Let a reductive Lie groufs be given, and write its Lie algebra gs =

Zg, @ [go, g0]- Let ag be a maximal abelian subspacepgf Certainlyag
containgp, N Z,, and thereforey is of the form

(7.28) ap = (po N Zg,) ® (ao N [go, gol),

whereagN[go, go] is @a maximal abelian subspacepgi[go, go]. Theorem
6.51 shows that any two maximal abelian subspaceas of [go, go] are
conjugate via AdK), and it follows from (7.28) that this result extends to
our reductivey,.

Proposition 7.29. Let G be a reductive Lie group. lfi, anda; are
two maximal abelian subspacespgf then there is a membkrof K with
Ad(k)a; = ao. The membek of K can be taken to be iK N Gg. Hence

Po = Uker, Ad(K)ao.

Relative toa,, we can form restricted roots just as in 8VI.4rdstricted
root of g, also called aoot of (go, ao), iS @ nonzerd. € aj such that the
space

(g0), = (X € go | (@dH)X = A(H)X forall H € ao)

is nonzero. It is apparent that such a restricted root is obtained by taking
a restricted root forgy, go] and extending it fromy N [go, go] tO ag by
making it be 0 orpg N Z,,. The restricted-root space decomposition for
[g0, g0] gives us a restricted-root space decompositiongforWe define
mo = Z,(ap), SO that the centralizer af in go is mo @ ao.

The set of restricted roots is deno&d Choose a notion of positivity for
ag inthe manner of 811.5, as for example by using a lexicographic ordering.
Let =" be the set of positive restricted roots, and define- &, 5. (go);.-
Thenng is a nilpotent Lie subalgebra af,, and we have an lwasawa
decomposition

(7.30) go=tPagdng
with all the properties in Proposition 6.43.

Proposition 7.31. Let G be a reductive Lie group, let (7.30) be an
Iwasawa decomposition of the Lie algebya of G, and letA and N
be the analytic subgroups @& with Lie algebrasa, andny. Then the
multiplication mapK x A x N — G given by (k,a,n) — kan is a
diffeomorphism onto. The groupsandN are simply connected.
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PrROOF. Multiplication is certainly smooth, and it is regular by Lemma
6.44. To see thatitis one-one, itis enough, as in the proof of Theorem 6.46,
to see that we cannot hakan = 1 nontrivially. The identitykan = 1
would force the orthogonal transformation ¢l to be upper triangular
with positive diagonal entries in the matrix realization of Lemma 6.45, and
consequently we may assume that(lRd= Ad(a) = Ad(n) = 1. Thusk,

a, andn are inZg(go). By Lemma 7.22a is the exponential of something
in Z,,(go) = Z,,. Hencea is in Z,,. By constructiom is in Gg, and
hencek andn are in°G. By Proposition 7.27fa = 1 andkn = 1. But
then the identitykn = 1 is valid in G, and Theorem 6.46 implies that
k=n=1.

To see that multiplication is oni8, we observe from Theorem 6.46 that
exppoN[go, go]) isin the image. By Proposition 7.27a, the image contains
9G. Also Z, is in the image (of x A x 1), andZ,,. commutes witHG.
Hence the image contaif&€ Z,. This is all of G by Proposition 7.271.

We definen, = @, 5+ (go)—.. Thenng is a nilpotent Lie subalgebra
of go, and we letN~ be the corresponding analytic subgroup. Since*
is the set of positive restricted roots for another notion of positivitgfHn
go = LoD apPn, is another Iwasawa decompositiorggbndG = K AN~
is another lwasawa decomposition @f The identity6(go), = (go)—_»
given in Proposition 6.40c implies thah, = ny;. By Proposition 7.21,
ON = N".

We write M for the groupZ (ap). This is a compact subgroup since it
is closed inK, and its Lie algebra i€, (ao). This subgroup normalizes
each(gp), since

ad(H)(Ad(m)X;) = Ad(myadAd(m)~*H) X,
= Ad(m)ad(H) X, = A(H)Ad(m) X,

form e M, H € ap, andX; € (go),. ConsequenthM normalizesn,.
ThusM centralizesA and normalizedN. SinceM is compact andAN is
closed,M AN is a closed subgroup.

Reflections in the restricted roots generate a ghdid ), which we call
the Weyl group of . The elements oW (%) are nothing more than the
elements of the Weyl group for the restricted rootsgf o], with each
element extended tg; by being defined to be the identity ppn Z,,.

We defineW(G, A) = Nk (ag)/Zk(ag). By the same proof as for
Lemma 6.56, the Lie algebra dk (ag) is mg. ThereforeW(G, A) is
a finite group.
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Proposition 7.32.1f G is areductive Lie group, thenthe grow(G, A)
coincides withW(X).

PrROOFE Just as with the corresponding result in the semisimple case
(Theorem 6.57), we know th&¥(X) € W(G, A). Fixasimple systerx ™
for ¥. Asinthe proofof Theorem 6.57, it suffices to show thitéf Ny (ag)
has Adk)X* = X*, thenk is in Zk (ag). By Lemma 7.24, Ag(k) is in
the compact semisimple Lie group Jai,), whereuy, = € @ ipo. The
connectedness of Iftu) is the key, and the remainder of the proof of
Theorem 6.57 is applicable to this situation.

Proposition 7.33. If G is a reductive Lie group, theNl meets every
component oK, hence every component Gf.

PrROOF. Letk e K be given. Since Atk)(ao) is maximal abelian in
po, Proposition 7.28 gives Ug € K, with Ad(ky;*k1)(ag) = ao. Thus
ky *k~* normalizesi,. Comparison of Proposition 7.32 and Theorem 6.57
producek; ' € K so thatk; *ky 'kt centralizesy,. Thenkkgk; is in M,
andk is in M K,.

Next let us extend the notion of Cartan subalgebras to the context of
reductive Lie groups. We recall from 8IV.5 that a Lie subalgdfaraf g,
is a Cartan subalgebraif its complexificationh is a Cartan subalgebra
of g = (go)®. Sinceh must equal its own normalizer (Proposition 2.7), it
follows thatZ, < h. Thereforef, must be of the form

(7.34) o = Zg, @ (ho N [go, gal),

wherebho N [go, go] is a Cartan subalgebra of the semisimple Lie algebra
[g0, go]. By Proposition 2.13 a sufficient condition fg to be a Cartan
subalgebra of is thath, is maximal abelian igo and ag b, is simulta-
neously diagonable.

As in the special case (4.31), we can form a set of radags h), which
amount to the roots ofgf g] with respect toh N [g, g], extended tdy by
being defined to be 0 o@,. We can form also a Weyl group/(g, )
generated by the reflections in the memberapiV (g, §) consists of the
members oV ([g, g], h N [g, g]) extended tg by being defined to be the
identity onZ,.

Because of the form (7.34) of Cartan subalgebrag dProposition 6.59
implies that any Cartan subalgebra is conjugate vigdtd a6 stable Cartan
subalgebra. There are only finitely many conjugacy classes (Proposition
6.64), and these can be related by Cayley transforms.
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The maximally noncompact stable Cartan subalgebras are obtained
by adjoining to an lwasawa, a maximal abelian subspacemj. As in
Proposition 6.61, all such Cartan subalgebras are conjugat€ .vidhe
restricted roots relative ta, are the nonzero restrictions dg of the roots
relative to this Cartan subalgebra.

Any maximally compac® stable Cartan subalgebra is obtained as the
centralizer of a maximal abelian subspacepfAs in Proposition 6.61,
all such Cartan subalgebras are conjugatekvia

Proposition 7.35.Let G be a reductive Lie group. If twé@ stable Cartan
subalgebras afy are conjugate vi&, then they are conjugate iz and
in fact by K N Gg.

PROOF. Leth, andh, bed stable Cartan subalgebras, and suppose that
Ad(9)(ho) = bg. By (7.23), Ad®Q)(ho) = by. If g = kexpXwithk e K
and X € po, then it follows that Ad of(®g)1g = exp 2X normalizes,.
Applying Lemma 7.22 to exp®, we see thatX, ho] < ho. Therefore
expX normalizesh,, and Adk) carriesh to by,

Since Adk) commutes witl9, Ad(k) carrieshoNpo to hyNpo. Letag be
a maximal abelian subspacejgfcontainingh, N po, and choosé, € K
by Proposition 7.29 so that Akbk)(ap) = ao. Comparing Proposition
7.32 and Theorem 6.57, we can fikde K, so thatk;kok centralizes,.
Then AdK)|., = Ad(k;*k; H]4,, and the element = k;k; * of Ky has the
property that Adk") (hoNpo) = hyNpo. Thed stable Cartan subalgebrias
and Adk’)~1(h,) therefore have the sanpg part, and Lemma 6.62 shows
that they are conjugate via N Gg.

3. KAK Decomposition

Throughout this section we I be a reductive Lie group, and we let
other notation be as in §2.

From the global Cartan decompositiéh = K exppo, and from the
equalitypo = U, Ad(K)ap of Proposition 7.29, it is immediate that
G = KAK in the sense that every element®fcan be decomposed as
a product of an element df, an element ofA, and a second element of
K. In this section we shall examine the degree of nonuniqueness of this
decomposition.

Lemma 7.36.1f X isin pg, thenZg(expX) = Zg(RX).
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PROOF. CertainlyZs(RX) C Zg(expX). Inthe reverse directiondis
in Zg(expX), then Adg)Ad(expX) = Ad(expX)Ad(g). By Proposition
7.19d, AdexpX) is positive definite om,, thus diagonable. Consequently
Ad(g) carries each eigenspace of @apX) to itself, and it follows that
Ad(g)ad X) = ad(X)Ad(g). By Lemma 1.118,

(7.37) adAd(g) X) = ad(X).

Write X =Y + ZwithY € Z,, andZ € [go, go]. By property (v) of a
reductive group, A))Y = Y. Comparing this equality with (7.37), we
see that adAd(g)Z) = ad(Z), hence that A@Q)Z — Z is in the center of
go. Since itisin po, go] also, itis 0. Therefore A@) X = X, andgisin
the centralizer oR X.

Lemma 7.38.If kisin K and ifa anda’ are in A with kak~! = &/, then
there exists, in Ny (ag) with keak,* = a'.

PROOF. The subgroufZs (@) is reductive by Lemma 7.36 and Propo-
sition 7.25, and its Lie algebra i8,,(a') = {X € go | Ad(@)X = X]}.
Now ay and AdKk)a, are two maximal abelian subspacesZyf(a’) N po
sincekak~! = a’. By Proposition 7.29 there exisks in K N Zg(a') with
Ad(ky)Ad(K)ag = ag. Thenky = kik is in Nk (ag), and

koaky ! = ky(kak kit = kja'k;! = &',

Theorem 7.39(K AK decomposition). Every element {& has a de-
composition akjak, with k;, k, € K anda € A. In this decomposition,
a is uniquely determined up to conjugation by a membeWfs, A). If
ais fixed as expH with H € agand ifA(H) # O for all A € X, thenk; is
unique up to right multiplication by a member bf.

PrROOF. Existence of the decomposition was noted at the beginning of
the section. For uniqueness suppsgk, = kjak;. If k' = k;"*k]
andk = kik;=*, thenk'a’k = a and hencek’k)(k*a'’k) = a. By the
uniqueness of the global Cartan decompositidk,= 1 andkta’k = a.
Lemma 7.38 then shows thatanda are conjugate vid\k (ao).

Now leta = &' = expH with H € ap andA(H) # OforallA € X.
We have seen th&tlak = a. By Lemma 7.36, Ack)"H = H. Since
A(H) # O for all A € X, Lemma 6.50 shows that,,(H) = ag & my.
Hence the centralizer dfl in p, is ag, and the centralizer of A#)~*H in
po is Ad(k)~ap. But Ad(k)"tH = H implies that these centralizers are
the same: Atk) ay = ao. Thusk is in Nk (ao).

By Proposition 7.32, A() is given by an element of the Weyl group
W(Z). Sincei(H) # 0 for all x € X, we can define a lexicographic
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ordering so that the positive restricted roots are positiveHon Then
Ad(kkH = H says thatw permutes the positive restricted roots. By
Theorem 2.63w = 1. Therefore Adk) centralizesy,, andk is in M.

Fromk'’k = 1, we see thalt’ is in M. Thenk’ = k;"~*k] shows thak;
andk differ by an element oM on the right.

4. Bruhat Decomposition

We continue to assume thét is a reductive Lie group and that other
notation is as in 82.

We know that the subgrould = Zk (ag) of K is compact, and we saw
in 82 thatM AN is a closed subgroup @. It follows from the Iwasawa
decomposition that the multiplication mdg x A x N — MAN is a
diffeomorphism onto.

The Bruhat decomposition describes the double-coset decomposition
M AN\G/M AN of G with respect tavi AN. Here is an example.

0 at

malizerNg (ag) consists of the four matricels ( 1 O) and+ ( _0 1),

EXAMPLE. LetG = SL(2, R). HereM AN = {(a b )} The nor-

0 1

while the centralizeZ « (ag) consists of the two matricels (

Cl) _é> is a representative of the nontrivial

a b
d

0 1). Thus
IW(G. A)| = 2, andi = (

element oW (G, A). Letg =
in MAN. If c # 0, then

(20)(Ea)=(2 5)=(ar )6 &)
(206 )R )6 S
(2 9)=6 )R B)6 &)

exhibits (i b as in MANwMAN. Thus the double-coset space

) be giveninG. If c = 0, theng is

Hence

d
M AN\G/M AN consists of two elements, with 1 afichs representatives.
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Theorem 7.40(Bruhat decomposition). The set of double cosets of
MAN\G/M AN is parametrized in a one-one fashion W(G, A), the
double coset correspondingdoe W(G, A) beingM ANwM AN, where
w is any representative af in N (ao).

PROOF OF UNIQUENESS Suppose thab; andw, are inW(G, A), with
w, andw, as representatives, and thxatandx, in M AN have

(741) Xlwl = w2X2.

Now Ad(N) = exp(ad(ng)) by Theorem 1.127, and hence @¢) carries

ap 10 ap ® ng while leaving thea, component unchanged. Meanwhile
under Ad, Nk (ap) permutes the restricted-root spaces and thus carries
my @ P, 5 (90); to itself. Apply Ad of both sides of (7.41) to an element

H € ao and project toag alongmy @& P, 5 (go)s. The resulting left
side is inag @ ng with ag component Adw,)H, while the right side is in
Ad(w,)H + Ad(w,) (my @ ng). Hence Adw,)H = Ad(w,)H. SinceH

is arbitrary,, ', centralizesi,. Thereforew; = w.

The proof of existence in Theorem 7.40 will be preceded by three
lemmas.

Lemma 7.42.Let H € ap be such that(H) # OforallA € X. Then
the mappingy : N — go given byn — Ad(n)H — H carriesN onton,.

PROOF Write np = @D (go),. @s a sum of restricted-root spaces, and
regard the restricted roots as ordered lexicographically. For any restricted
roote, the subspace, = 0, ., (go); is anideal, and we prove by induction
downward onx thatg carriesN, = expn, onton,. This conclusion for
equal to the smallest positive restricted root gives the lemma.

If o is given, we can writey, = (go), D ns With § > «. Let X be
given inn,, and writeX as X; + X, with X; € (go), andX; € nz. Since
a(H) #£ 0, we can choos¥; € (go), With [H, Y;] = X;. Then

Ad(expYpH — H = (H 4+ [Y1, H]1 4+ $(@dY)?H +---) — H
= —X; + (ng terms,

and hence AtexpY;)(H 4+ X) — H is inng. By inductive hypothesis we
can findn € Ng with

Ad(n)H — H = Ad(expY)(H + X) — H.

Then Ad(expY:)"n)H — H = X, and the elemeriexpY:)~tn of N, is
the required element to complete the induction.
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Lemma 7.43.Letsg = my @ ag D ng. Then
(@) no® Zy, =1{Z € 50 | ad,(2) is nilpotent and
(b) ap@no® (moN Zy,) = {Z € 50 | ad,(Z) has all eigenvalues rgal

PrOOF. Certainly the left sides in (a) and (b) are contained in the right
sides. For the reverse containments wites so asZ = Xg+ H + X
with Xp € mg, H € ag, andX € ny. ExtendR X, to a maximal abelian
subspace, of mg, S0 thatay & to is a Cartan subalgebra gf. Extending
the ordering ofay to one ofay @ ity SO thatag is taken beforat,, we
obtain a positive systemy* for A(g, (a@t)) such that* arises as the set
of nonzero restrictions of members af". Arrange the members af+
in decreasing order and form the matrix ofadh a corresponding basis
of root vectors (with vectors from @ t used at the appropriate place in
the middle). The matrix is upper triangular. The diagonal entries in the
positions corresponding to the root vectorsai¥o+ H) = a(Xp)+a(H)
fora € A, and the diagonal entries are 0 in the positions corresponding to
basis vectors ia @ t. Herea (X,) isimaginary , and:(H) is real. To have
adZ nilpotent, we must get O for adl. Thus the component o, + H in
[g0, go] is 0. This proves (a). To have ahave real eigenvalues, we must
havea(Xo) = 0 for all X € A. Thus the component of, in [go, go] is O.
This proves (b).

Lemma 7.44.For eachg € G, putsy = 5o N Ad(Q)so. Then

S0 = 59 + No.

PROOF. Certainlysg 2 58 + ng, and therefore it is enough to show that
dim(sg + no) = dimso. SinceG = K AN, there is no loss of generality
in assuming thag is in K. Write k = g. Let (-)* denote orthogonal
complement withingy relative toB,. From6(go), = (go)—., We have
sy = Ong. Since AdK) acts in an orthogonal fashion,

(50 + Ad(K)so)™ = 55 N (Ad(K)sp)™ = Ong N Ad(K)sy

(7.45)
= Qno N Ad(k)@no = 9(‘(10 N Ad(k)ﬂo)

Let X be insoNAd(K)se and inng. Then ag(X) is nilpotent by Lemma
7.43a. Since adAd(k)~'X) and ag(X) have the same eigenvalues,
ad,(Ad(k)~*X) is nilpotent. By Lemma 7.43a, Al) X isinny & Z,,.
Since Adk) fixes Z,, (by property (v)), Adk)~*X is in ng. ThereforeX
is in Ad(k)ng, and we obtain

(7.46) no N Ad(K)ng = 1ng N (5o N Ad(K)sg) = no N sk,
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Consequently

2dimsg — dimﬁg = dim(sp + Ad(K)so)
= dimgo — dim(ny N Ad(K)ng) by (7.45)
= dimgo — dim(ng N 5¢) by (7.46)
=dimgo + dim(ng + 5'8) —dimng — dimsg,
and we conclude that
dimgo + dim(ng + 5('3) —dimng = 2dimsy.

Since dimng + dims, = dimg,, we obtain dining + s5) = dims,, as
required.

PROOF OF EXISTENCE INTHEOREM 7.40. FixH € ag with A(H) # 0
forall A € X. Letx € G be given. Sincey, C s, Lemma 7.44 allows us
towrite H = X + Y with X € ng andY € sj. By Lemma 7.42 we can
choosen; € N with Ad(n))H — H = —X. Then

Ad(n)H = H — X =Y € 5% € Ad(X)so.

SoZ = Ad(x'n)H is in so. Since agZ and ad H have the same
eigenvalues, Lemma 7.43b shows tA&s in ag @ no @ (mo N Zy,). Since
Ad(x~'n;)~*fixesZ,, (by property (v))Z isinao®mg. WriteZ = H'+ X’
correspondingly. Here dd and adH’ have the same eigenvalues, so that
A(H) # O forall L € ¥. By Lemma 7.42 there exists, € N with
Ad(n,)*H' — H' = X’. Then Adn,)*H' = H' 4+ X' = Z, and

H' = Ad(n,)Z = Ad(n,x"*n,) H.
The centralizers oH’ andH are bothag @ mg by Lemma 6.50. Thus
(747) Adnzx‘lnl)(ao D mo) = ag b myg.

If X is in ag, then ag(X) has real eigenvalues by Lemma 7.43b. Since
ad,(Ad(nyx~'n;) X) and ag(X) have the same eigenvalues, Lemma 7.43b
shows that Adn,x'n;) X isinag® (meN Z,,). Since Adn,x—*n;)~* fixes
Z,, (by property (v)), Adn,x'n;) X is in ap. We conclude tham,x*n;
isin Ng (o).

Letn,x~!n; = uexpX, be the global Cartan decompositiomek—n;.
By Lemma 7.22uisin Nk (ag) and Xy isin Ny, (ao). By the same argument
as in Lemma 6.56N,,(ap) = ao @ mg. Since X is in po, Xo is in ap.
Thereforeu is in Nk (ap) and expXg is in A. In other wordsn,x—n; is in
uA, andx is in the samévl AN double coset as the memhet* of N (ao).
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5. Structure of M

We continue to assume th@t is a reductive Lie group and that other
notation is as in 82. The fundamental source of disconnectedness in the
structure theory of semisimple groups is the behavior of the subgroup
M = Zx(ap). We shall examineM in this section, paying particular
attention to its component structure. For the first time we shall make
serious use of results from Chapter V.

Proposition 7.48. M is a reductive Lie group.

PROOF. Proposition 7.25 shows th&lg (ag) is a reductive Lie group,
necessarily of the forna« (ap) exp(Z4,(a0) N po) = MA. By Proposition
7.27,°(MA) = M is a reductive Lie group.

Proposition 7.33 already tells us thelt meets every component &.
But M can be disconnected even wh@ris connected. (Recall from the
examples in §VL.5 thaM is disconnected whe® = SL(n, R).) Choose
and fix a maximal abelian subspatgeof my. Thenay @ to is a Cartan
subalgebra of,.

Proposition 7.49.Every component o contains a member dfl that
centralized,, so thatM = Z, (tp) Mo.

REMARK. The proposition says that we may focus our attention on
Zy(to). After this proof we shall studyy (to) by considering it as a
subgroup ofZ (to)-

PROOF. If m € M is given, then Adm)t, is a maximal abelian subspace
of my. By Theorem 4.34 (applied thly), there existsn, € M, such that
Ad(mp)Ad(m)ty = to. Thenmgm is in Ny (mp). Introduce a positive sys-
tem A for the root systenA = A(m, t). Then Admym)A™ is a positive
system forA, and Theorems 4.54 and 2.63 together say that we can find
m; € Mg such that Adm;mgm) mapsAt to itself. By Proposition 7.48yl
satisfies property (v) of reductive Lie groups. Thereforg &d;mym) isin
Intm. Then Ad,(m;mem) must be induced by an element in {fjin, m],
and Theorem 7.8 says that this element fixes each memher. dfherefore
m;mym centralizeg,, and the result follows.

Suppose that the roatin A(g, a @ t) is real, i.e. @ vanishes on. As
in the discussion following (6.66), the root spagdn g is invariant under
the conjugation ofy with respect tay,. Since dim g, = 1, g, contains a
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nonzero root vectoE, that is ingy. Also as in the discussion following
(6.66), we may normaliz&, by a real constant so th&(E,, /E,) =
—2/|a|?>. PutH, = 2|a|™®H,. Then{H/, E,,0E,} spans a copy of
s[(2, R) with

(7.50) H, < h, E, < e OE, <~ —f.
Let us write(go), for RE, and(go)_, for ROE,.

Proposition 7.51. The subgroupZg(to) of G
(a) is reductive with global Cartan decomposition

Zs(to) = Zk (to) €XP(po N Zg,(to)),

(b) has Lie algebra

Zy(t) =tt®a® P (@

a€A(g,adt),
a real
which is the direct sum of its center with a real semisimple Lie
algebra that is a split real form of its complexification,
(c) is such that the component groupsHfK, Zg(to), andZk (1) are
all isomorphic.

PrOOF. Conclusion (a) is immediate from Proposition 7.25. For (b) it
is clear that
Z,t)=t®a® P g

acA(g,adt),
« real

The conjugation of with respect tgy, carries every term of the right side

into itself, and therefore we obtain the formula of (b). Hesés maximal
abelian inpy N Z,,(to), and therefore this decomposition is the restricted-
root space decomposition gf. Applying Corollary 6.49 to go, go], we

obtain (b). In (c),G and K have isomorphic component groups as a
consequence of the global Cartan decomposition, zd,) and Z (ty)

have the same component groups as a consequence of (a). Consider the
natural homomorphism

Zk (to)/ Zk (to)o = K /Ko

induced by inclusion. Propositions 7.49 and 7.33 show that this map is
onto, and Corollary 4.51 shows that it is one-one. This proves (c).
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We cannot expect to say much about the disconnectednddstbéat
results from the disconnectedness@®f Thus we shall assume for the
remainder of this section th& is connected. Proposition 7.51c notes
thatZs (to) is connected. To stud¥g (to), we shall work with the analytic
subgroup o (t;) whose Lie algebra i, (to), Z4,(to)]. Thisis the sub-
group that could be calledg (to)ss in the notation of §2. It is semisimple,
and its Lie algebra is a split real form. We call the subgroumgsociated
split semisimple subgroup and we introduce the notatidBsp;; for it in
order to emphasize that its Lie algebra is split.

Let T be the maximal torus oM, with Lie algebrat,. Under the
assumption thaG is connected, it follows from Proposition 7.51b that
Zs(tp) is a commuting product

ZG (fo) =T AGspIit-

By Proposition 7.27,
9Zs(to) = T Gepit

is a reductive Lie group.

The groupGspir Need not have finite center, but the structure theory of
Chapter VI is available to describe it. LBty and Agyi be the analytic
subgroups with Lie algebras given as the intersectiorts ahday with
[Z4,(to), Zg,(t0)]. Let F = Mgy be the centralizer oy in Kgpit. The
subgroupF will play a key role in the analysis d¥l. It centralizes botiA
andA.

Corollary 7.52. The subgroug- normalizesM,, andM = F M.

PROOF SinceF centralizesA and is a subgroup df, it is a subgroup
of M. ThereforeF normalizesM,, andF My is a group. We know from
Proposition 7.49 tha¥l = Zy, (to) My. SinceT C My, itis enough to prove
thatZy(to) = TF. The subgrouy (to) is contained irZy (t5), which in
turn is contained iRZg(to) = T Ggpir. SinceZy (to) is contained irK, it
is therefore contained i Kg,.. Decompose a membar of Zy, (to) in a
corresponding fashion as = tk. Sincem andt centralizeA, so doe.
Thereforek is in F = Mgy, and the result follows.

Without additional hypotheses we cannot obtain further nontrivial results
aboutF, and accordingly we recall the following definition from 81.

A semisimple groui has acomplexification G© if G€ is a connected
complex Lie group with Lie algebrg@such thaG is the analytic subgroup
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corresponding to the real forgg of g. By Corollary 7.6,G° is isomorphic
to a matrix group, and hence the same thing is tru& @&nd G By
Proposition 7.9, each &b and G has finite center. Therefore we may
considerG andGgpi; in the context of reductive Lie groups.

Fix K, 8, andB for G. If the Cartan decomposition @f is go = £, P po,
then

g= (€D ipo) @ (o @ ity)

is a Cartan decomposition @f and the corresponding Cartan involution
of g is baro 6, where bar is the conjugation @f with respect togo.
The Lie algebrau, = € & ipy is compact semisimple, and it follows
from Proposition 7.9 that the corresponding analytic subgtdub G© is
compact. Thenthe tupl&®, U, baro6, B) makesG® into a reductive Lie
group. Whenever a semisimple Lie gro@has a complexificatioG®©
and we consideB as a reductive Lie grouf, K, 6, B), we may consider
G€ as the reductive Lie grou@®, U, baro 6, B).

Under the assumption that the semisimple gr@uipas a complexifica-
tion G©, expi aq is well defined as an analytic subgrouplbf

Theorem 7.53. Suppose that the reductive Lie groGpis semisimple
and has a complexificatioc®®. Then

(a) F= Ksplit N expi Qo,

(b) F is contained in the center o,

(c) M is the commuting produd?l = F My,

(d) F is finite abelian, and every elemeht£ 1 in F has order 2.

PROOF.

(a) Every member oK, N expi ag centralizesi, and lies inK gy, hence
lies in F. For the reverse inclusion we hateC K by definition. To
see thatF C expiag, let Uy be the analytic subgroup @&° with Lie
algebra the intersection af with the Lie algebraZ,(ty), Z,(to)]. Then
Uspiit is compact, anday N [Z,(to), Z,4(to)] is @ maximal abelian subspace
of its Lie algebra. By Corollary 4.52 the corresponding torus is its own
centralizer. Hence the centralizer @f in Ug; iS contained in expua.
SinceKgpit € Uspii, it follows thatF < expi ap.

(b, c) Corollary 7.52 says thdl = FM,. By (a), every element of
commutes with any element that centraliagsHenceF is central inM,
and (b) and (c) follow.

(d) SinceGgpit has finite center- is compact. Its Lie algebra is 0, and
thus it is finite. By (b),F is abelian. We still have to prove that every
elementf # 1in F has order 2.
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SinceG has a complexification, so do&;. Call this groupGS

split?
let G;Cpm be a simply connected covering group, andddte the covering
map. Letésp.it be the analytic subgroup with the same Lie algebra as for
Gepir and form the subgroup&syi and F of Gey. The subgrougF is
the complete inverse image Bfundergp. Let Uspm play the same role for
éfpm thatU plays forG®. The automorphisra of the Lie algebra 06y
complexifies and lifts to an automorphighof GS,, that carriedJq into
itself. The automorphisrﬁ acts ax — x~! on expiag and as the identity
on Kspm. The elements of are the elements of the intersection, by (a),
and hence ! = f for every elemenf of F. Thatisf2 = 1. Applyinge
and using the fact that mapsE onto F, we conclude that every element

f # 1inF has order 2.

ExampLE. When G does not have a complexification, the subgroup
F need not be abelian. For an example we observe that the dfoup
for SL(3, R) is SO(3), which hasSU (2) as a 2-sheeted simply connected
covering group. ThuSL (3, R) has a 2-sheeted simply connected covering
group, and we take this covering groupg@sWe already noted in §VI.5 that
the groupM for SL (3, R) consists of the diagonal matrices with diagonal
entriest1 and determinant 1. Thud is the direct sum of two 2-element
groups. The subgroup of G is the complete inverse image bf under
the covering map and thus has order 8. Moreover itis a subgroblp (),
which has only one element of order 2. THuss a group of order 8 with
only one element of order 2 and no element of order 8. Of the five abstract
groups of order 8, only the 8-element subgrddfi, +i, ], £k} of the
guaternions has this property. This group is nonabelian, and Herige
nonabelian.

Let o be a real root ofA(g, a @ t). From (7.50) we obtain a one-one
homomorphisms((2, R) — go whose only ambiguity is a sign in the defi-
nition of E,. This homomorphism carries (2) to ¢, and complexifies to a
homomorphism((2, C) — g. Under the assumption th@tis semisimple
and has a complexificatioB®, we can form the analytic subgroup Gf
with Lie algebras((2, C). This will be a homomorphic image &L (2, C)

sinceSL (2, C) is simply connected. We lat, be the image o( ’01 7°1>.
This element is evidently in the image 80(2) € SL(2, R) and hence
lies in Kgpit. Clearly it does not depend upon the choice of the ambiguous

sign in the definition oE,. A formula fory, is

(7.54) Ya = €XP 2ti|a| % H,.
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Theorem 7.55. Suppose that the reductive Lie groGpis semisimple
and has a complexificaticd®®. ThenF is generated by all elements for
all real rootsx.

PrROOF.  Our construction ofy, shows thaty, is in both K and
expiag. By Theorem 7.53gy, isin F. In the reverse direction we use the
construction in the proof of Theorem 7.53d, forming a simply connected

coverGSpIIt of the complexificatiorGg,; of Gspir. We form also the groups

Kspiits F andUS,[,.It The element% are well defined irf via (7.54), and
we show that they generaFe Then the theorem will follow by applying
the covermg ma|65Spllt — Ggyip sinceF maps ontdF.

Let H be the maximal torus dtﬂspm with Lie algebrd ay. We know from
Theorem 7.53 thak is a finite subgroup of. Arguing by contradiction,
suppose that the elementsgenerate a proper subgroEpof F. Let f be
an elemgntgF not in Fo. Applying the Peter-Weyl Theorem (Theorem
4.20) toH /Fo, we can obtain a multiplicative character of H that is 1
on Fyand is# 1 on f. Herev is the imaginary-valued linear functional
oniao such thaty, (expih) = €™ for h € a,. The roots folUs; are the
real roots forgo, and our assumption is that each such real soloas

1= xu(va) = x(€xp 2ri || 2H,) = @@l "H) = griaien,

That is 2v, a)/|«|? is an even integer for adi. Hence%v is algebraically
integral.

SinceUg; is simply connected, Theorem 5.107 showitimaﬁs an-
alytically integral. Thus the multiplicative charactgy, of H given by
X1.(expih) = "M js well defined. Theorem 7.53d says tHat = 1,
and thereforeg,, () = £1. Sincey, = (x1,)% we obtainy, () = 1,
contradiction. We conclude th&, equalle, and the proof is complete.

Itis sometimes handy to enlarge the collection of elemgnt&et 8 be
any restricted root, and let; be any restricted-root vector corresponding
to 8. ThenéX; is a restricted-root vector for the restricted regé by
Proposition 6.40c. Proposition 6.52 shows that we can normXijzeo
that [X,, 6X;] = —2|8|72H,, and then the correspondence

(7.56) h < 2|8|7?H,, e < Xy, f < —06X
B B B

is an isomorphism 0fl(2, R) with the real span oHg, Xz, 6 Xz in go.
Once again this homomorphism carries2) = R(e — f) to & and
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complexifies to a homomaorphissf(2, C) — g. Under the assumption that
G is semisimple and has a complexificatiGfi, we can form the analytic
subgroup ofG® with Lie algebras((2, C). This will be a homomorphic
image ofSL (2, C) sinceSL (2, C) is simply connected. We let; be the

image of( - 72) namely

(7.57) Yp = exp 2ri|B| *Hg.

This element is evidently in the image 80(2) € SL(2, R) and hence
lies in K. Formula (7.57) makes it clear thgt does not depend on the
choice ofX;, except for the normalization, and also (7.57) shows fhat
commutes withng. Hence

(7.58) ¥ isin M for each restricted rogi.

Since< - 7(1)) has square the identity, it follows that

(7.59) yf,z =1 for each restricted rogt.

In the special case that extends to a real roat of A(g, a ® t) when
set equal to O o, y; equals the elemeny, defined in (7.54). The more
general elements (7.57) are not needed for the descriptiBriroT heorem
7.55, but they will play a role in Chapter VIII.

6. Real-rank-one Subgroups

We continue to assume th@tis a reductive Lie group, and we use the
other notation of §2. In addition, we use the notationf §5.

Thereal rank of G is the dimension of a maximal abelian subspace
of po. Proposition 7.29 shows that real rank is well defined. Since any
maximal abelian subspace jf containsgp, N Z,,, it follows that

(7.60) real rankG) = real rank °G) + dim Z ..

Our objective in this section is to identify some subgroupssobf real
rank one and illustrate how information about these subgroups can give
information about.

“Real rank” is meaningful for a real semisimple Lie algebra outside the
context of reductive Lie groupg&s, K, 0, B), since Cartan decompositions
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exist and all are conjugate. But it is not meaningful for a reductive Lie
algebra by itself, since the splitting &, into its £, part and itsp, part
depends upon the choice @f

The Lie subalgebraip, go] of go, being semisimple, is uniquely the sum
of simple ideals. These ideals are orthogonal with respeBt tince ifg;
andg; are distinct ideals, then

(7.61) B(gi, 9)) = B([gi, ail. 9;) = B(ai, [gi, g;)]) = B(gi, 0) = 0.

Since o, go] is invariant undep, 6 permutes these simple ideals, nec-
essarily in orbits of one or two ideals. But actually there are no 2-ideal
orbits since ifX andé X are nonzero elements of distinct ideals, then (7.61)
gives

0 < By(X, X) = —B(X,6X) =0,

contradiction. Hence each simple ideal is invariant ugdend it follows
that p is the direct sum of its components in each simple ideal and its
component inZ,.

We would like to conclude that the real rank®fis the sum of the real
ranks from the components and from the center. But to do so, we need
either to define real rank for tripl€go, 6, B) or to lift the setting from Lie
algebras to Lie groups. Following the latter procedure, assumétisan
the Harish-Chandra class; this condition is satisfied automaticaByisf
semisimple. IfG; is the analytic subgroup & whose Lie algebra is one
of the various simple ideals @&, then Proposition 7.20b shows ti@&thas
finite center. Consequently; is a reductive group. Also in this case the
subgrougK; of G; fixed by® is compact, and it follows from property (iv)
thatG; is closed inG. We summarize as follows.

Proposition 7.62. Let the reductive Lie grougs be in the Harish-
Chandra class, and 1€, ..., G, be the analytic subgroups &f whose
Lie algebra are the simple ideals@f ThenG,, ..., G, are reductive Lie
groups, they are closed i@, and the sum of the real ranks of tl&’s,
together with the dimension & ., equals the real rank @g.

With the maximal abelian subspaagof p, fixed, letx be a restricted
root. Denote byH;" the orthogonal complement &H, in a, relative
to B,. Propositions 7.25 and 7.27 show ti&(H;') and®Zs(H;}') are
reductive Lie groups. All ofy is in Zg(H;"), and thereforeZs(H;") has
the same real rank &. The split component oZs(H;") is H;-, and it
follows from (7.60) thafZ (H;") is a reductive Lie group of real rank one.
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The subgrouBZgs(H;") is what is meant by the real-rank-one reductive
subgroup ofG corresponding to the restricted roat A maximal abelian
subspace of thg, for °Zg(H;") is RH,, and the restricted roots for this
group are those nonzero multiplesiothat provide restricted roots fgg.

In other words the restricted-root space decomposition of the Lie algebra
of °Zg(H}) is

(7.63) RH, ® mo & P (g0).
c£0

Sometimes it is desirable to associaterta real-rank-one subgroup
whose Lie algebrais simple. To do so, let us assume3ligin the Harish-
Chandra class. Then so%&g (H;'). Since this group has compact center,
Proposition 7.62 shows that the sum of the real ranks of the subg&uis
9Zs(H;") corresponding to the simple ideals of the Lie algebrais 1. Hence
exactly oneG; has real rank one, and that is the real-rank-one reductive
subgroup that we can use. The part of (7.63) that is being dropped to get a
simple Lie algebra is contained iiy.

In the case that the reductive groGgs semisimple and has a complex-
ification, the extent of the disconnectednes#o€an be investigated with
the help of the real-rank-one subgrod@s; (H;"). The result that we use
about the real-rank-one case is given in Theorem 7.66 below.

Lemma7.64.N- N MAN = {1}.

PROOF. Letx # 1beinN~ = ®N. By Theorem 1.127 writg = expX
with X in n; = 6n,. Recall from Proposition 6.40c thatgo); = (go)_s.,
let X =} s X, be the decomposition of into restricted-root vectors,
and choosg. = o as large as possible so the), # 0. If we take any
H € ap such thatl(H) # O forall A € T, then

AdX)H —H =&™H - H
= [X,,, H] + terms for lower restricted roats
In particular, Adx)H — H isinng and is not 0. On the other handxiis

in MAN, then Adx)H — H is inng. Sincen, N ny = 0, we must have
N-NMAN = {1}.

Lemma 7.65. The mapK/M — G/M AN induced by inclusion is a
diffeomorphism.
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PrROOF. The given map is certainly smooth. #f(g) denotes theK
component ofj in the Iwasawa decompositida = K AN of Proposition
7.31, theng — «(g) is smooth, and the magM AN +— «(g)M is a
two-sided inverse to the given map.

Theorem 7.66.Suppose that the reductive Lie groGpis semisimple,
is of real rank one, and has a complexificat®h. ThenM is connected
unless dimy = 1.

REMARKS. SinceG is semisimple, it is in the Harish-Chandra class.
The above remarks about simple components are therefore applicable. The
conditiondimn, = 1isthe same as the condition that the simple component
of go containingag is isomorphic tosl(2, R). In fact, if dimng = 1, then
ng is of the formR X for someX. ThenX, 6 X, and [X, 6 X] span a copy
of s[(2, R), and we obtairgy, = sl(2, R) & mp. The Lie subalgebra,
must centralizeX, 6 X, and [X, 6 X] and hence must be an idealgn The
complementary ideal isl(2, R), as asserted.

PROOF. The multiplication mapN~ x MyAN — G is smooth and
everywhere regular by Lemma 6.44. Hence the mlap— G/MyAN
induced by inclusion is smooth and regular, and so is the map

(7.67) N~ — G/MAN,

which is the composition o~ — G/MyAN and a covering map. Also
the map (7.67) is one-one by Lemma 7.64. Therefore (7.67) is a diffeo-
morphism onto an open set.

SinceG is semisimple and has real rank 1, the Weyl grdMpx) has
two elements. By Proposition 7.32/(G, A) has two elements. Let
w € Nk (ap) represent the nontrivial element'8f(G, A). By the Bruhat
decomposition (Theorem 7.40),

(7.68) G=MANUMANwMAN = MAN U NwM AN.

Since Adw) ! acts as—1 onay, it sends the positive restricted roots to
the negative restricted roots, and it follows from Proposition 6.40c that
Ad(w)*ng = ny. Thereforew*Nw = N~. Multiplying (7.68) on the

left by w1, we obtain

G =wMANUN~ MAN.

HenceG/M AN is the disjoint union of the single poiniM AN and the
image of the map (7.67).
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We have seen that (7.67) is a diffeomorphism onto an open subset of
G/MAN. Lemma 7.65 shows th& /M AN is diffeomorphic toK /M.
Since Theorem 1.127 shows tht is diffeomorphic to Euclidean space,
K /M is a one-point compactification of a Euclidean space, hence a sphere.
SinceK is connectedM must be connected whenevi€r/ M is simply
connected, i.e., whenever dilyM > 1. Since dinK/M = dimng, M
is connected unless ding = 1.

Corollary 7.69. Suppose that the reductive Lie groGpis semisimple
and has a complexificatioB®. Leta € A(g, a @ t) be a real root. If the
positive multiples of the restricted roet,, have combined restricted-root
multiplicity greater than one, thep, is in Mo.

ProOOF. The element, is in the homomorphic image dbL (2, R)
associated to the roat, hence is in the subgroup’ = °Zg(H;),. Con-
sequently it is in theM subgroup ofG’. The subgrougs’ satisfies the
hypotheses of Theorem 7.66, andrigshas dimension>1 by hypothesis.
By Theorem 7.66 itd/ subgroup is connected. Henggis in the identity
component of thé\ subgroup forG.

7. Parabolic Subgroups

In this sectionG will denote a reductive Lie group, and we shall use
the other notation of 82 concerning the Cartan decomposition. But we
shall abandon the use af as a maximal abelian subspacegfas well as
the other notation connected with the Iwasawa decomposition. Instead of
using the symbolsg,, ng, mg, a, n, m, A, N, andM for these objects, we
shall use the symbols, o, n, 0, m; 0, a, ny, My, Ay, Ny, andM,,.

Our objective is to define and characterize “parabolic subgroup&’, of
first working with “parabolic subalgebras” g@§. Each parabolic subgroup
Q will have a canonical decomposition in the fogh= M AN, known
as the “Langlands decomposition” f. As we suggested at the start of
82, a number of arguments with reductive Lie groups are carried out by
induction on the dimension of the group. One way of implementing this
idea is to reduce proofs fro@ to the M of some parabolic subgroup. For
such a procedure to succeed, we build into the definitidv diie fact that
M is a reductive Lie group.

In developing our theory, one approach would be to define a parabolic
subalgebra of, to be a subalgebra whose complexification is a parabolic
subalgebra of. Then we could deduce properties of parabolic subalgebras
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of go from the theory in 8V.7. But it will be more convenient to work with
parabolic subalgebras gf directly, proving results by imitating the theory
of 8V.7, rather than by applying it.

A minimal parabolic subalgebra of g, is any subalgebra af, that is
conjugate tay, o = m, o P a, 0P n, o Via Ad(G). Because of the Iwasawa
decompositiorG = K A,N,, we may as well assume that the conjugacy
is via Ad(K). The subalgebrg, o contains the maximally noncompact
0 stable Cartan subalgebag, @ t, o, wheret, o is any maximal abelian
subspace afi, o, and Adk) sends any such Cartan subalgebra into another
such Cartan subalgebraiis in K. Hence every minimal parabolic subal-
gebra ofgg contains a maximally noncompagistable Cartan subalgebra
of go. A parabolic subalgebragg of go is a Lie subalgebra containing
some minimal parabolic subalgebra. A parabolic subalgebra must contain
a maximally noncompaet stable Cartan subalgebramf

Therefore there is no loss of generality in assuming ghatontains a
minimal parabolic subalgebra of the form o @ a, o ® n, 0, Wherea, o is
maximal abelian irpy, andm, o andn, , are constructed are usual. et
denote the set of restricted rootsggfrelative toa, . The restricted roots
contributing ton,  are taken to be the positive ones.

We can obtain examples of parabolic subalgebras as followsIT et
the set of simple restricted roots, fix a subgéDf IT, and let

(7.70) =XtU{B eX|B espanll)}.

Then

(7.71) o= 0po DMy oD @ (90)p
pel

is a parabolic subalgebra gf containingm, o ® a, o ®n, . This construc-
tionis an analog of the corresponding construction of parabolic subalgebras
of g given in (5.88) and (5.89), and Proposition 7.76 will show that every
parabolic subalgebra @f is of the form given in (7.70) and (7.71). Butthe
proof requires more preparation than in the situation with (5.88) and (5.89).

EXAMPLES.

1) Let G = SL(n, K), whereK is R, C, or H. Whengqy is realized
as matrices, the Lie subalgebra of upper-triangular matrices is a minimal
parabolic subalgebra, .. The other examples of parabolic subalgebras
go containingq, o and written as in (7.70) and (7.71) are the full Lie
subalgebras of block upper-triangular matrices, one subalgebra for each
arrangement of blocks.
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2) Let G have compact center and be of real rank one. The examples as
in (7.70) and (7.71) are the minimal parabolic subalgebragaiidelf.

We shall work with a vectoK in the restricted-root spacg,),. Propo-
sition 6.40c shows thatX is in (go)_,, and Proposition 6.52 shows that
B(X,8X)H, is a negative multiple oH,. Normalizing, we may assume
that B(X, 6 X) = —2/|y[>. PutH’ = 2|y|~?H,. Then the linear spasix
of {X, 06X, H} is isomorphic tes[(2, R) under the isomorphism

(7.72) H, < h, X < g, OX < —f.

We shall make use of the copik of sl(2, R) in the same way as in the
proof of Corollary 6.53. This subalgebragf acts by ad oy and hence
acts org. We know from Theorem 1.67 that the resulting representation of
sly is completely reducible, and we know the structure of each irreducible
subspace from Theorem 1.66.

Lemma 7.73. Let y be a restricted root, and let # 0 be in(go), .
Then

(a) adX carries(go), onto(go)zy ,
(b) (ado X)? carries(go), onto(go)_, ,
(c) (add X)* carries(go)2, ONto(go)_2, -

PrOOF. Without loss of generality, we may assume tRas normalized
asin (7.72). The complexification ép._, (go)c, iS an invariant subspace
of gunderthe representation adstf. Using Theorem 1.67, we decompose
it as the direct sum of irreducible representations. Each membgs)ef
is an eigenvector for ad; with eigenvalue 2, andH, corresponds to the
membeh of sI(2, R). From Theorem 1.66 we see that the only possibilities
for irreducible subspaces are 5-dimensional subspaces consisting of one
dimension each from

(gO)Zya (90)}/5 my, (90)71/’ (90)72}/;

3-dimensional subspaces consisting of one dimension each from

(go)y , Mo, (go)f}/;

and 1-dimensional subspaces consisting of one dimension eachmffom
In any 5-dimensional such subspace,Xadarries a nonzero vector of
eigenvalue 2 to a nonzero vector of eigenvalue 4. This proves (a). Also
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in any 5-dimensional such subspacadd X)* carries a nonzero vector

of eigenvalue 4 to a nonzero vector of eigenvalugé This proves (c).
Finally in any 5-dimensional such subspace or 3-dimensional such sub-
space,(add X)? carries a nonzero vector of eigenvalue 2 to a nonzero
vector of eigenvalue-2. This proves (b).

Lemma 7.74.Every parabolic subalgebrg of go containing the mini-
mal parabolic subalgebra, o ® a, o @ 1, o is of the form

Jo=0po DMy oD @ (90)p

pel

for some subsdf of ¥ that contains= ™.

PROOF. Sinceq, containsa, o & m, o and is invariant under &d, o), it

is of the form
Go = 0.0 D M0 ® EP) ((80)5 N o)
BeX

Thus we are to show that if, contains one nonzero vectd of (go)g,
then it contains all ofgo)s. Sinceqo containsn, o, we may assume that
B is negative. We apply Lemma 7.73b wikh= 0Y andy = —B. The
lemma says thatadY)? carries(go)_5 0nto(go)s. SinceY and(go)_4 are
contained inyo, SO iS(go) 4.

Lemma 7.75.If 8, y, andB + y are restricted roots and is a honzero
member of(go), , then [X, (go)s] is a nonzero subspace @fo)g.+, -

ProoOF. Without loss of generality, we may assume tRas normalized
asin(7.72). The complexification €., (go) s+, iS aninvariant subspace
of gunderthe representation adstf. Using Theorem 1.67, we decompose
itas the direct sum of irreducible representations. Each memiogy)ef.,
is an eigenvector for ad’ with eigenvalue?% +2c, andH, corresponds
to the membeh of s[(2, R). We apply Theorem 1.66 and divide matters
into cases according to the sign%ﬁ‘%. If the sign is< 0, then adX is
one-one ongo)s, and the lemma follows. If the sign is 0, then ad X
and adX add X are one-one ofigo)s, and hence ad is nonzero on the
member § X, Y] if Y is nonzero in(go)s., -

Proposition 7.76.The parabolic subalgebragcontaining the minimal
parabolic subalgebra, o®a, o®n, o are parametrized by the set of subsets
of simple restricted roots; the one corresponding to a suliset of the
form (7.71) withI™ as in (7.70).
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PROOF Lemma 7.74 establishes that amqyis of the form (7.71) for
some subsdf. We can now go over the proof of Proposition 5.90 to see
that it applies. What is needed is a substitute for Corollary 2.35, which
says thatds, g,] = g5+, If B, v, andp + y are all roots. Lemma 7.75
provides the appropriate substitute, and the proposition follows.

In the notation of the propositiod; N —I" consists of all restricted
roots in the span of1’, and the other members ofare all positive and
have expansions in terms of simple restricted roots that involve a simple
restricted root not idl’. Define

g = ﬂ ker,B - ap.0

perrn—-r

1
am,0 = Ay - ap.0

Mo = apmoD My oD (90)s
(7.77a) ﬂEEmBF
N = @ (90)p
Berl’,
B¢-T
im0 = Ny oM Mg,
so that
(7.77b) qo = Mo D ao D no.

The decomposition (7.77b) is called thanglands decompositionof qq.

ExXAMPLE. LetG = SU (2, 2). The Lie algebrai, consists of all 4-by-4
complex matrices of the block form

Xll X12

X2 Xa2
with X, and X5, skew Hermitian and the total trace equal to 0. We take
the Cartan involution to be negative conjugate transpose, so that

_[(Xu O {0 Xu
o={(5 )] me il B))

Let us take

apo = sandt inR

oOwmw OO
—+ O 0O
oo w
oo~ O
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Define linear functionald, and f, on a, o by saying thatf, of the above
matrix iss and f, of the matrix ist. Then

E = {:I: f]_:l: f29 :|:2fla :|:2f2}5

which is a root system of typ€,. Here+ f; £+ f, have multiplicity 2, and
the others have multiplicity one. In the obvious orderillg, consists of
f; + f, and 2f; and 2f,, and the simple restricted roots afe— f, and
2f,. Then

m, o = {diag(ir, —ir,ir, —ir)}
o= EP (g0)s With dimn, o =6.

Bext

Our minimal parabolic subalgebradg, = m, o @ a, 0 ® n, 0, and this

is reproduced agy by (7.70) and (7.71) witHT' = @#. WhenIl' =

{f, — f5, 21,}, thengy = go. The two intermediate cases are as follows.
If I = {f, — f5}, then

ap={H ea,o| (fi— f)(H) =0} (s=tinay,o)

ir w X Z
—w —ir Z —X
mo = . X, r e Randw,ze C
X z ir
Z —X —w —ir

o = (go)2t, D (90)t,+1, D (90)21,-
If IT" = {2f,}, then

g = {H € apo | 2f2(H) :O} (t =0in Clpfo)
0O 0 O

N O ¢

mog=myo® seRandzeC

0
0 z
0 0
0 —-is

[eNeoNe

o = (go)2t, D (go)t,+1, D (go)f,— 1,

Proposition 7.76 says that there are no other parabolic subalggpras
containingdy o.
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Proposition 7.78. A parabolic subalgebrg, containing the minimal
parabolic subalgebna, o ® a, o ® n, o has the properties that

(@) mo, ag, andn, are Lie subalgebras, amg is an ideal ingp,
(b) ao is abelian, anah, is nilpotent,

(c) ap @ my is the centralizer ofiy in g,

(d) goNBgo = ap ® mg, andag @ mg is reductive,

(€) ay0=0ao® awm.o,

(f) ny,.0=no® nn o as vector spaces,

(9) go = ap ® mp D ng ® Ong orthogonally with respect t6,
(h) mo=m, 0@ amo® nuo® Onyo.

PROOF

(a, b, e, f) All parts of these are clear.

(c) The centralizer of, is spanned by, o, m, o, and all the restricted
root spaces for restricted roots vanishingignThe sum of these ig dmo.

(d) Sinceb(go)s = (go)—p by Proposition 6.4003, N Ogo = ap & mo.
Thenay @& my is reductive by Corollary 6.29.

(g, h) These follow from Proposition 6.40.

Proposition 7.79.Among the parabolic subalgebras containipg, let
qo be the one corresponding to the suldgetf simple restricted roots. For
n # 0inag, let

(@) = @ (90)s-

Beay o,
/Slao:n

Then(go) ;) € 1o Or (go)(yy < Ono.

PrOOF. We have

avo=ay=( () kerp) =( (] H}) = Y RH;=) RHs

Bel'n—T Bel'n—T pel'N—T Bell’

Let 8 and 8’ be restricted roots with a common nonzero restrictjcio
members ofiy. Theng — g’ is 0 onag, andH; — Hy isinay o. Fromthe
formulaforay o, the expansion g8 — g’ in terms of simple restricted roots
involves only the members &f'. Sincen # 0, the individual expansions of

B andp’ involve nonzero coefficients for at least one simple restricted root
other than the ones iil’. The coefficients for this other simple restricted
root must be equal and in particular of the same sign. By Proposition 2.49,
B andg’ are both positive or both negative, and the result follows.
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Motivated by Proposition 7.79, we define, fpk af,
(7.80) (@) = {X egol[H, X] =n(H)X forall H € ap}.

We say thay is anag root, or root of(go, ao), if n # 0 and(go), # 0. In
this case we callgo),, the corresponding, root space The proposition
says thaty is the sum ofi, root spaces, and soédsg. We call anay root
positiveif it contributes ton,, otherwisenegative The set ofi, roots does
not necessarily form an abstract root system, but the notion af eot is
still helpful.

Corollary 7.81. The normalizer ofig in go iS ag ® mg.

PROOF The normalizer containg & mg by Proposition 7.78c. In the
reverse direction leX be in the normalizer, and write

X =Ho+Xo+ Y X,  withHo € ao Xo€mo X, € (o).

n#0,
neag

If Hisinag, then X, H] = — Zn n(H)X,, and this can be i, for all
suchH only if X, = 0 for all . ThereforeX = Hqy + Xo is in ag @ my.

Now let A andN be the analytic subgroups & with Lie algebrasi,
andno, and defineM = °Z;(ay). We shall see in Proposition 7.83 below
that Q = M AN is the normalizer ofug @ ag @ ng in G, and we define
it to be theparabolic subgroup associated to the parabolic subalgebra
qo = mpy ® ag D ng. The decomposition of elements §f according to
M AN will be seen to be unique, ar@ = M AN is called the_anglands
decompositionof Q. Whengo is a minimal parabolic subalgebra, the
correspondingQ is called aminimal parabolic subgroup. We write
N~ = ®N.

Let Ay andNy be the analytic subgroups gf§ with Lie algebragiy o
andny o, and letMy = Zxau(amo). DefineKy = K N M. Recall the
subgroupF of G that is the subject of Corollary 7.52.

Proposition 7.82.The subgroupM, A, N, Ky, My, Au, andNy have
the properties that
(@) MA = Zg(ao) is reductive,M = °(MA) is reductive, andA is
Z,ec fOor MA,
(b) M has Lie algebran,,
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(¢) My = M,, M, oAy Ny is a minimal parabolic subgroup tf, and
M = Kwu Au N,

(d) M = FMyif G is connected,

(e) A, = AAy as a direct product,

() N, = NNy as a semidirect product witN normal.

PROOF.

(a, b) The subgroupag(ae) and®Zs(ap) are reductive by Propositions
7.25 and 7.27. By Proposition 7.78,,(ag) = ao @ me. Thus the space
Z,e for the groupZg(ag) is the analytic subgroup corresponding to the
intersection op, with the center ofiy & mg. From the definition ofn,, the
center ofZ,, (ag) has to be contained i, o & m,, o, and thep, part of this
iS a, 0. The part ofa, o that commutes witlmy is ap by definition ofms,.
ThereforeZ,o. = expa; = A, andZg(ag) = (°Zs(ao)) A by Proposition
7.27. Then (a) and (b) follow.

(c) By (a), M is reductive. It is clear thaiy o is @ maximal abelian
subspace oo N myg, Sincemg N ag = 0. The restricted roots of, relative
to am o are then the members biN —I", and the sum of the restricted-root
spaces for the positive such restricted roots,is. Therefore the minimal
parabolic subgroup in question ft is My, Ay Ny. The computation

Mum = Zkam(amo) = MAN Zk (amo)
= Zg(ag) N Zk (amo) = Zk(ap0) = My

identifiesMy, andM = K, Ay Ny by the lwasawa decomposition fivt
(Proposition 7.31).

(d) By (a), M is reductive. HenceM = My M, by Proposition 7.33.
But (c) shows thatMy = M,, and Corollary 7.52 shows thaMl, =
F(M;)o. HenceM = F M.

(e) This follows from Proposition 7.78e and the simple connectivity
of A,.

(f) This follows from Proposition 7.78f, Theorem 1.125, and the simple
connectivity ofN,.

Proposition 7.83. The subgroup#!, A, andN have the properties that

(&) M A normalizesN, so thatQ = M AN is a group,

(b) Q = Ng(mg @ ag ® ng), and hence is a closed subgroup,
(c) Q has Lie algebrgo = mo @ ap @ ny,

(d) multiplicationM x A x N — Q is a diffeomorphism,

(e) NN Q={1},

H G=KQ.
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PROOF.
(a) Letzbe InMA = Zg(ap), and fix(go),) S noasin (7.80). IfX is
in (go)(; andH is in ag, then

[H,Ad(2)X] = [Ad(2)H, Ad(2)X] = Ad(Z)[H, X] = n(H)Ad(2) X.

Hence Adz) X is in (go)(,, and Adz) maps(go), into itself. Sincen, is
the sum of such spaces, fing € ny. ThereforeM A normalizesN.

(b) The subgrougM A normalizes its Lie algebra, & ao, and it nor-
malizesny by (a). The subgroupl normalizesy, because it is connected
with a Lie algebra that normalizeg by Proposition 7.78a. Hendd AN
normalizesyo. In the reverse direction letbe inNg(q0). We are to prove
thatx is in M AN. Let us writex in terms of the Iwasawa decomposition
G = KA,N,. HereA, = AAy by Proposition 7.82e, and and Ay, are
both contained itM A. Also N, = NNy by Proposition 7.82f, antll and
Ny are both contained iM N. Thus we may assume thais in Nk (qo)-
By (7.23), Ad®x) = 6Ad(x)0, and thus Ad®x) normalizesfq,. But
®x = x sincex is in K, and therefore Atk) normalizes bothy, and6qp.
By Proposition 7.78d, A) normalizesay @ mg. Sinceaqy is thepy part
of the center ofiy @ mg, Ad(X) normalizesuy andm, individually. Letn
be ana, root contributing tan,. If X isin (go), andH is in ag, then

[H, Ad(x)X] = Ad(x)[Ad () *H, X]
= n(Ad(X)THAd(X) X = (Ad(X)n)(H)Ad(X) X.

In other words, Adx) carries(go)., t0 (go)adxn- SO whenevern is
the restriction toa, of a positive restricted root, so is A&xhn. Mean-
while, Ad(x) carriesay o to a maximal abelian subspacepfn mq, and
Proposition 7.29 allows us to adjust it by some(Rde Ad(K N M) so
that Adkx)am o = am.o. Taking Proposition 7.32 and Theorem 2.63 into
account, we can choose € K N M so that Adk’kx) is the identity on
am.0- Then Adk’kx) sendsz™ to itself. By Proposition 7.32 and Theorem
2.63, Adk'kx) is the identity om, o and in particular ormg. Hencek'kx
isin M, and so ix. We conclude tha! AN = Ng(qo), and consequently
M AN is closed.

(c) By (b), Q is closed, hence Lie. The Lie algebra @fis Ny, (qo),
which certainly containg,. In the reverse direction leX € go normalize
go- Sincea, o andn, o are contained iR, the Iwasawa decomposition on
the Lie algebra level allows us to assume tKas in €,. SinceX normalizes
qo, @ X normalizesqo. But X = X, and henceX normalizesy, N 6qo,
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which isag & mg by Proposition 7.78d. Sinae is thep, part of the center
of ap @ mg, X normalizesiy andmg individually. By Corollary 7.81X is
in ag @ mg.

(d) Use of Lemma 6.44 twice shows that multiplication friin< Ax N
into QisregularorMyx Ax N, and translation td shows thatitis regular
everywhere. We are left with showing that it is one-one. Sikce A, and
N C N,, the uniqueness for the lwasawa decompositioB @Proposition
7.31) shows that it is enough to prove thatn AN = {1}. Givenm € M,
let the Iwasawa decomposition ai according toM = Ky AuyNy be
m = kyayny. Ifthiselementisto be ilAN, thenky, = 1,ay isin AyNA,
andny is in Ny N N, by unigueness of the lwasawa decompositioGin
But Ay N A = {1} andNy N N = {1} by (e) and (f) of Proposition 7.82.
Thereforem = 1, and we conclude théfl N AN = {1}.

(e) This is proved in the same way as Lemma 7.64, which is stated for
a minimal parabolic subgroup.

(f) SinceQ > A;N,, G = KQ by the Iwasawa decomposition f&r
(Proposition 7.31).

Although the set ofi, roots does not necessarily form an abstract root
system, it is still meaningful to define

(7.84a) W(G, A) = Nk (ao)/Zk (ao),

just as we did in the case that is maximal abelian ip,. Corollary 7.81
and Proposition 7.78c show thisi (ag) and Zg (ag) both havet, N mg as
Lie algebra. Henc&V(G, A) is a compact 0-dimensional group, and we
conclude thatV(G, A) is finite. An alternative formula fow/ (G, A) is

(7.84b) W(G, A) = Ng(ag)/Zs(ap).

The equality of the right sides of (7.84a) and (7.84b) is an immediate
consequence of Lemma 7.22 and Corollary 7.81. To compute@), it
is sometimes handy to use the following proposition.

Proposition 7.85. Every element olNk (ap) decomposes as a product
zn, wheren is in Nk (a, o) andzis in Zk (ap).

PROOF. Letk be in Nk (ag) and form AdK)ay 0. Sinceay o commutes
with ag, Ad(K)ay o commutes with Agk)ap = ao. By Proposition 7.78c,
Ad(K)ay o Is contained iry @ mg. Sinceay o is orthogonal ta, underB,,
Ad(K)apy o is orthogonal to Adk)a, = ao. Hence Adk)ay o is contained
in mg and therefore ipy N my. By Proposition 7.29 there exisisin
K N M with Ad(z)"*Ad(k)am .0 = amo. Thenn = z-*k is in Nk (ap) and
in Nk (am 0), hence inNk (a, o).
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EXAMPLE. LetG = SL(3, R). Takea, o to be the diagonal subalgebra,
and letx* = {f, — f,, f, — f3, f; — f3} in the notation of Example 1
of 8VI1.4. Define a parabolic subalgebga by usingIT’ = {f;, — f,}.
The corresponding parabolic subgroup is the block upper-triangular group
with blocks of sizes 2 and 1, respectively. The subalgehraquals
{diag(r, r, —2r)}. Suppose thai is in W(G, A). Proposition 7.85 says
thatw extends to a member O¥(G, A,) leavinga, anday o individually
stable. HeraV (G, A,) = W(X), and the only member oW (%) sending
ao to itself is the identity. SW(G, A) = {1}.

The members oV (G, A) act on set of the, roots, and we have the
following substitute for Theorem 2.63.

Proposition 7.86. The only member oW (G, A) that leaves stable the
set of positiveng roots is the identity.

PROOF Let k be in Nk (ap). By assumption AK)ng = ng. The
centralizer ofag in gg is ag ® mp by Proposition 7.78c. 1iX is in this
centralizer and iH is arbitrary inao, then

[H, Ad(k)X] = Ad(K)[Ad(k)*H, X] =0

shows that Ack)X is in the centralizer. Hence Al)(ag & mg) =
ap @ my. By Proposition 7.83bk is in M AN. By Proposition 7.82c and
the unigueness of the lwasawa decompositiorpk is in M. Therefore
kisin Zg (ag).

A parabolic subalgebray of go and the corresponding parabolic sub-
groupQ = M AN of G are said to beuspidalif mg has & stable compact
Cartan subalgebra, say. In this caseh, = to ® a is a6 stable Cartan
subalgebra ofip. The restriction of a root im\ (g, h) to a, is anag root if
itis not 0, and we can identifyx (m, t) with the set of roots im\ (g, h) that
vanish ona. Let us choose a positive systeit (m, t) for m and extend
it to a positive system\* (g, h) by saying that a roor € A(g, h) with
nonzero restriction tay is positive if «|,, iS a positiveay root. Let us
decompose membedsof h* according to their projections ari andt* as
o = o, +a,. Nowba = —a, + o, andé carries roots to roots. Hence if
o, + o IS aroot, So i, — ;.

The positive system\* (g, h) just defined is given by a lexicographic
ordering that takeggy beforeity. In fact, write the half sum of positive
roots ass = §, + &.. The claim is that positivity is determined by inner
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products with the ordered s, §;} and that is equal to the half sum of
the members oA+ (m, t). To see this, lett = a, + a, be inAT(g, h). If
a, # 0, thena, — a¢isin At (g, §), and

(a, 8a) = (das 8a) = (g, 8) = %(aa +a,d) + %(aa — oy, 8) > 0.

Since the positive roots with nonzero restrictiormtcancel in pairs when
added, we see that equals half the sum of the members &f (m, t).
Finally if «, = 0, then{(a, §,) = 0 and{«, §;) > 0. HenceA™*(g, b) is
indeed given by a lexicographic ordering of the type described.

The next proposition gives a converse that tells a useful way to construct
cuspidal parabolic subalgebrasggafdirectly.

Proposition 7.87.Let ho = to @ ag be the decomposition of@stable
Cartan subalgebra accordingtaand suppose that a lexicographic ordering
taking ao beforeit, is used to define a positive systexi(g, ). Define

mo=gN(td P o)

a€A(g.h),
alq=0

and no=0N( P a)

aeAt(g,h),
o|a7#0

Thenge = mg D ag P ng is the Langlands decomposition of a cuspidal
parabolic subalgebra @f.

PrOOF. In view of the definitions, we have to relagg to a minimal
parabolic subalgebra. Let bar denote conjugatiop with respect tqy,.

If « = a, +a¢isaroot, leth = —fa = a, — (. Theng, = gz, and it
follows that
(7.88) m=t®& P 9. ad n= P ..

aeA‘(gi,h), aeA\*;gbb),

In particular,mg is 6 stable, hence reductive. LBl o = tmo ® auo be
the decomposition of a maximally noncompédtable Cartan subalgebra
of my according ta. Since Theorem 2.15 shows thgf is conjugate to
tvia Intm, b’ = a & hy is conjugate td) = a & t via a member of Ing
that fixesao. In particular,hy = ao @ hy o is a Cartan subalgebra g§.
Applying our constructed member of Ijpto (7.88), we obtain

(7.89) m=bw® P o ad n= P o

aeA(g.h), aeAt(g.h),
alq=0 a|a7#0
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for the positive systenh* (g, ') obtained by transferring positivity from
A*(g, b).

Let us observe that, = ao® av o is a maximal abelian subspacepgf
In fact, the centralizer afy in g is ag ® mo, anday o is maximal abelian in
mpNpo; hence the assertion follows. We introduce a lexicographic ordering
for b, that is as before ong, takesa, beforeay o, and takesiy o before
itw.0. Then we obtain a positive systetvi’(g, ') with the property that a
roota with «|,, # 0 is positive if and only itx|,, is the restriction tai, of
a member ofA* (g, h). Consequently we can replag€ (g, i) in (7.89)
by A*'(g, ). Thenitis apparent that & a & n containsm, @ a, & n,
defined relative to the positive restricted roots obtained from(g, b'),
and henceyo is a parabolic subalgebra. Referring to (7.77), we see that
qo = Mo P ag @ ng is the Langlands decomposition. Finallyis a Cartan
subalgebra ofng by Proposition 2.13, and henggis cuspidal.

8. Cartan Subgroups

We continue to assume th&t is a reductive Lie group and to use the
notation of 82 concerning the Cartan decompositiorCaktan subgroup
of G is the centralizer i of a Cartan subalgebra. We know from §8VI.6
and VII.2 that any Cartan subalgebra is conjugate vigdb ad stable
Cartan subalgebra and that there are only finitely many conjugacy classes of
Cartan subalgebras. Consequently any Cartan subgrd@psofonjugate
via G to a © stable Cartan subgroup, and there are only finitely many
conjugacy classes of Cartan subgroups® Atable Cartan subgroup is a
reductive Lie group by Proposition 7.25.

WhenG is compact connected aiidis a maximal torus, every element
of G is conjugate to a member af, according to Theorem 4.36. In
particular every member d& lies in a Cartan subgroup. This statement
does not extend to noncompact groups, as the following example shows.

ExAMPLE. Let G = SL(2,R). We saw in 8VI.6 that every Cartan
subalgebra is conjugate to one of

o )b e (20

and the corresponding Cartan subgroups are

(0 &) e {5y o))
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Some features of these subgroups are worth noting. The first Cartan
subgroup is disconnected; disconnectedness is common among Cartan
subgroups for gener@. Also every member of either Cartan subgroup is

diagonable oveC. Hence(; i) lies in no Cartan subgroup.

Although the union of the Cartan subgroups®@fneed not exhaust
G, it turns out that the union exhausts almost allGf This fact is the
most important conclusion about Cartan subgroups to be derived in this
section and appears below as Theorem 7.108. When we treat integration
in Chapter VI, this fact will permit integration of functions @ by inte-
grating over the conjugates of a finite set of Cartan subgroups; the resulting
formula, known as the “Weyl Integration Formula,” is an important tool for
harmonic analysis of®.

Before coming to this main result, we give a proposition about the
component structure of Cartan subgroups and we introduce a finite group
W(G, H) for each Cartan subgroup analogous to the grodi&, A)
considered in 87.

Proposition 7.90.Let H be a Cartan subgroup &.

(@) If H is maximally noncompact, thehl meets every component
of G.

(b) If H is maximally compact and if5 is connected, theH is
connected.

REMARKS. The modifiers “maximally noncompact” and “maximally
compact” are to be interpreted in terms of the Lie algebrash, s a
Cartan subalgebrg, is conjugate to & stable Cartan subalgebig, and
we defined “maximally noncompact” and “maximally compact” fgrin
§8VI.6 and VII.2. Proposition 7.35 says that any two candidategfare
conjugate viaK, and hence it is meaningful to say thatis maximally
noncompact or maximally compactfjf is.

PROOF. Let ho be the Lie algebra oH. We may assume thdy, is
0 stable. Lethy = to ® ag be the decomposition df, into +1 and—1
eigenspaces undér

(a) If ho is maximally noncompact, ther is a maximal abelian subspace
of po. The groupH contains the subgroup introduced before Corollary
7.52, and Corollary 7.52 and Proposition 7.33 show thaheets every
component ofs.

(b) If ho is maximally compact, thety is a maximal abelian subspace of
to. SinceK is connected, the subgrowx (to) is connected by Corollary
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4,51, andZk (tp) expay is therefore a connected closed subgrou@ efith
Lie algebrah,. On the other hand, Proposition 7.25 implies that

H = Zx (ho) eXxpag € Zk (to) €XPao.

SinceH andZ (to) expag are closed subgroups with the same Lie algebra
and sinceZ (tp) expuag is connected, it follows thatl = Zy (ty) expag.

Corollary 7.91. If a maximally noncompact Cartan subgrotipof G
is abelian, therZg, € Zg.

PrROOF. By Proposition 7.90aG = GoH. If zisin Zg,, then Adz) = 1
on ho, and hence is in Zg(hy) = H. Letg € G be given, and write
g = goh with g € Gy andh € H. Thenzg, = goz sincez commutes with
members ofGy, andzh = hz sincezis in H andH is abelian. Hence
Zg = gz, andzisin Zg.

If H is a Cartan subgroup @ with Lie algebrah,, we define
(7.92a) W(G, H) = Ng(ho)/Zs(ho)-

Here Zs(ho) is nothing more tharH itself, by definition. Wherf, is 6
stable, an alternative formula fov (G, H) is

(7.92Db) W(G, H) = Nk (ho)/Zk (ho).

The equality of the right sides of (7.92a) and (7.92b) is an immediate con-
sequence of Lemma 7.22 and Proposition 2.7. Proposition 2.7 shows that
Nk (ho) andZ (ho) both havet,Nhy = to as Lie algebra. Hend&/' (G, H)

is a compact 0-dimensional group, and we concludeh@, H) is finite.

Each member oNg(ho) sends roots oA = A(g, h) to roots, and the
action of Ng(ho) on A descends taW(G, H). It is clear that only the
identity in W(G, H) acts as the identity on. Since A¢(G) C Intg, it
follows from Theorem 7.8 that

(7.93) W(G, H) € W(A(g, h)).

ExAMPLE. Let G = SL(2, R). For anyh, W(g, h) has order 2. When
ho = {(; _?)} W(G, H) has order 2, a representative of the nontrivial

coset being( o ;) Whenb, = {(7? ;)} W(G, H) has order 1.
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Now we begin to work toward the main result of this section, that the
union of all Cartan subgroups @ exhausts almost all d6. We shall
use the notion of a “regular element” @&. Recall that in Chapter I
we introduced regular elements in the complexified Lie alggbrd_et
dimg = n. For X € g, we formed the characteristic polynomial

n-1
(7.94) deil —adX) = A"+ > " di (X)),

j=0

Here eaclhd; is a holomorphic polynomial function om Therank of g

is the minimum index such thatd, (X) # 0, and theregular elements

of g are those elements such thatd, (X) # 0. For such arX, Theorem
2.9 shows that the generalized eigenspace oKddr eigenvalue O is a
Cartan subalgebra gf Becausgy is reductive, the Cartan subalgebra acts
completely reducibly oy, and hence the generalized eigenspace of ad
for eigenvalue 0 is nothing more than the centralizeXoh g.

Within g, leth be a Cartan subalgebra, andfet= A(g, h). ForX € b,
d(X) =[], (X), sothatX € hisregularifand only if no root vanishes
on X. If ho is a Cartan subalgebra of our real fogg) then we can find
X € hosothatw(X) £ Oforalla € A.

On the level of Lie algebras, we have concentrated on eigenvalue 0 for
adX. On the level of reductive Lie groups, the analogous procedure is to
concentrate on eigenvalue 1 for &J. Thus forx € G, we define

n—-1
D(x,2) = def((A + D1 — Ad(x)) = A"+ Y Dj(x)A.
j=0

Here eachD;(x) is real analytic onG and descends to a real analytic
function on AdG). But Ad(G) C Intg by property (v) for reductive Lie
groups, and the formula fdd; (x) extends to be valid on Igtand to define

a holomorphic function on Ing. Let!’ be the minimum index such that
Di(X) = 0 (on G or equivalently on Ing). We shall observe shortly
thatl’ = |. With this understanding thegular elementsof G are those
elementx such thaD, (x) # 0. Elements that are not regular anegular.
The set of regular elements is denot&d The functionD satisfies

(7.95) D(yxy 1, 1) = D(x, 1),

and it follows thatG’ is stable under group conjugation. It is almost but
not quite true that the centralizer of a regular elemenGak a Cartan
subgroup. Here is an example of how close things get in a complex group.
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EXAMPLE. Let G = SL(2, C)/{£1}. We work with elements o as
2-by-2 matrices identified when they differ only by a sign. The element

(Z 0 ) with z # 0, is regular ifz £ £1. For most values ot other

0z1
than+1, the centralizer o(é Z?l) is the diagonal subgroup, which is a
Cartan subgroup. But for = =i, the centralizer is generated by the
diagonal subgroup ar(d_i ;) thus the Cartan subgroup has index 2 in the
centralizer.

Now, as promised, we prove tHat |, i.e., the minimum indek such
thatd, (X) = 0equals the minimum indéksuch thaD,.(x) & 0. LetadX
have generalized eigenvalue 0 exattlynes. For sufficiently smatl, ad X
has all eigenvalues 27 in absolute value, and it follows for suchthat
Ad(expX) has generalized eigenvalue 1 exattiynes. Thud’ <. Inthe
reverse direction suppogs (x) = 0. SinceD, extends holomorphically
to the connected complex group §itD; cannot be identically 0 in any
neighborhood of the identity in Igt HenceD,.(x) cannot be identically O
in any neighborhood of = 1in G. Choose a neighborhoddlof X'sin g
about 0 such that all a¥ have all eigenvalues 27 in absolute value and
such that exp is a diffeomorphism onto a neighborhood of G.irJnder
these conditions the multiplicity of 0 as a generalized eigenvalue fér ad
equals the multiplicity of 1 as a generalized eigenvalue foteXgdX).
Thus if Dy (X) is somewhere nonzero on edp thend, (X) is somewhere
nonzero orJ. Thusl < I’, and we conclude that=1".

To understand the relationship between regular elements and Cartan
subgroups, we shall first study the case of a complex group (which in
practice will usually be Ing). The result in this case is Theorem 7.101
below. We establish notation for this theorem after proving three lemmas.

Lemma 7.96. Let Z be a connected complex manifold, and let
f : Z — C" be a holomorphic function not identically 0. Then the
subset ofZ where f is not O is connected.

PROOF Lemma 2.14 proves this result for the case that: C™ and
f is a polynomial. But the same proof works4fis a bounded polydisc
I, {|z] < r;}andf is a holomorphic function on a neighborhood of the
closure of the polydisc. We shall piece together local results of this kind
to handle general.

Thus let the manifold structure & be specified by compatible charts
Ve, 0o) With ¢, : V, — C™ holomorphic onto a bounded polydisc. There
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is no loss of generality in assuming that there are open sublsetvering
Z such thaty,(U,) is an open polydisc whose closure is contained in
v, (V). For any subse§ of Z, let S denote the subset & where f is
not 0. The result of the previous paragraph implies thats connected
for eache, and we are to prove tha' is connected. AlsdJ/ is dense in
U,, since the subset of a connected open set where a honzero holomorphic
function takes on nonzero values is dense.

Fix U = U,. To each pointz € Z, we can find a chain ofJ,’s of
the formU = U, U4, ..., Uy such thatz is in U, andU;_; N U; # @ for
1 <i < k. Infact, the set of’s for which this assertion is true is nonempty
open closed and hence is all 6f

Now letz € Z' be given, and form the chalth = Uy, U4, ..., U,. Here
zis in U,. We readily see by induction om < k thatUj U --- U U/,
is connected, hence thlly U --- U Uy is connected. Thus eacghe Z'
lies in a connected open set containg and it follows that the union of
these connected open sets is connected. The unidh) &d henceZ’ is
connected.

Lemma 7.97. Let N be a simply connected nilpotent Lie group with
Lie algebrang, and letn; be an ideal im,. If X is inng andY is inng, then
exp(X +Y) = expX expY’ for someY’ in ny,

ProoF. If N’ is the analytic subgroup correspondingnfp thenN’ is
certainly normal, and\’ is closed as a consequence of Theorem 1.127.
Letg : N — N/N’ be the quotient homomorphism, and i be its
differential. Sincedg(Y) = 0, we have

p((exp(X + Y))(expX)™) = p(exp(X + Y))p(expX) ™
= exp(de(X) + dp(Y))(expde(X))™*
= exp(dep(X))(expde(X)) ™ = 1.

Therefore(exp(X + Y))(expX)~tisin N’, and Theorem 1.127 shows that
it is of the form expy” for someY’ € ny,.

Lemma 7.98. Let G = K AN be an lwasawa decomposition of the
reductive grougs, let M = Z, (A), and letng be the Lie algebra o. If
h € M A has the property that Atl) acts as a scalar on each restricted-root
space and Ath)~! — 1 is nonsingular omg, then the mag : N — N
given byg(n) = h~*nhn=!is ontoN.
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REMARK. This lemma may be regarded as a Lie group version of the
Lie algebra result given as Lemma 7.42.

PROOF Write np = @D (go),. @s a sum of restricted-root spaces, and
regard the restricted roots as ordered lexicographically. For any restricted
roote, the subspace, = @, ., (g0); is anideal, and we prove by induction
downward ornx thate carries exm, onto itself. This conclusion whem
is equal to the smallest positive restricted root gives the lemma since exp
carriesng ontoN (Theorem 1.127).

If o is given, we can writey, = (go), @ ns With § > «. Let X be
given inn,, and write X as X; + X, with X; € (go), and X; € ng.
Since Adh)~! — 1 is nonsingular orig,),, we can choos¥; € (go), with
X1 = (Ad(h)~! — 1)Y;. Putn; = expY;. Since Adh)~'Y; is a multiple
of Y1, Ad(h)~1Y; commutes withy;. Therefore

(7.99) h™'nihn;t = (exp Adh) 1Y) (expYy) ™
= exp((Ad(h)™t = 1)Y;) = expX,.
Thus
expX = exp(Xy + Xp)

= expX; expX, by Lemma 7.97

= h~'n;hn;texpX, by (7.99)

=h"'n;hexpX;n;*  with X} € ng.
By induction expXj = h=*n,hn,*. Hence expX = h=*(nyny)h(n;ny) 2,
and the induction is complete.

Now we are ready for the main result about Cartan subgroups in the
complex case. LeG. be a complex semisimple Lie group (which will
usually be Inty when we return to our reductive Lie gro@®). Proposition
7.5 shows tha®, is a reductive Lie group. L&b. = U AN be an Iwasawa
decomposition o6, and letM = Z, (A). We denote by, ug, ag, g, and
myp the respective Lie algebras. Hemg = iag, mg is maximal abelian in
ug, andh = ap @ my is a Cartan subalgebra @f The corresponding Cartan
subgroup ofG. is of the formH, = M A since Proposition 7.25 shows that
H. is a reductive Lie group. Since

M = Zy(ap) = Zy(iag) = Zy(my),
Corollary 4.52 shows thad#l is connected. Therefore
(7.100) H. is connected
Let G, denote the regular set @..
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Theorem 7.101.For the complex semisimple Lie gro@., the regular
setGy is connected and satisfi@ < | J, .. XHex ™ . If Xo is any regular
element ing, thenZg_ (Xo) = H..

PrROOF. We may regard, (x) as a holomorphic function 06.. The
regular seG; is the set wher®, (x) # 0, and Lemma 7.96 shows th@t
is connected.

Let H, = H. N G, and definev’ = (J, ¢ xHXx™*. ThenV’' € G|
by (7.95). If X, € b is chosen so that no root ifi(g, h) vanishes orXo,
then we have seen that ex}, is in H/ for all sufficiently smallr > 0.
HenceV'’ is nonempty. We shall prove th&t is open and closed G,
and then it follows thaG, = V', hence thaG; C [ J, g XHcx .

To prove thatV’ is closed inG,, we observe thaH:N is closed in
G, being the minimal parabolic subgrodypAN. SinceU is compact, it
follows that

V = | JuHNu™

ueU

is closed inG.. By (7.95),

VNG, = JuHNyu™,

ueU

where(H:N)" = H.N N G.. If hisin Hc andnis in N, then Adhn) has
the same generalized eigenvalues agtdHence(H:N)" = H/N. If h
is in H/, then Adh) is scalar on each restricted root space contributing to
ng, and Adh) — 1 is nonsingular omy. By Lemma 7.98 such amhas the
property than — h=*nhn~! carriesN ontoN. Letn, € N be given, and
write no = h~*nhn=t. Thenhny = nhn%, and we see that every element
of hN is anN conjugate oh. Since everyN conjugate oh is certainly in
hN, we obtain

HN = JnH/n™

neN

Therefore
VNG, = U U (unyH.(un)~2.

ueU neN
SinceaHC/a—1 = H; fora e Aand sinceG. = UAN = UNA, we obtain
VNG, = V'. ThusV'is exhibited as the intersection@f, with the closed
setV, andV' is therefore closed ifs.

To prove thatV’ is open inG, it is enough to prove that the map

¥ G x He = G given byv (y, x) = yxy~* has differential mapping
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onto at every point o5, x H/. The argument imitates part of the proof
of Theorem 4.36. Let us abbreviaggy—* asx’. Fixy € G. andx € H/.
We identify the tangent spaces gt x, andx¥ with g, h, andg by left
translation. First leY be ing. To compute(dy )y 5 (Y, 0), we observe
from (1.88) that

(7.102) XYY — xYexpr Ad(yx1)Y) exp(—r Ad(y)Y).
We know from Lemma 1.90a that
expr X' exprY’ = explr (X' +Y') + O(r?)} asr — 0.
Hence the right side of (7.102) is
= xYexprAd(y)(Ad(x1) — )Y + O(r?)),
and
(7.103) dy (Y, 0) = Ad(y)(Ad(x™) — D)Y.
Next if X is in b, then (1.88) gives
(x expr X)Y = x¥ exp(r Ad(y) X),

and hence

(7.104) dv (0, X) = Ad(y) X.
Combining (7.103) and (7.104), we obtain

(7.105) dy (Y, X) = Ad(y)((Ad(x™H) — DY + X).

Sincex isin H/, Ad(x™*) — 1 is invertible on the sum of the restricted-root
spaces, and thus the set of @d(x~1) — 1)Y contains this sum. Sincé
is arbitrary inh, the set of allAd(x1) — 1)Y + X is all of g. But Ad(y)
is invertible, and thus (7.105) shows tlilat is ontog. This completes the
proof thatV’ is open inG..

We are left with proving that any regular eleméftof h hasZg, (Xo) =
H.. Letx e G, satisfy Adx) Xq = X,. Since the centralizer ofyingish,
Ad(x)h = b. If x = uexpX is the global Cartan decompositionxafthen
Lemma 7.22 shows that Ad)h = h and(@adX)h = h. By Proposition
2.7,Xisinh. Thus Adu) X, = X,, and it is enough to prove thatis in
M. Write Xo = X]_ + i X2 with Xl and X2 in mp. Since Adu)uO = Up,
we must have Adl) X; = X;. The centralizer of the torusxpRX; in U
is connected, by Corollary 4.51, and must lie in the analytic subgroup of
U with Lie algebraZ, (X;). SinceX; is regular, Lemma 4.33 shows that
Z,,(X;1) = mg. Thereforeuis in M, and the proof is complete.
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Corollary 7.106. For the complex semisimple Lie grou®,, let Hy
denote the centralizer @, of a regular element of G.. Then the identity
component ofH, is a Cartan subgroupH,), of G., and Hy lies in the
normalizer Ng_((Hy)o). ConsequentlyH, has only a finite number of
connected components.

REMARK. Compare this conclusion with the exampleshf(2, C) /{£1}
given after (7.95).

PROOF. Theorem 7.101 shows that we can chogse G, with h =
y~IXxy in H.. Sincex is regular, so ih. Therefore Adh) has 1 as a
generalized eigenvalue with multiplicity= dim¢ h. Since Adh) acts
as the identity orp, it follows thatb is the centralizer oh in g. Hence
Ad(y)h is the centralizer ok = yhy~tin g, and Ady)} is therefore the
Lie algebra ofH,. Then(H,), = yH.y!is a Cartan subgroup db.
by (7.100).

Next any element of a Lie group normalizes its identity component, and
henceHy lies in the normalizeNg, ((Hx)o). By (7.93), Hx has a finite
number of components.

Corollary 7.107. For the complex semisimple Lie grow:., the cen-
tralizer ing of a regular element db. is a Cartan subalgebra gf

ProOF. This follows from the first conclusion of Corollary 7.106.

We return to the general reductive Lie groGp The relationship be-
tween the regular set i@ and the Cartan subgroups@ffollows quickly
from Corollary 7.107.

Theorem 7.108.For the reductive Lie groufs, let (h1)o, ..., (hr)o be
a maximal set of nonconjugagestable Cartan subalgebrasgf and let
Hi, ..., H; be the corresponding Cartan subgroup&ofThen
(@ G' < Ui, Usee XHiX™,
(b) each member d&’ lies in just one Cartan subgroup Gf
(c) eachH; is abelian ifG is semisimple and has a complexification.

PROOF.

(a) We apply Corollary 7.107 wit. = Intg. Property (v) of reductive
Lie groups says that A&) < G, and the regular elements & are
exactly the elements of G for which Ad(x) is regular inG.. If xisin G/,
then Corollary 7.107 shows thd, (x) is a Cartan subalgebra gf Since
X isin G, Z,(x) is the complexification o, (x), and henceZ, (x) is a



8. Cartan Subgroups 497

Cartan subalgebra gb. ThereforeZ,,(x) = Ad(y)(hi)o for;somey €eG
and somé with 1 < i < r. Write ho for Z,,(x), and letH = Zg(ho)
be the corresponding Cartan subgroup. By definitors in H. Since
ho = Ad(Y)(hi)o, it follows thatH = yH;y~1. Thereforex is in yH,y1,
and (a) is proved.

(b) We again apply Corollary 7.107 witB. = Intg. If x € G’ liesin
two distinct Cartan subgroups, then it centralizes two distinct Cartan subal-
gebras ofyp and also their complexifications in Hence the centralizer of
X in g contains the sum of the two Cartan subalgebras in contradiction
with Corollary 7.107.

(c) This time we regards. as the complexification o&. Let by be a
Cartan subalgebra @f, and letH be the corresponding Cartan subgroup
of G. The centralizeH, of h in G. is connected by (7.100), artd is a
subgroup of this group. Sindd. has abelian Lie algebra, it is abelian.
HenceH is abelian.

Now we return to the component structure of Cartan subgroups, but
we shall restrict attention to the case that the reductive Lie g@up
semisimple and has a complexificati@t. Let hy = ty ® ao be the
decomposition inte+1 and—1 eigenspaces undérof a6 stable Cartan
subalgebrd,. Let H be the Cartan subgroufx (ho), let T = expt,, and
let A = expay. HereT is closed inK since otherwise the Lie algebra of its
closure would form withuy an abelian subspace larger thignHenceT is
atorus. Ifa is areal rootinA(g, h), then the same argument as for (7.54)
shows that

(7.109) Yo = €Xp 2ti|a|%H,

is an element oK with y? = 1. Asa varies, the elementg, commute.
DefineF (T) to be the subgroup d€ generated by all the elementsfor «

real. Theorem 7.55 identifids(T) in the special case thgg is maximally
noncompact; the theorem says thafl ) = F in this case.

Proposition 7.110. Let G be semisimple with a complexificatid®®,
and lethy be af stable Cartan subalgebra. Then the corresponding Cartan
subgroup isH = AT F(T).

PROOF. By Proposition 7.25Z¢(to) is a reductive Lie group, and then
it satisfiesZg (tg) = Zk (to) €Xplho N Zy,(to)). By Corollary 4.51,7 (o)
is connected. Therefor&;(ty) is connected.
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ConsequentlZ (tp) is the analytic subgroup corresponding to

Zgy(t) = 80N (h+ D 8a) =ho+ (D_RH, + ) (g« N 90))-

« real «a real « real

The grouped term on the right is a split semisimple Lie algepraet Sbe
the corresponding analytic subgroup, so thatt,) = (expho)S= ATS.
Since the subspaeg = ) .., RH, of s is a maximal abelian subspace of
50N po, Theorem 7.55 shows that the correspondngroup is justF (T).

By Theorem 7.53cZs(ag) = (expag) F(T). Then

Zg(ho) = Zars(ao) = AT Zs(ao) = AT Zs(ag) = ATF(T).

Corollary 7.111. Let G be semisimple with a complexificati@’, and
let Q = M AN be the Langlands decomposition of a cuspidal parabolic
subgroup. Lety be ad stable compact Cartan subalgebrawgf and let
ho = to @ ap be the correspondingstable Cartan subalgebragf Define
T andF(T) fromt,. Then
(@) Zm(to) = TF(T),
(b) Zy, =ZuNT,
(€) Zy = Zu NTHF(T) = Zy,F(T),
(d) MoZy = MoF(T).

ReMARK. WhenQ is a minimal parabolic subgroup, the subgrdigiZ,,
is all of M. But for generalQ, MyZy need not exhaudtl. For some
purposes in representation theoMyZy plays an intermediate role in
passing from representationsidf, to representations d¥l.

PROOF.

(a) Proposition 7.110 give&y (to) = °Zs(to ® ap) = %(ATF(T)) =
TF(T).

(b) CertainlyZyNT < Zy,. Inthe reverse directiolz, , is contained in
K N My, hence is contained in the centekoff My. The center of acompact
connected Lie group is contained in every maximal torus (Corollary 4.47),
and thusZy, < T. To complete the proof of (b), we show tha, < Zy.
The sum ofay, and a maximally noncompact Cartan subalgebragfs
a Cartan subalgebra @f, and the corresponding Cartan subgroupsof
is abelian by Proposition 7.110. The intersection of this Cartan subgroup
with M is a maximal noncompact Cartan subgroupvbfand is abelian.
By Corollary 7.91,Zy, € Zy.

(c) The subgroug-(T) is contained inZy since it is iNK N expi ao.
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ThereforeZy = ZyNZy(tg) = ZWN(TF(T)) = (ZyNT)F(T), which
proves the first equality of (c). The second equality follows from (b).
(d) By (€), MoZy = MoZy, F(T) = MoF(T).

9. Harish-Chandra Decomposition

ForG = SU(1,1) = {(Z g) ‘ |2 — |5|2=1}, the subgrougk

e’ 0

can be taken to b = { ( > } andG/K may be identified with

0 efie
the disc{|z| < 1} by gK <« B/a. If g = (%: g:) is given, then the
equalityg'g = (%;Z ::__ g:g %ﬁﬁ ::__ g:g) implies that

B+ pa  d(B/a)+p
BB+aa BB/a)+a
In other words, under this identificatiog; acts by the associated linear
fractional transformatiorz +— géié The transformations by which
o

G acts onG/K are thus holomorphic once we have imposed a suitable
complex-manifold structure 08/K.

If G is a semisimple Lie group, then we say titK is Hermitian if
G/K admits a complex-manifold structure such tBaicts by holomorphic
transformations. In this section we shall classify the semisimple groups
G for which G/K is Hermitian. Since the center @ is contained in
K (Theorem 6.31¢), we could assume, if we wanted, Ga an adjoint
group. Atany rate there is no loss of generality in assumingGhatinear
and hence has a complexification. We begin with a more complicated
example.

g'(gK) <

ExampPLE. Letn > m, let M,n(C) be the complex vector space of
all n-by-m complex matrices, and let,lbe them-by-m identity matrix.
Define

Q={Z € Mn(C) | 1, — Z*Z is positive definité.
We shall identify2 with a quotientG/K, takingG = SU (n, m) and
K = SU(n) x U(@m))

= {(é g)‘AeU(n), D eU(m)), detAdetD:l},
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The group action of5 on 2 will be by

(7.112) g(Z2)=(AZ+B)(CZ+D)?' ifg= (é g).

To see that (7.112) defines an action@fon 2, we shall verify that
(CZ + D) tis defined in (7.112) and thay(Z) is in Q if Z is in Q.
To do so, we write

(AZ + B)*(AZ + B) — (CZ + D)*(CZ + D)

- 1o (g _ﬂm)g<fm>

X 1, O Z . .
=(Z lm)<0 _1m)<1m> sincegisin SU(n, m)

(7.113)
=27"7Z - 1,.

With Z in ©, suppos€CZ + D)v = 0. Unlesy = 0, we see from (7.113)
that
0<v'(AZ+ B)"(AZ+B)v =v"(Z*Z - 1,)v < 0,

a contradiction. HencéCZ + D) ! exists, and then (7.113) gives
9(2)*9(Z) — 1, = (CZ + D)*%Z*Z — 1,)(CZ + D)*.

The right side is negative definite, and heg¢e) is in Q.

The isotropy subgroup & = 0 is the subgroup witf8 = 0, and this
subgroup reduces ti. Let us see thaG acts transitively or2. Let
Z € Mn(C) be given. The claim is thaf decomposes as

(7.114) Z = udv withu e U(n), v e U(m),

andd of the formd = %’ , Whered, = diag(Aq, ..., Am) Withall2; > 0

and where 0 is of sizén — m)-by-m. To prove (7.114), we extend to a
square matrix Z 0) of sizen-by-n and let the polar decomposition of
(Z 0)be(zZ 0) = u;pwithu; € U(n) and p positive semidefinite.
Since(Z 0)is 0in the lash — m columns,u; gives 0 when applied to
the lastn — m columns ofp. The matrixu, is nonsingular, and thus the last

n — m columns ofp are 0. Sincep is Hermitian,p = ( F()) 8) with p’
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positive semidefinite of size-by-m. By the finite-dimensional Spectral
Theorem, writep’ = u,dou, ™ with u, € U (m) andd, = diag(As, . . ., Ap).

Then (7.114) holds withr = u; ( 1n° d= (%0

With Z asin (7.114), the matrix*Z = v*d*dv has the same eigenvalues
asd*d, which has eigenvalueg, ..., 2. ThusZ is in  if and only if
0< A <1lforl< j < m Inthe formula (7.114) there is no loss

, andv = uy ™.

of generality in assuming thatletu)(detv)~! = 1, so that(g v(_)l> is

cosht;  sinht in
sinht;  cosht
the j" and(n + j)" rows and columns for kX j < m and is otherwise

the identity. Thera(0) = d, and(g v(31> (d) = udv = Z. Hence

in K. Leta be the member o8U (n, m) that is(

g= (8 vol) amaps 0 toZ, and the action oG on 2 is transitive.

Throughout this section we l&s be a semisimple Lie group with a
complexificationG®. We continue with the usual notation f@ as a
reductive Lie group. Let, be the center df,. We shall see that a necessary
and sufficient condition foG/K to be Hermitian is tha? ,(co) = €. In
this case we shall exhib@/K as holomorphically equivalent to a bounded
domain inC" for a suitablen. The explicit realization oiG/K as a
bounded domain is achieved through the “Harish-Chandra decomposition”
of a certain open dense subseG.

First we shall prove that i6/K is Hermitian, therZ (co) = £,. Before
stating a precise theorem of this kind, we recall the “multiplication-by-
mapping introduced in connection with holomorphic mappings in §1.12.
If M is a complex manifold of dimensiom, we can associate th an
almost-complex structure consisting of a multiplicationibyaapping
Jp € EndT,(M)) for eachp. For eachp, we haveJ,f = —1. If
® : M — N is a smooth mapping between complex manifolds, then
® is holomorphic if and only if the Cauchy—Riemann equations hold. If
{Jp} and{J;} are the respective almost-complex structuresMoand N,
these equations may be written as

(7.115) Jpp 0dPp =dPp0 Jp

for all p.
Now let us consider the case thdt= N = G/K and p is the identity
coset. IfG/K is Hermitian, then each left translatibn by k € K (defined
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by Ly (k") = kk’) is holomorphic and fixes the identity coset.Jifdenotes
the multiplication-byr mapping at the identity coset, then (7.115) gives

JOde:deOJ.

We may identify the tangent space at the identity coset pgtland then
dLy = Ad(k)|,,. Differentiating, we obtain

(7.116) J o (@adX)l,, = (@dX)[p, 0 J forall X € &,.

Theorem 7.117. If G/K is Hermitian, then the multiplication-biy-
mappingJd : po — po at the identity coset is of the fordh = (ad Xo)|,,, for
someX, € . This elemeni, is in ¢, and satisfieg ;,(Xo) = €. Hence

Zgo (Co) = Eo.

PrROOF. SinceJ? = —1 onyp,, the complexification is the direct sum
of its +i and—i eigenspaces™ andp~. The main step is to prove that

(7.118) X,Y]=0 if X e p*andY € p*.

Let B be the bilinear form og, andg that is part of the data of a reductive
group, and define a bilinear for@ onyp by

C(X,Y) =B(X,Y)+ B(IX, JY).

SinceB is positive definite o, so isC. HenceC is nondegenerate qn
Let us prove that

(7.119) ClIX,Y],Z],T)=C([Z,T], X1, Y)

for X, Y, Z, T inp. WhenX, Y, Z are inp, the bracketY, Z] is in ¢, and
therefore (7.116) implies that

(7.120) JIXIY, Z]] = [IX, Y, Z]].

Using the Jacobi identity and (7.120) repeatedly, together with the invari-
ance ofB, we compute

B(JI[[X, Y], Z], IT) = BA[X,[Y, Z]], IT) — BA[Y, [X, Z]], IT)
= B(IX,[Y, Z]], IT) — B(JIY,[X, Z]], IT)
— —B([JT,[Y, Z]], IX) + B(JT,[X, Z]], IY)

(7.121) = —BQ[T,[Y, Z]], IX) + BQ[T, [X, Z]], IY).
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Using the result (7.121) witl andT interchanged, we obtain

B(JI[[X,Y],Z],IT) = B([X,Y],3Z],3T)
= —B([X, Y], JT],I2)
= —BU[X,Y],T],J2)
(7.122) = BUJ[Z,[Y, T]], IX) — BQ[Z, [X, TI], IY).

The sum of (7.121) and (7.122) is

2B(J[[X, Y], Z], IT) = — BQ[T, [V, Z]], IX) + BA[T, [X, Z], IY)
+ BU[Z,[Y, T]], IX) — BA[Z, [X, T1I, JY)
= BAJ[Y,[Z, T]], IX) — BQI[X,[Z, T]], IY)
= B(JY,[Z, T], IX) — B(IX,[Z, T]], IY)
— 2B([Z, T],[IX, IY]
= 2B([Z, T], IX], IY)
(7.123) — 2B(J[[Z, T], X], IY).

The calculation that leads to (7.123) remains valid i§ dropped through-
out. If we add the results witld present and with] absent, we ob-
tain (7.119). To prove (7.118), suppose thaandY are inp*, so that
JX =iXandJY =iY. Then

C([Z. T, XI.Y) =CQ[[Z, T, X], IY)
=C([Z,T], IX], IY)
=-C([Z,T]. X1, Y)

saysC([[Z,T], X],Y) =0. By (7.119)C([ X, Y], Z], T) = 0. SinceT
is arbitrary andC is nondegenerate,

(7.124) [X,Y],Z]=0 forallZ e p.

If bar denotes conjugation @fwith respect tqyo, thenB(W, W) < 0 for
all W #0in¢. ForW = [X, Y], we have

B(X, YL.[X, YD = B(X, YL.[X, YD) = B([X, Y], X]. Y),

and the right side is 0 by (7.124). Therefod¢, [Y] = 0, and (7.118) is
proved.
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Let us extend) to a linear map) defined ory, puttingJ = 0 on¢. We
shall deduce from (7.118) thatis a derivation ofj, i.e., that

(7.125) JX, Y] =[IX, Y] +[X,IY] for X,Y € go.

If X andY are ing, aIILerms are 0, and L7.125) is automatic.Xlfis in
£ andY is in po, then [JX, Y] = 0 sinceJ X = 0, and (7.125) reduces
to (7.116). Thus suppose¢ andY are inp,. The elemenX —iJX isin
p* since

JX—iJIX) =JIX—iJ3 X =IX+iX=i(X—-iIX),
and similarlyY —iJY isinp*. By (7.118),
0=[X—=iIX,Y=iJdY]=((X,Y]-[IX,IYD—=i([IX,Y]+[X, IY]).

The real and imaginary parts must each be 0. Since the imaginary part is
0, the right side of (7.125) is 0. The left side of (7.125) is O sid¢e 0 on
t. HencelJ is a derivation ofo.

By Proposition 1.121,) = adX, for someXy € go. LetY € po be
given. Sincel? = —1 onp,, the elemenlY’ = —JY of po hasJY’ =Y.
Then

B(Xo, Y) = B(Xo, JY) = B(Xo, [Xo, Y']) = B([Xo, Xo], Y') = 0.

HenceXg is orthogonal tgy,, and X, must be ing,. SinceJ = adXyis 0
onty, Xpisin cg.

If Yisin Z,(Xo), then thet, component ofY already commutes with
Xo since Xq is in ¢g. Thus we may assume th#tis in po. But then
[Xo, Y] = JY. Sinceld is nonsingular ompg, 0 = [ X, Y] impliesY = 0.
We conclude thaZ ,,(X,) = &. Finally we have

b € Z;,(co) C© Zy(Xo) = o,
and equality must hold throughout. Theref@g(co) = &.

For the converse we assume tigf(co) = &, and we shall exhibit a
complex structure ofts/K such thatG operates by holomorphic transfor-
mations. Fix a maximal abelian subspag®f ¢5. Thenc, C t,, So that
Z,,(to) € Z,4,(co) = E. Consequently, is a compact Cartan subalgebra
of go. The corresponding Cartan subgroliis connected by Proposition
7.90b, hence is a torus.
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Every root inA = A(g, t) is imaginary, hence compact or noncompact
in the sense of 8VI.7. IfAx and A, denote the sets of compact and
noncompact roots, then we have

(7.126) t=te Po. and p=Po..

aeAk a€Ap

just as in (6.103).

Lemma 7.127. A root « is compact if and only itx vanishes on the
centerc of ¢.

PROOF. If @ isin A, thena(¢) = O ifand only if [c, g,] = O, if and only
if go € Z,4(c), ifand only ifg, < ¢, if and only if « is compact.

By a good ordering for ity;, we mean a system of positivity in which
every honcompact positive root is larger than every compact root. A good
ordering always exists; we can, for instance, use a lexicographic ordering
that takes d, before its orthogonal complement itty. Fixing a good
ordering, letA™, A%, andA;" be the sets of positive roots i, Ax, and
A,. Define

P=s ad p =P

aeAY aeAY

sothaty =p* @ p~.
In the example o8U (n, m) earlier in this section, we have

H : 1 1 1 1
|%5=}R(hag;,...,ﬁf—m,..”'—a)

with n entriesz andm entries— =, and we may take to be the diagonal
subalgebra. If roots — g that are positive on

diags,.... 5, —21,...,—2)

m’ m

are declared to be positive, thehn has the block forrr(g B) andp~

has the block forrr(o O).
* 0
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Lemma 7.128. The subspaces™ andp~ are abelian subspaces jof
andf,p*] Sprandf.p ] Sp .

PROOF. Leta, 8, anda + S be in A with « compact ang noncompact.
Then [g,, 9s] < g.+5, @andp anda + B are both positive or both negative
because the orderingisgood. Summing@mdg, we seethat] p*] < p*
andf,p ] Sp~.

If « andpg are inA}}, thena 4+ 8 cannot be a root since it would have to
be a compact root larger than the noncompact positivedao@umming
ona andg, we obtain p*, p™] = 0. Similarly [p=, p~] = 0.

Let b be the Lie subalgebra

of g, and letP*, K€, P~, and B be the analytic subgroups & with

Lie algebras™, ¢, p~, andb. SinceG® is complex andh*, &, p~, b are
closed under multiplication iy all the group$*, K€, P~, B are complex
subgroups.

Theorem 7.129Harish-Chandra decomposition). L&te semisimple
with a complexificationG®, and suppose that the centgrof € has
Z,,(co) = €. Then multiplication fromP* x K© x P~ into G® is one-one,
holomorphic, and regular (with image operGf), GB is open inG®, and
there exists a bounded open sul®et P+ such that

GB =GK P~ = QK P,

Moreover, G/K is Hermitian. In fact, the map o into Q given by
g — (P* component ofy) exhibitsG/K and<2 as diffeomorphic, an&
acts holomorphically o by g(w) = (Pt component ofjw).

REMARKS.

1) We shall see inthe proofthat the complex gréugs holomorphically
isomorphic with som&", and the theorem asserts tkais a bounded open
subset when regarded as(fi in this fashion.

2) WhenG = SU(n, m), G® may be taken a$SL(n + m, C). The
decomposition of an open subset@f asP* x K¢ x P~ is

(7.130)

A B\ (1 BD A-BD!C 0 1 0
C D) \o 1 0 D D!C 1)
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valid wheneverD is nonsingular. Whateve® is in the theorem, itv =
1 Z\... (A BY)._. (A AZ+B
(0 1>|3|n§2andg_(C D)lsmG,thengw_<C CZ+D)

hence (7.130) shows that the" component ofjw is

1 (AZ+B)(CZ+ D)1
0 1 :

So the action is

o (3 8)((3 2)-(5 = oezor).

We know from the example earlier in this section that the image ef 0

underZ — (AZ + B)(CZ + D) for all (é S) in SU(n, m) is all
Z with 1,, — Z*Z positive definite. Therefor@ consists of all (l) i

such that }, — Z*Z is positive definite, and the action (7.131) corresponds
to the action by linear fractional transformations in the example.

3) The proof will reduce matters to two lemmas, which we shall consider
separately.

ProoOF Define

n=@ga, n’=@gfa, bK=t®@gw,

aeAT acAt “EAI

N, N-, B¢ = corresponding analytic subgroups®f.

Let Hz andH be the analytic subgroups & with Lie algebras t, and

t, so thatH = THg as a direct product. By (7.100) a Cartan subgroup
of a complex semisimple Lie group is connected, and thereifbrie a
Cartan subgroup. The involutigio bar, where bar is the conjugationgf
with respect tqy, is a Cartan involution of, andity is a maximal abelian
subspace of the-1 eigenspace. Thel eigenspace i& @ ipg, and the
corresponding analytic subgroup@f we callU. Then

Zy(ity) =Zy() =UNZgc(t) =UNH=T.

So theM, group is justT. By Proposition 7.82 th& of every parabolic
subgroup ofG® is connected.
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The restricted roots gf* relative tai to are evidently the restrictions from
ttoit, of the roots. Therefore = t@&n~ is a minimal parabolic subalgebra
of g®. Since parabolic subgroups 6f are closed (by Proposition 7.83b)
and connected is closed.

The subspack® p~ is a Lie subalgebra gf* containingb and hence is
a parabolic subalgebra. Then Proposition 7.83 showskthaand P~ are
closed,K®P~ is closed, and multiplicatioK © x P~ is a diffeomorphism
onto. SimilarlyP* is closed.

Moreover the Lie algebréd @ p~ of KCP~ is complex, and hence
KC€P~ is a complex manifold. Then multiplicatiod® x P~ is evidently
holomorphic and has been observed to be one-one and regular. Since
ptd (EDp) =g, Lemma 6.44 shows that the holomorphic multiplica-
tion mapP* x (K€P~) — GC is everywhere regular. It is one-one by
Proposition 7.83e. Hende* x K€ x P~ — G is one-one, holomorphic,
and regular.

Next we shall show thaB B is open inG®. First let us observe that

In fact, since roots are imaginary &) we haveg, = g_,. Thusifhisin
itoandX_, isinn™, then

h+ ) Xo=-h+> X,e—h+n,

aeAT acAt

and (7.132) follows since membersgfequal their own conjugates. The
real dimension oft, @ n~ is half the real dimension df&énd n™ = g,
and hence

(7.133) dim(go® (ito ®n7)) =dimg g.
Combining (7.132) and (7.133), we see that
(7.134) g=00D (ito®dn").

The subgroupz N~ of G is closed by Proposition 7.83, and hert,eN ~

is an analytic subgroup, necessarily with Lie algalgap n—. By Lemma

6.44 it follows from (7.134) that multiplicatio®® x HyN- — G€ is
everywhere regular. The dimension relation (7.133) therefore implies that
GHzN~ is open inG®. SinceB = THyxN~- andT < G, GB equals
GHzN~ and is open irG°.
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The subgroup®* and P~ are theN groups of parabolic subalgebras,
and their Lie algebras are abelian by Lemma 7.128. Hdtcand P~
are Euclidean groups. Then exp* — P is biholomorphic, andP*
is biholomorphic withC" for somen. Similarly P~ is biholomorphic
with C".

The subgrougK € is a reductive group, being connected and having bar
as a Cartan involution for its Lie algebra. It is the product of the identity
component of its center by a complex semisimple Lie group, and our above
considerations show that its parabolic subgroups are connected.Bkhen
is a parabolic subgroup, and

(7.135) KC = K By

by Proposition 7.83f.

Let A denote a specifié,, component for the lwasawa decomposition
of G, to be specified in Lemma 7.143 below. We shall show in Lemma
7.145 that thisA satisfies

(7.136a) AC PTKEP~
and
(7.136Db) P* components of members éfare bounded

Theorem 7.39 shows th& = KAK. Sinceb C t @ p~, we have
B € K®P~. Since Lemma 7.128 shows thKt® normalizesP* and
P-, (7.136a) gives

GB C GK®P~ € KAKK®P~
(7.137) c c -
C KPTK*P K*P™ = PTK*P".
By (7.135) we have
(7.138) GK®P~ = GKBxP~ € GB«P~ € GB.
Inclusions (7.137) and (7.138) together imply that

GB = GK P~ C P*K®P".

SinceGB is open,

(7.139) GB =GK P~ = QK P~
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for some open sk in P™.

Let us write p*(-) for the P™ component. Fogb € GB, we have
pT(gb) = p*(g), and thusp™ restricts to a smooth map carryifgonto
Q. From (7.139) it follows that the ma x Q@ — Q given by

(7.140) (9, w) ~ pT(gw)

is well defined. For fixed), this is holomorphic since left translation by
g is holomorphic onG® and sincep* is holomorphic fromP+K®P-

to P*. To see that (7.140) is a group action, we use taP- is a
subgroup. Leig; andg, be given, and write,o = p*(gw)k,p, and
010w = pH (G G0)k"p~. Then

91p" (Gw) = GG (Kp,) ! = P (g1%w)(KEp ) (kapy) .

Since(k®p™)(kzp;) Tt isiNKEP~, p* (g1 p*(gew)) = p*(G10.w). There-
fore (7.140) is a group action. The action is evidently smooth, and we have
seen that it is transitive.

If gisin G andkisin K, we can regard 1 as 2 and write

p*(gk) = pT(gkl) = p(gp* (k1) = p*(gl)

sincekl isinK < K€ and hasP* component 1. Thereforg™ : G — Q

descends to a smooth map®fK onto Q2. Let us see that it is one-one.
If p*(g1) = p*(g), theng, = g,k®p~ sinceK P~ is a group, and hence
9,0 = k°p~. Thus the mags/K —  will be one-one if we show that

(7.141) GNKEP™ =K.

To prove (7.141), we note that is clear. Then we argue in the same way
as for (7.132) that

(7.142) goNEdp ) =t

SinceG and K®P~ are closed inG®, their intersection is a closed sub-
group of G with Lie algebrat,. Let g = kexpX be the global Cartan
decomposition of an elemegtof G N KCP~. Then Adg)¢, = &, and
Lemma 7.22 implies thatad X)¢, C &. Since adX is skew symmetric
relative toB, (adX)pe C po. But X € pg implies that(adX)¢, < po and
(adX)po € &. Hence adX = 0 andX = 0. This proves (7.141).

ToseethaG/K — Qis everywhere regular, it is enough, since (7.140)
is a smooth group action, to show that the differentiapof: G — Q at
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the identity is one-one op,. But dpt complexifies to the projection of
g=prdtdp onp™, and (7.142) shows that the kernel of this projection
meetsp, only in 0. Therefore the ma/K —  is a diffeomorphism.

To see thaf2 is bounded, we need to see tigdt(g) remains bounded as
gvariesinG. If g € Gis given, writeg = k;ak, according taG = K AK.
Then pt(g) = pt(ka) = kip*(@k;* by (7.139) and Lemma 7.128.
Therefore it is enough to prove thiitog p*(a)|| remains bounded, and
this is just (7.136b). Thus the theorem reduces to proving (7.136), which
we do in Lemmas 7.143 and 7.145 below.

Lemma 7.143.Inductively defineyy, ..., ysin A} as follows:y;, is the
largest member oA}, andy, is the largest member &, orthogonal to
Y1, ..., ¥-1. For 1< j <s, letE, be anonzero root vector fgf. Then
the rootsys, . . ., ys are strongly orthogonal, and

S
do = @R(Eyj + E_J’J)
j=1

is a maximal abelian subspacepgf

PROOF. We make repeated use of the fact thejfis in gg, thenEy is
in g_g. Since p*, p*] = 0 by Lemma 7.128y; + y is never a root, and
they;’s are strongly orthogonal. Then it follows thatis abelian.

To see thatiy is maximal abelian i, let X be a member of, com-
muting withao. By (7.126) we can writeX =, Xz with X; € gg.
Without loss of generality, we may assume tiais orthogonal tai,, and
then we are to prove that = 0. Assuming thaX = 0, let 3, be the largest
member ofA,, such thatX,, # 0. SinceX = X, X_g, # 0 also; thusB, is
positive. Choosg as small as possible so théatis not orthogonal tg.

First suppose that, # y;. Since p*, p*] = 0, Bo + ¥; is not a root.
Thereforef, — y; is a root. The roop, is orthogonal to, . . ., yj_1, and
y; is the largest noncompact root orthogonako. . ., y;_1. Thusf, < y;,
andp, — y; is negative. We have

(7.144) 0=[X, E, +E, 1 =) (X5, E,]1+[Xs E,D,

BeAn

and [Xg,, E_yj] is not 0, by Corollary 2.35. Thus there is a compensating
term [Xg, E, ], i.e., there exist$ € A, with 8 + y; = fo — y; and with
Xy # 0. SinceX = X, X_g # 0. By maximality of 8y, fo > —B. Since
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v; — Bo is positive,y; > By > —pB. Thereforeg 4+ y,; is positive. But
B+ v; = Bo — ¥, and the right side is negative, contradiction.
Next suppose tha, = ;. Then [X,,, E, ] # 0, and (7.144) gives

[X_y,, E, ]+ [X},j,E_Vj] =0.

Define scalars* andc™ by X,, = ¢*E,, andX_,, = ¢”E,. Substituting,
we obtain
—c’[E,,E,]+Cc'[E,,E,] =0,

and thereforet = c~. ConsequentlX,, + X_, = c*(E, + E,) makes a
contribution toX that is nonorthogonal t&, + E,, . Since the other terms

of X are orthogonal t&,, + E,,, we have a contradiction. We conclude
that X = 0 and hence that, is maximal abelian imp,.

Lemma 7.145. With notation as in Lemma 7.143 and with the 's
normalized so thatf, , E, ] = 2|y;|7?H,, letZ = 3°  t;(E,, + E,)) be
in ag. Then

(7.146) expZ = expXoexpHoexpYy

with

Xo = Z (tanht))E, € p™, Yo = Z (tanht))E,, € p~,
Ho=—  (logcosh)[E,.E,] eito C t.
Moreover theP* components ex, of expZ remain bounded a8 varies
througha,.

REMARK. The given normalization is the one used with Cayley trans-
forms in 8V1.7 and in particular is permissible.

PrROOF. For the special case thét= SU (1, 1) € SL(2, C), (7.146) is
just the identity

cosht sinht) (1 tanht (cosht)~! 0 1 0
sinht cosht /] — \ O 1 0 cosht tanht 1)/°

Here we are using, = (2 ;) andE, = (2 8)
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We can embed the special case in the general case fopgdck j <'s,
since the inclusion

sl(2,C) =CH, + CE, + CE, C g

induces a homomorphis®L (2, C) — G, SL(2, C) being simply con-
nected. This embedding handles each oftterms ofZ separately. Since
they;’s are strongly orthogonal, the contributionsXg, Yo, andHy for y,
commute with those fop; wheni # j, and (7.146) follows for general.

Finally in the expression faX,, the coefficients of each,, lie between
—1 and+1 for all Z. Hence expX, remains bounded iR *.

This completes the proof of Theorem 7.129. Let us see what it means
in examples. First suppose th@t is simple. Forcg to be nonzerog,
must certainly be noncompact. Consider the Vogan diagram of a
good ordering. Lemma 7.128 rules out having the sum of two positive
noncompact roots be a root. Since the sum of any connected set of simple
roots in a Dynkin diagram is a root, it follows that there cannot be two
or more noncompact simple roots in the Vogan diagram. Hence there is
just one noncompact simple root, and the Vogan diagram is one of those
considered in 8VI.10. Since there is just one noncompact simple root and
that root cannot occur twice in any positive root, every positive noncompact
root has the same restrictiondg In particular, dinty, = 1.

To see the possibilities, we can refer to the classification in §VI1.10 and
see that, # 0O for the following cases and only these up to isomorphism:

go £
su(p, q) su(p) ®su(q) &R
s0(2,n) so(n) &R
(7.147) sp(n, R) su(n) @R
50%(2n) su(n) @R
E Il s0(10) ® R
E VII es DR

Conversely each of these cases corresponds to a @gsosgisfying the
conditionZ,,(co) = £, and hencé& /K is Hermitian in each case.

If go is merely semisimple, then the conditi@j,(c;) = &, forces the
center of the component @§ in each noncompact simple component of
go to be nonzero. The correspondifig K is then the product of spaces
obtained in the preceding paragraph.
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10. Problems

Prove that the orthogonal group(2n) does not satisfy property (v) of a
reductive Lie group.

Let SL(2, R) be the universal covering group 8t (2, R), and lety be the
covering homomorphism. Leé be the subgroup oBL (2, R) fixed by the
global Cartan involutior®. ParametrlzeK = R so that kep = Z. Define
G = SL(2,R) x R, and extendd to G so as to be 1 in the second factor.
Within the subgroufR x R where® is 1, let D be the discrete subgroup
generated by, 1) and(1, v/2), so thatD is central inG. DefineG = G/D.
(@) Prove thaG is a connected reductive Lie group wiG = G.

(b) Prove thatGg has infinite center and is not closed@

InG = SL(n, R), takeM, A, N, to be the upper-triangular subgroup.

(a) Follow the prescription of Proposition 7.76 to see that the proposition
leads to all possible full block upper-triangular subgroupSlotn, R).

(b) GiveadirectprooffoBL (n, R) that the only closed subgroups containing
M, A, N, are the full block upper-triangular subgroups.

(c) Give a direct proof foiSL (n, R) that no two distinct full block upper-
triangular subgroups are conjugate witlh(n, R).

In the notation folG = SL (4, R) as in §VI.4, form the parabolic subgroup

M AN containing the upper-triangular group and corresponding to the subset

{f3 — f4} of simple restricted roots.

(a) Prove that thesg roots aret(f; — fp), +(f; — %(fg + f4)), and
+(f, — 3(f3+ fa).

(b) Prove that theg roots do not all have the same length and do not form a
root system.

Show that a maximal proper parabolic subgrupN of SL (3, R) is cuspidal
and thatM # MoZy.

ForG equal to splits,, show that there is a cuspidal maximal proper parabolic
subgroupM AN such that the set afy roots is of the form{+n, +2n, +3n}.

The groupG = Sp(2, R) has at most four nonconjugate Cartan subalgebras,

according to 8VI.7, and a representative of each conjugacy class is given in

that section.

(a) Foreach ofthe four, construct theA of an associated cuspidal parabolic
subgroup as in Proposition 7.87.

(b) Use the result of (a) to show that the two Cartan subalgebras of noncom-
pact dimension one are not conjugate.

LetG beSO(n, 2),.
(@) Show thatG® = SO(n + 2, C).
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(b) Show thatZ,(co) = 0.

(c) The isomorphism in (a) identifies the root systens@f(n, 2) as of type
Bn+1),2 if nis odd and of typd 422 if nis even. Identify which roots
are compact and which are noncompact.

(d) Decide on some particular good ordering in the sense of 89, and identify
the positive roots.

Problems 9-12 concern a reductive Lie gr@aipNotation is as in §2.

9.

10.

11.

12.

Letap be maximal abelian ipg. The natural inclusioMk (ag) € Ng(ag)
induces a homomorphismk (ag)/Zk (ag) — Ng(ag)/Zs(ap). Prove that
this homomorphism is an isomorphism.

Letty @ ap be a maximally nhoncompaét stable Cartan subalgebra gf.
Prove that every element df (ag) decomposes as a produt, wheren is
in Nk (to ® ag) andzis in Zk (ag).

LetH be a Cartan subgroup &, and lets, be a root reflection iW(g, b).

(a) Prove that, isin W(G, H) if « is real ora is compact imaginary.

(b) Prove thatiH is compact ané is connected, thes, is notinW(G, H)
whene is noncompact imaginary.

(c) Give an example of a reductive Lie gro@ with a compact Cartan
subgroupH such thas, is in W(G, H) for some noncompact imaginary
roota.

LetH = TA be the global Cartan decomposition oféastable Cartan

subgroup ofG. Let W(G, A) = Ng(ap)/Zgs(ag), and letM = °Zg(ap).

Let Wy (G, H) be the subgroup diV(G, H) of elements normalizingty and

ap separately.

(&) Show that restriction tay defines a homomorphism &%,(G, H) into
W(G, A).

(b) Prove that the homomorphism in (a) is onto.

(c) Prove that the kernel of the homomorphism in (a) may be identified with
WM, T).

Problems 13-21 concern a reductive Lie gr@hat is semisimple. Notation is
asin 82.

13. Letty & ag be a maximally noncompaét stable Cartan subalgebra g,

impose an ordering on the roots that takigsheforeity, let b be a Borel
subalgebra ofy containingt @ a and built from that ordering, and let bar
denote the conjugation gf with respect tage. Prove that the smallest Lie
subalgebra ofy containingb and b is the complexification of a minimal
parabolic subalgebra @f.

14. Prove thaiNg, (tp) = &o.
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15.

16.

17.

18.

19.

20.
21.

VIl. Advanced Structure Theory

LetG have a complexificatio®GC. Prove that the normalizer gf in G€ is
a reductive Lie group.

LetG have a complexificatio®®, letU < G be the analytic subgroup with
Lie algebraty @ ipg, and lethg = to & ag be the decomposition int¢1 and
—1 eigenspaces of @stable Cartan subalgebra @f. Prove that expag is
closed inU.

Give an example of a semisimp®& with complexificationG® such that
K N expiag strictly containsKspiit N expiag. Hereap is assumed maximal
abelian inpo.

Suppose thab has a complexificatioG® and that raniks = rankK. Prove
thatZGc =Zg.

Suppose that rartk = rankK. Prove that any two complexifications &f
are holomorphically isomorphic.

Show that the conclusions of Problems 18 and 19 are falég fo1SL (3, R).

Suppose thaB/K is Hermitian and thagy is simple. Show that there are
only two ways to impose & invariant complex structure 08/K.

Problems 22—24 compare the integer span of the roots with the integer span of the
compactroots. Itisassumed titats a reductive Lie group with ran® = rankK.

22.

23.

24,

Fix a positive system.*. Attach to each simple noncompact root the integer

1 and to each simple compact root the integer O; extend additively to the group
generated by the roots, obtaining a functjor> n(y). Arguing asin Lemma
6.98, prove tham(y) is odd whery is a positive noncompact root and is even
wheny is a positive compact root.

Making use of the functiop — (—1)", prove that a noncompact root can
never be an integer combination of compact roots.

Suppose th& is semisimple, thaty is simple, and tha® /K is hot Hermitian.
Prove that the lattice generated by the compact roots has index 2 in the lattice
generated by all the roots.

Problems 25-29 give further properties of semisimple groups with Gark
rankK. Letty C ¢ be a Cartan subalgebra gf, and form roots, compact and
noncompact.

25.

26.

K acts onp via the adjoint representation. Identify the weights as the non-
compact roots, showing in particular that 0 is not a weight.

Show that the subalgebrasgotontainingt are of the fornt & @, ¢ g« for
some subseE of noncompact roots.
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27. Suppose thd&t® P, g 9. is a subalgebra af. Prove that

to Z (90 @ 9-a) and td @ Ja
acE ae(EN(=E))

are subalgebras gfthat are the complexifications of subalgebragpof

28. Suppose thagy is simple. Prove that the adjoint representatiorKobn p
splits into at most two irreducible pieces.

29. Suppose tha is simple, and suppose that the adjoint representatighari
p is reducible (necessarily into two pieces, according to Problem 28). Show
that the centetg of £y is nonzero, thaZ 4, (co) = €, and that the irreducible
pieces ar@™* andp™.

Problems 30-33 concern the groBp= SU (n, n) N Sp(n, C). In the notation of

89, letQ be the set of alz € M,,(C) such that 4 — Z*Z is positive definite and

Z=27.

30. Using Problem 15b from Chapter VI, prove ta& Sp(n, R).

31. With the members dB written in block form, show that (7.112) defines an
action of G on by holomorphic transformations.

32. Identify the isotropy subgroup & at O with
A O
K={<0 K)‘AeU(n)}.

33. The diagonal subalgebragfis a compact Cartan subalgebra. Exhibit a good
ordering such thai™ consists of block strictly upper-triangular matrices.

Problems 34-36 concern the gro@p= SO*(2n). In the notation of §9, le® be
the set of allZ € M, (C) such that 1 — Z*Z is positive definite an&@ = —Zt.

34. With the members dB written in block form, show that (7.112) defines an
action of G on © by holomorphic transformations.

35. Identify the isotropy subgroup & at O with

<={(2 2)|rcvm)

36. The diagonal subalgebragfis a compact Cartan subalgebra. Exhibit a good
ordering such that* consists of block strictly upper-triangular matrices.

Problems 37-41 concern the restricted roots in cases @hisrsemisimple and
G/K is Hermitian.

37. Inthe example of 89 witls = SU (n, m),
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38.

39.

40.

41.
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(a) show that the rootg; produced in Lemma 7.143 afg@ = €, — €nym,
Y2 =6 —€m-1,-.., ¥Ym = €m — Eny1.

(b) show that the restricted roots (apart from Cayley transform) always in-
clude all+y; and all3(+y £ ;). Show that there are no other restricted
roots ifm = nand thatt%y. are the only other restricted rootsiif < n.

In the example of Problems 30-33 with= SU (n, n) N Sp(n, C), a group

that is shown in Problem 30 to be isomorphicSo(n, R),

(a) show that the rootg produced inLemma7.143 apg = 26y, ..., yn =
2e,.

(b) show that the restricted roots (apart from Cayley transform) ate;all
and all3 (£ + y).

In the example of Problem 6 of Chapter VI and Problems 34-36 above with

G = SO*(2n),

(a) show that the rootg; produced in Lemma 7.143 ang = €, + ey,
V2=€+€n1,..., ¥n/21 = Gn/2] + €—[n/2]+1-

(b) find the restricted roots apart from Cayley transform.

For generaG with G/K Hermitian, suppose that, 8, andy are roots with
a compact and withs andy positive noncompact in a good ordering. Prove
thate + g anda + B + y cannot both be roots.

Let the expansion of a root in terms of Lemma 7.143 e Y _, ¢y + '

with ¥’ orthogonal toy,, .. ., vs.

(@) Prove for eachthat Z; is an integer with2c| < 3.

(b) Rule outg; = —g by using Problem 40 and the string containingy,
and rule out; = +§ by applying this conclusion te-y .

(c) Rule outc; = £1 for somej # i by a similar argument.

(d) Show that; # 0 for at most two indices by a similar argument.

(e) Deduce that each restricted root, apart from Cayley transform, is of one
of the forms=+y1, 3(&u + ¥), or 3.

(f) If gois simple, conclude that the restricted root system is of (\B€)s
or Cs.

Problems 42-44 yield a realization®f K , in the Hermitian case, as a particularly
nice unbounded open subsgtof P*. Let notation be as in §9.

42.

In the special case th@t = SU (1, 1), letu be the Cayley transform matrix

1 (1 i L

ﬁ(i 1),IetG = SL(2,R), and let
(1 z
Q_{(O 1>‘Imz>0}.
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It is easily verified thauGu~! = G’. Prove thauGB = G'uB = Q'K¢P~
and thatG’ acts or2’ by the usual action dbL (2, R) on the upper half plane.

43. Inthe general case asin 89,)¢t. .., ys be constructed as in Lemma 7.143.
For eachj, construct an elemen; in G® that behaves for the 3-dimensional
group corresponding tq like the elementi of Problem 42. Puil = ]'[js=l uj.

(@) ExhibituasinPTKCP~.

(b) Let ap be the maximal abelian subspacepgfconstructed in Lemma
7.143, and letA, = expao. Show thauA,u~! < K€,

(c) Show for a particular ordering arj thatuN,u=* € P*KC if N, is built
from the positive restricted roots.

(d) Writing G = N, A, K by the Iwasawa decomposition, prove th&B <
PTKCP-.

44. LetG' = uGu~l. Prove thatG'uB = Q'K®P~ for some open subs&?’
of P*. Prove also that the resulting action®f on &’ is holomorphic and
transitive, and identify2’ with G/K.

Problems 45-51 give further information about quasisplit Lie algebras and inner

forms, which were introduced in Problems 28-35 of Chapter VI. Fix a complex

semisimple Lie algebrg, and letN be the order of the automorphism group of

the Dynkin diagram of. If g is simple, therN is 1, 2, or 6, but other values &f

are possible for general complex semisimgle

45. Forg = sl(n, C) & sl(n, C) with n > 2, show thats{(n, R) & su(n) and
su(n) ® sl(n, R) are isomorphic real forms @fbut are not inner forms of one
another.

46. Prove the following:
(&) The number of inner classes of real formg @ < N.
(b) The number of isomorphism classes of quasisplit real formggk N.
(c) If the number of isomorphism classes of quasisplit real forms eduals
then the number of inner classes of real formg efjualsN and any two
isomorphic real forms of are inner forms of one another.

47. Under the assumption thidt= 1, deduce the following from Problem 46:
(a) Any two real forms ofy are inner forms of one another.
(b) The Lie algebra has no real form that is quasisplit but not split.

48. Prove that Aug®)/Int(g®) has order R if g is simple.

49. Under the assumption thidt= 2, deduce from Problems 46 and 48 that any
two isomorphic real forms gof are inner forms of one another.

50. By referring to the tables in Appendix C, observe that there are 2 nonisomor-
phic quasisplit real forms of each of the complex simple Lie algebras of types
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A, forn > 1,D, forn > 4, andEg. Conclude that there are two inner classes
of real forms in each case and that any two isomorphic real forms are inner
forms of one another.

51. This problem usesiality , which, for current purposes, refers to members
of Autg/Intg of order 3 wheryg is a complex Lie algebra of typp,. The
objective is to show that = s0(8, C) contains at least two distinct real forms
go andg that are isomorphic teo(5, 3) but that are not inner forms of one
another. Letgg be a Lie algebra isomorphic & (5, 3), let & be a Cartan
involution, and introduce a maximally noncompact Cartan subalgebra given
in standard notation by, = ag @ to. Choose an ordering that takegbefore
ito. In the usual notation for a Dynkin diagram of tyfg, the simple roots
e; — & ande, — ez are real, an@s; — e, ande; + e4 are complex. Introduce an
automorphism of s0(8, C) that corresponds to a counterclockwise rotation
of the D, diagram through 1/3 of a revolution. Pgjf = t(go). For a suitable
normalization of root vectors used in definingshow that the conjugations
o ando’ of g with respect tgyo andgj satisfyo’oc = =1, and conclude that
go andgg are not inner forms of one another.

Problems 52-57 give further information about groups of real rank one beyond
that in 86. LetG be an analytic group whose Lie algelyyas simple of real
rank one, lep be a Cartan involution of, letg = ¢ @ p be the corresponding
Cartan decomposition, letbe a (1-dimensional) maximal abelian subspagg of
letg =g 2P g_pDa®mdgp D gop be the restricted-root space decomposition,
and letmg andmyg be the dimensions afs andgys. Select a maximal abelian
subspace of m, so that the restricted roots are the restrictions o the roots
relative to the Cartan subalgebaa® t. Letg:s = g_os @ a ® m @ gy and

t; = g1 Nt Finally letK, A, G, andK; be the analytic subgroups 6f with Lie
algebrag, a, g1, and¢;, and letM be the centralizer oA in K.

52. If w is aroot, writexr + o with ag the restriction tax ande; the restriction
to t. The complex conjugate rootés= ar — «|. Supposex is complex.
(@) Prove that &, @)/|«|?is 0 or—1.
(b) Prove that r,@)/le|> = O implies [¢> = 3|2egl*> and that

2(a, @) /|a|?> = —1 implies|a|? = |2aR|?.

53. Prove that ifng andmyg are both nonzero, therpds a root when extended
to be 0 ont. Conclude thaing is even andnyg is odd.

54. Prove thatifnys # 0 ande is a complex root with 2x, &) /|a|? = 0, thenagr
is £28.

55. Prove that iimg andmyg are both nonzero, themhas a Cartan subalgebra
that lies int. Prove that this Cartan subalgebra may be assumed to be of the
form t ® R(X + 6 X) with X € gog, so that it lies irg;.



56.

57.
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Suppose thatps # 0 and thatg has a Cartan subalgebra lyingtin Prove

the following:

(@) 28 is aroot when extended to be 0 &in

(b) If there are roots of two different lengths, then every noncompact root is
short.

Suppose thab has a complexificatioG®, thatmys # 0, and thatg has a
Cartan subalgebra lying ia. Problem 10 of Chapter VI produces an element
0s of G such that Adg,) = 6, and (7.54) produces a certain elemggtin
M. Prove the following:
(@) Ad(yzs) = —1ongg andg_g.
(b) ¥4 is in the center oM, the center oKy, and the center dB4, but it is
not in the center oK if mg # 0.
(c) g isinthe center oK, and the center oK, but it is not inM and is not
in the center ofG.








