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CHAPTER VII

Advanced Structure Theory

Abstract. The first main results are that simply connected compact semisimple Lie
groups are in one-one correspondence with abstract Cartan matrices and their associated
Dynkin diagrams and that the outer automorphisms of such a group correspond exactly to
automorphisms of the Dynkin diagram. The remainder of the first section prepares for the
definition of a reductive Lie group: A compact connected Lie group has a complexification
that is unique up to holomorphic isomorphism. A semisimple Lie group of matrices is
topologically closed and has finite center.

Reductive Lie groupsG are defined as 4-tuples(G, K , θ, B) satisfying certain com-
patibility conditions. HereG is a Lie group,K is a compact subgroup,θ is an involution
of the Lie algebrag0 of G, andB is a bilinear form ong0. Examples include semisimple
Lie groups with finite center, any connected closed linear group closed under conjugate
transpose, and the centralizer in a reductive group of aθ stable abelian subalgebra of the
Lie algebra. The involutionθ , which is called the “Cartan involution” of the Lie algebra, is
the differential of a global Cartan involution� of G. In terms of�, G has a global Cartan
decomposition that generalizes the polar decomposition of matrices.

A number of properties of semisimple Lie groups with finite center generalize to re-
ductive Lie groups. Among these are the conjugacy of the maximal abelian subspaces of
the−1 eigenspacep0 of θ , the theory of restricted roots, the Iwasawa decomposition, and
properties of Cartan subalgebras. The chapter addresses also some properties not discussed
in Chapter VI, such as theK ApK decomposition and the Bruhat decomposition. HereAp

is the analytic subgroup corresponding to a maximal abelian subspace ofp0.
The degree of disconnectedness of the subgroupMp = Z K (Ap) controls the disconnect-

edness of many other subgroups ofG. The most complete description ofMp is in the case
thatG has a complexification, and then serious results from Chapter V about representation
theory play a decisive role.

Parabolic subgroups are closed subgroups containing a conjugate ofMpApNp. They are
parametrized up to conjugacy by subsets of simple restricted roots. A Cartan subgroup is
defined to be the centralizer of a Cartan subalgebra. It has only finitely many components,
and each regular element ofG lies in one and only one Cartan subgroup ofG. WhenG has
a complexification, the component structure of Cartan subgroups can be identified in terms
of the elements that generateMp.

A reductive Lie groupG that is semisimple has the property thatG/K admits a complex
structure withG acting holomorphically if and only if the centralizer ing0 of the center of
the Lie algebrak0 of K is justk0. In this case,G/K may be realized as a bounded domain in
someCn by means of the Harish-Chandra decomposition. The proof of the Harish-Chandra
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434 VII. Advanced Structure Theory

decomposition uses facts about parabolic subgroups. The spacesG/K of this kind may be
classified easily by inspection of the classification of simple real Lie algebras in Chapter VI.

1. Further Properties of Compact Real Forms

Some aspects of compact real forms of complex semisimple Lie algebras
were omitted in Chapter VI in order to move more quickly toward the
classification of simple real Lie algebras. We take up these aspects now
in order to prepare for the more advanced structure theory to be discussed
in this chapter. The topics in this section are classification of compact
semisimple Lie algebras and simply connected compact semisimple Lie
groups, complex structures on semisimple Lie groups whose Lie algebras
are complex, automorphisms of complex semisimple Lie algebras, and
properties of connected linear groups with reductive Lie algebra. Toward
the end of this section we discuss Weyl’s unitary trick.

Proposition 7.1. The isomorphism classes of compact semisimple Lie
algebrasg0 and the isomorphism classes of complex semisimple Lie alge-
brasg are in one-one correspondence, the correspondence being thatg is
the complexification ofg0 andg0 is a compact real form ofg. Under this
correspondence simple Lie algebras correspond to simple Lie algebras.

REMARK. The proposition implies that the complexification of a com-
pact simple Lie algebra is simple. It then follows from Theorem 6.94 that
a compact simple Lie algebra is never complex.

PROOF. If a compact semisimpleg0 is given, we know that its complex-
ification g is complex semisimple. In the reverse direction Theorem 6.11
shows that any complex semisimpleg has a compact real form, and Corol-
lary 6.20 shows that the compact real form is unique up to isomorphism.
This proves the correspondence. If a complexg is simple, then it is trivial
that any real form is simple.

Conversely suppose thatg0 is compact simple. Arguing by contradiction,
suppose that the complexificationg is semisimple but not simple. Writeg
as the direct sum of simple idealsgi by Theorem 1.54, and let(gi)0 be a
compact real form ofgi as in Theorem 6.11. The Killing forms of distinct
gi ’s are orthogonal, and it follows that the Killing form of the direct sum of
the(gi)0’s is negative definite. By Proposition 4.27, the direct sum of the
(gi)0’s is a compact real form ofg. By Corollary 6.20 the direct sum of the
(gi)0’s is isomorphic tog0 and exhibitsg0 as semisimple but not simple,
contradiction.
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Proposition 7.2.The isomorphism classes of simply connected compact
semisimple Lie groups are in one-one correspondence with the isomor-
phism classes of compact semisimple Lie algebras by passage from a Lie
group to its Lie algebra.

PROOF. The Lie algebra of a compact semisimple group is compact
semisimple by Proposition 4.23. Conversely if a compact semisimple Lie
algebrag0 is given, then the Killing form ofg0 is negative definite by
Corollary 4.26 and Cartan’s Criterion for Semisimplicity (Theorem 1.45).
Consequently Intg0 is a subgroup of a compact orthogonal group. On the
other hand, Propositions 1.120 and 1.121 show that Intg0

∼= (Aut g0)0 and
hence that Intg0 is closed. Thus Intg0 is a compact connected Lie group
with Lie algebra adg0

∼= g0. By Weyl’s Theorem (Theorem 4.69) a uni-
versal covering group of Intg0 is a simply connected compact semisimple
group with Lie algebrag0. Since two simply connected analytic groups
with isomorphic Lie algebras are isomorphic, the proposition follows.

Corollary 7.3. The isomorphism classes of

(a) simply connected compact semisimple Lie groups,
(b) compact semisimple Lie algebras,
(c) complex semisimple Lie algebras,
(d) reduced abstract root systems, and
(e) abstract Cartan matrices and their associated Dynkin diagrams

are in one-one correspondence by passage from a Lie group to its Lie
algebra, then to the complexification of the Lie algebra, and then to the
underlying root system.

PROOF. The correspondence of (a) to (b) is addressed by Proposition
7.2, that of (b) to (c) is addressed by Proposition 7.1, and that of (c) to (d)
to (e) is addressed by Chapter II.

Proposition 7.4. A semisimple Lie groupG whose Lie algebrag is
complex admits uniquely the structure of a complex Lie group in such a
way that the exponential mapping is holomorphic.

REMARK. The proof will invoke Proposition 1.110, which in the general
case made use of the complex form of Ado’s Theorem (Theorem B.8). For
semisimpleG, the use of Ado’s Theorem is not necessary. One has only
to invoke the matrix-group form of Proposition 1.110 for the matrix group
Ad(G) and then lift the complex structure from Ad(G) to the covering
groupG. As a result of this proposition, we may speak unambiguously of
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acomplex semisimple Lie groupas being a semisimple Lie group whose
Lie algebra is complex.

PROOF. For existence, suppose thatg is complex. Then the converse
part of Proposition 1.110 shows thatG admits the structure of a complex
Lie group compatibly with the multiplication-by-i mapping withing, and
the direct part of Proposition 1.110 says that the exponential mapping is
holomorphic. For uniqueness, suppose thatG is complex with a holomor-
phic exponential mapping. Since exp is invertible as a smooth function on
some open neighborhoodV of the identity,(V, exp−1) is a chart for the
complex structure onG, and the left translates(LgV, exp−1 ◦L−1

g ) form an
atlas. This atlas does not depend on what complex structure makesG into
a complex Lie group with holomorphic exponential mapping, and thus the
complex structure is unique.

Proposition 7.5.A complex semisimple Lie group necessarily has finite
center. LetG andG ′ be complex semisimple Lie groups, and letK and
K ′ be the subgroups fixed by the respective global Cartan involutions of
G andG ′. ThenK andK ′ are compact, and a homomorphism ofK into
K ′ as Lie groups induces a holomorphic homomorphism ofG into G ′. If
the homomorphismK → K ′ is an isomorphism, then the holomorphic
homomorphismG → G ′ is a holomorphic isomorphism.

PROOF. If G has Lie algebrag, then the most general Cartan decom-
position ofgR is gR = g0 ⊕ ig0, whereg0 is a compact real form ofg
by Proposition 6.14 and Corollary 6.19. The Lie algebrag0 is compact
semisimple, and Weyl’s Theorem (Theorem 4.69) shows that the corre-
sponding analytic subgroupK is compact. Theorem 6.31f then shows that
G has finite center.

In a similar fashion letg′ be the Lie algebra ofG ′. We may suppose that
there is a Cartan decompositiong′R = g′

0 ⊕ ig′
0 of g′R such thatK ′ is the

analytic subgroup ofG ′ with Lie algebrag′
0. As with K , K ′ is compact.

A homomorphismϕ of K into K ′ yields a homomorphismdϕ of g0 into
g′

0, and this extends uniquely to a complex-linear homomorphism, also
denoteddϕ, of g into g′. Let G̃ be a universal covering group ofG, let
e : G̃ → G be the covering homomorphism, and letK̃ be the analytic
subgroup of̃G with Lie algebrag0. SinceG̃ is simply connected,dϕ lifts
to a smooth homomorphism̃ϕ of G̃ into G ′.

We want to see that̃ϕ descends to a homomorphism ofG into G ′. To
see this, we show that̃ϕ is 1 on the kernel ofe. The restrictioñϕ|K̃ and the
compositionϕ◦(e|K̃ )both havedϕ as differential. Therefore they are equal,
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andϕ̃ is 1 on the kernel ofe|K̃ . Theorem 6.31e shows that the kernel ofe
in G̃ is contained iñK , and it follows that̃ϕ descends to a homomorphism
of G into G ′ with differentialdϕ. Let us call this homomorphismϕ. Then
ϕ is a homomorphism between complex Lie groups, and its differential is
complex linear. By Proposition 1.110,ϕ is holomorphic.

If the given homomorphism is an isomorphism, then we can reverse the
roles ofG andG ′, obtaining a holomorphic homomorphismψ : G ′ → G
whose differential is the inverse ofdϕ. Sinceψ ◦ ϕ and ϕ ◦ ψ have
differential the identity,ϕ andψ are inverses. Thereforeϕ is a holomorphic
isomorphism.

Corollary 7.6. If G is a complex semisimple Lie group, thenG is
holomorphically isomorphic to a complex Lie group of matrices.

PROOF. Let g be the Lie algebra ofG, let gR = g0 ⊕ ig0 be a Cartan
decomposition ofgR, and letK be the analytic subgroup ofG with Lie
algebrag0. The groupK is compact by Proposition 7.5. By Corollary
4.22, K is isomorphic to a closed linear group, sayK ′, and there is no
loss of generality in assuming that the members ofK ′ are inGL(V ) for a
real vector spaceV . Let g′

0 be the linear Lie algebra ofK ′, and write the
complexificationg′ of g′

0 as a Lie algebra of complex endomorphisms of
V C. If G ′ is the analytic subgroup ofGL(V C) with Lie algebrag′, thenG ′

is a complex Lie group by Corollary 1.116 sinceGL(V C) is complex and
g′ is closed under multiplication byi . Applying Proposition 7.5, we can
extend the isomorphism ofK ontoK ′ to a holomorphic isomorphism ofG
ontoG ′. ThusG ′ provides the required complex Lie group of matrices.

Let G be a semisimple Lie group, and suppose thatGC is a complex
semisimple Lie group such thatG is an analytic subgroup ofGC and the Lie
algebra ofGC is the complexification of the Lie algebra ofG. Then we say
thatGC is acomplexificationof G and thatG has a complexificationGC.
For example,SU (n)andSL(n, R)both haveSL(n, C)as complexification.
Because of Corollary 7.6 it will follow from Proposition 7.9 below that ifG
has a complexificationGC, thenG is necessarily closed inGC. Not every
semisimple Lie group has a complexification; because of Corollary 7.6, the
example at the end of §VI.3 shows that a double cover ofSL(2, R) has no
complexification. IfG has a complexification, then the complexification
is not necessarily unique up to isomorphism. However, Proposition 7.5
shows that the complexification is unique ifG is compact.

We now use the correspondence of Corollary 7.3 to investigate automor-
phisms of complex semisimple Lie algebras.
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Lemma 7.7.Let G be a complex semisimple Lie group with Lie algebra
g, let h be a Cartan subalgebra ofg, and let�+(g, h) be a positive system
for the roots. IfH denotes the analytic subgroup ofG with Lie algebra
h, then any member of Intg carryingh to itself and�+(g, h) to itself is in
Adg(H).

PROOF. The construction of Theorem 6.11 produces a compact real
form g0 of g such thatg0 ∩ h = h0 is a maximal abelian subspace ofg0.
The decompositiongR = g0 ⊕ ig0 is a Cartan decomposition ofgR by
Proposition 6.14, and we letθ be the Cartan involution. LetK be the
analytic subgroup ofG with Lie algebrag0. The subgroupK is compact
by Proposition 7.5. IfT is the analytic subgroup ofK with Lie algebrah0,
thenT is a maximal torus ofK .

Let g be in G, and suppose that Ad(g) carriesh to itself and�+(g, h)

to itself. By Theorem 6.31 we can writeg = k expX with k ∈ K and
X ∈ ig0. The map Ad(�g) is the differential at 1 ofg �→ (�g)x(�g)−1 =
�(g(�x)g−1), hence isθAd(g)θ . Sinceθh = h, Ad(�g) carriesh to
itself. Therefore so does Ad((�g)−1g) = Ad(exp 2X).

The linear transformation Ad(exp 2X) is diagonable ongR with positive
eigenvalues. Since it carriesh to h, there exists a real subspaceh′ of gR

carried to itself by Ad(exp 2X) such thatgR = h ⊕ h′. The transformation
Ad(exp 2X) has a unique diagonable logarithm with real eigenvalues, and
there are two candidates for this logarithm. One is ad 2X , and the other
is the sum of the logarithms onh andh′ separately. By uniqueness we
conclude that ad 2X carriesh to h. By Proposition 2.7,X is in h.

Therefore expX is in H , and it is enough to show thatk is in T . Here
k is a member ofK such that Ad(k) leavesh0 stable and�+(g, h) stable.
Since Ad(k) leavesh0 stable, Theorem 4.54 says that Ad(k) is in the Weyl
groupW (g, h). Since Ad(k) leaves�+(g, h) stable, Theorem 2.63 says
that Ad(k) yields the identity element inW (g, h). Therefore Ad(k) is 1 on
h, andk commutes withT . By Corollary 4.52,k is in T .

Theorem 7.8. If g0 is a compact semisimple Lie algebra andg is its
complexification, then the following three groups are canonically isomor-
phic:

(a) AutR g0/Int g0,
(b) AutC g/Int g, and
(c) the group of automorphisms of the Dynkin diagram ofg.

PROOF. By Proposition 7.4 letG be a simply connected complex Lie
group with Lie algebrag, for example a universal covering group of Intg.
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The analytic subgroupK with Lie algebrag0 is simply connected by
Theorem 6.31, andK is compact by Proposition 7.5.

Fix a maximal abelian subspaceh0 of g0, let �+(g, h) be a positive
system of roots, and letT be the maximal torus ofK with Lie algebra
h0. Let D be the Dynkin diagram ofg, and let AutD be the group of
automorphisms ofD. Any member of AutR g0 extends by complexifying
to a member of AutC g, and members of Intg0 yield members of Intg. Thus
we obtain a group homomorphism� : AutRg0/Int g0 → AutC g/Int g.

Let us observe that� is onto. In fact, if a memberϕ of AutC g is given,
thenϕ(g0) is a compact real form ofg. By Corollary 6.20 we can adjustϕ by
a member of Intg so thatϕ carriesg0 into itself. Thus some automorphism
of g0 is carried to the coset ofϕ under�.

We shall construct a group homomorphism� : AutC g/Int g → Aut D.
Letϕ ∈ AutC gbe given. Sinceh is a Cartan subalgebra ofg (by Proposition
2.13),ϕ(h) is another Cartan subalgebra. By Theorem 2.15 there exists
ψ1 ∈ Int g with ψ1ϕ(h) = h. Thenψ1ϕ maps�(g, h) to itself and carries
�+(g, h) to another positive system(�+)′(g, h). By Theorem 2.63 there
exists a unique memberw of the Weyl groupW (g, h) carrying(�+)′(g, h)

to �+(g, h). Theorem 4.54 shows thatw is implemented by a member of
Ad(K ), hence by a memberψ2 of Int g. Thenψ2ψ1ϕ maps�+(g, h) to
itself and yields an automorphism of the Dynkin diagram.

Let us see the effect of the choices we have made. With different choices,
we would be led to someψ ′

2ψ
′
1ϕ mapping�+(g, h) to itself, and the claim

is that we get the same member of AutD. In fact the compositionψ =
(ψ ′

2ψ
′
1ϕ)◦(ψ2ψ1ϕ)−1 is in Intg. Lemma 7.7 shows thatψ acts as the identity

on h, and hence the automorphism of the Dynkin diagram corresponding
to ψ is the identity. Thereforeψ2ψ1ϕ andψ ′

2ψ
′
1ϕ lead to the same member

of Aut D.
Consequently the above construction yields a well defined function�

from AutC g/Int g into Aut D. Since we can adjust anyϕ ∈ AutC g by
a member of Intg so thath maps to itself and�+(g, h) maps to itself, it
follows that� is a homomorphism.

Let us prove that� ◦ � is one-one. Thus letϕ ∈ AutR g0 lead to the
identity element of AutD. Write ϕ also for the corresponding complex-
linear automorphism ong. Theorem 4.34 shows that we may adjustϕ by a
member of Intg0 so thatϕ carriesh0 to itself, and Theorems 2.63 and 4.54
show that we may adjustϕ further by a member of Intg0 so thatϕ carries
�+(g, h) to itself. Let Eαi be root vectors for the simple rootsα1, . . . , αl

of g. Sinceϕ is the identity onh, ϕ(Eαi ) = ci Eαi for nonzero constants
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c1, . . . , cl . For each j , let xj be any complex number withexj = cj .
Choose, for 1≤ i ≤ l, membershj of h with αi(hj) = δi j , and put
g = exp

( ∑l
j=1 xj hj

)
. The elementg is in H . Then Ad(g)(Eαi ) = ci Eαi

for eachi . Consequently Ad(g) is a member of Intg that agrees withϕ
on h and on eachEαi . By the Isomorphism Theorem (Theorem 2.108),
ϕ = Ad(g).

To complete the proof that� ◦ � is one-one, we show thatg is in T .
We need to see that|cj | = 1 for all j , so thatxj can be chosen purely
imaginary. First we show thatEαj is a root vector for−αj if bar denotes
the conjugation ofg with respect tog0. In fact, write Eαj = X j + iYj

with X j andYj in g0. If h is in h0, thenαj(h) is purely imaginary. Since
[h0, g0] ⊆ g0, it follows from the equality

[h, X j ] + i [h, Yj ] = [h, Eαj ] = αj(h)Eαj = iαj(h)Yj + αj(h)X j

that [h, X j ] = iαj(h)Yj and i [h, Yj ] = αj(h)X j . Subtracting these two
formulas gives

[h, X j − iYj ] = iαj(h)Yj − αj(h)X j = −αj(h)(X j − iYj)

and shows thatEαj is indeed a root vector for−αj . Hence we find that
[Eαj , Eαj ] is in h. Sinceϕ is complex linear and carriesg0 to itself, ϕ

respects bar. Thereforeϕ(Eαj ) = c̄j Eαj . Sinceϕ fixes every element ofh,
ϕ fixes [Eαj , Eαj ], and it follows thatcj c̄j = 1. We conclude thatg is in T
and that� ◦ � is one-one.

Since� is onto and� ◦ � is one-one, both� and� are one-one. The
fact that� is onto is a consequence of the Isomorphism Theorem (Theorem
2.108) and is worked out in detail in the second example at the end of §II.10.
This completes the proof of the theorem.

Now we take up some properties of Lie groups of matrices to prepare
for the definition of “reductive Lie group” in the next section.

Proposition 7.9. Let G be an analytic subgroup of real or complex
matrices whose Lie algebrag0 is semisimple. ThenG has finite center and
is a closed linear group.

PROOF. Without loss of generality we may assume thatG is an analytic
subgroup ofGL(V ) for a real vector spaceV . Letg0 be the linear Lie alge-
bra ofG, and write the complexificationg of g0 as a Lie algebra of complex
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endomorphisms ofV C. Letg0 = k0⊕p0 be a Cartan decomposition, and let
K be the analytic subgroup ofG with Lie algebrak0. The Lie subalgebra
u0 = k0 ⊕ ip0 of EndC V is a compact semisimple Lie algebra, and we let
U be the analytic subgroup ofGL(V C) with Lie algebrau0. Proposition
7.2 implies that the universal covering group̃U of U is compact, and it
follows thatU is compact. SinceU has discrete center, the centerZU of
U must be finite.

The centerZG of G is contained inK by Theorem 6.31e, andK ⊆ U
sincek0 ⊆ u0. Since Adg(ZG) acts as 1 onu0, we conclude thatZG ⊆ ZU .
ThereforeZG is finite. This proves the first conclusion. By Theorem 6.31f,
K is compact.

SinceU is compact, Proposition 4.6 shows thatV C has a Hermitian inner
product preserved byU . ThenU is contained in the unitary groupU (V C).
Let p(V C) be the vector space of Hermitian transformations ofV C so that
GL(V C) has the polar decompositionGL(V C) = U (V C) expp(V C). The
members ofu0 are skew Hermitian, and hence the members ofk0 are skew
Hermitian and the members ofp0 are Hermitian. Therefore the global
Cartan decompositionG = K expp0 of G that is given in Theorem 6.31c
is compatible with the polar decomposition ofGL(V C).

We are to prove thatG is closed inGL(V C). Let gn = kn expXn tend to
g ∈ GL(V C). Using the compactness ofK and passing to a subsequence,
we may assume thatkn tends tok ∈ K . Therefore expXn converges. Since
the polar decomposition ofGL(V C) is a homeomorphism, it follows that
expXn has limit expX for someX ∈ p(V C). Sincep0 is closed inp(V C),
X is in p0. Thereforeg = k expX exhibitsg as inG, andG is closed.

Corollary 7.10. Let G be an analytic subgroup of real or complex
matrices whose Lie algebrag0 is reductive, and suppose that the identity
component of the center ofG is compact. ThenG is a closed linear group.

REMARK. In this result and some to follow, we shall work with analytic
groups whose Lie algebras are direct sums. IfG is an analytic group whose
Lie algebrag0 is a direct sumg0 = a0 ⊕ b0 of ideals and ifA and B are
the analytic subgroups corresponding toa0 andb0, thenG is a commuting
productG = AB. This fact follows from Proposition 1.122 or may be
derived directly, as in the proof of Theorem 4.29.

PROOF. Write g0 = Zg0 ⊕ [g0, g0] by Corollary 1.56. The analytic
subgroup ofG corresponding toZg0 is (ZG)0, and we letGss be the analytic
subgroup corresponding to [g0, g0]. By the remarks before the proof,G is
the commuting product(ZG)0Gss . The groupGss is closed as a group of
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matrices by Proposition 7.9, and(ZG)0 is compact by assumption. Hence
the set of products, which isG, is closed.

Corollary 7.11. Let G be a connected closed linear group whose Lie
algebrag0 is reductive. Then the analytic subgroupGss of G with Lie
algebra [g0, g0] is closed, andG is the commuting productG = (ZG)0Gss .

PROOF. The subgroupGss is closed by Proposition 7.9, andG is the
commuting product(ZG)0Gss by the remarks with Corollary 7.10.

Proposition 7.12.Let G be a compact connected linear Lie group, and
let g0 be its linear Lie algebra. Then the complex analytic groupGC of
matrices with linear Lie algebrag = g0 ⊕ ig0 is a closed linear group.

REMARKS. If G is a compact connected Lie group, then Corollary 4.22
implies thatG is isomorphic to a closed linear group. IfG is realized
as a closed linear group in two different ways, then this proposition in
principle produces two different groupsGC. However, Proposition 7.5
shows that the two groupsGC are isomorphic. Therefore with no reference
to linear groups, we can speak of the complexificationGC of a compact
connected Lie groupG, andGC is unique up to isomorphism. Proposition
7.5 shows that a homomorphism between two such groupsG andG ′ induces
a holomorphic homomorphism between their complexifications.

PROOF. By Theorem 4.29 let us writeG = (ZG)0Gss with Gss compact
semisimple. Proposition 4.6 shows that we may assume without loss of
generality thatG is a connected closed subgroup of a unitary groupU (n)

for somen, and Corollary 4.7 shows that we may take(ZG)0 to be diagonal.
Let us complexify the decompositiong0 = Zg0 ⊕ [g0, g0] to obtain

gR = Zg0 ⊕ i Zg0 ⊕ [g, g]. The analytic subgroup corresponding toZg0

is G1 = (ZG)0 and is compact. Sincei Zg0 consists of real diagonal
matrices, Corollary 1.134 shows that its corresponding analytic subgroup
G2 is closed. In addition the analytic subgroupG3 with Lie algebra [g, g] is
closed by Proposition 7.9. By the remarks with Corollary 7.10, the group
GC is the commuting product of these three subgroups, and we are to show
that the product is closed.

For G3, negative conjugate transpose is a Cartan involution of its Lie
algebra, and therefore conjugate transpose inverse is a global Cartan in-
volution of G3. ConsequentlyG3 has a global Cartan decomposition
G3 = Gss exp(p3)0, where(p3)0 = i [g0, g0]. Sincei Zg0 commutes with
(p3)0 and since the polar decomposition of all matrices is a homeomor-
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phism, it follows that the productG2G3 is closed. SinceG1 is compact,
GC = G1G2G3 is closed.

Lemma 7.13.On matrices let� be conjugate transpose inverse, and let
θ be negative conjugate transpose. LetG be a connected abelian closed
linear group that is stable under�, and letg0 be its linear Lie algebra,
stable underθ . Let g0 = k0 ⊕ p0 be the decomposition ofg0 into +1 and
−1 eigenspaces underθ , and letK = {x ∈ G | �x = x}. Then the map
K × p0 → G given by(k, X) �→ k expX is a Lie group isomorphism.

PROOF. The groupK is a closed subgroup of the unitary group and
is compact with Lie algebrak0. Sincep0 is abelian, expp0 is the analytic
subgroup ofG with Lie algebrap0. By the remarks following the statement
of Corollary 7.10,G = K expp0. The smooth mapK × p0 → G is
compatible with the polar decomposition of matrices and is therefore one-
one. It is a Lie group homomorphism sinceG andp0 are abelian. Its
inverse is smooth since the inverse of the polar decomposition of matrices
is smooth (by an argument in the proof of Theorem 6.31).

Proposition 7.14. On matrices let� be conjugate transpose inverse,
and letθ be negative conjugate transpose. LetG be a connected closed
linear group that is stable under�, and letg0 be its linear Lie algebra,
stable underθ . Let g0 = k0 ⊕ p0 be the decomposition ofg0 into +1 and
−1 eigenspaces underθ , and letK = {x ∈ G | �x = x}. Then the map
K × p0 → G given by(k, X) �→ k expX is a diffeomorphism onto.

PROOF. By Proposition 1.59,g0 is reductive. Therefore Corollary 1.56
allows us to writeg0 = Zg0⊕[g0, g0] with [g0, g0] semisimple. The analytic
subgroup ofG with Lie algebraZg0 is (ZG)0, and we letGss be the analytic
subgroup ofG with Lie algebra [g0, g0]. By Corollary 7.11,(ZG)0 andGss

are closed, andG = (ZG)0Gss . It is clear thatZg0and [g0, g0] are stable
underθ , and hence(ZG)0 andGss are stable under�.

Because of the polar decomposition of matrices, the mapK × p0 → G
is smooth and one-one. The parts of this map associated with(ZG)0 and
Gss are onto by Lemma 7.13 and Theorem 6.31, respectively. Since(ZG)0

andGss commute with each other, it follows thatK ×p0 → G is onto. The
inverse is smooth since the inverse of the polar decomposition of matrices
is smooth (by an argument in the proof of Theorem 6.31).

Proposition 7.15(Weyl’s unitary trick). LetG be an analytic subgroup
of complex matrices whose linear Lie algebrag0 is semisimple and is stable
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under the mapθ given by negative conjugate transpose. Letg0 = k0⊕p0 be
the Cartan decomposition ofg0 defined byθ , and suppose thatk0∩ ip0 = 0.
Let U andGC be the analytic subgroups of matrices with respective Lie
algebrasu0 = k0 ⊕ ip0 andg = (k0 ⊕ p0)

C. The groupU is compact.
Suppose thatU is simply connected. IfV is any finite-dimensional complex
vector space, then a representation of any of the following kinds onV leads,
via the formula

(7.16) g = g0 ⊕ ig0 = u0 ⊕ iu0,

to a representation of each of the other kinds. Under this correspondence
invariant subspaces and equivalences are preserved:

(a) a representation ofG on V ,
(b) a representation ofU on V ,
(c) a holomorphic representation ofGC on V ,
(d) a representation ofg0 on V ,
(e) a representation ofu0 on V ,
(f) a complex-linear representation ofg on V .

PROOF. The groupsG,U , andGC are closed linear groups by Proposition
7.9, andU is compact, being a closed subgroup of the unitary group. Since
U is simply connected and its Lie algebra is a compact real form ofg, GC

is simply connected.
We can pass from (c) to (a) or (b) by restriction. Since continuous

homomorphisms between Lie groups are smooth, we can pass from (a)
or (b) to (d) or (e) by taking differentials. Formula (7.16) allows us to
pass from (d) or (e) to (f). SinceGC is simply connected, a Lie algebra
homomorphism as in (f) lifts to a group homomorphism, and the group
homomorphism must be holomorphic since the Lie algebra homomorphism
is assumed complex linear (Proposition 1.110). Thus we can pass from (f)
to (c). If we follow the steps all the way around, starting from (c), we
end up with the original representation, since the differential at the identity
uniquely determines a homomorphism of connected Lie groups. Thus
invariant subspaces and equivalence are preserved.

EXAMPLE. Weyl’s unitary trick gives us a new proof of the fact that
finite-dimensional complex-linear representations of complex semisimple
Lie algebras are completely reducible (Theorem 5.29); the crux of the new
proof is the existence of a compact real form (Theorem 6.11). For the
argument let the Lie algebrag be given, and letG be a simply connected
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complex semisimple group with Lie algebrag. Corollary 7.6 allows us to
regardG as a subgroup ofGL(V C) for some finite-dimensional complex
vector spaceV C. Letu0 be a compact real form ofg, so thatgR = u0 ⊕ iu0,
and letU be the analytic subgroup ofG with Lie algebrau0. Proposition
7.15 notes thatU is compact. By Proposition 4.6 we can introduce a
Hermitian inner product intoV C so thatU is a subgroup of the unitary
group. If a complex-linear representation ofg is given, we can use the
passage (f) to (b) in Proposition 7.15 to obtain a representation ofU . This
is completely reducible by Corollary 4.7, and the complete reducibility of
the given representation ofg follows.

The final proposition shows how to recognize a Cartan decomposition
of a real semisimple Lie algebra in terms of a bilinear form other than the
Killing form.

Proposition 7.17. Let g0 be a real semisimple Lie algebra, letθ be an
involution ofg0, and letB be a nondegenerate symmetric invariant bilinear
form on g0 such thatB(θ X, θY ) = B(X, Y ) for all X and Y in g0. If
the form Bθ (X, Y ) = −B(X, θY ) is positive definite, thenθ is a Cartan
involution ofg0.

PROOF. Let g0 = k0 ⊕ p0 be the decomposition ofg0 into +1 and
−1 eigenspaces underθ , and extendB to be complex bilinear on the
complexificationg of g0. Sinceθ is an involution,u0 = k0 ⊕ ip0 is a Lie
subalgebra ofg = (g0)

C, necessarily a real form. Hereg is semisimple,
and then so isu0. SinceBθ is positive definite,B is negative definite on
k0 and onip0. Also k0 andip0 are orthogonal sinceX ∈ k0 andY ∈ ip0

implies

B(X, Y ) = B(θ X, θY ) = B(X, −Y ) = −B(X, Y ).

HenceB is real valued and negative definite onu0.
By Propositions 1.120 and 1.121, Intu0 = (AutR u0)0. Consequently

Int u0 is a closed subgroup ofGL(u0). On the other hand, we have just
seen that−B is an inner product onu0, and in this inner product every
member of adu0 is skew symmetric. Therefore the corresponding analytic
subgroup Intu0 of GL(u0) acts by orthogonal transformations. Since Intu0

is then exhibited as a closed subgroup of the orthogonal group, Intu0 is
compact. Henceu0 is a compact real form ofg. By the remarks preceding
Lemma 6.27,θ is a Cartan involution ofg0.
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2. Reductive Lie Groups

We are ready to define the class of groups that will be the objects of study
in this chapter. The intention is to study semisimple groups, but, as was
already the case in Chapters IV and VI, we shall often have to work with
centralizers of abelian analytic subgroups invariant under a Cartan involu-
tion, and these centralizers may be disconnected and may have positive-
dimensional center. To be able to use arguments that take advantage of
such subgroups and proceed by induction on the dimension, we are forced
to enlarge the class of groups under study. Groups in the enlarged class
are always called “reductive,” but their characterizing properties vary from
author to author. We shall use the following definition.

A reductive Lie group is actually a 4-tuple(G, K , θ, B) consisting of
a Lie groupG, a compact subgroupK of G, a Lie algebra involutionθ of
the Lie algebrag0 of G, and a nondegenerate, Ad(G) invariant,θ invariant,
bilinear formB ong0 such that

(i) g0 is a reductive Lie algebra,
(ii) the decomposition ofg0 into +1 and−1 eigenspaces underθ is

g0 = k0 ⊕ p0, wherek0 is the Lie algebra ofK ,
(iii) k0 andp0 are orthogonal underB, andB is positive definite onp0

and negative definite onk0,
(iv) multiplication, as a map fromK × expp0 into G, is a diffeomor-

phism onto, and
(v) every automorphism Ad(g) of g = (g0)

C is inner for g ∈ G, i.e.,
is given by somex in Int g.

When informality permits, we shall refer to the reductive Lie group
simply asG. Thenθ will be called theCartan involution , g0 = k0 ⊕ p0

will be called theCartan decomposition of g0, K will be called the
associatedmaximal compact subgroup(a name justified by Proposition
7.19a below), andB will be called theinvariant bilinear form .

The idea is that a reductive Lie groupG is a Lie group whose Lie algebra
is reductive, whose center is not too wild, and whose disconnectedness is
not too wild. The various properties make precise the notion “not too wild.”
In particular, property (iv) and the compactness ofK say thatG has only
finitely many components.

We writeGss for the semisimple analytic subgroup ofG with Lie algebra
[g0, g0]. The decomposition ofG in property (iv) is called theglobal
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Cartan decomposition. Sometimes one assumes about a reductive Lie
group that also

(vi) Gss has finite center.

In this case the reductive group will be said to be in theHarish-Chandra
classbecause of the use of axioms equivalent with (i) through (vi) by
Harish-Chandra. Reductive groups in the Harish-Chandra class have often
been the groups studied in representation theory.

EXAMPLES.

1) G is any semisimple Lie group with finite center,θ is a Cartan invo-
lution, K is the analytic subgroup with Lie algebrak0, andB is the Killing
form. Property (iv) and the compactness ofK follow from Theorem 6.31.
Property (v) is automatic sinceG connected makes Ad(G) = Int g0 ⊆ Int g.
Property (vi) has been built into the definition for this example.

2) G is any connected closed linear group of real or complex matrices
closed under conjugate transpose inverse,θ is negative conjugate trans-
pose,K is the intersection ofG with the unitary group, andB(X, Y ) is
Re Tr(XY ). The compactness ofK follows sinceK is the intersection
of the unitary group with the closed group of matricesG. Property (iv)
follows from Proposition 7.14, and property (v) is automatic sinceG is
connected. Property (vi) is automatic for any linear group by Proposition
7.9.

3) G is any compact Lie group satisfying property (v). ThenK = G,
θ = 1, andB is the negative of an inner product constructed as in Propo-
sition 4.24. Properties (i) through (iv) are trivial, and property (vi) follows
from Theorem 4.21. Every finite groupG is trivially an example where
property (v) holds. Property (v) is satisfied by the orthogonal groupO(n)

if n is odd but not byO(n) if n is even.

4) G is any closed linear group of real or complex matrices closed
under conjugate transpose inverse, given as the common zero locus of
some set of real-valued polynomials in the real and imaginary parts of the
matrix entries, and satisfying property (v). Hereθ is negative conjugate
transpose,K is the intersection ofG with the unitary group, andB(X, Y )

is Re Tr(XY ). The compactness ofK follows sinceK is the intersection
of the unitary group with the closed group of matricesG. Properties (iv)
and (vi) follow from Propositions 1.143 and 7.9, respectively. The closed
linear group of real matrices of determinant±1 satisfies property (v) since

Ad(diag(−1, 1, . . . , 1)) = Ad(diag(eiπ(n−1)/n, e−iπ/n, . . . , e−iπ/n)).
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But as noted in Example 3, the orthogonal groupO(n) does not satisfy
property (v) ifn is even.

5) G is the centralizer in a reductive group̃G of a θ stable abelian
subalgebra of the Lie algebra of̃G. HereK is obtained by intersection,
and θ and B are obtained by restriction. The verification thatG is a
reductive Lie group will be given below in Proposition 7.25.

If G is semisimple with finite center and ifK , θ , andB are specified so
that G is considered as a reductive group, thenθ is forced to be a Cartan
involution in the sense of Chapter VI. This is the content of Proposition 7.17.
Hence the new terms “Cartan involution” and “Cartan decomposition”
are consistent with the terminology of Chapter VI in the case thatG is
semisimple.

An alternative way of saying (iii) is that the symmetric bilinear form

(7.18) Bθ (X, Y ) = −B(X, θY )

is positive definite ong0.
We use the notationg, k, p, etc., to denote the complexifications ofg0,

k0, p0, etc. Using complex linearity, we extendθ from g0 to g andB from
g0 × g0 to g × g.

Proposition 7.19.If G is a reductive Lie group, then

(a) K is a maximal compact subgroup ofG,
(b) K meets every component ofG, i.e.,G = K G0,
(c) each member of Ad(K ) leavesk0 andp0 stable and therefore com-

mutes withθ ,
(d) (adX)∗ = −adθ X relative toBθ if X is in g0,
(e) θ leavesZg0 and [g0, g0] stable, and the restriction ofθ to [g0, g0]

is a Cartan involution,
(f) the identity componentG0 is a reductive Lie group (with maxi-

mal compact subgroup obtained by intersection and with Cartan
involution and invariant form unchanged).

PROOF. For (a) assume the contrary, and letK1 be a compact sub-
group of G properly containingK . If k1 is in K1 but not K , write
k1 = k expX according to (iv). Then expX is in K1. By compactness
of K1, (expX)n = expnX has a convergent subsequence inG, but this
contradicts the homeomorphism in (iv).
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Conclusion (b) is clear from (iv). In (c), Ad(K )(k0) ⊆ k0 sinceK has Lie
algebrak0. SinceB is Ad(K ) invariant, Ad(K ) leaves stable the subspace
of g0 orthogonal tok0, and this is justp0.

For (d) we have

Bθ ((adX)Y, Z) = −B((adX)Y, θ Z) = B(Y, [ X, θ Z ])

= B(Y, θ [θ X, Z ]) = Bθ (Y, −(adθ X)Z),

and (d) is proved. Conclusion (e) follows from the facts thatθ is an
involution andBθ is positive definite, and conclusion (f) is trivial.

Proposition 7.20. If G is a reductive Lie group in the Harish-Chandra
class, then

(a) Gss is a closed subgroup,
(b) any semisimple analytic subgroup ofGss has finite center.

REMARK. Because of (b), in checking whether a particular subgroup of
G is reductive in the Harish-Chandra class, property (vi) is automatic for
the subgroup if it holds forG.

PROOF.
(a) Write the global Cartan decomposition of Theorem 6.31c forGss as

Gss = Kss exp(p0∩ [g0, g0]). This is compatible with the decomposition in
(iv). By (vi) and Theorem 6.31f,Kss is compact. HenceKss ×(p0∩[g0, g0])
is closed inK × p0, and (iv) implies thatGss is closed inG.

(b) Let S be a semisimple analytic subgroup ofGss with Lie algebras0.
The group Adg(S) is a semisimple analytic subgroup of the linear group
GL(g) and has finite center by Proposition 7.9. Under Adg, ZS maps into
the center of Adg(S). Hence the image ofZS is finite. The kernel of
Adg on S consists of certain membersx of Gss for which Adg(x) = 1.
Thesex ’s are inZGss , and the kernel is then finite by property (vi) forG.
ConsequentlyZS is finite.

Proposition 7.21. If G is a reductive Lie group, then the function
� : G → G defined by

�(k expX) = k exp(−X) for k ∈ K andX ∈ p0

is an automorphism ofG and its differential isθ .

REMARK. As in the semisimple case,� is called theglobal Cartan
involution .
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PROOF. The function� is a well defined diffeomorphism by (iv). First
consider its restriction to the analytic subgroupGss with Lie algebra [g0, g0].
By Proposition 7.19e the Lie algebra [g0, g0] has a Cartan decomposition

[g0, g0] = ([g0, g0] ∩ k0) ⊕ ([g0, g0] ∩ p0).

If Kss denotes the analytic subgroup ofGss whose Lie algebra is the first
summand on the right side, then Theorem 6.31 shows thatGss consists ex-
actly of the elements inKss exp([g0, g0]∩p0) and that� is an automorphism
on Gss with differentialθ .

Next consider the restriction of� to the analytic subgroup(ZG0)0. By
Proposition 7.19e the Lie algebra of this abelian group decomposes as

Zg0 = (Zg0 ∩ k0) ⊕ (Zg0 ∩ p0).

Since all the subalgebras in question are abelian, the exponential mappings
in question are onto, and(ZG0)0 is a commuting product

(ZG0)0 = exp(Zg0 ∩ k0) exp(Zg0 ∩ p0)

contained inK expp0. Thus� on(ZG0)0 is the lift to the group ofθ on the
Lie algebra and hence is an automorphism of the subgroup(ZG0)0.

The subgroupsGss and (ZG0)0 commute, and hence� is an auto-
morphism of their commuting product, which isG0 by the remarks with
Corollary 7.10.

Now consider� on all ofG, where it is given consistently by�(kg0) =
k�(g0) for k ∈ K andg0 ∈ G0. By Proposition 7.19c we haveθAd(k) =
Ad(k)θ ong0, from which we obtain�(k expX k−1) = k�(expX)k−1 for
k ∈ K andX ∈ g0. Therefore

�(kg0k−1) = k�(g0)k
−1 for k ∈ K andg ∈ G0.

On the product of two general elementskg0 andk ′g′
0 of G, we therefore

have

�(kg0k ′g′
0) = �(kk ′k ′−1g0k ′g′

0) = kk ′�(k ′−1g0k ′g′
0)

= kk ′�(k ′−1g0k ′)�(g′
0)=k�(g0)k

′�(g′
0)=�(kg0)�(k ′g′

0),

as required.
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Lemma 7.22. Let G be a reductive Lie group, and letg = k expX
be the global Cartan decomposition of an elementg of G. If s0 is a θ

stable subspace ofg0 such that Ad(g) normalizess0, then Ad(k) and adX
each normalizes0. If Ad(g) centralizess0, then Ad(k) and adX each
centralizes0.

PROOF. For x ∈ G, we have(�g)x(�g)−1 = �(g(�x)g−1). Differen-
tiating atx = 1, we obtain

(7.23) Ad(�g) = θAd(g)θ.

Therefore Ad(�g) normalizess0. Since�g = k exp(−X), it follows that
Ad of (�g)−1g = exp 2X normalizess0. Because of Proposition 7.19d,
Ad(exp 2X) is positive definite relative toBθ , hence diagonable. Then
there exists a vector subspaces′

0 of g0 invariant under Ad(exp 2X) such
thatg0 = s0 ⊕ s′

0. The transformation Ad(exp 2X) has a unique logarithm
with real eigenvalues, and ad 2X is a candidate for it. Another candidate
is the logarithm on each subspace, which normalizess0 ands′

0. These two
candidates must be equal, and therefore ad 2X normalizess0 ands′

0. Hence
the same thing is true of adX . Then Ad(expX) and Ad(g) both normalize
s0 ands′

0, and the same thing must be true of Ad(k).
If Ad(g) centralizess0, we can go over the above argument to see that

Ad(k) and adX each centralizes0. In fact, Ad(exp 2X) must centralizes0,
the unique real logarithm must be 0 ons0, and adX must be 0 ons0. The
lemma follows.

Lemma 7.24. Let G be a reductive Lie group, and letu0 = k0 ⊕ ip0.
Then Adg(K ) is contained in Intg(u0).

PROOF. The group Intg is complex semisimple with Lie algebra adg(g).
If bar denotes the conjugation ofg with respect tog0, then the extension
Bθ (Z1, Z2) = −B(Z1, θ Z2) is a Hermitian inner product ong, and the
compact real form adg(u0) of adg(g) consists of skew Hermitian transfor-
mations. Hence Intg(u0) consists of unitary transformations and adg(iu0)

consists of Hermitian transformations. Therefore the global Cartan de-
composition of Intg given in Theorem 6.31c is compatible with the polar
decomposition relative toBθ , and every unitary member of Intg is in the
compact real form Intg(u0).

Let k be in K . The transformation Adg(k) is in Intg by property (v)
for G, and Adg(k) is unitary sinceB is Ad(k) invariant and since Ad(k)

commutes with bar andθ (Proposition 7.19c). From the result of the
previous paragraph, we conclude that Adg(k) is in Intg(u0).
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Proposition 7.25. If G is a reductive Lie group andh0 is a θ stable
abelian subalgebra of its Lie algebra, thenZG(h0) is a reductive Lie group.
Here the maximal compact subgroup ofZG(h0) is given by intersection,
and the Cartan involution and invariant form are given by restriction.

REMARK. The hypothesis “abelian” will be used only in the proof of
property (v) forZG(h0), and we shall make use of this fact in Corollary
7.26 below.

PROOF. The groupZG(h0) is closed, hence Lie. Its Lie algebra is
Zg0(h0), which isθ stable. Then it follows, just as in the proof of Corollary
6.29, thatZg0(h0) is reductive. This proves property (i) of a reductive Lie
group. SinceZg0(h0) is θ stable, we have

Zg0(h0) = (Zg0(h0) ∩ k0) ⊕ (Zg0(h0) ∩ p0),

and the first summand on the right side is the Lie algebra ofZG(h0) ∩ K .
This proves property (ii), and property (iii) is trivial.

In view of property (iv) forG, what needs proof in (iv) forZG(h0) is
that Z K (h0) × (Zg0(h0) ∩ p0) maps ontoZG(h0). That is, we need to see
that if g = k expX is the global Cartan decomposition of a memberg of
ZG(h0), thenk is in ZG(h0) andX is in Zg0(h0). But this is immediate from
Lemma 7.22, and (iv) follows.

For property (v) we are to show that AdZg(h) carriesZG(h0) into Int Zg(h).
If x ∈ ZG(h0) is given, then property (iv) allows us to writex = k expX
with k ∈ Z K (h0)andX ∈ Zg0(h0)∩p0. Then AdZg(h)(expX) is in Int Zg(h),
and it is enough to treatk. By Lemma 7.24, Adg(k) is in the subgroup
Intg(u0), which is compact by Proposition 7.9.

The element Adg(k) centralizesh0 and hence centralizes the variant
(h0 ∩ k0)⊕ i(h0 ∩ p0). Since(h0 ∩ k0)⊕ i(h0 ∩ p0) is an abelian subalgebra
of g, the centralizer ofh0 in Intg(u0) is the centralizer of a torus, which is
connected by Corollary 4.51. Therefore Adg(k) is in the analytic subgroup
of Int gwith Lie algebraZu0((h0∩k0)⊕i(h0∩p0)). By Corollary 4.48 we can
write Adg(k) = exp adg Y with Y in this Lie algebra. Then AdZg(h)(k) =
exp adZg(h) Y , andY is in Zg(h). Then AdZg(h)(k) is in Int Zg(h), and (v)
is proved.

Corollary 7.26. If G is a reductive Lie group, then
(a) (ZG0)0 ⊆ ZG ,
(b) ZG is a reductive Lie group (with maximal compact subgroup given

by intersection and with Cartan involution and invariant form given
by restriction).
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PROOF. Property (v) forG gives Adg(G) ⊆ Int g, and Intg acts trivially
on Zg. Hence Ad(G) acts trivially onZg0, andG centralizes(ZG0)0. This
proves (a).

From (a) it follows thatZG has Lie algebraZg0, which is also the
Lie algebra ofZG(g0). Therefore property (v) is trivial for bothZG and
ZG(g0). Proposition 7.25 and its remark show thatZG(g0) is reductive, and
consequently only property (iv) needs proof forZG . We need to see that if
z ∈ ZG decomposes inG under (iv) asz = k expX , thenk is in ZG ∩ K
and X is in Zg0. By Lemma 7.22 we know thatk is in ZG(g0) and X is
in Zg0. Then expX is in (ZG0)0, and (a) shows that expX is in ZG . Since
z and expX are in ZG , so isk. This completes the proof of (iv), and (b)
follows.

Let G be reductive. Since adg g carries [g, g] to itself, Intg carries [g, g]
to itself. By (v), Ad(G) normalizes [g0, g0]. Consequently0G = K Gss is
a subgroup ofG.

The vector subspacep0 ∩ Zg0 is an abelian subspace ofg0, and therefore
Zvec = exp(p0 ∩ Zg0) is an analytic subgroup ofG.

Proposition 7.27.If G is a reductive Lie group, then

(a) 0G = K exp(p0 ∩ [g0, g0]), and0G is a closed subgroup,
(b) the Lie algebra0g0 of 0G is k0 ⊕ (p0 ∩ [g0, g0]),
(c) 0G is reductive (with maximal compact subgroupK and with Cartan

involution and invariant form given by restriction),
(d) the center of0G is a compact subgroup ofK ,
(e) Zvec is closed, is isomorphic to the additive group of a Euclidean

space, and is contained in the center ofG,
(f) the multiplication map exhibits0G × Zvec as isomorphic toG.

REMARK. The closed subgroupZvec is called thesplit component
of G.

PROOF.
(a) If we write the global Cartan decomposition ofGss as Gss =

Kss exp(p0 ∩ [g0, g0]), then0G = K exp(p0 ∩ [g0, g0]), and we see from
property (iv) that0G is closed.

(b) Because of (a),0G is a Lie subgroup. Since0G containsK and
Gss , its Lie algebra must containk0 ⊕ (p0 ∩ [g0, g0]). From property
(iv) for G, the formula0G = K exp(p0 ∩ [g0, g0]) shows that dim0g0 =
dimk0 + dim(p0 ∩ [g0, g0]). So0g0 = k0 ⊕ (p0 ∩ [g0, g0]).
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(c) From (b) we see that0g0 is θ stable. From this fact all the properties
of a reductive group are clear except properties (iv) and (v). Property (iv)
follows from (a). For property (v) we know that any Adg(g) for g ∈ 0G is in
Int g. Therefore we can write Adg(g) as a product of elements exp adg(X j)

with X j in [g, g] or Zg. WhenX j is in Zg, exp adg(X j) is trivial. Therefore
Adg(g) agrees with a product of elements exp adg(X j) with X j in [g, g].
Restricting the action to [g, g], we see that Ad[g,g](g) is in Int [g, g].

(d) Conclusion (c) and Corollary 7.26 show that the center of0G is
reductive. The intersection of the Lie algebra of the center withp0 is 0,
and hence property (iv) shows that the center is contained inK .

(e) Sincep0∩Zg0 is a closed subspace ofp0, property (iv) implies thatZvec

is closed and thatZvec is isomorphic to the additive group of a Euclidean
space. Since Intg acts trivially onZg, property (v) implies that Ad(g) = 1
onp0 ∩ Zg0 for everyg ∈ G. HenceZvec is contained in the center ofG.

(f) Multiplication is a diffeomorphism, as we see by combining (a),
property (iv), and the formula exp(X + Y ) = expX expY for X in
p0 ∩ [g0, g0] andY in p0 ∩ Zg0. Multiplication is a homomorphism since,
by (e),Zvec is contained in the center ofG.

Reductive Lie groups are supposed to have all the essential structure-
theoretic properties of semisimple groups and to be closed under various
operations that allow us to prove theorems by induction on the dimension
of the group. The remainder of this section will be occupied with reviewing
the structure theory developed in Chapter VI to describe how the results
should be interpreted for reductive Lie groups.

The first remarks concern the Cartan decomposition. The decomposi-
tion on the Lie algebra level is built into the definition of reductive Lie
group, and the properties of the global Cartan decomposition (generalizing
Theorem 6.31) are given partly in property (iv) of the definition and partly
in Proposition 7.21.

It might look as if property (iv) would be a hard thing to check for
a particular candidate for a reductive group. It is possible to substitute
various axioms concerning the component structure ofG that are easier to
state, but it is often true that ones gets at the component structure by first
proving (iv). Proposition 1.143 and Lemma 7.22 provide examples of this
order of events; the global Cartan decomposition in those cases implies
that the number of components of the group under study is finite. Thus
property (iv) is the natural property to include in the definition even though
its statement is complicated.

The other two general structure-theoretic topics in Chapter VI are the
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Iwasawa decomposition and Cartan subalgebras. Let us first extend the
notion of an Iwasawa decomposition to the context of reductive Lie groups.
Let a reductive Lie groupG be given, and write its Lie algebra asg0 =
Zg0 ⊕ [g0, g0]. Let a0 be a maximal abelian subspace ofp0. Certainlya0

containsp0 ∩ Zg0, and thereforea0 is of the form

(7.28) a0 = (p0 ∩ Zg0) ⊕ (a0 ∩ [g0, g0]),

wherea0∩ [g0, g0] is a maximal abelian subspace ofp0∩ [g0, g0]. Theorem
6.51 shows that any two maximal abelian subspaces ofp0 ∩ [g0, g0] are
conjugate via Ad(K ), and it follows from (7.28) that this result extends to
our reductiveg0.

Proposition 7.29. Let G be a reductive Lie group. Ifa0 anda′
0 are

two maximal abelian subspaces ofp0, then there is a memberk of K with
Ad(k)a′

0 = a0. The memberk of K can be taken to be inK ∩ Gss . Hence
p0 = ⋃

k∈Kss
Ad(k)a0.

Relative toa0, we can form restricted roots just as in §VI.4. Arestricted
root of g0, also called aroot of (g0, a0), is a nonzeroλ ∈ a∗

0 such that the
space

(g0)λ = {X ∈ g0 | (adH)X = λ(H)X for all H ∈ a0}
is nonzero. It is apparent that such a restricted root is obtained by taking
a restricted root for [g0, g0] and extending it froma0 ∩ [g0, g0] to a0 by
making it be 0 onp0 ∩ Zg0. The restricted-root space decomposition for
[g0, g0] gives us a restricted-root space decomposition forg0. We define
m0 = Zk0(a0), so that the centralizer ofa0 in g0 is m0 ⊕ a0.

The set of restricted roots is denoted�. Choose a notion of positivity for
a∗

0 in the manner of §II.5, as for example by using a lexicographic ordering.
Let �+ be the set of positive restricted roots, and definen0 = ⊕

λ∈�+(g0)λ.
Then n0 is a nilpotent Lie subalgebra ofg0, and we have an Iwasawa
decomposition

(7.30) g0 = k0 ⊕ a0 ⊕ n0

with all the properties in Proposition 6.43.

Proposition 7.31. Let G be a reductive Lie group, let (7.30) be an
Iwasawa decomposition of the Lie algebrag0 of G, and let A and N
be the analytic subgroups ofG with Lie algebrasa0 andn0. Then the
multiplication mapK × A × N → G given by (k, a, n) �→ kan is a
diffeomorphism onto. The groupsA andN are simply connected.
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PROOF. Multiplication is certainly smooth, and it is regular by Lemma
6.44. To see that it is one-one, it is enough, as in the proof of Theorem 6.46,
to see that we cannot havekan = 1 nontrivially. The identitykan = 1
would force the orthogonal transformation Ad(k) to be upper triangular
with positive diagonal entries in the matrix realization of Lemma 6.45, and
consequently we may assume that Ad(k) = Ad(a) = Ad(n) = 1. Thusk,
a, andn are inZG(g0). By Lemma 7.22,a is the exponential of something
in Zg0(g0) = Zg0. Hencea is in Zvec. By constructionn is in Gss , and
hencek andn are in0G. By Proposition 7.27f,a = 1 andkn = 1. But
then the identitykn = 1 is valid in Gss , and Theorem 6.46 implies that
k = n = 1.

To see that multiplication is ontoG, we observe from Theorem 6.46 that
exp(p0∩ [g0, g0]) is in the image. By Proposition 7.27a, the image contains
0G. Also Zvec is in the image (of 1× A × 1), andZvec commutes with0G.
Hence the image contains0G Zvec. This is all ofG by Proposition 7.27f.

We definen−
0 = ⊕

λ∈�+(g0)−λ. Thenn
−
0 is a nilpotent Lie subalgebra

of g0, and we letN − be the corresponding analytic subgroup. Since−�+

is the set of positive restricted roots for another notion of positivity ona∗
0,

g0 = k0⊕a0⊕n
−
0 is another Iwasawa decomposition ofg0 andG = K AN −

is another Iwasawa decomposition ofG. The identityθ(g0)λ = (g0)−λ

given in Proposition 6.40c implies thatθn0 = n
−
0 . By Proposition 7.21,

�N = N −.
We write M for the groupZ K (a0). This is a compact subgroup since it

is closed inK , and its Lie algebra isZk0(a0). This subgroup normalizes
each(g0)λ since

ad(H)(Ad(m)Xλ) = Ad(m)ad(Ad(m)−1H)Xλ

= Ad(m)ad(H)Xλ = λ(H)Ad(m)Xλ

for m ∈ M , H ∈ a0, and Xλ ∈ (g0)λ. ConsequentlyM normalizesn0.
ThusM centralizesA and normalizesN . SinceM is compact andAN is
closed,M AN is a closed subgroup.

Reflections in the restricted roots generate a groupW (�), which we call
theWeyl group of �. The elements ofW (�) are nothing more than the
elements of the Weyl group for the restricted roots of [g0, g0], with each
element extended toa∗

0 by being defined to be the identity onp0 ∩ Zg0.
We defineW (G, A) = NK (a0)/Z K (a0). By the same proof as for

Lemma 6.56, the Lie algebra ofNK (a0) is m0. ThereforeW (G, A) is
a finite group.
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Proposition 7.32.If G is a reductive Lie group, then the groupW (G, A)

coincides withW (�).

PROOF. Just as with the corresponding result in the semisimple case
(Theorem 6.57), we know thatW (�) ⊆ W (G, A). Fix a simple system�+

for�. As in the proof of Theorem 6.57, it suffices to show that ifk ∈ NK (a0)

has Ad(k)�+ = �+, thenk is in Z K (a0). By Lemma 7.24, Adg(k) is in
the compact semisimple Lie group Intg(u0), whereu0 = k0 ⊕ ip0. The
connectedness of Intg(u0) is the key, and the remainder of the proof of
Theorem 6.57 is applicable to this situation.

Proposition 7.33. If G is a reductive Lie group, thenM meets every
component ofK , hence every component ofG.

PROOF. Let k ∈ K be given. Since Ad(k)−1(a0) is maximal abelian in
p0, Proposition 7.28 gives usk0 ∈ K0 with Ad(k−1

0 k−1)(a0) = a0. Thus
k−1

0 k−1 normalizesa0. Comparison of Proposition 7.32 and Theorem 6.57
producesk−1

1 ∈ K0 so thatk−1
1 k−1

0 k−1 centralizesa0. Thenkk0k1 is in M ,
andk is in M K0.

Next let us extend the notion of Cartan subalgebras to the context of
reductive Lie groups. We recall from §IV.5 that a Lie subalgebrah0 of g0

is a Cartan subalgebra if its complexificationh is a Cartan subalgebra
of g = (g0)

C. Sinceh must equal its own normalizer (Proposition 2.7), it
follows thatZg ⊆ h. Thereforeh0 must be of the form

(7.34) h0 = Zg0 ⊕ (h0 ∩ [g0, g0]),

whereh0 ∩ [g0, g0] is a Cartan subalgebra of the semisimple Lie algebra
[g0, g0]. By Proposition 2.13 a sufficient condition forh0 to be a Cartan
subalgebra ofg0 is thath0 is maximal abelian ing0 and adg h0 is simulta-
neously diagonable.

As in the special case (4.31), we can form a set of roots�(g, h), which
amount to the roots of [g, g] with respect toh ∩ [g, g], extended toh by
being defined to be 0 onZg. We can form also a Weyl groupW (g, h)

generated by the reflections in the members of�; W (g, h) consists of the
members ofW ([g, g], h ∩ [g, g]) extended tog by being defined to be the
identity onZg.

Because of the form (7.34) of Cartan subalgebras ofg0, Proposition 6.59
implies that any Cartan subalgebra is conjugate via Intg0 to aθ stable Cartan
subalgebra. There are only finitely many conjugacy classes (Proposition
6.64), and these can be related by Cayley transforms.
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The maximally noncompactθ stable Cartan subalgebras are obtained
by adjoining to an Iwasawaa0 a maximal abelian subspace ofm0. As in
Proposition 6.61, all such Cartan subalgebras are conjugate viaK . The
restricted roots relative toa0 are the nonzero restrictions toa0 of the roots
relative to this Cartan subalgebra.

Any maximally compactθ stable Cartan subalgebra is obtained as the
centralizer of a maximal abelian subspace ofk0. As in Proposition 6.61,
all such Cartan subalgebras are conjugate viaK .

Proposition 7.35.Let G be a reductive Lie group. If twoθ stable Cartan
subalgebras ofg0 are conjugate viaG, then they are conjugate viaGss and
in fact by K ∩ Gss .

PROOF. Let h0 andh′
0 beθ stable Cartan subalgebras, and suppose that

Ad(g)(h0) = h′
0. By (7.23), Ad(�g)(h0) = h′

0. If g = k expX with k ∈ K
andX ∈ p0, then it follows that Ad of(�g)−1g = exp 2X normalizesh0.
Applying Lemma 7.22 to exp 2X , we see that [X, h0] ⊆ h0. Therefore
expX normalizesh0, and Ad(k) carriesh0 to h′

0.
Since Ad(k) commutes withθ , Ad(k) carriesh0∩p0 toh′

0∩p0. Leta0 be
a maximal abelian subspace ofp0 containingh0 ∩ p0, and choosek0 ∈ K0

by Proposition 7.29 so that Ad(k0k)(a0) = a0. Comparing Proposition
7.32 and Theorem 6.57, we can findk1 ∈ K0 so thatk1k0k centralizesa0.
Then Ad(k)|a0 = Ad(k−1

0 k−1
1 )|a0, and the elementk ′ = k−1

0 k−1
1 of K0 has the

property that Ad(k ′)(h0∩p0) = h′
0∩p0. Theθ stable Cartan subalgebrash0

and Ad(k ′)−1(h′
0) therefore have the samep0 part, and Lemma 6.62 shows

that they are conjugate viaK ∩ Gss .

3. K AK Decomposition

Throughout this section we letG be a reductive Lie group, and we let
other notation be as in §2.

From the global Cartan decompositionG = K expp0 and from the
equality p0 = ⋃

k∈K Ad(k)a0 of Proposition 7.29, it is immediate that
G = K AK in the sense that every element ofG can be decomposed as
a product of an element ofK , an element ofA, and a second element of
K . In this section we shall examine the degree of nonuniqueness of this
decomposition.

Lemma 7.36.If X is in p0, thenZG(expX) = ZG(RX).
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PROOF. CertainlyZG(RX) ⊆ ZG(expX). In the reverse direction ifg is
in ZG(expX), then Ad(g)Ad(expX) = Ad(expX)Ad(g). By Proposition
7.19d, Ad(expX) is positive definite ong0, thus diagonable. Consequently
Ad(g) carries each eigenspace of Ad(expX) to itself, and it follows that
Ad(g)ad(X) = ad(X)Ad(g). By Lemma 1.118,

(7.37) ad(Ad(g)X) = ad(X).

Write X = Y + Z with Y ∈ Zg0 and Z ∈ [g0, g0]. By property (v) of a
reductive group, Ad(g)Y = Y . Comparing this equality with (7.37), we
see that ad(Ad(g)Z) = ad(Z), hence that Ad(g)Z − Z is in the center of
g0. Since it is in [g0, g0] also, it is 0. Therefore Ad(g)X = X , andg is in
the centralizer ofRX .

Lemma 7.38.If k is in K and ifa anda′ are inA with kak−1 = a′, then
there existsk0 in NK (a0) with k0ak−1

0 = a′.

PROOF. The subgroupZG(a′) is reductive by Lemma 7.36 and Propo-
sition 7.25, and its Lie algebra isZg0(a

′) = {X ∈ g0 | Ad(a′)X = X}.
Now a0 and Ad(k)a0 are two maximal abelian subspaces ofZg0(a

′) ∩ p0

sincekak−1 = a′. By Proposition 7.29 there existsk1 in K ∩ ZG(a′) with
Ad(k1)Ad(k)a0 = a0. Thenk0 = k1k is in NK (a0), and

k0ak−1
0 = k1(kak−1)k−1

1 = k1a′k−1
1 = a′.

Theorem 7.39(K AK decomposition). Every element inG has a de-
composition ask1ak2 with k1, k2 ∈ K anda ∈ A. In this decomposition,
a is uniquely determined up to conjugation by a member ofW (G, A). If
a is fixed as expH with H ∈ a0 and ifλ(H) �= 0 for all λ ∈ �, thenk1 is
unique up to right multiplication by a member ofM .

PROOF. Existence of the decomposition was noted at the beginning of
the section. For uniqueness supposek ′

1a′k ′
2 = k ′′

1ak ′′
2. If k ′ = k1

′′−1k ′
1

andk = k ′
2k ′′

2
−1, thenk ′a′k = a and hence(k ′k)(k−1a′k) = a. By the

uniqueness of the global Cartan decomposition,k ′k = 1 andk−1a′k = a.
Lemma 7.38 then shows thata′ anda are conjugate viaNK (a0).

Now let a = a′ = expH with H ∈ a0 andλ(H) �= 0 for all λ ∈ �.
We have seen thatk−1ak = a. By Lemma 7.36, Ad(k)−1H = H . Since
λ(H) �= 0 for all λ ∈ �, Lemma 6.50 shows thatZg0(H) = a0 ⊕ m0.
Hence the centralizer ofH in p0 is a0, and the centralizer of Ad(k)−1H in
p0 is Ad(k)−1a0. But Ad(k)−1H = H implies that these centralizers are
the same: Ad(k)−1a0 = a0. Thusk is in NK (a0).

By Proposition 7.32, Ad(k) is given by an elementw of the Weyl group
W (�). Sinceλ(H) �= 0 for all λ ∈ �, we can define a lexicographic



460 VII. Advanced Structure Theory

ordering so that the positive restricted roots are positive onH . Then
Ad(k)H = H says thatw permutes the positive restricted roots. By
Theorem 2.63,w = 1. Therefore Ad(k) centralizesa0, andk is in M .

Fromk ′k = 1, we see thatk ′ is in M . Thenk ′ = k1
′′−1k ′

1 shows thatk ′
1

andk ′′
1 differ by an element ofM on the right.

4. Bruhat Decomposition

We continue to assume thatG is a reductive Lie group and that other
notation is as in §2.

We know that the subgroupM = Z K (a0) of K is compact, and we saw
in §2 thatM AN is a closed subgroup ofG. It follows from the Iwasawa
decomposition that the multiplication mapM × A × N → M AN is a
diffeomorphism onto.

The Bruhat decomposition describes the double-coset decomposition
M AN\G/M AN of G with respect toM AN . Here is an example.

EXAMPLE. LetG = SL(2, R). HereM AN =
{(

a b
0 a−1

)}
. The nor-

malizerNK (a0) consists of the four matrices±
(

1 0
0 1

)
and±

(
0 1

−1 0

)
,

while the centralizerZ K (a0) consists of the two matrices±
(

1 0
0 1

)
. Thus

|W (G, A)| = 2, andw̃ =
(

0 −1
1 0

)
is a representative of the nontrivial

element ofW (G, A). Let g =
(

a b
c d

)
be given inG. If c = 0, theng is

in M AN . If c �= 0, then(
0 1

−1 0

) (
a b
c d

)
=

(
c d

−a −b

)
=

(
1 0

−ac−1 1

) (
c d
0 c−1

)
=

(
0 1

−1 0

) (
1 ac−1

0 1

) (
0 −1
1 0

) (
c d
0 c−1

)
.

Hence (
a b
c d

)
=

(
1 ac−1

0 1

) (
0 −1
1 0

) (
c d
0 c−1

)
exhibits

(
a b
c d

)
as in M AN w̃M AN . Thus the double-coset space

M AN\G/M AN consists of two elements, with 1 and̃w as representatives.
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Theorem 7.40(Bruhat decomposition). The set of double cosets of
M AN\G/M AN is parametrized in a one-one fashion byW (G, A), the
double coset corresponding tow ∈ W (G, A) beingM AN w̃M AN , where
w̃ is any representative ofw in NK (a0).

PROOF OF UNIQUENESS. Suppose thatw1 andw2 are inW (G, A), with
w̃1 andw̃2 as representatives, and thatx1 andx2 in M AN have

(7.41) x1w̃1 = w̃2x2.

Now Ad(N ) = exp(ad(n0)) by Theorem 1.127, and hence Ad(N ) carries
a0 to a0 ⊕ n0 while leaving thea0 component unchanged. Meanwhile
under Ad, NK (a0) permutes the restricted-root spaces and thus carries
m0 ⊕ ⊕

λ∈� (g0)λ to itself. Apply Ad of both sides of (7.41) to an element
H ∈ a0 and project toa0 along m0 ⊕ ⊕

λ∈� (g0)λ. The resulting left
side is ina0 ⊕ n0 with a0 component Ad(w̃1)H , while the right side is in
Ad(w̃2)H + Ad(w̃2)(m0 ⊕ n0). Hence Ad(w̃1)H = Ad(w̃2)H . SinceH
is arbitrary,w̃−1

2 w̃1 centralizesa0. Thereforew1 = w2.

The proof of existence in Theorem 7.40 will be preceded by three
lemmas.

Lemma 7.42. Let H ∈ a0 be such thatλ(H) �= 0 for all λ ∈ �. Then
the mappingϕ : N → g0 given byn �→ Ad(n)H − H carriesN onton0.

PROOF. Write n0 = ⊕
(g0)λ as a sum of restricted-root spaces, and

regard the restricted roots as ordered lexicographically. For any restricted
rootα, the subspacenα = ⊕

λ≥α (g0)λ is an ideal, and we prove by induction
downward onα thatϕ carriesNα = expnα ontonα. This conclusion forα
equal to the smallest positive restricted root gives the lemma.

If α is given, we can writenα = (g0)α ⊕ nβ with β > α. Let X be
given innα, and writeX asX1 + X2 with X1 ∈ (g0)α andX2 ∈ nβ . Since
α(H) �= 0, we can chooseY1 ∈ (g0)α with [H, Y1] = X1. Then

Ad(expY1)H − H = (H + [Y1, H ] + 1
2(adY1)

2H + · · · ) − H

= −X1 + (nβ terms),

and hence Ad(expY1)(H + X) − H is in nβ . By inductive hypothesis we
can findn ∈ Nβ with

Ad(n)H − H = Ad(expY1)(H + X) − H.

Then Ad((expY1)
−1n)H − H = X , and the element(expY1)

−1n of Nα is
the required element to complete the induction.
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Lemma 7.43.Let s0 = m0 ⊕ a0 ⊕ n0. Then

(a) n0 ⊕ Zg0 = {Z ∈ s0 | adg(Z) is nilpotent} and
(b) a0 ⊕n0 ⊕ (m0 ∩ Zg0) = {Z ∈ s0 | adg(Z) has all eigenvalues real}.

PROOF. Certainly the left sides in (a) and (b) are contained in the right
sides. For the reverse containments writeZ ∈ s0 as Z = X0 + H + X
with X0 ∈ m0, H ∈ a0, and X ∈ n0. ExtendRX0 to a maximal abelian
subspacet0 of m0, so thata0 ⊕ t0 is a Cartan subalgebra ofg0. Extending
the ordering ofa0 to one ofa0 ⊕ it0 so thata0 is taken beforeit0, we
obtain a positive system�+ for �(g, (a⊕ t)) such that�+ arises as the set
of nonzero restrictions of members of�+. Arrange the members of�+

in decreasing order and form the matrix of adZ in a corresponding basis
of root vectors (with vectors froma ⊕ t used at the appropriate place in
the middle). The matrix is upper triangular. The diagonal entries in the
positions corresponding to the root vectors areα(X0+H) = α(X0)+α(H)

for α ∈ �, and the diagonal entries are 0 in the positions corresponding to
basis vectors ina⊕ t. Hereα(X0) is imaginary , andα(H) is real. To have
adZ nilpotent, we must get 0 for allα. Thus the component ofX0 + H in
[g0, g0] is 0. This proves (a). To have adZ have real eigenvalues, we must
haveα(X0) = 0 for all X ∈ �. Thus the component ofX0 in [g0, g0] is 0.
This proves (b).

Lemma 7.44.For eachg ∈ G, putsg
0 = s0 ∩ Ad(g)s0. Then

s0 = s
g
0 + n0.

PROOF. Certainlys0 ⊇ s
g
0 + n0, and therefore it is enough to show that

dim(s
g
0 + n0) = dims0. SinceG = K AN , there is no loss of generality

in assuming thatg is in K . Write k = g. Let ( · )⊥ denote orthogonal
complement withing0 relative to Bθ . From θ(g0)λ = (g0)−λ, we have
s⊥

0 = θn0. Since Ad(k) acts in an orthogonal fashion,

(7.45)
(s0 + Ad(k)s0)

⊥ = s
⊥
0 ∩ (Ad(k)s0)

⊥ = θn0 ∩ Ad(k)s⊥
0

= θn0 ∩ Ad(k)θn0 = θ(n0 ∩ Ad(k)n0).

Let X be ins0 ∩Ad(k)s0 and inn0. Then adg(X) is nilpotent by Lemma
7.43a. Since adg(Ad(k)−1X) and adg(X) have the same eigenvalues,
adg(Ad(k)−1X) is nilpotent. By Lemma 7.43a, Ad(k)−1X is in n0 ⊕ Zg0.
Since Ad(k) fixes Zg0 (by property (v)), Ad(k)−1X is in n0. ThereforeX
is in Ad(k)n0, and we obtain

(7.46) n0 ∩ Ad(k)n0 = n0 ∩ (s0 ∩ Ad(k)s0) = n0 ∩ s
k
0.
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Consequently

2 dims0 − dims
k
0 = dim(s0 + Ad(k)s0)

= dimg0 − dim(n0 ∩ Ad(k)n0) by (7.45)

= dimg0 − dim(n0 ∩ s
k
0) by (7.46)

= dimg0 + dim(n0 + s
k
0) − dimn0 − dims

k
0,

and we conclude that

dimg0 + dim(n0 + s
k
0) − dimn0 = 2 dims0.

Since dimn0 + dims0 = dimg0, we obtain dim(n0 + sk
0) = dims0, as

required.

PROOF OF EXISTENCE INTHEOREM 7.40. Fix H ∈ a0 with λ(H) �= 0
for all λ ∈ �. Let x ∈ G be given. Sincea0 ⊆ s0, Lemma 7.44 allows us
to write H = X + Y with X ∈ n0 andY ∈ sx

0. By Lemma 7.42 we can
choosen1 ∈ N with Ad(n1)H − H = −X . Then

Ad(n1)H = H − X = Y ∈ s
x
0 ⊆ Ad(x)s0.

So Z = Ad(x−1n1)H is in s0. Since adg Z and adg H have the same
eigenvalues, Lemma 7.43b shows thatZ is in a0 ⊕ n0 ⊕ (m0 ∩ Zg0). Since
Ad(x−1n1)

−1 fixesZg0 (by property (v)),Z is ina0⊕m0. Write Z = H ′+X ′

correspondingly. Here adH and adH ′ have the same eigenvalues, so that
λ(H ′) �= 0 for all λ ∈ �. By Lemma 7.42 there existsn2 ∈ N with
Ad(n2)

−1H ′ − H ′ = X ′. Then Ad(n2)
−1H ′ = H ′ + X ′ = Z , and

H ′ = Ad(n2)Z = Ad(n2x−1n1)H.

The centralizers ofH ′ andH are botha0 ⊕ m0 by Lemma 6.50. Thus

(7.47) Ad(n2x−1n1)(a0 ⊕ m0) = a0 ⊕ m0.

If X is in a0, then adg(X) has real eigenvalues by Lemma 7.43b. Since
adg(Ad(n2x−1n1)X) and adg(X) have the same eigenvalues, Lemma 7.43b
shows that Ad(n2x−1n1)X is ina0⊕(m0∩ Zg0). Since Ad(n2x−1n1)

−1 fixes
Zg0 (by property (v)), Ad(n2x−1n1)X is in a0. We conclude thatn2x−1n1

is in NG(a0).
Letn2x−1n1 = u expX0 be the global Cartan decomposition ofn2x−1n1.

By Lemma 7.22,u is in NK (a0) andX0 is in Ng0(a0). By the same argument
as in Lemma 6.56,Ng0(a0) = a0 ⊕ m0. SinceX0 is in p0, X0 is in a0.
Thereforeu is in NK (a0) and expX0 is in A. In other words,n2x−1n1 is in
u A, andx is in the sameM AN double coset as the memberu−1 of NK (a0).
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5. Structure of M

We continue to assume thatG is a reductive Lie group and that other
notation is as in §2. The fundamental source of disconnectedness in the
structure theory of semisimple groups is the behavior of the subgroup
M = Z K (a0). We shall examineM in this section, paying particular
attention to its component structure. For the first time we shall make
serious use of results from Chapter V.

Proposition 7.48. M is a reductive Lie group.

PROOF. Proposition 7.25 shows thatZG(a0) is a reductive Lie group,
necessarily of the formZ K (a0) exp(Zg0(a0) ∩ p0) = M A. By Proposition
7.27,0(M A) = M is a reductive Lie group.

Proposition 7.33 already tells us thatM meets every component ofG.
But M can be disconnected even whenG is connected. (Recall from the
examples in §VI.5 thatM is disconnected whenG = SL(n, R).) Choose
and fix a maximal abelian subspacet0 of m0. Thena0 ⊕ t0 is a Cartan
subalgebra ofg0.

Proposition 7.49.Every component ofM contains a member ofM that
centralizest0, so thatM = Z M(t0)M0.

REMARK. The proposition says that we may focus our attention on
Z M(t0). After this proof we shall studyZ M(t0) by considering it as a
subgroup ofZ K (t0).

PROOF. If m ∈ M is given, then Ad(m)t0 is a maximal abelian subspace
of m0. By Theorem 4.34 (applied toM0), there existsm0 ∈ M0 such that
Ad(m0)Ad(m)t0 = t0. Thenm0m is in NM(m0). Introduce a positive sys-
tem�+ for the root system� = �(m, t). Then Ad(m0m)�+ is a positive
system for�, and Theorems 4.54 and 2.63 together say that we can find
m1 ∈ M0 such that Ad(m1m0m) maps�+ to itself. By Proposition 7.48,M
satisfies property (v) of reductive Lie groups. Therefore Adm(m1m0m) is in
Int m. Then Adm(m1m0m) must be induced by an element in Intm [m, m],
and Theorem 7.8 says that this element fixes each member of�+. Therefore
m1m0m centralizest0, and the result follows.

Suppose that the rootα in �(g, a ⊕ t) is real, i.e.,α vanishes ont. As
in the discussion following (6.66), the root spacegα in g is invariant under
the conjugation ofg with respect tog0. Since dimC gα = 1, gα contains a
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nonzero root vectorEα that is ing0. Also as in the discussion following
(6.66), we may normalizeEα by a real constant so thatB(Eα, θ Eα) =
−2/|α|2. Put H ′

α = 2|α|−2Hα. Then {H ′
α, Eα, θ Eα} spans a copy of

sl(2, R) with

(7.50) H ′
α ↔ h, Eα ↔ e, θ Eα ↔ − f.

Let us write(g0)α for REα and(g0)−α for Rθ Eα.

Proposition 7.51.The subgroupZG(t0) of G

(a) is reductive with global Cartan decomposition

ZG(t0) = Z K (t0) exp(p0 ∩ Zg0(t0)),

(b) has Lie algebra

Zg0(t0) = t0 ⊕ a0 ⊕
⊕

α∈�(g,a⊕t),
α real

(g0)α,

which is the direct sum of its center with a real semisimple Lie
algebra that is a split real form of its complexification,

(c) is such that the component groups ofG, K , ZG(t0), andZ K (t0) are
all isomorphic.

PROOF. Conclusion (a) is immediate from Proposition 7.25. For (b) it
is clear that

Zg(t0) = t ⊕ a ⊕
⊕

α∈�(g,a⊕t),
α real

gα.

The conjugation ofg with respect tog0 carries every term of the right side
into itself, and therefore we obtain the formula of (b). Herea0 is maximal
abelian inp0 ∩ Zg0(t0), and therefore this decomposition is the restricted-
root space decomposition ofg0. Applying Corollary 6.49 to [g0, g0], we
obtain (b). In (c),G and K have isomorphic component groups as a
consequence of the global Cartan decomposition, andZG(t0) and Z K (t0)

have the same component groups as a consequence of (a). Consider the
natural homomorphism

Z K (t0)/Z K (t0)0 → K/K0

induced by inclusion. Propositions 7.49 and 7.33 show that this map is
onto, and Corollary 4.51 shows that it is one-one. This proves (c).
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We cannot expect to say much about the disconnectedness ofM that
results from the disconnectedness ofG. Thus we shall assume for the
remainder of this section thatG is connected. Proposition 7.51c notes
that ZG(t0) is connected. To studyZG(t0), we shall work with the analytic
subgroup ofZG(t0) whose Lie algebra is [Zg0(t0), Zg0(t0)]. This is the sub-
group that could be calledZG(t0)ss in the notation of §2. It is semisimple,
and its Lie algebra is a split real form. We call the subgroup theassociated
split semisimple subgroup, and we introduce the notationGsplit for it in
order to emphasize that its Lie algebra is split.

Let T be the maximal torus ofM0 with Lie algebrat0. Under the
assumption thatG is connected, it follows from Proposition 7.51b that
ZG(t0) is a commuting product

ZG(t0) = T AGsplit.

By Proposition 7.27,
0ZG(t0) = T Gsplit

is a reductive Lie group.
The groupGsplit need not have finite center, but the structure theory of

Chapter VI is available to describe it. LetKsplit and Asplit be the analytic
subgroups with Lie algebras given as the intersections ofk0 anda0 with
[Zg0(t0), Zg0(t0)]. Let F = Msplit be the centralizer ofAsplit in Ksplit. The
subgroupF will play a key role in the analysis ofM . It centralizes bothT
andA.

Corollary 7.52. The subgroupF normalizesM0, andM = F M0.

PROOF. SinceF centralizesA and is a subgroup ofK , it is a subgroup
of M . ThereforeF normalizesM0, andF M0 is a group. We know from
Proposition 7.49 thatM = Z M(t0)M0. SinceT ⊆ M0, it is enough to prove
that Z M(t0) = T F . The subgroupZ M(t0) is contained inZ K (t0), which in
turn is contained in0ZG(t0) = T Gsplit. SinceZ M(t0) is contained inK , it
is therefore contained inT Ksplit. Decompose a memberm of Z M(t0) in a
corresponding fashion asm = tk. Sincem andt centralizeA, so doesk.
Thereforek is in F = Msplit, and the result follows.

Without additional hypotheses we cannot obtain further nontrivial results
aboutF , and accordingly we recall the following definition from §1.

A semisimple groupG has acomplexification GC if GC is a connected
complex Lie group with Lie algebrag such thatG is the analytic subgroup
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corresponding to the real formg0 of g. By Corollary 7.6,GC is isomorphic
to a matrix group, and hence the same thing is true ofG andGsplit. By
Proposition 7.9, each ofG andGsplit has finite center. Therefore we may
considerG andGsplit in the context of reductive Lie groups.

Fix K , θ , andB for G. If the Cartan decomposition ofg0 isg0 = k0⊕p0,
then

g = (k0 ⊕ ip0) ⊕ (p0 ⊕ ik0)

is a Cartan decomposition ofg, and the corresponding Cartan involution
of g is bar◦ θ , where bar is the conjugation ofg with respect tog0.
The Lie algebrau0 = k0 ⊕ ip0 is compact semisimple, and it follows
from Proposition 7.9 that the corresponding analytic subgroupU of GC is
compact. Then the tuple(GC, U, bar◦θ, B) makesGC into a reductive Lie
group. Whenever a semisimple Lie groupG has a complexificationGC

and we considerG as a reductive Lie group(G, K , θ, B), we may consider
GC as the reductive Lie group(GC, U, bar◦ θ, B).

Under the assumption that the semisimple groupG has a complexifica-
tion GC, expia0 is well defined as an analytic subgroup ofU .

Theorem 7.53.Suppose that the reductive Lie groupG is semisimple
and has a complexificationGC. Then

(a) F = Ksplit ∩ expia0,
(b) F is contained in the center ofM ,
(c) M is the commuting productM = F M0,
(d) F is finite abelian, and every elementf �= 1 in F has order 2.

PROOF.
(a) Every member ofKsplit∩expia0 centralizesa0 and lies inKsplit, hence

lies in F . For the reverse inclusion we haveF ⊆ Ksplit by definition. To
see thatF ⊆ expia0, let Usplit be the analytic subgroup ofGC with Lie
algebra the intersection ofu0 with the Lie algebra [Zg(t0), Zg(t0)]. Then
Usplit is compact, andia0 ∩ [Zg(t0), Zg(t0)] is a maximal abelian subspace
of its Lie algebra. By Corollary 4.52 the corresponding torus is its own
centralizer. Hence the centralizer ofa0 in Usplit is contained in expia0.
SinceKsplit ⊆ Usplit, it follows thatF ⊆ expia0.

(b, c) Corollary 7.52 says thatM = F M0. By (a), every element ofF
commutes with any element that centralizesa0. HenceF is central inM ,
and (b) and (c) follow.

(d) SinceGsplit has finite center,F is compact. Its Lie algebra is 0, and
thus it is finite. By (b),F is abelian. We still have to prove that every
elementf �= 1 in F has order 2.
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SinceG has a complexification, so doesGsplit. Call this groupGC
split,

let G̃C
split be a simply connected covering group, and letϕ be the covering

map. LetG̃split be the analytic subgroup with the same Lie algebra as for
Gsplit, and form the subgroups̃Ksplit and F̃ of G̃split. The subgroup̃F is
the complete inverse image ofF underϕ. Let Ũsplit play the same role for
G̃C

split thatU plays forGC. The automorphismθ of the Lie algebra ofGsplit

complexifies and lifts to an automorphism̃θ of G̃C
split that carries̃Usplit into

itself. The automorphism̃θ acts asx �→ x−1 on expia0 and as the identity
on K̃split. The elements of̃F are the elements of the intersection, by (a),
and hencẽf −1 = f̃ for every element̃f of F̃ . That is f̃ 2 = 1. Applyingϕ

and using the fact thatϕ mapsF̃ onto F , we conclude that every element
f �= 1 in F has order 2.

EXAMPLE. When G does not have a complexification, the subgroup
F need not be abelian. For an example we observe that the groupK
for SL(3, R) is SO(3), which hasSU (2) as a 2-sheeted simply connected
covering group. ThusSL(3, R) has a 2-sheeted simply connected covering
group, and we take this covering group asG. We already noted in §VI.5 that
the groupM for SL(3, R) consists of the diagonal matrices with diagonal
entries±1 and determinant 1. ThusM is the direct sum of two 2-element
groups. The subgroupF of G is the complete inverse image ofM under
the covering map and thus has order 8. Moreover it is a subgroup ofSU (2),
which has only one element of order 2. ThusF is a group of order 8 with
only one element of order 2 and no element of order 8. Of the five abstract
groups of order 8, only the 8-element subgroup{±1, ±i, ± j, ±k} of the
quaternions has this property. This group is nonabelian, and henceF is
nonabelian.

Let α be a real root of�(g, a ⊕ t). From (7.50) we obtain a one-one
homomorphismsl(2, R) → g0 whose only ambiguity is a sign in the defi-
nition of Eα. This homomorphism carriesso(2) to k0 and complexifies to a
homomorphismsl(2, C) → g. Under the assumption thatG is semisimple
and has a complexificationGC, we can form the analytic subgroup ofGC

with Lie algebrasl(2, C). This will be a homomorphic image ofSL(2, C)

sinceSL(2, C) is simply connected. We letγα be the image of
(

−1 0

0 −1

)
.

This element is evidently in the image ofSO(2) ⊆ SL(2, R) and hence
lies in Ksplit. Clearly it does not depend upon the choice of the ambiguous
sign in the definition ofEα. A formula forγα is

(7.54) γα = exp 2π i |α|−2Hα.
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Theorem 7.55.Suppose that the reductive Lie groupG is semisimple
and has a complexificationGC. ThenF is generated by all elementsγα for
all real rootsα.

PROOF. Our construction ofγα shows thatγα is in both Ksplit and
expia0. By Theorem 7.53a,γα is in F . In the reverse direction we use the
construction in the proof of Theorem 7.53d, forming a simply connected
coverG̃C

split of the complexificationGC
split of Gsplit. We form also the groups

K̃split, F̃ , andŨsplit. The elementsγα are well defined iñF via (7.54), and
we show that they generatẽF . Then the theorem will follow by applying
the covering map̃GC

split → GC
split, sinceF̃ maps ontoF .

Let H̃ be the maximal torus of̃Usplit with Lie algebraia0. We know from
Theorem 7.53 that̃F is a finite subgroup of̃H . Arguing by contradiction,
suppose that the elementsγα generate a proper subgroup̃F0 of F̃ . Let f̃ be
an element of̃F not in F̃0. Applying the Peter–Weyl Theorem (Theorem
4.20) toH̃/F̃0, we can obtain a multiplicative characterχν of H̃ that is 1
on F̃0 and is �= 1 on f̃ . Hereν is the imaginary-valued linear functional
on ia0 such thatχν(expih) = eν(ih) for h ∈ a0. The roots for̃Usplit are the
real roots forg0, and our assumption is that each such real rootα has

1 = χν(γα) = χ(exp 2π i |α|−2Hα) = eν(2π i |α|−2Hα) = eπ i(2〈ν,α〉/|α|2).

That is 2〈ν, α〉/|α|2 is an even integer for allα. Hence1
2ν is algebraically

integral.
SinceŨsplit is simply connected, Theorem 5.107 shows that1

2ν is an-
alytically integral. Thus the multiplicative characterχ 1

2ν of H̃ given by

χ 1
2ν(expih) = e

1
2ν(ih) is well defined. Theorem 7.53d says thatf̃ 2 = 1,

and thereforeχ 1
2ν( f̃ ) = ±1. Sinceχν = (χ 1

2ν)
2, we obtainχν( f̃ ) = 1,

contradiction. We conclude that̃F0 equalsF̃ , and the proof is complete.

It is sometimes handy to enlarge the collection of elementsγα. Letβ be
any restricted root, and letXβ be any restricted-root vector corresponding
to β. Thenθ Xβ is a restricted-root vector for the restricted root−β by
Proposition 6.40c. Proposition 6.52 shows that we can normalizeXβ so
that [Xβ, θ Xβ ] = −2|β|−2Hβ , and then the correspondence

(7.56) h ↔ 2|β|−2Hβ, e ↔ Xβ, f ↔ −θ Xβ

is an isomorphism ofsl(2, R) with the real span ofHβ, Xβ, θ Xβ in g0.
Once again this homomorphism carriesso(2) = R(e − f ) to k0 and
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complexifies to a homomorphismsl(2, C) → g. Under the assumption that
G is semisimple and has a complexificationGC, we can form the analytic
subgroup ofGC with Lie algebrasl(2, C). This will be a homomorphic
image ofSL(2, C) sinceSL(2, C) is simply connected. We letγβ be the

image of
(

−1 0

0 −1

)
, namely

(7.57) γβ = exp 2π i |β|−2Hβ.

This element is evidently in the image ofSO(2) ⊆ SL(2, R) and hence
lies in K . Formula (7.57) makes it clear thatγβ does not depend on the
choice ofXβ , except for the normalization, and also (7.57) shows thatγβ

commutes witha0. Hence

(7.58) γβ is in M for each restricted rootβ.

Since
(

−1 0

0 −1

)
has square the identity, it follows that

(7.59) γ 2
β = 1 for each restricted rootβ.

In the special case thatβ extends to a real rootα of �(g, a ⊕ t) when
set equal to 0 ont, γβ equals the elementγα defined in (7.54). The more
general elements (7.57) are not needed for the description ofF in Theorem
7.55, but they will play a role in Chapter VIII.

6. Real-rank-one Subgroups

We continue to assume thatG is a reductive Lie group, and we use the
other notation of §2. In addition, we use the notationF of §5.

The real rank of G is the dimension of a maximal abelian subspace
of p0. Proposition 7.29 shows that real rank is well defined. Since any
maximal abelian subspace ofp0 containsp0 ∩ Zg0, it follows that

(7.60) real rank(G) = real rank( 0G) + dim Zvec.

Our objective in this section is to identify some subgroups ofG of real
rank one and illustrate how information about these subgroups can give
information aboutG.

“Real rank” is meaningful for a real semisimple Lie algebra outside the
context of reductive Lie groups(G, K , θ, B), since Cartan decompositions
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exist and all are conjugate. But it is not meaningful for a reductive Lie
algebra by itself, since the splitting ofZg0 into its k0 part and itsp0 part
depends upon the choice ofθ .

The Lie subalgebra [g0, g0] of g0, being semisimple, is uniquely the sum
of simple ideals. These ideals are orthogonal with respect toB, since ifgi

andgj are distinct ideals, then

(7.61) B(gi , gj) = B([gi , gi ], gj) = B(gi , [gi , gj ]) = B(gi , 0) = 0.

Since [g0, g0] is invariant underθ , θ permutes these simple ideals, nec-
essarily in orbits of one or two ideals. But actually there are no 2-ideal
orbits since ifX andθ X are nonzero elements of distinct ideals, then (7.61)
gives

0 < Bθ (X, X) = −B(X, θ X) = 0,

contradiction. Hence each simple ideal is invariant underθ , and it follows
that p0 is the direct sum of its components in each simple ideal and its
component inZg0.

We would like to conclude that the real rank ofG is the sum of the real
ranks from the components and from the center. But to do so, we need
either to define real rank for triples(g0, θ, B) or to lift the setting from Lie
algebras to Lie groups. Following the latter procedure, assume thatG is in
the Harish-Chandra class; this condition is satisfied automatically ifG is
semisimple. IfGi is the analytic subgroup ofG whose Lie algebra is one
of the various simple ideals ofG, then Proposition 7.20b shows thatGi has
finite center. ConsequentlyGi is a reductive group. Also in this case the
subgroupKi of Gi fixed by� is compact, and it follows from property (iv)
thatGi is closed inG. We summarize as follows.

Proposition 7.62. Let the reductive Lie groupG be in the Harish-
Chandra class, and letG1, . . . , Gn be the analytic subgroups ofG whose
Lie algebra are the simple ideals ofg0. ThenG1, . . . , Gn are reductive Lie
groups, they are closed inG, and the sum of the real ranks of theGi ’s,
together with the dimension ofZvec, equals the real rank ofg0.

With the maximal abelian subspacea0 of p0 fixed, letλ be a restricted
root. Denote byH⊥

λ the orthogonal complement ofRHλ in a0 relative
to Bθ . Propositions 7.25 and 7.27 show thatZG(H⊥

λ ) and0ZG(H⊥
λ ) are

reductive Lie groups. All ofa0 is in ZG(H⊥
λ ), and thereforeZG(H⊥

λ ) has
the same real rank asG. The split component ofZG(H⊥

λ ) is H⊥
λ , and it

follows from (7.60) that0ZG(H⊥
λ ) is a reductive Lie group of real rank one.
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The subgroup0ZG(H⊥
λ ) is what is meant by the real-rank-one reductive

subgroup ofG corresponding to the restricted rootλ. A maximal abelian
subspace of thep0 for 0ZG(H⊥

λ ) is RHλ, and the restricted roots for this
group are those nonzero multiples ofλ that provide restricted roots forg0.
In other words the restricted-root space decomposition of the Lie algebra
of 0ZG(H⊥

λ ) is

(7.63) RHλ ⊕ m0 ⊕
⊕
c �=0

(g0)cλ.

Sometimes it is desirable to associate toλ a real-rank-one subgroup
whose Lie algebra is simple. To do so, let us assume thatG is in the Harish-
Chandra class. Then so is0ZG(H⊥

λ ). Since this group has compact center,
Proposition 7.62 shows that the sum of the real ranks of the subgroupsGi of
0ZG(H⊥

λ ) corresponding to the simple ideals of the Lie algebra is 1. Hence
exactly oneGi has real rank one, and that is the real-rank-one reductive
subgroup that we can use. The part of (7.63) that is being dropped to get a
simple Lie algebra is contained inm0.

In the case that the reductive groupG is semisimple and has a complex-
ification, the extent of the disconnectedness ofM can be investigated with
the help of the real-rank-one subgroups0ZG(H⊥

λ ). The result that we use
about the real-rank-one case is given in Theorem 7.66 below.

Lemma 7.64. N − ∩ M AN = {1}.
PROOF. Letx �= 1 be inN − = �N . By Theorem 1.127 writex = expX

with X in n
−
0 = θn0. Recall from Proposition 6.40c thatθ(g0)λ = (g0)−λ,

let X = ∑
µ∈� Xµ be the decomposition ofX into restricted-root vectors,

and chooseµ = µ0 as large as possible so thatXµ �= 0. If we take any
H ∈ a0 such thatλ(H) �= 0 for all λ ∈ �, then

Ad(x)H − H = eadX H − H

= [ X, H ] + 1
2[ X, [ X, H ]] + · · ·

= [ Xµ0, H ] + terms for lower restricted roots.

In particular, Ad(x)H − H is in n
−
0 and is not 0. On the other hand, ifx is

in M AN , then Ad(x)H − H is in n0. Sincen
−
0 ∩ n0 = 0, we must have

N − ∩ M AN = {1}.

Lemma 7.65. The mapK/M → G/M AN induced by inclusion is a
diffeomorphism.
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PROOF. The given map is certainly smooth. Ifκ(g) denotes theK
component ofg in the Iwasawa decompositionG = K AN of Proposition
7.31, theng �→ κ(g) is smooth, and the mapgM AN �→ κ(g)M is a
two-sided inverse to the given map.

Theorem 7.66.Suppose that the reductive Lie groupG is semisimple,
is of real rank one, and has a complexificationGC. ThenM is connected
unless dimn0 = 1.

REMARKS. SinceG is semisimple, it is in the Harish-Chandra class.
The above remarks about simple components are therefore applicable. The
condition dimn0 = 1 is the same as the condition that the simple component
of g0 containinga0 is isomorphic tosl(2, R). In fact, if dimn0 = 1, then
n0 is of the formRX for someX . ThenX , θ X , and [X, θ X ] span a copy
of sl(2, R), and we obtaing0

∼= sl(2, R) ⊕ m0. The Lie subalgebram0

must centralizeX , θ X , and [X, θ X ] and hence must be an ideal ing0. The
complementary ideal issl(2, R), as asserted.

PROOF. The multiplication mapN − × M0 AN → G is smooth and
everywhere regular by Lemma 6.44. Hence the mapN − → G/M0 AN
induced by inclusion is smooth and regular, and so is the map

(7.67) N − → G/M AN ,

which is the composition ofN − → G/M0 AN and a covering map. Also
the map (7.67) is one-one by Lemma 7.64. Therefore (7.67) is a diffeo-
morphism onto an open set.

SinceG is semisimple and has real rank 1, the Weyl groupW (�) has
two elements. By Proposition 7.32,W (G, A) has two elements. Let
w̃ ∈ NK (a0) represent the nontrivial element ofW (G, A). By the Bruhat
decomposition (Theorem 7.40),

(7.68) G = M AN ∪ M AN w̃M AN = M AN ∪ N w̃M AN .

Since Ad(w̃)−1 acts as−1 on a0, it sends the positive restricted roots to
the negative restricted roots, and it follows from Proposition 6.40c that
Ad(w̃)−1n0 = n

−
0 . Thereforew̃−1N w̃ = N −. Multiplying (7.68) on the

left by w̃−1, we obtain

G = w̃M AN ∪ N −M AN .

HenceG/M AN is the disjoint union of the single point̃wM AN and the
image of the map (7.67).
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We have seen that (7.67) is a diffeomorphism onto an open subset of
G/M AN . Lemma 7.65 shows thatG/M AN is diffeomorphic toK/M .
Since Theorem 1.127 shows thatN − is diffeomorphic to Euclidean space,
K/M is a one-point compactification of a Euclidean space, hence a sphere.
Since K is connected,M must be connected wheneverK/M is simply
connected, i.e., whenever dimK/M > 1. Since dimK/M = dimn0, M
is connected unless dimn0 = 1.

Corollary 7.69. Suppose that the reductive Lie groupG is semisimple
and has a complexificationGC. Let α ∈ �(g, a ⊕ t) be a real root. If the
positive multiples of the restricted rootα|a0 have combined restricted-root
multiplicity greater than one, thenγα is in M0.

PROOF. The elementγα is in the homomorphic image ofSL(2, R)

associated to the rootα, hence is in the subgroupG ′ = 0ZG(H⊥
α )0. Con-

sequently it is in theM subgroup ofG ′. The subgroupG ′ satisfies the
hypotheses of Theorem 7.66, and itsn0 has dimension>1 by hypothesis.
By Theorem 7.66 itsM subgroup is connected. Henceγα is in the identity
component of theM subgroup forG.

7. Parabolic Subgroups

In this sectionG will denote a reductive Lie group, and we shall use
the other notation of §2 concerning the Cartan decomposition. But we
shall abandon the use ofa0 as a maximal abelian subspace ofp0, as well as
the other notation connected with the Iwasawa decomposition. Instead of
using the symbolsa0, n0, m0, a, n, m, A, N , andM for these objects, we
shall use the symbolsap,0, np,0, mp,0, ap, np, mp, Ap, Np, andMp.

Our objective is to define and characterize “parabolic subgroups” ofG,
first working with “parabolic subalgebras” ofg0. Each parabolic subgroup
Q will have a canonical decomposition in the formQ = M AN , known
as the “Langlands decomposition” ofQ. As we suggested at the start of
§2, a number of arguments with reductive Lie groups are carried out by
induction on the dimension of the group. One way of implementing this
idea is to reduce proofs fromG to theM of some parabolic subgroup. For
such a procedure to succeed, we build into the definition ofM the fact that
M is a reductive Lie group.

In developing our theory, one approach would be to define a parabolic
subalgebra ofg0 to be a subalgebra whose complexification is a parabolic
subalgebra ofg. Then we could deduce properties of parabolic subalgebras
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of g0 from the theory in §V.7. But it will be more convenient to work with
parabolic subalgebras ofg0 directly, proving results by imitating the theory
of §V.7, rather than by applying it.

A minimal parabolic subalgebra of g0 is any subalgebra ofg0 that is
conjugate toqp,0 = mp,0 ⊕ ap,0 ⊕ np,0 via Ad(G). Because of the Iwasawa
decompositionG = K ApNp, we may as well assume that the conjugacy
is via Ad(K ). The subalgebraqp,0 contains the maximally noncompact
θ stable Cartan subalgebraap,0 ⊕ tp,0, wheretp,0 is any maximal abelian
subspace ofmp,0, and Ad(k) sends any such Cartan subalgebra into another
such Cartan subalgebra ifk is in K . Hence every minimal parabolic subal-
gebra ofg0 contains a maximally noncompactθ stable Cartan subalgebra
of g0. A parabolic subalgebraq0 of g0 is a Lie subalgebra containing
some minimal parabolic subalgebra. A parabolic subalgebra must contain
a maximally noncompactθ stable Cartan subalgebra ofg0.

Therefore there is no loss of generality in assuming thatq0 contains a
minimal parabolic subalgebra of the formmp,0 ⊕ ap,0 ⊕ np,0, whereap,0 is
maximal abelian inp0, andmp,0 andnp,0 are constructed are usual. Let�

denote the set of restricted roots ofg0 relative toap,0. The restricted roots
contributing tonp,0 are taken to be the positive ones.

We can obtain examples of parabolic subalgebras as follows. Let� be
the set of simple restricted roots, fix a subset�′ of �, and let

(7.70) � = �+ ∪ {β ∈ � | β ∈ span(�′)}.
Then

(7.71) q0 = ap,0 ⊕ mp,0 ⊕
⊕
β∈�

(g0)β

is a parabolic subalgebra ofg0 containingmp,0⊕ap,0⊕np,0. This construc-
tion is an analog of the corresponding construction of parabolic subalgebras
of g given in (5.88) and (5.89), and Proposition 7.76 will show that every
parabolic subalgebra ofg0 is of the form given in (7.70) and (7.71). But the
proof requires more preparation than in the situation with (5.88) and (5.89).

EXAMPLES.

1) Let G = SL(n, K), whereK is R, C, or H. Wheng0 is realized
as matrices, the Lie subalgebra of upper-triangular matrices is a minimal
parabolic subalgebraqp,0. The other examples of parabolic subalgebras
q0 containingqp,0 and written as in (7.70) and (7.71) are the full Lie
subalgebras of block upper-triangular matrices, one subalgebra for each
arrangement of blocks.
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2) Let G have compact center and be of real rank one. The examples as
in (7.70) and (7.71) are the minimal parabolic subalgebras andg0 itself.

We shall work with a vectorX in the restricted-root space(g0)γ . Propo-
sition 6.40c shows thatθ X is in (g0)−γ , and Proposition 6.52 shows that
B(X, θ X)Hγ is a negative multiple ofHγ . Normalizing, we may assume
that B(X, θ X) = −2/|γ |2. Put H ′

γ = 2|γ |−2Hγ . Then the linear spanslX

of {X, θ X, H ′
γ } is isomorphic tosl(2, R) under the isomorphism

(7.72) H ′
γ ↔ h, X ↔ e, θ X ↔ − f.

We shall make use of the copyslX of sl(2, R) in the same way as in the
proof of Corollary 6.53. This subalgebra ofg0 acts by ad ong0 and hence
acts ong. We know from Theorem 1.67 that the resulting representation of
slX is completely reducible, and we know the structure of each irreducible
subspace from Theorem 1.66.

Lemma 7.73. Let γ be a restricted root, and letX �= 0 be in (g0)γ .
Then

(a) adX carries(g0)γ onto(g0)2γ ,
(b) (adθ X)2 carries(g0)γ onto(g0)−γ ,
(c) (adθ X)4 carries(g0)2γ onto(g0)−2γ .

PROOF. Without loss of generality, we may assume thatX is normalized
as in (7.72). The complexification of

⊕
c∈Z (g0)cγ is an invariant subspace

ofgunder the representation ad ofslX . Using Theorem 1.67, we decompose
it as the direct sum of irreducible representations. Each member of(g0)cγ

is an eigenvector for adH ′
γ with eigenvalue 2c, andH ′

γ corresponds to the
memberh of sl(2, R). From Theorem 1.66 we see that the only possibilities
for irreducible subspaces are 5-dimensional subspaces consisting of one
dimension each from

(g0)2γ , (g0)γ , m0, (g0)−γ , (g0)−2γ ;

3-dimensional subspaces consisting of one dimension each from

(g0)γ , m0, (g0)−γ ;

and 1-dimensional subspaces consisting of one dimension each fromm0.
In any 5-dimensional such subspace, adX carries a nonzero vector of
eigenvalue 2 to a nonzero vector of eigenvalue 4. This proves (a). Also
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in any 5-dimensional such subspace,(adθ X)4 carries a nonzero vector
of eigenvalue 4 to a nonzero vector of eigenvalue−4. This proves (c).
Finally in any 5-dimensional such subspace or 3-dimensional such sub-
space,(adθ X)2 carries a nonzero vector of eigenvalue 2 to a nonzero
vector of eigenvalue−2. This proves (b).

Lemma 7.74.Every parabolic subalgebraq0 of g0 containing the mini-
mal parabolic subalgebramp,0 ⊕ ap,0 ⊕ np,0 is of the form

q0 = ap,0 ⊕ mp,0 ⊕
⊕
β∈�

(g0)β

for some subset� of � that contains�+.

PROOF. Sinceq0 containsap,0 ⊕ mp,0 and is invariant under ad(ap,0), it
is of the form

q0 = ap,0 ⊕ mp,0 ⊕
⊕
β∈�

((g0)β ∩ q0).

Thus we are to show that ifq0 contains one nonzero vectorY of (g0)β ,
then it contains all of(g0)β . Sinceq0 containsnp,0, we may assume that
β is negative. We apply Lemma 7.73b withX = θY andγ = −β. The
lemma says that(adY )2 carries(g0)−β onto(g0)β . SinceY and(g0)−β are
contained inq0, so is(g0)β .

Lemma 7.75.If β, γ , andβ + γ are restricted roots andX is a nonzero
member of(g0)γ , then [X, (g0)β ] is a nonzero subspace of(g0)β+γ .

PROOF. Without loss of generality, we may assume thatX is normalized
as in (7.72). The complexification of

⊕
c∈Z (g0)β+cγ is an invariant subspace

ofgunder the representation ad ofslX . Using Theorem 1.67, we decompose
it as the direct sum of irreducible representations. Each member of(g0)β+cγ

is an eigenvector for adH ′
γ with eigenvalue2〈β,γ 〉

|γ |2 +2c, andH ′
γ corresponds

to the memberh of sl(2, R). We apply Theorem 1.66 and divide matters
into cases according to the sign of2〈β,γ 〉

|γ |2 . If the sign is< 0, then adX is
one-one on(g0)β , and the lemma follows. If the sign is≥ 0, then adθ X
and adX adθ X are one-one on(g0)β , and hence adX is nonzero on the
member [θ X, Y ] if Y is nonzero in(g0)β+γ .

Proposition 7.76.The parabolic subalgebrasq0 containing the minimal
parabolic subalgebramp,0⊕ap,0⊕np,0 are parametrized by the set of subsets
of simple restricted roots; the one corresponding to a subset�′ is of the
form (7.71) with� as in (7.70).
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PROOF. Lemma 7.74 establishes that anyq0 is of the form (7.71) for
some subset�. We can now go over the proof of Proposition 5.90 to see
that it applies. What is needed is a substitute for Corollary 2.35, which
says that [gβ, gγ ] = gβ+γ if β, γ , andβ + γ are all roots. Lemma 7.75
provides the appropriate substitute, and the proposition follows.

In the notation of the proposition,� ∩ −� consists of all restricted
roots in the span of�′, and the other members of� are all positive and
have expansions in terms of simple restricted roots that involve a simple
restricted root not in�′. Define

(7.77a)

a0 =
⋂

β∈�∩−�

kerβ ⊆ ap,0

aM,0 = a
⊥
0 ⊆ ap,0

m0 = aM,0 ⊕ mp,0 ⊕
⊕

β∈�∩−�

(g0)β

n0 =
⊕
β∈�,
β /∈−�

(g0)β

nM,0 = np,0 ∩ m0,

so that

(7.77b) q0 = m0 ⊕ a0 ⊕ n0.

The decomposition (7.77b) is called theLanglands decompositionof q0.

EXAMPLE. Let G = SU (2, 2). The Lie algebrag0 consists of all 4-by-4
complex matrices of the block form(

X11 X12

X ∗
12 X22

)
with X11 and X22 skew Hermitian and the total trace equal to 0. We take
the Cartan involution to be negative conjugate transpose, so that

k0 =
{(

X11 0
0 X22

)}
and p0 =

{(
0 X12

X ∗
12 0

)}
.

Let us take

ap,0 =




0 0 s 0
0 0 0 t
s 0 0 0
0 t 0 0

 ∣∣∣∣ s andt in R

 .
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Define linear functionalsf1 and f2 on ap,0 by saying thatf1 of the above
matrix iss and f2 of the matrix ist . Then

� = {± f1 ± f2, ±2 f1, ±2 f2},

which is a root system of typeC2. Here± f1 ± f2 have multiplicity 2, and
the others have multiplicity one. In the obvious ordering,�+ consists of
f1 ± f2 and 2f1 and 2f2, and the simple restricted roots aref1 − f2 and
2 f2. Then

mp,0 = {diag(ir, −ir, ir, −ir)}
np,0 =

⊕
β∈�+

(g0)β with dimnp,0 = 6.

Our minimal parabolic subalgebra isqp,0 = mp,0 ⊕ ap,0 ⊕ np,0, and this
is reproduced asq0 by (7.70) and (7.71) with�′ = ∅. When �′ =
{ f1 − f2, 2 f2}, thenq0 = g0. The two intermediate cases are as follows.
If �′ = { f1 − f2}, then

a0 = {H ∈ ap,0 | ( f1 − f2)(H) = 0} (s = t in ap,0)

m0 =




ir w x z
−w̄ −ir z̄ −x

x z ir w

z̄ −x −w̄ −ir

 ∣∣∣∣ x, r ∈ R andw, z ∈ C


n0 = (g0)2 f1 ⊕ (g0) f1+ f2 ⊕ (g0)2 f2.

If �′ = {2 f2}, then

a0 = {H ∈ ap,0 | 2 f2(H) = 0} (t = 0 in ap,0)

m0 = mp,0 ⊕




0 0 0 0
0 is 0 z
0 0 0 0
0 z̄ 0 −is

 ∣∣∣∣ s ∈ R andz ∈ C


n0 = (g0)2 f1 ⊕ (g0) f1+ f2 ⊕ (g0) f1− f2.

Proposition 7.76 says that there are no other parabolic subalgebrasq0

containingqp,0.
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Proposition 7.78. A parabolic subalgebraq0 containing the minimal
parabolic subalgebramp,0 ⊕ ap,0 ⊕ np,0 has the properties that

(a) m0, a0, andn0 are Lie subalgebras, andn0 is an ideal inq0,
(b) a0 is abelian, andn0 is nilpotent,
(c) a0 ⊕ m0 is the centralizer ofa0 in g0,
(d) q0 ∩ θq0 = a0 ⊕ m0, anda0 ⊕ m0 is reductive,
(e) ap,0 = a0 ⊕ aM,0,
(f) np,0 = n0 ⊕ nM,0 as vector spaces,
(g) g0 = a0 ⊕ m0 ⊕ n0 ⊕ θn0 orthogonally with respect toθ ,
(h) m0 = mp,0 ⊕ aM,0 ⊕ nM,0 ⊕ θnM,0.

PROOF.
(a, b, e, f) All parts of these are clear.
(c) The centralizer ofa0 is spanned byap,0, mp,0, and all the restricted

root spaces for restricted roots vanishing ona0. The sum of these isa0⊕m0.
(d) Sinceθ(g0)β = (g0)−β by Proposition 6.40c,q0 ∩ θq0 = a0 ⊕ m0.

Thena0 ⊕ m0 is reductive by Corollary 6.29.
(g, h) These follow from Proposition 6.40.

Proposition 7.79.Among the parabolic subalgebras containingqp,0, let
q0 be the one corresponding to the subset�′ of simple restricted roots. For
η �= 0 in a∗

0, let

(g0)(η) =
⊕

β∈a∗
p,0,

β|a0=η

(g0)β.

Then(g0)(η) ⊆ n0 or (g0)(η) ⊆ θn0.

PROOF. We have

aM,0 = a
⊥
0 = ( ⋂

β∈�∩−�

kerβ
)⊥ = ( ⋂

β∈�∩−�

H⊥
β

)⊥ =
∑

β∈�∩−�

RHβ =
∑
β∈�′

RHβ.

Let β andβ ′ be restricted roots with a common nonzero restrictionη to
members ofa0. Thenβ − β ′ is 0 ona0, andHβ − Hβ ′ is in aM,0. From the
formula foraM,0, the expansion ofβ −β ′ in terms of simple restricted roots
involves only the members of�′. Sinceη �= 0, the individual expansions of
β andβ ′ involve nonzero coefficients for at least one simple restricted root
other than the ones in�′. The coefficients for this other simple restricted
root must be equal and in particular of the same sign. By Proposition 2.49,
β andβ ′ are both positive or both negative, and the result follows.
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Motivated by Proposition 7.79, we define, forη ∈ a∗
0,

(7.80) (g0)(η) = {X ∈ g0 | [H, X ] = η(H)X for all H ∈ a0}.

We say thatη is ana0 root, or root of(g0, a0), if η �= 0 and(g0)(η) �= 0. In
this case we call(g0)(η) the correspondinga0 root space. The proposition
says thatn0 is the sum ofa0 root spaces, and so isθn0. We call ana0 root
positive if it contributes ton0, otherwisenegative. The set ofa0 roots does
not necessarily form an abstract root system, but the notion of ana0 root is
still helpful.

Corollary 7.81. The normalizer ofa0 in g0 is a0 ⊕ m0.

PROOF. The normalizer containsa0 ⊕ m0 by Proposition 7.78c. In the
reverse direction letX be in the normalizer, and write

X = H0 + X0 +
∑
η �=0,
η∈a∗

0

Xη with H0 ∈ a0, X0 ∈ m0, Xη ∈ (g0)(η).

If H is in a0, then [X, H ] = − ∑
η η(H)Xη, and this can be ina0 for all

suchH only if Xη = 0 for all η. ThereforeX = H0 + X0 is in a0 ⊕ m0.

Now let A andN be the analytic subgroups ofG with Lie algebrasa0

andn0, and defineM = 0ZG(a0). We shall see in Proposition 7.83 below
that Q = M AN is the normalizer ofm0 ⊕ a0 ⊕ n0 in G, and we define
it to be theparabolic subgroup associated to the parabolic subalgebra
q0 = m0 ⊕ a0 ⊕ n0. The decomposition of elements ofQ according to
M AN will be seen to be unique, andQ = M AN is called theLanglands
decompositionof Q. Whenq0 is a minimal parabolic subalgebra, the
correspondingQ is called aminimal parabolic subgroup. We write
N − = �N .

Let AM andNM be the analytic subgroups ofg0 with Lie algebrasaM,0

andnM,0, and letMM = Z K∩M(aM,0). DefineKM = K ∩ M . Recall the
subgroupF of G that is the subject of Corollary 7.52.

Proposition 7.82.The subgroupsM , A, N , KM , MM , AM , andNM have
the properties that

(a) M A = ZG(a0) is reductive,M = 0(M A) is reductive, andA is
Zvec for M A,

(b) M has Lie algebram0,
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(c) MM = Mp, Mp,0 AM NM is a minimal parabolic subgroup ofM , and
M = KM AM NM ,

(d) M = F M0 if G is connected,
(e) Ap = AAM as a direct product,
(f) Np = N NM as a semidirect product withN normal.

PROOF.
(a, b) The subgroupsZG(a0) and0ZG(a0) are reductive by Propositions

7.25 and 7.27. By Proposition 7.78,Zg0(a0) = a0 ⊕ m0. Thus the space
Zvec for the groupZG(a0) is the analytic subgroup corresponding to the
intersection ofp0 with the center ofa0 ⊕m0. From the definition ofm0, the
center ofZg0(a0) has to be contained inap,0 ⊕ mp,0, and thep0 part of this
is ap,0. The part ofap,0 that commutes withm0 is a0 by definition ofm0.
ThereforeZvec = expa0 = A, andZG(a0) = ( 0ZG(a0))A by Proposition
7.27. Then (a) and (b) follow.

(c) By (a), M is reductive. It is clear thataM,0 is a maximal abelian
subspace ofp0 ∩ m0, sincem0 ∩ a0 = 0. The restricted roots ofm0 relative
to aM,0 are then the members of� ∩−�, and the sum of the restricted-root
spaces for the positive such restricted roots isnM,0. Therefore the minimal
parabolic subgroup in question forM is MM AM NM . The computation

MM = Z K∩M(aM,0) = M A ∩ Z K (aM,0)

= ZG(a0) ∩ Z K (aM,0) = Z K (ap,0) = Mp

identifiesMM , andM = KM AM NM by the Iwasawa decomposition forM
(Proposition 7.31).

(d) By (a), M is reductive. HenceM = MM M0 by Proposition 7.33.
But (c) shows thatMM = Mp, and Corollary 7.52 shows thatMp =
F(Mp)0. HenceM = F M0.

(e) This follows from Proposition 7.78e and the simple connectivity
of Ap.

(f) This follows from Proposition 7.78f, Theorem 1.125, and the simple
connectivity ofNp.

Proposition 7.83.The subgroupsM , A, andN have the properties that
(a) M A normalizesN , so thatQ = M AN is a group,
(b) Q = NG(m0 ⊕ a0 ⊕ n0), and henceQ is a closed subgroup,
(c) Q has Lie algebraq0 = m0 ⊕ a0 ⊕ n0,
(d) multiplicationM × A × N → Q is a diffeomorphism,
(e) N − ∩ Q = {1},
(f) G = K Q.
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PROOF.
(a) Letz be in M A = ZG(a0), and fix(g0)(η) ⊆ n0 as in (7.80). IfX is

in (g0)(η) andH is in a0, then

[H, Ad(z)X ] = [Ad(z)H, Ad(z)X ] = Ad(z)[H, X ] = η(H)Ad(z)X.

Hence Ad(z)X is in (g0)(η), and Ad(z) maps(g0)(η) into itself. Sincen0 is
the sum of such spaces, Ad(z)n0 ⊆ n0. ThereforeM A normalizesN .

(b) The subgroupM A normalizes its Lie algebram0 ⊕ a0, and it nor-
malizesn0 by (a). The subgroupN normalizesq0 because it is connected
with a Lie algebra that normalizesq0 by Proposition 7.78a. HenceM AN
normalizesq0. In the reverse direction letx be in NG(q0). We are to prove
thatx is in M AN . Let us writex in terms of the Iwasawa decomposition
G = K ApNp. HereAp = AAM by Proposition 7.82e, andA and AM are
both contained inM A. Also Np = N NM by Proposition 7.82f, andN and
NM are both contained inM N . Thus we may assume thatx is in NK (q0).
By (7.23), Ad(�x) = θAd(x)θ , and thus Ad(�x) normalizesθq0. But
�x = x sincex is in K , and therefore Ad(x) normalizes bothq0 andθq0.
By Proposition 7.78d, Ad(x) normalizesa0 ⊕ m0. Sincea0 is thep0 part
of the center ofa0 ⊕ m0, Ad(x) normalizesa0 andm0 individually. Letη
be ana0 root contributing ton0. If X is in (g0)η andH is in a0, then

[H, Ad(x)X ] = Ad(x)[Ad(x)−1H, X ]

= η(Ad(x)−1H)Ad(x)X = (Ad(x)η)(H)Ad(x)X.

In other words, Ad(x) carries(g0)(η) to (g0)(Ad(x)η). So wheneverη is
the restriction toa0 of a positive restricted root, so is Ad(x)η. Mean-
while, Ad(x) carriesaM,0 to a maximal abelian subspace ofp0 ∩ m0, and
Proposition 7.29 allows us to adjust it by some Ad(k) ∈ Ad(K ∩ M) so
that Ad(kx)aM,0 = aM,0. Taking Proposition 7.32 and Theorem 2.63 into
account, we can choosek ′ ∈ K ∩ M so that Ad(k ′kx) is the identity on
aM,0. Then Ad(k ′kx) sends�+ to itself. By Proposition 7.32 and Theorem
2.63, Ad(k ′kx) is the identity onap,0 and in particular ona0. Hencek ′kx
is in M , and so isx . We conclude thatM AN = NG(q0), and consequently
M AN is closed.

(c) By (b), Q is closed, hence Lie. The Lie algebra ofQ is Ng0(q0),
which certainly containsq0. In the reverse direction letX ∈ g0 normalize
q0. Sinceap,0 andnp,0 are contained inq0, the Iwasawa decomposition on
the Lie algebra level allows us to assume thatX is ink0. SinceX normalizes
q0, θ X normalizesθq0. But X = θ X , and henceX normalizesq0 ∩ θq0,
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which isa0 ⊕m0 by Proposition 7.78d. Sincea0 is thep0 part of the center
of a0 ⊕ m0, X normalizesa0 andm0 individually. By Corollary 7.81,X is
in a0 ⊕ m0.

(d) Use of Lemma 6.44 twice shows that multiplication fromM × A× N
into Q is regular onM0×A×N , and translation toM shows that it is regular
everywhere. We are left with showing that it is one-one. SinceA ⊆ Ap and
N ⊆ Np, the uniqueness for the Iwasawa decomposition ofG (Proposition
7.31) shows that it is enough to prove thatM ∩ AN = {1}. Givenm ∈ M ,
let the Iwasawa decomposition ofm according toM = KM AM NM be
m = kMaMnM . If this element is to be inAN , thenkM = 1,aM is in AM ∩ A,
andnM is in NM ∩ N , by uniqueness of the Iwasawa decomposition inG.
But AM ∩ A = {1} andNM ∩ N = {1} by (e) and (f) of Proposition 7.82.
Thereforem = 1, and we conclude thatM ∩ AN = {1}.

(e) This is proved in the same way as Lemma 7.64, which is stated for
a minimal parabolic subgroup.

(f) Since Q ⊇ ApNp, G = K Q by the Iwasawa decomposition forG
(Proposition 7.31).

Although the set ofa0 roots does not necessarily form an abstract root
system, it is still meaningful to define

(7.84a) W (G, A) = NK (a0)/Z K (a0),

just as we did in the case thata0 is maximal abelian inp0. Corollary 7.81
and Proposition 7.78c show thatNK (a0) andZ K (a0) both havek0 ∩ m0 as
Lie algebra. HenceW (G, A) is a compact 0-dimensional group, and we
conclude thatW (G, A) is finite. An alternative formula forW (G, A) is

(7.84b) W (G, A) = NG(a0)/ZG(a0).

The equality of the right sides of (7.84a) and (7.84b) is an immediate
consequence of Lemma 7.22 and Corollary 7.81. To computeNK (a0), it
is sometimes handy to use the following proposition.

Proposition 7.85. Every element ofNK (a0) decomposes as a product
zn, wheren is in NK (ap,0) andz is in Z K (a0).

PROOF. Let k be in NK (a0) and form Ad(k)aM,0. SinceaM,0 commutes
with a0, Ad(k)aM,0 commutes with Ad(k)a0 = a0. By Proposition 7.78c,
Ad(k)aM,0 is contained ina0 ⊕m0. SinceaM,0 is orthogonal toa0 underBθ ,
Ad(k)aM,0 is orthogonal to Ad(k)a0 = a0. Hence Ad(k)aM,0 is contained
in m0 and therefore inp0 ∩ m0. By Proposition 7.29 there existsz in
K ∩ M with Ad(z)−1Ad(k)aM,0 = aM,0. Thenn = z−1k is in NK (a0) and
in NK (aM,0), hence inNK (ap,0).
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EXAMPLE. Let G = SL(3, R). Takeap,0 to be the diagonal subalgebra,
and let�+ = { f1 − f2, f2 − f3, f1 − f3} in the notation of Example 1
of §VI.4. Define a parabolic subalgebraq0 by using�′ = { f1 − f2}.
The corresponding parabolic subgroup is the block upper-triangular group
with blocks of sizes 2 and 1, respectively. The subalgebraa0 equals
{diag(r, r, −2r)}. Suppose thatw is in W (G, A). Proposition 7.85 says
thatw extends to a member ofW (G, Ap) leavinga0 andaM,0 individually
stable. HereW (G, Ap) = W (�), and the only member ofW (�) sending
a0 to itself is the identity. SoW (G, A) = {1}.

The members ofW (G, A) act on set of thea0 roots, and we have the
following substitute for Theorem 2.63.

Proposition 7.86.The only member ofW (G, A) that leaves stable the
set of positivea0 roots is the identity.

PROOF. Let k be in NK (a0). By assumption Ad(k)n0 = n0. The
centralizer ofa0 in g0 is a0 ⊕ m0 by Proposition 7.78c. IfX is in this
centralizer and ifH is arbitrary ina0, then

[H, Ad(k)X ] = Ad(k)[Ad(k)−1H, X ] = 0

shows that Ad(k)X is in the centralizer. Hence Ad(k)(a0 ⊕ m0) =
a0 ⊕ m0. By Proposition 7.83b,k is in M AN . By Proposition 7.82c and
the uniqueness of the Iwasawa decomposition forG, k is in M . Therefore
k is in Z K (a0).

A parabolic subalgebraq0 of g0 and the corresponding parabolic sub-
groupQ = M AN of G are said to becuspidal if m0 has aθ stable compact
Cartan subalgebra, sayt0. In this case,h0 = t0 ⊕ a0 is aθ stable Cartan
subalgebra ofg0. The restriction of a root in�(g, h) to a0 is ana0 root if
it is not 0, and we can identify�(m, t) with the set of roots in�(g, h) that
vanish ona. Let us choose a positive system�+(m, t) for m and extend
it to a positive system�+(g, h) by saying that a rootα ∈ �(g, h) with
nonzero restriction toa0 is positive if α|a0 is a positivea0 root. Let us
decompose membersα of h∗ according to their projections ona∗ andt∗ as
α = αa + αt. Now θα = −αa + αt, andθ carries roots to roots. Hence if
αa + αt is a root, so isαa − αt.

The positive system�+(g, h) just defined is given by a lexicographic
ordering that takesa0 beforeit0. In fact, write the half sum of positive
roots asδ = δa + δt. The claim is that positivity is determined by inner
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products with the ordered set{δa, δt} and thatδt is equal to the half sum of
the members of�+(m, t). To see this, letα = αa + αt be in�+(g, h). If
αa �= 0, thenαa − αt is in �+(g, h), and

〈α, δa〉 = 〈αa, δa〉 = 〈αa, δ〉 = 1
2〈αa + αt, δ〉 + 1

2〈αa − αt, δ〉 > 0.

Since the positive roots with nonzero restriction toa cancel in pairs when
added, we see thatδt equals half the sum of the members of�+(m, t).
Finally if αa = 0, then〈α, δa〉 = 0 and〈α, δt〉 > 0. Hence�+(g, h) is
indeed given by a lexicographic ordering of the type described.

The next proposition gives a converse that tells a useful way to construct
cuspidal parabolic subalgebras ofg0 directly.

Proposition 7.87.Let h0 = t0 ⊕ a0 be the decomposition of aθ stable
Cartan subalgebra according toθ , and suppose that a lexicographic ordering
takinga0 beforeit0 is used to define a positive system�+(g, h). Define

m0 = g0 ∩ (
t ⊕

⊕
α∈�(g,h),

α|a=0

gα

)
n0 = g0 ∩ ( ⊕

α∈�+(g,h),
α|a �=0

gα

)
.and

Thenq0 = m0 ⊕ a0 ⊕ n0 is the Langlands decomposition of a cuspidal
parabolic subalgebra ofg0.

PROOF. In view of the definitions, we have to relateq0 to a minimal
parabolic subalgebra. Let bar denote conjugation ofg with respect tog0.
If α = αa + αt is a root, letᾱ = −θα = αa − αt. Thengα = gᾱ, and it
follows that

(7.88) m = t ⊕
⊕

α∈�(g,h),
α|a=0

gα and n =
⊕

α∈�+(g,h),
α|a �=0

gα.

In particular,m0 is θ stable, hence reductive. LethM,0 = tM,0 ⊕ aM,0 be
the decomposition of a maximally noncompactθ stable Cartan subalgebra
of m0 according toθ . Since Theorem 2.15 shows thathM is conjugate to
t via Intm, h′ = a ⊕ hM is conjugate toh = a ⊕ t via a member of Intg
that fixesa0. In particular,h′

0 = a0 ⊕ hM,0 is a Cartan subalgebra ofg0.
Applying our constructed member of Intg to (7.88), we obtain

(7.89) m = hM ⊕
⊕

α∈�(g,h′),
α|a=0

gα and n =
⊕

α∈�+(g,h′),
α|a �=0

gα
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for the positive system�+(g, h′) obtained by transferring positivity from
�+(g, h).

Let us observe thatap,0 = a0⊕aM,0 is a maximal abelian subspace ofp0.
In fact, the centralizer ofa0 in g0 is a0 ⊕m0, andaM,0 is maximal abelian in
m0∩p0; hence the assertion follows. We introduce a lexicographic ordering
for h′

0 that is as before ona0, takesa0 beforeaM,0, and takesaM,0 before
itM,0. Then we obtain a positive system�+′(g, h′) with the property that a
rootα with α|a0 �= 0 is positive if and only ifα|a0 is the restriction toa0 of
a member of�+(g, h). Consequently we can replace�+(g, h′) in (7.89)
by �+′(g, h′). Then it is apparent thatm ⊕ a ⊕ n containsmp ⊕ ap ⊕ np

defined relative to the positive restricted roots obtained from�+′(g, h′),
and henceq0 is a parabolic subalgebra. Referring to (7.77), we see that
q0 = m0 ⊕ a0 ⊕ n0 is the Langlands decomposition. Finallyt0 is a Cartan
subalgebra ofm0 by Proposition 2.13, and henceq0 is cuspidal.

8. Cartan Subgroups

We continue to assume thatG is a reductive Lie group and to use the
notation of §2 concerning the Cartan decomposition. ACartan subgroup
of G is the centralizer inG of a Cartan subalgebra. We know from §§VI.6
and VII.2 that any Cartan subalgebra is conjugate via Intg0 to a θ stable
Cartan subalgebra and that there are only finitely many conjugacy classes of
Cartan subalgebras. Consequently any Cartan subgroup ofG is conjugate
via G to a � stable Cartan subgroup, and there are only finitely many
conjugacy classes of Cartan subgroups. A� stable Cartan subgroup is a
reductive Lie group by Proposition 7.25.

WhenG is compact connected andT is a maximal torus, every element
of G is conjugate to a member ofT , according to Theorem 4.36. In
particular every member ofG lies in a Cartan subgroup. This statement
does not extend to noncompact groups, as the following example shows.

EXAMPLE. Let G = SL(2, R). We saw in §VI.6 that every Cartan
subalgebra is conjugate to one of{(

r 0
0 −r

)}
and

{(
0 r

−r 0

)}
,

and the corresponding Cartan subgroups are{
±

(
er 0
0 e−r

)}
and

{(
cosr sinr

− sinr cosr

)}
.
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Some features of these subgroups are worth noting. The first Cartan
subgroup is disconnected; disconnectedness is common among Cartan
subgroups for generalG. Also every member of either Cartan subgroup is

diagonable overC. Hence
(

1 1

0 1

)
lies in no Cartan subgroup.

Although the union of the Cartan subgroups ofG need not exhaust
G, it turns out that the union exhausts almost all ofG. This fact is the
most important conclusion about Cartan subgroups to be derived in this
section and appears below as Theorem 7.108. When we treat integration
in Chapter VIII, this fact will permit integration of functions onG by inte-
grating over the conjugates of a finite set of Cartan subgroups; the resulting
formula, known as the “Weyl Integration Formula,” is an important tool for
harmonic analysis onG.

Before coming to this main result, we give a proposition about the
component structure of Cartan subgroups and we introduce a finite group
W (G, H) for each Cartan subgroup analogous to the groupsW (G, A)

considered in §7.

Proposition 7.90.Let H be a Cartan subgroup ofG.

(a) If H is maximally noncompact, thenH meets every component
of G.

(b) If H is maximally compact and ifG is connected, thenH is
connected.

REMARKS. The modifiers “maximally noncompact” and “maximally
compact” are to be interpreted in terms of the Lie algebras. Ifh0 is a
Cartan subalgebra,h0 is conjugate to aθ stable Cartan subalgebrah′

0, and
we defined “maximally noncompact” and “maximally compact” forh′

0 in
§§VI.6 and VII.2. Proposition 7.35 says that any two candidates forh′

0 are
conjugate viaK , and hence it is meaningful to say thath0 is maximally
noncompact or maximally compact ifh′

0 is.

PROOF. Let h0 be the Lie algebra ofH . We may assume thath0 is
θ stable. Leth0 = t0 ⊕ a0 be the decomposition ofh0 into +1 and−1
eigenspaces underθ .

(a) If h0 is maximally noncompact, thena0 is a maximal abelian subspace
of p0. The groupH contains the subgroupF introduced before Corollary
7.52, and Corollary 7.52 and Proposition 7.33 show thatF meets every
component ofG.

(b) If h0 is maximally compact, thent0 is a maximal abelian subspace of
k0. SinceK is connected, the subgroupZ K (t0) is connected by Corollary
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4.51, andZ K (t0) expa0 is therefore a connected closed subgroup ofG with
Lie algebrah0. On the other hand, Proposition 7.25 implies that

H = Z K (h0) expa0 ⊆ Z K (t0) expa0.

SinceH andZ K (t0) expa0 are closed subgroups with the same Lie algebra
and sinceZ K (t0) expa0 is connected, it follows thatH = Z K (t0) expa0.

Corollary 7.91. If a maximally noncompact Cartan subgroupH of G
is abelian, thenZG0 ⊆ ZG .

PROOF. By Proposition 7.90a,G = G0H . If z is in ZG0, then Ad(z) = 1
on h0, and hencez is in ZG(h0) = H . Let g ∈ G be given, and write
g = g0h with g ∈ G0 andh ∈ H . Thenzg0 = g0z sincez commutes with
members ofG0, andzh = hz sincez is in H and H is abelian. Hence
zg = gz, andz is in ZG .

If H is a Cartan subgroup ofG with Lie algebrah0, we define

(7.92a) W (G, H) = NG(h0)/ZG(h0).

Here ZG(h0) is nothing more thanH itself, by definition. Whenh0 is θ

stable, an alternative formula forW (G, H) is

(7.92b) W (G, H) = NK (h0)/Z K (h0).

The equality of the right sides of (7.92a) and (7.92b) is an immediate con-
sequence of Lemma 7.22 and Proposition 2.7. Proposition 2.7 shows that
NK (h0) andZ K (h0) both havek0∩h0 = t0 as Lie algebra. HenceW (G, H)

is a compact 0-dimensional group, and we conclude thatW (G, H) is finite.
Each member ofNG(h0) sends roots of� = �(g, h) to roots, and the

action of NG(h0) on � descends toW (G, H). It is clear that only the
identity in W (G, H) acts as the identity on�. Since Adg(G) ⊆ Int g, it
follows from Theorem 7.8 that

(7.93) W (G, H) ⊆ W (�(g, h)).

EXAMPLE. Let G = SL(2, R). For anyh, W (g, h) has order 2. When

h0 =
{(

r 0

0 −r

)}
, W (G, H) has order 2, a representative of the nontrivial

coset being
(

0 1

−1 0

)
. Whenh0 =

{(
0 r

−r 0

)}
, W (G, H) has order 1.
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Now we begin to work toward the main result of this section, that the
union of all Cartan subgroups ofG exhausts almost all ofG. We shall
use the notion of a “regular element” ofG. Recall that in Chapter II
we introduced regular elements in the complexified Lie algebrag. Let
dimg = n. For X ∈ g, we formed the characteristic polynomial

(7.94) det(λ1 − adX) = λn +
n−1∑
j=0

dj(X)λ j .

Here eachdj is a holomorphic polynomial function ong. The rank of g

is the minimum indexl such thatdl(X) ≡/ 0, and theregular elements
of g are those elementsX such thatdl(X) �= 0. For such anX , Theorem
2.9′ shows that the generalized eigenspace of adX for eigenvalue 0 is a
Cartan subalgebra ofg. Becauseg is reductive, the Cartan subalgebra acts
completely reducibly ong, and hence the generalized eigenspace of adX
for eigenvalue 0 is nothing more than the centralizer ofX in g.

Within g, leth be a Cartan subalgebra, and let� = �(g, h). For X ∈ h,
dl(X) = ∏

α∈� α(X), so thatX ∈ h is regular if and only if no root vanishes
on X . If h0 is a Cartan subalgebra of our real formg0, then we can find
X ∈ h0 so thatα(X) �= 0 for all α ∈ �.

On the level of Lie algebras, we have concentrated on eigenvalue 0 for
adX . On the level of reductive Lie groups, the analogous procedure is to
concentrate on eigenvalue 1 for Ad(x). Thus forx ∈ G, we define

D(x, λ) = det((λ + 1)1 − Ad(x)) = λn +
n−1∑
j=0

Dj(x)λ j .

Here eachDj(x) is real analytic onG and descends to a real analytic
function on Ad(G). But Ad(G) ⊆ Int g by property (v) for reductive Lie
groups, and the formula forDj(x) extends to be valid on Intg and to define
a holomorphic function on Intg. Let l ′ be the minimum index such that
Dl ′(x) ≡/ 0 (on G or equivalently on Intg). We shall observe shortly
that l ′ = l. With this understanding theregular elementsof G are those
elementsx such thatDl(x) �= 0. Elements that are not regular aresingular.
The set of regular elements is denotedG ′. The functionD satisfies

(7.95) D(yxy−1, λ) = D(x, λ),

and it follows thatG ′ is stable under group conjugation. It is almost but
not quite true that the centralizer of a regular element ofG is a Cartan
subgroup. Here is an example of how close things get in a complex group.



8. Cartan Subgroups 491

EXAMPLE. Let G = SL(2, C)/{±1}. We work with elements ofG as
2-by-2 matrices identified when they differ only by a sign. The element(

z 0

0 z−1

)
, with z �= 0, is regular ifz �= ±1. For most values ofz other

than±1, the centralizer of
(

z 0

0 z−1

)
is the diagonal subgroup, which is a

Cartan subgroup. But forz = ±i , the centralizer is generated by the

diagonal subgroup and
(

0 1

−1 0

)
; thus the Cartan subgroup has index 2 in the

centralizer.

Now, as promised, we prove thatl = l ′, i.e., the minimum indexl such
thatdl(X) ≡/ 0 equals the minimum indexl ′ such thatDl ′(x) ≡/ 0. Let adX
have generalized eigenvalue 0 exactlyl times. For sufficiently smallr , adX
has all eigenvalues< 2π in absolute value, and it follows for suchX that
Ad(expX) has generalized eigenvalue 1 exactlyl times. Thusl ′ ≤ l. In the
reverse direction supposeDl ′(x) ≡/ 0. SinceDl ′ extends holomorphically
to the connected complex group Intg, Dl ′ cannot be identically 0 in any
neighborhood of the identity in Intg. HenceDl ′(x) cannot be identically 0
in any neighborhood ofx = 1 in G. Choose a neighborhoodU of X ’s in g0

about 0 such that all adX have all eigenvalues< 2π in absolute value and
such that exp is a diffeomorphism onto a neighborhood of 1 inG. Under
these conditions the multiplicity of 0 as a generalized eigenvalue for adX
equals the multiplicity of 1 as a generalized eigenvalue for Ad(expX).
Thus if Dl ′(x) is somewhere nonzero on expU , thendl(X) is somewhere
nonzero onU . Thusl ≤ l ′, and we conclude thatl = l ′.

To understand the relationship between regular elements and Cartan
subgroups, we shall first study the case of a complex group (which in
practice will usually be Intg). The result in this case is Theorem 7.101
below. We establish notation for this theorem after proving three lemmas.

Lemma 7.96. Let Z be a connected complex manifold, and let
f : Z → Cn be a holomorphic function not identically 0. Then the
subset ofZ where f is not 0 is connected.

PROOF. Lemma 2.14 proves this result for the case thatZ = Cm and
f is a polynomial. But the same proof works ifZ is a bounded polydisc
�m

j=1 {|zj | < rj} and f is a holomorphic function on a neighborhood of the
closure of the polydisc. We shall piece together local results of this kind
to handle generalZ .

Thus let the manifold structure ofZ be specified by compatible charts
(Vα, ϕα) with ϕα : Vα → Cm holomorphic onto a bounded polydisc. There
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is no loss of generality in assuming that there are open subsetsUα covering
Z such thatϕα(Uα) is an open polydisc whose closure is contained in
ϕα(Vα). For any subsetS of Z , let S′ denote the subset ofS where f is
not 0. The result of the previous paragraph implies thatU ′

α is connected
for eachα, and we are to prove thatZ ′ is connected. AlsoU ′

α is dense in
Uα since the subset of a connected open set where a nonzero holomorphic
function takes on nonzero values is dense.

Fix U = U0. To each pointz ∈ Z , we can find a chain ofUα ’s of
the formU = U0, U1, . . . , Uk such thatz is in Uk andUi−1 ∩ Ui �= ∅ for
1 ≤ i ≤ k. In fact, the set ofz’s for which this assertion is true is nonempty
open closed and hence is all ofZ .

Now let z ∈ Z ′ be given, and form the chainU = U0, U1, . . . , Uk . Here
z is in U ′

k . We readily see by induction onm ≤ k that U ′
0 ∪ · · · ∪ U ′

m

is connected, hence thatU ′
0 ∪ · · · ∪ U ′

k is connected. Thus eachz ∈ Z ′

lies in a connected open set containingU ′
0, and it follows that the union of

these connected open sets is connected. The union isZ ′, and henceZ ′ is
connected.

Lemma 7.97. Let N be a simply connected nilpotent Lie group with
Lie algebran0, and letn′

0 be an ideal inn0. If X is in n0 andY is in n′
0, then

exp(X + Y ) = expX expY ′ for someY ′ in n′
0.

PROOF. If N ′ is the analytic subgroup corresponding ton′
0, thenN ′ is

certainly normal, andN ′ is closed as a consequence of Theorem 1.127.
Let ϕ : N → N/N ′ be the quotient homomorphism, and letdϕ be its
differential. Sincedϕ(Y ) = 0, we have

ϕ((exp(X + Y ))(expX)−1) = ϕ(exp(X + Y ))ϕ(expX)−1

= exp(dϕ(X) + dϕ(Y ))(expdϕ(X))−1

= exp(dϕ(X))(expdϕ(X))−1 = 1.

Therefore(exp(X + Y ))(expX)−1 is in N ′, and Theorem 1.127 shows that
it is of the form expY ′ for someY ′ ∈ n′

0.

Lemma 7.98. Let G = K AN be an Iwasawa decomposition of the
reductive groupG, let M = Z K (A), and letn0 be the Lie algebra ofN . If
h ∈ M A has the property that Ad(h) acts as a scalar on each restricted-root
space and Ad(h)−1 − 1 is nonsingular onn0, then the mapϕ : N → N
given byϕ(n) = h−1nhn−1 is ontoN .



8. Cartan Subgroups 493

REMARK. This lemma may be regarded as a Lie group version of the
Lie algebra result given as Lemma 7.42.

PROOF. Write n0 = ⊕
(g0)λ as a sum of restricted-root spaces, and

regard the restricted roots as ordered lexicographically. For any restricted
rootα, the subspacenα = ⊕

λ≥α (g0)λ is an ideal, and we prove by induction
downward onα thatϕ carries expnα onto itself. This conclusion whenα
is equal to the smallest positive restricted root gives the lemma since exp
carriesn0 onto N (Theorem 1.127).

If α is given, we can writenα = (g0)α ⊕ nβ with β > α. Let X be
given in nα, and write X as X1 + X2 with X1 ∈ (g0)α and X2 ∈ nβ .
Since Ad(h)−1 − 1 is nonsingular on(g0)α, we can chooseY1 ∈ (g0)α with
X1 = (Ad(h)−1 − 1)Y1. Putn1 = expY1. Since Ad(h)−1Y1 is a multiple
of Y1, Ad(h)−1Y1 commutes withY1. Therefore

(7.99) h−1n1hn−1
1 = (exp Ad(h)−1Y1)(expY1)

−1

= exp((Ad(h)−1 − 1)Y1) = expX1.

Thus

expX = exp(X1 + X2)

= expX1 expX ′
2 by Lemma 7.97

= h−1n1hn−1
1 expX ′

2 by (7.99)

= h−1n1h expX ′′
2 n−1

1 with X ′′
2 ∈ nβ.

By induction expX ′′
2 = h−1n2hn−1

2 . Hence expX = h−1(n1n2)h(n1n2)
−1,

and the induction is complete.

Now we are ready for the main result about Cartan subgroups in the
complex case. LetGc be a complex semisimple Lie group (which will
usually be Intg when we return to our reductive Lie groupG). Proposition
7.5 shows thatGc is a reductive Lie group. LetGc = U AN be an Iwasawa
decomposition ofGc, and letM = ZU (A). We denote byg, u0, a0, n0, and
m0 the respective Lie algebras. Herem0 = ia0, m0 is maximal abelian in
u0, andh = a0 ⊕m0 is a Cartan subalgebra ofg. The corresponding Cartan
subgroup ofGc is of the formHc = M A since Proposition 7.25 shows that
Hc is a reductive Lie group. Since

M = ZU (a0) = ZU (ia0) = ZU (m0),

Corollary 4.52 shows thatM is connected. Therefore

(7.100) Hc is connected.

Let G ′
c denote the regular set inGc.
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Theorem 7.101.For the complex semisimple Lie groupGc, the regular
setG ′

c is connected and satisfiesG ′
c ⊆ ⋃

x∈Gc
x Hcx−1. If X0 is any regular

element inh, thenZGc(X0) = Hc.

PROOF. We may regardDl(x) as a holomorphic function onGc. The
regular setG ′

c is the set whereDl(x) �= 0, and Lemma 7.96 shows thatG ′
c

is connected.
Let H ′

c = Hc ∩ G ′
c, and defineV ′ = ⋃

x∈Gc
x H ′

cx−1. ThenV ′ ⊆ G ′
c

by (7.95). If X0 ∈ h is chosen so that no root in�(g, h) vanishes onX0,
then we have seen that expr X0 is in H ′

c for all sufficiently smallr > 0.
HenceV ′ is nonempty. We shall prove thatV ′ is open and closed inG ′

c,
and then it follows thatG ′

c = V ′, hence thatG ′
c ⊆ ⋃

x∈Gc
x Hcx−1.

To prove thatV ′ is closed inG ′
c, we observe thatHc N is closed in

Gc, being the minimal parabolic subgroupM AN . SinceU is compact, it
follows that

V =
⋃
u∈U

u Hc Nu−1

is closed inGc. By (7.95),

V ∩ G ′
c =

⋃
u∈U

u(Hc N )′u−1,

where(Hc N )′ = Hc N ∩ G ′
c. If h is in Hc andn is in N , then Ad(hn) has

the same generalized eigenvalues as Ad(h). Hence(Hc N )′ = H ′
c N . If h

is in H ′
c, then Ad(h) is scalar on each restricted root space contributing to

n0, and Ad(h) − 1 is nonsingular onn0. By Lemma 7.98 such anh has the
property thatn �→ h−1nhn−1 carriesN onto N . Let n0 ∈ N be given, and
write n0 = h−1nhn−1. Thenhn0 = nhn−1, and we see that every element
of hN is anN conjugate ofh. Since everyN conjugate ofh is certainly in
hN , we obtain

H ′
c N =

⋃
n∈N

nH ′
cn

−1.

Therefore
V ∩ G ′

c =
⋃
u∈U

⋃
n∈N

(un)H ′
c(un)−1.

SinceaH ′
ca

−1 = H ′
c for a ∈ A and sinceGc = U AN = U N A, we obtain

V ∩G ′
c = V ′. ThusV ′ is exhibited as the intersection ofG ′

c with the closed
setV, andV ′ is therefore closed inG ′

c.
To prove thatV ′ is open inG ′

c, it is enough to prove that the map
ψ : Gc × Hc → Gc given byψ(y, x) = yxy−1 has differential mapping
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onto at every point ofGc × H ′
c. The argument imitates part of the proof

of Theorem 4.36. Let us abbreviateyxy−1 asx y. Fix y ∈ Gc andx ∈ H ′
c.

We identify the tangent spaces aty, x , and x y with g, h, andg by left
translation. First letY be in g. To compute(dψ)(y,x)(Y, 0), we observe
from (1.88) that

(7.102) x y exprY = x y exp(rAd(yx−1)Y ) exp(−rAd(y)Y ).

We know from Lemma 1.90a that

expr X ′ exprY ′ = exp{r(X ′ + Y ′) + O(r2)} asr → 0.

Hence the right side of (7.102) is

= x y exp(rAd(y)(Ad(x−1) − 1)Y + O(r2)),

and

(7.103) dψ(Y, 0) = Ad(y)(Ad(x−1) − 1)Y.

Next if X is in h, then (1.88) gives

(x expr X)y = x y exp(rAd(y)X),

and hence

(7.104) dψ(0, X) = Ad(y)X.

Combining (7.103) and (7.104), we obtain

(7.105) dψ(Y, X) = Ad(y)((Ad(x−1) − 1)Y + X).

Sincex is in H ′
c, Ad(x−1)− 1 is invertible on the sum of the restricted-root

spaces, and thus the set of all(Ad(x−1) − 1)Y contains this sum. SinceX
is arbitrary inh, the set of all(Ad(x−1) − 1)Y + X is all of g. But Ad(y)

is invertible, and thus (7.105) shows thatdψ is ontog. This completes the
proof thatV ′ is open inG ′

c.
We are left with proving that any regular elementX0 of h hasZGc(X0) =

Hc. Letx ∈ Gc satisfy Ad(x)X0 = X0. Since the centralizer ofX0 in g ish,
Ad(x)h = h. If x = u expX is the global Cartan decomposition ofx , then
Lemma 7.22 shows that Ad(u)h = h and(adX)h = h. By Proposition
2.7, X is in h. Thus Ad(u)X0 = X0, and it is enough to prove thatu is in
M . Write X0 = X1 + i X2 with X1 and X2 in m0. Since Ad(u)u0 = u0,
we must have Ad(u)X1 = X1. The centralizer of the torusexpRX1 in U
is connected, by Corollary 4.51, and must lie in the analytic subgroup of
U with Lie algebraZu0(X1). SinceX1 is regular, Lemma 4.33 shows that
Zu0(X1) = m0. Thereforeu is in M , and the proof is complete.
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Corollary 7.106. For the complex semisimple Lie groupGc, let Hx

denote the centralizer inGc of a regular elementx of Gc. Then the identity
component ofHx is a Cartan subgroup(Hx)0 of Gc, and Hx lies in the
normalizer NGc((Hx)0). ConsequentlyHx has only a finite number of
connected components.

REMARK. Compare this conclusion with the example ofSL(2, C)/{±1}
given after (7.95).

PROOF. Theorem 7.101 shows that we can choosey in Gc with h =
y−1xy in Hc. Sincex is regular, so ish. Therefore Ad(h) has 1 as a
generalized eigenvalue with multiplicityl = dimC h. Since Ad(h) acts
as the identity onh, it follows thath is the centralizer ofh in g. Hence
Ad(y)h is the centralizer ofx = yhy−1 in g, and Ad(y)h is therefore the
Lie algebra ofHx . Then(Hx)0 = y Hc y−1 is a Cartan subgroup ofGc

by (7.100).
Next any element of a Lie group normalizes its identity component, and

henceHx lies in the normalizerNGc((Hx)0). By (7.93), Hx has a finite
number of components.

Corollary 7.107. For the complex semisimple Lie groupGc, the cen-
tralizer ing of a regular element ofGc is a Cartan subalgebra ofg.

PROOF. This follows from the first conclusion of Corollary 7.106.

We return to the general reductive Lie groupG. The relationship be-
tween the regular set inG and the Cartan subgroups ofG follows quickly
from Corollary 7.107.

Theorem 7.108.For the reductive Lie groupG, let (h1)0, . . . , (hr)0 be
a maximal set of nonconjugateθ stable Cartan subalgebras ofg0, and let
H1, . . . , Hr be the corresponding Cartan subgroups ofG. Then

(a) G ′ ⊆ ⋃r
i=1

⋃
x∈G x Hi x−1,

(b) each member ofG ′ lies in just one Cartan subgroup ofG,
(c) eachHi is abelian ifG is semisimple and has a complexification.

PROOF.
(a) We apply Corollary 7.107 withGc = Int g. Property (v) of reductive

Lie groups says that Ad(G) ⊆ Gc, and the regular elements ofG are
exactly the elementsx of G for which Ad(x) is regular inGc. If x is in G ′,
then Corollary 7.107 shows thatZg(x) is a Cartan subalgebra ofg. Since
x is in G, Zg(x) is the complexification ofZg0(x), and henceZg0(x) is a
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Cartan subalgebra ofg0. ThereforeZg0(x) = Ad(y)(hi)0 for somey ∈ G
and somei with 1 ≤ i ≤ r . Write h̃0 for Zg0(x), and letH̃ = ZG (̃h0)

be the corresponding Cartan subgroup. By definition,x is in H̃ . Since
h̃0 = Ad(y)(hi)0, it follows that H̃ = y Hi y−1. Thereforex is in y Hi y−1,
and (a) is proved.

(b) We again apply Corollary 7.107 withGc = Int g. If x ∈ G ′ lies in
two distinct Cartan subgroups, then it centralizes two distinct Cartan subal-
gebras ofg0 and also their complexifications ing. Hence the centralizer of
x in g contains the sum of the two Cartan subalgebras ing, in contradiction
with Corollary 7.107.

(c) This time we regardGc as the complexification ofG. Let h0 be a
Cartan subalgebra ofg0, and letH be the corresponding Cartan subgroup
of G. The centralizerHc of h in Gc is connected by (7.100), andH is a
subgroup of this group. SinceHc has abelian Lie algebra, it is abelian.
HenceH is abelian.

Now we return to the component structure of Cartan subgroups, but
we shall restrict attention to the case that the reductive Lie groupG is
semisimple and has a complexificationGC. Let h0 = t0 ⊕ a0 be the
decomposition into+1 and−1 eigenspaces underθ of a θ stable Cartan
subalgebrah0. Let H be the Cartan subgroupZG(h0), let T = expt0, and
let A = expa0. HereT is closed inK since otherwise the Lie algebra of its
closure would form witha0 an abelian subspace larger thanh0. HenceT is
a torus. Ifα is a real root in�(g, h), then the same argument as for (7.54)
shows that

(7.109) γα = exp 2π i |α|−2Hα

is an element ofK with γ 2
α = 1. Asα varies, the elementsγα commute.

DefineF(T ) to be the subgroup ofK generated by all the elementsγα for α

real. Theorem 7.55 identifiesF(T ) in the special case thath0 is maximally
noncompact; the theorem says thatF(T ) = F in this case.

Proposition 7.110. Let G be semisimple with a complexificationGC,
and leth0 be aθ stable Cartan subalgebra. Then the corresponding Cartan
subgroup isH = AT F(T ).

PROOF. By Proposition 7.25,ZG(t0) is a reductive Lie group, and then
it satisfiesZG(t0) = Z K (t0) exp(p0 ∩ Zg0(t0)). By Corollary 4.51,Z K (t0)

is connected. ThereforeZG(t0) is connected.
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ConsequentlyZG(t0) is the analytic subgroup corresponding to

Zg0(t0) = g0 ∩ (
h +

∑
α real

gα

) = h0 + ( ∑
α real

RHα +
∑
α real

(gα ∩ g0)
)
.

The grouped term on the right is a split semisimple Lie algebras0. Let S be
the corresponding analytic subgroup, so thatZG(t0) = (exph0)S = AT S.
Since the subspacea′

0 = ∑
α realRHα of s is a maximal abelian subspace of

s0 ∩ p0, Theorem 7.55 shows that the correspondingF group is justF(T ).
By Theorem 7.53c,ZS(a

′
0) = (expa′

0)F(T ). Then

ZG(h0) = Z AT S(a0) = AT ZS(a0) = AT ZS(a
′
0) = AT F(T ).

Corollary 7.111. Let G be semisimple with a complexificationGC, and
let Q = M AN be the Langlands decomposition of a cuspidal parabolic
subgroup. Lett0 be aθ stable compact Cartan subalgebra ofm0, and let
h0 = t0 ⊕a0 be the correspondingθ stable Cartan subalgebra ofg0. Define
T andF(T ) from t0. Then

(a) Z M(t0) = T F(T ),
(b) Z M0 = Z M ∩ T ,
(c) Z M = (Z M ∩ T )F(T ) = Z M0 F(T ),
(d) M0Z M = M0F(T ).

REMARK. WhenQ is a minimal parabolic subgroup, the subgroupM0Z M

is all of M . But for generalQ, M0Z M need not exhaustM . For some
purposes in representation theory,M0Z M plays an intermediate role in
passing from representations ofM0 to representations ofM .

PROOF.
(a) Proposition 7.110 givesZ M(t0) = 0ZG(t0 ⊕ a0) = 0(AT F(T )) =

T F(T ).
(b) CertainlyZ M ∩T ⊆ Z M0. In the reverse direction,Z M0 is contained in

K ∩M0, hence is contained in the center ofK ∩M0. The center of a compact
connected Lie group is contained in every maximal torus (Corollary 4.47),
and thusZ M0 ⊆ T . To complete the proof of (b), we show thatZ M0 ⊆ Z M .
The sum ofa0 and a maximally noncompact Cartan subalgebra ofm0 is
a Cartan subalgebra ofg0, and the corresponding Cartan subgroup ofG
is abelian by Proposition 7.110. The intersection of this Cartan subgroup
with M is a maximal noncompact Cartan subgroup ofM and is abelian.
By Corollary 7.91,Z M0 ⊆ Z M .

(c) The subgroupF(T ) is contained inZ M since it is inK ∩ expia0.
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ThereforeZ M = Z M ∩ Z M(t0) = Z M ∩ (T F(T )) = (Z M ∩T )F(T ), which
proves the first equality of (c). The second equality follows from (b).

(d) By (c), M0Z M = M0Z M0 F(T ) = M0F(T ).

9. Harish-Chandra Decomposition

For G = SU (1, 1) =
{(

α β

β̄ ᾱ

) ∣∣∣ |α|2 − |β|2 = 1

}
, the subgroupK

can be taken to beK =
{(

eiθ 0
0 e−iθ

)}
, andG/K may be identified with

the disc{|z| < 1} by gK ↔ β/ᾱ. If g′ =
(

α′ β ′

β̄ ′ ᾱ′

)
is given, then the

equalityg′g =
(

α′α + β ′β̄ α′β + β ′ᾱ
β̄ ′α + ᾱ′β̄ β̄ ′β + ᾱ′ᾱ

)
implies that

g′(gK ) ↔ α′β + β ′ᾱ

β̄ ′β + ᾱ′ᾱ
= α′(β/ᾱ) + β ′

β̄ ′(β/ᾱ) + ᾱ′ .

In other words, under this identification,g′ acts by the associated linear

fractional transformationz �→ α′z + β ′

β̄ ′z + ᾱ′ . The transformations by which

G acts onG/K are thus holomorphic once we have imposed a suitable
complex-manifold structure onG/K .

If G is a semisimple Lie group, then we say thatG/K is Hermitian if
G/K admits a complex-manifold structure such thatG acts by holomorphic
transformations. In this section we shall classify the semisimple groups
G for which G/K is Hermitian. Since the center ofG is contained in
K (Theorem 6.31e), we could assume, if we wanted, thatG is an adjoint
group. At any rate there is no loss of generality in assuming thatG is linear
and hence has a complexification. We begin with a more complicated
example.

EXAMPLE. Let n ≥ m, let Mnm(C) be the complex vector space of
all n-by-m complex matrices, and let 1m be them-by-m identity matrix.
Define

� = {Z ∈ Mnm(C) | 1m − Z ∗ Z is positive definite}.
We shall identify� with a quotientG/K , takingG = SU (n, m) and

K = S(U (n) × U (m))

=
{(

A 0
0 D

) ∣∣∣ A ∈ U (n), D ∈ U (m), detA detD = 1

}
.
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The group action ofG on� will be by

(7.112) g(Z) = (AZ + B)(C Z + D)−1 if g =
(

A B
C D

)
.

To see that (7.112) defines an action ofG on �, we shall verify that
(C Z + D)−1 is defined in (7.112) and thatg(Z) is in � if Z is in �.
To do so, we write

(AZ + B)∗(AZ + B) − (C Z + D)∗(C Z + D)

= ( Z ∗ 1m ) g∗
(

1n 0
0 −1m

)
g

(
Z
1m

)
= ( Z ∗ 1m )

(
1n 0
0 −1m

) (
Z
1m

)
sinceg is in SU (n, m)

= Z ∗ Z − 1m .

(7.113)

With Z in �, suppose(C Z + D)v = 0. Unlessv = 0, we see from (7.113)
that

0 ≤ v∗(AZ + B)∗(AZ + B)v = v∗(Z ∗ Z − 1m)v < 0,

a contradiction. Hence(C Z + D)−1 exists, and then (7.113) gives

g(Z)∗g(Z) − 1m = (C Z + D)∗−1(Z ∗ Z − 1m)(C Z + D)∗.

The right side is negative definite, and henceg(Z) is in �.
The isotropy subgroup atZ = 0 is the subgroup withB = 0, and this

subgroup reduces toK . Let us see thatG acts transitively on�. Let
Z ∈ Mnm(C) be given. The claim is thatZ decomposes as

(7.114) Z = udv with u ∈ U (n), v ∈ U (m),

andd of the formd =
(

d0

0

)
, whered0 = diag(λ1, . . . , λm) with all λj ≥ 0

and where 0 is of size(n − m)-by-m. To prove (7.114), we extendZ to a
square matrix( Z 0) of sizen-by-n and let the polar decomposition of
( Z 0) be ( Z 0) = u1 p with u1 ∈ U (n) and p positive semidefinite.
Since( Z 0) is 0 in the lastn − m columns,u1 gives 0 when applied to
the lastn −m columns ofp. The matrixu1 is nonsingular, and thus the last

n − m columns ofp are 0. Sincep is Hermitian,p =
(

p′ 0
0 0

)
with p′
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positive semidefinite of sizem-by-m. By the finite-dimensional Spectral
Theorem, writep′ = u2d0u−1

2 with u2 ∈ U (m) andd0 = diag(λ1, . . . , λm).

Then (7.114) holds withu = u1

(
u2 0
0 1n−m

)
, d =

(
d0

0

)
, andv = u−1

2 .

With Z as in (7.114), the matrixZ ∗ Z = v∗d∗dv has the same eigenvalues
asd∗d, which has eigenvaluesλ2

1, . . . , λ
2
m. ThusZ is in � if and only if

0 ≤ λj < 1 for 1 ≤ j ≤ m. In the formula (7.114) there is no loss

of generality in assuming that(detu)(detv)−1 = 1, so that

(
u 0
0 v−1

)
is

in K . Let a be the member ofSU (n, m) that is

(
coshtj sinhtj

sinhtj coshtj

)
in

the j th and(n + j)th rows and columns for 1≤ j ≤ m and is otherwise

the identity. Thena(0) = d, and

(
u 0
0 v−1

)
(d) = udv = Z . Hence

g =
(

u 0
0 v−1

)
a maps 0 toZ , and the action ofG on� is transitive.

Throughout this section we letG be a semisimple Lie group with a
complexificationGC. We continue with the usual notation forG as a
reductive Lie group. Letc0 be the center ofk0. We shall see that a necessary
and sufficient condition forG/K to be Hermitian is thatZg0(c0) = k0. In
this case we shall exhibitG/K as holomorphically equivalent to a bounded
domain in Cn for a suitablen. The explicit realization ofG/K as a
bounded domain is achieved through the “Harish-Chandra decomposition”
of a certain open dense subset ofGC.

First we shall prove that ifG/K is Hermitian, thenZg0(c0) = k0. Before
stating a precise theorem of this kind, we recall the “multiplication-by-i”
mapping introduced in connection with holomorphic mappings in §I.12.
If M is a complex manifold of dimensionn, we can associate toM an
almost-complex structure consisting of a multiplication-by-i mapping
Jp ∈ End(Tp(M)) for each p. For eachp, we haveJ 2

p = −1. If
� : M → N is a smooth mapping between complex manifolds, then
� is holomorphic if and only if the Cauchy–Riemann equations hold. If
{Jp} and{J ′

q} are the respective almost-complex structures forM and N ,
these equations may be written as

(7.115) J ′
�(p) ◦ d�p = d�p ◦ Jp

for all p.
Now let us consider the case thatM = N = G/K and p is the identity

coset. IfG/K is Hermitian, then each left translationLk byk ∈ K (defined
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by Lk(k ′) = kk ′) is holomorphic and fixes the identity coset. IfJ denotes
the multiplication-by-i mapping at the identity coset, then (7.115) gives

J ◦ d Lk = d Lk ◦ J.

We may identify the tangent space at the identity coset withp0, and then
d Lk = Ad(k)|p0. Differentiating, we obtain

(7.116) J ◦ (adX)|p0 = (adX)|p0 ◦ J for all X ∈ k0.

Theorem 7.117. If G/K is Hermitian, then the multiplication-by-i
mappingJ : p0 → p0 at the identity coset is of the formJ = (adX0)|p0 for
someX0 ∈ k0. This elementX0 is in c0 and satisfiesZg0(X0) = k0. Hence
Zg0(c0) = k0.

PROOF. SinceJ 2 = −1 onp0, the complexificationp is the direct sum
of its +i and−i eigenspacesp+ andp−. The main step is to prove that

(7.118) [X, Y ] = 0 if X ∈ p
+ andY ∈ p

+.

Let B be the bilinear form ong0 andg that is part of the data of a reductive
group, and define a bilinear formC onp by

C(X, Y ) = B(X, Y ) + B(J X, JY ).

SinceB is positive definite onp0, so isC . HenceC is nondegenerate onp.
Let us prove that

(7.119) C([[ X, Y ], Z ], T ) = C([[ Z , T ], X ], Y )

for X, Y, Z , T in p. WhenX, Y, Z are inp, the bracket [Y, Z ] is in k, and
therefore (7.116) implies that

(7.120) J [ X, [Y, Z ]] = [ J X, [Y, Z ]] .

Using the Jacobi identity and (7.120) repeatedly, together with the invari-
ance ofB, we compute

B(J [[ X, Y ], Z ], J T ) = B(J [ X, [Y, Z ]] , J T ) − B(J [Y, [ X, Z ]] , J T )

= B([ J X, [Y, Z ]] , J T ) − B([ JY, [ X, Z ]] , J T )

= −B([ J T, [Y, Z ]] , J X) + B([ J T, [ X, Z ]] , JY )

= −B(J [T, [Y, Z ]] , J X) + B(J [T, [ X, Z ]] , JY ).(7.121)



9. Harish-Chandra Decomposition 503

Using the result (7.121) withZ andT interchanged, we obtain

B(J [[ X, Y ], Z ], J T ) = B([[ X, Y ], J Z ], J T )

= −B([[ X, Y ], J T ], J Z)

= −B(J [[ X, Y ], T ], J Z)

= B(J [Z , [Y, T ]] , J X) − B(J [Z , [ X, T ]] , JY ).(7.122)

The sum of (7.121) and (7.122) is

2B(J [[ X, Y ], Z ], J T ) = − B(J [T, [Y, Z ]] , J X) + B(J [T, [ X, Z ]] , JY )

+ B(J [Z , [Y, T ]] , J X) − B(J [Z , [ X, T ]] , JY )

= B(J [Y, [Z , T ]] , J X) − B(J [ X, [Z , T ]] , JY )

= B([ JY, [Z , T ]] , J X) − B([ J X, [Z , T ]] , JY )

= 2B([Z , T ], [ J X, JY ])

= 2B([[ Z , T ], J X ], JY )

= 2B(J [[ Z , T ], X ], JY ).(7.123)

The calculation that leads to (7.123) remains valid ifJ is dropped through-
out. If we add the results withJ present and withJ absent, we ob-
tain (7.119). To prove (7.118), suppose thatX andY are inp+, so that
J X = i X andJY = iY . Then

C([[ Z , T ], X ], Y ) = C(J [[ Z , T ], X ], JY )

= C([[ Z , T ], J X ], JY )

= −C([[ Z , T ], X ], Y )

saysC([[ Z , T ], X ], Y ) = 0. By (7.119),C([[ X, Y ], Z ], T ) = 0. SinceT
is arbitrary andC is nondegenerate,

(7.124) [[X, Y ], Z ] = 0 for all Z ∈ p.

If bar denotes conjugation ofg with respect tog0, thenB(W, W ) < 0 for
all W �= 0 in k. For W = [ X, Y ], we have

B([ X, Y ], [ X, Y ]) = B([ X, Y ], [ X , Y ]) = B([[ X, Y ], X ], Y ),

and the right side is 0 by (7.124). Therefore [X, Y ] = 0, and (7.118) is
proved.
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Let us extendJ to a linear map̃J defined ong, putting J̃ = 0 onk. We
shall deduce from (7.118) that̃J is a derivation ofg0, i.e., that

(7.125) J̃ [ X, Y ] = [ J̃ X, Y ] + [ X, J̃ Y ] for X, Y ∈ g0.

If X andY are ink0, all terms are 0, and (7.125) is automatic. IfX is in
k0 andY is in p0, then [̃J X, Y ] = 0 since J̃ X = 0, and (7.125) reduces
to (7.116). Thus supposeX andY are inp0. The elementX − i J X is in
p+ since

J (X − i J X) = J X − i J 2X = J X + i X = i(X − i J X),

and similarlyY − i JY is in p+. By (7.118),

0 = [ X − i J X, Y − i JY ] = ([ X, Y ] − [ J X, JY ])− i([ J X, Y ] + [ X, JY ]).

The real and imaginary parts must each be 0. Since the imaginary part is
0, the right side of (7.125) is 0. The left side of (7.125) is 0 sinceJ̃ is 0 on
k0. HenceJ̃ is a derivation ofg0.

By Proposition 1.121,̃J = adX0 for someX0 ∈ g0. Let Y ∈ p0 be
given. SinceJ 2 = −1 onp0, the elementY ′ = −JY of p0 hasJY ′ = Y .
Then

B(X0, Y ) = B(X0, JY ′) = B(X0, [ X0, Y ′]) = B([ X0, X0], Y ′) = 0.

HenceX0 is orthogonal top0, andX0 must be ink0. SinceJ̃ = adX0 is 0
on k0, X0 is in c0.

If Y is in Zg0(X0), then thek0 component ofY already commutes with
X0 since X0 is in c0. Thus we may assume thatY is in p0. But then
[ X0, Y ] = JY . SinceJ is nonsingular onp0, 0 = [ X0, Y ] implies Y = 0.
We conclude thatZg0(X0) = k0. Finally we have

k0 ⊆ Zg0(c0) ⊆ Zg0(X0) = k0,

and equality must hold throughout. ThereforeZg0(c0) = k0.

For the converse we assume thatZg0(c0) = k0, and we shall exhibit a
complex structure onG/K such thatG operates by holomorphic transfor-
mations. Fix a maximal abelian subspacet0 of k0. Thenc0 ⊆ t0, so that
Zg0(t0) ⊆ Zg0(c0) = k0. Consequentlyt0 is a compact Cartan subalgebra
of g0. The corresponding Cartan subgroupT is connected by Proposition
7.90b, hence is a torus.
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Every root in� = �(g, t) is imaginary, hence compact or noncompact
in the sense of §VI.7. If�K and �n denote the sets of compact and
noncompact roots, then we have

(7.126) k = t ⊕
⊕
α∈�K

gα and p =
⊕
α∈�n

gα,

just as in (6.103).

Lemma 7.127. A root α is compact if and only ifα vanishes on the
centerc of k.

PROOF. If α is in �, thenα(c) = 0 if and only if [c, gα] = 0, if and only
if gα ⊆ Zg(c), if and only if gα ⊆ k, if and only if α is compact.

By a good ordering for it0, we mean a system of positivity in which
every noncompact positive root is larger than every compact root. A good
ordering always exists; we can, for instance, use a lexicographic ordering
that takes ic0 before its orthogonal complement init0. Fixing a good
ordering, let�+, �+

K , and�+
n be the sets of positive roots in�, �K , and

�n. Define

p
+ =

⊕
α∈�+

n

gα and p
− =

⊕
α∈�+

n

g−α,

so thatp = p+ ⊕ p−.
In the example ofSU (n, m) earlier in this section, we have

ic0 = R diag( 1
n
, . . . , 1

n
, − 1

m
, . . . , − 1

m
)

with n entries1
n

andm entries− 1
m

, and we may taket0 to be the diagonal
subalgebra. If rootsei − ej that are positive on

diag( 1
n
, . . . , 1

n
, − 1

m
, . . . , − 1

m
)

are declared to be positive, thenp+ has the block form

(
0 ∗
0 0

)
andp−

has the block form

(
0 0
∗ 0

)
.
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Lemma 7.128. The subspacesp+ andp− are abelian subspaces ofp,
and [k, p+] ⊆ p+ and [k, p−] ⊆ p−.

PROOF. Letα, β, andα +β be in� with α compact andβ noncompact.
Then [gα, gβ ] ⊆ gα+β , andβ andα + β are both positive or both negative
because the ordering is good. Summing onα andβ, we see that [k, p+] ⊆ p+

and [k, p−] ⊆ p−.
If α andβ are in�+

n , thenα + β cannot be a root since it would have to
be a compact root larger than the noncompact positive rootα. Summing
onα andβ, we obtain [p+, p+] = 0. Similarly [p−, p−] = 0.

Let b be the Lie subalgebra

b = t ⊕
⊕
α∈�+

g−α

of g, and letP+, K C, P−, and B be the analytic subgroups ofGC with
Lie algebrasp+, k, p−, andb. SinceGC is complex andp+, k, p−, b are
closed under multiplication byi , all the groupsP+, K C, P−, B are complex
subgroups.

Theorem 7.129(Harish-Chandra decomposition). LetG be semisimple
with a complexificationGC, and suppose that the centerc0 of k0 has
Zg0(c0) = k0. Then multiplication fromP+ × K C × P− into GC is one-one,
holomorphic, and regular (with image open inGC), G B is open inGC, and
there exists a bounded open subset� ⊆ P+ such that

G B = G K C P− = �K C P−.

Moreover, G/K is Hermitian. In fact, the map ofG into � given by
g �→ (P+ component ofg) exhibitsG/K and� as diffeomorphic, andG
acts holomorphically on� by g(ω) = (P+ component ofgω).

REMARKS.
1)We shall see in the proof that the complexgroupP+ is holomorphically

isomorphic with someCn, and the theorem asserts that� is a bounded open
subset when regarded as inCn in this fashion.

2) WhenG = SU (n, m), GC may be taken asSL(n + m, C). The
decomposition of an open subset ofGC asP+ × K C × P− is

(
A B
C D

)
=

(
1 B D−1

0 1

) (
A − B D−1C 0

0 D

) (
1 0

D−1C 1

)
,

(7.130)



9. Harish-Chandra Decomposition 507

valid wheneverD is nonsingular. Whatever� is in the theorem, ifω =(
1 Z
0 1

)
is in� andg =

(
A B
C D

)
is inG, thengω =

(
A AZ + B
C C Z + D

)
;

hence (7.130) shows that theP+ component ofgω is(
1 (AZ + B)(C Z + D)−1

0 1

)
.

So the action is

(7.131)

(
A B
C D

) ((
1 Z
0 1

))
=

(
1 (AZ + B)(C Z + D)−1

0 1

)
.

We know from the example earlier in this section that the image ofZ = 0

underZ �→ (AZ + B)(C Z + D)−1 for all

(
A B
C D

)
in SU (n, m) is all

Z with 1m − Z ∗ Z positive definite. Therefore� consists of all

(
1 Z
0 1

)
such that 1m − Z ∗ Z is positive definite, and the action (7.131) corresponds
to the action by linear fractional transformations in the example.

3) The proof will reduce matters to two lemmas, which we shall consider
separately.

PROOF. Define

n =
⊕
α∈�+

gα, n
− =

⊕
α∈�+

g−α, bK = t ⊕
⊕
α∈�+

K

g−α,

N , N −, BK = corresponding analytic subgroups ofGC.

Let HR and H be the analytic subgroups ofGC with Lie algebrasit0 and
t, so thatH = T HR as a direct product. By (7.100) a Cartan subgroup
of a complex semisimple Lie group is connected, and thereforeH is a
Cartan subgroup. The involutionθ ◦ bar, where bar is the conjugation ofg

with respect tog0, is a Cartan involution ofg, andit0 is a maximal abelian
subspace of the−1 eigenspace. The+1 eigenspace isk0 ⊕ ip0, and the
corresponding analytic subgroup ofGC we callU . Then

ZU (it0) = ZU (t) = U ∩ ZGC(t) = U ∩ H = T .

So theMp group is justT . By Proposition 7.82 theM of every parabolic
subgroup ofGC is connected.
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The restricted roots ofgR relative toit0 are evidently the restrictions from
t to it0 of the roots. Thereforeb = t⊕n− is a minimal parabolic subalgebra
of gR. Since parabolic subgroups ofGC are closed (by Proposition 7.83b)
and connected,B is closed.

The subspacek⊕ p− is a Lie subalgebra ofgR containingb and hence is
a parabolic subalgebra. Then Proposition 7.83 shows thatK C andP− are
closed,K C P− is closed, and multiplicationK C × P− is a diffeomorphism
onto. SimilarlyP+ is closed.

Moreover the Lie algebrak ⊕ p− of K C P− is complex, and hence
K C P− is a complex manifold. Then multiplicationK C × P− is evidently
holomorphic and has been observed to be one-one and regular. Since
p+ ⊕ (k ⊕ p−) = g, Lemma 6.44 shows that the holomorphic multiplica-
tion mapP+ × (K C P−) → GC is everywhere regular. It is one-one by
Proposition 7.83e. HenceP+ × K C × P− → G is one-one, holomorphic,
and regular.

Next we shall show thatG B is open inGC. First let us observe that

(7.132) g0 ∩ (it0 ⊕ n
−) = 0.

In fact, since roots are imaginary ont0, we havegα = g−α. Thus ifh is in
it0 andX−α is in n−, then

h +
∑
α∈�+

X−α = −h +
∑
α∈�+

X−α ∈ −h + n,

and (7.132) follows since members ofg0 equal their own conjugates. The
real dimension ofit0 ⊕ n− is half the real dimension oft ⊕ n ⊕ n− = g,
and hence

(7.133) dimR(g0 ⊕ (it0 ⊕ n
−)) = dimR g.

Combining (7.132) and (7.133), we see that

(7.134) g = g0 ⊕ (it0 ⊕ n
−).

The subgroupHR N − of GC is closed by Proposition 7.83, and henceHR N −

is an analytic subgroup, necessarily with Lie algebrait0 ⊕ n−. By Lemma
6.44 it follows from (7.134) that multiplicationG × HR N − → GC is
everywhere regular. The dimension relation (7.133) therefore implies that
G HR N − is open inGC. SinceB = T HR N − and T ⊆ G, G B equals
G HR N − and is open inGC.
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The subgroupsP+ and P− are theN groups of parabolic subalgebras,
and their Lie algebras are abelian by Lemma 7.128. HenceP+ and P−

are Euclidean groups. Then exp :p+ → P+ is biholomorphic, andP+

is biholomorphic withCn for somen. Similarly P− is biholomorphic
with Cn.

The subgroupK C is a reductive group, being connected and having bar
as a Cartan involution for its Lie algebra. It is the product of the identity
component of its center by a complex semisimple Lie group, and our above
considerations show that its parabolic subgroups are connected. ThenBK

is a parabolic subgroup, and

(7.135) K C = K BK

by Proposition 7.83f.
Let A denote a specificAp component for the Iwasawa decomposition

of G, to be specified in Lemma 7.143 below. We shall show in Lemma
7.145 that thisA satisfies

(7.136a) A ⊆ P+K C P−

and

(7.136b) P+ components of members ofA are bounded.

Theorem 7.39 shows thatG = K AK . Sinceb ⊆ k ⊕ p−, we have
B ⊆ K C P−. Since Lemma 7.128 shows thatK C normalizesP+ and
P−, (7.136a) gives

(7.137)
G B ⊆ G K C P− ⊆ K AK K C P−

⊆ K P+K C P−K C P− = P+K C P−.

By (7.135) we have

(7.138) G K C P− = G K BK P− ⊆ G BK P− ⊆ G B.

Inclusions (7.137) and (7.138) together imply that

G B = G K C P− ⊆ P+K C P−.

SinceG B is open,

(7.139) G B = G K C P− = �K C P−
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for some open set� in P+.
Let us write p+( · ) for the P+ component. Forgb ∈ G B, we have

p+(gb) = p+(g), and thusp+ restricts to a smooth map carryingG onto
�. From (7.139) it follows that the mapG × � → � given by

(7.140) (g, ω) �→ p+(gω)

is well defined. For fixedg, this is holomorphic since left translation by
g is holomorphic onGC and sincep+ is holomorphic fromP+K C P−

to P+. To see that (7.140) is a group action, we use thatK C P− is a
subgroup. Letg1 and g2 be given, and writeg2ω = p+(g2ω)k2 p−

2 and
g1g2ω = p+(g1g2ω)kC p−. Then

g1 p+(g2ω) = g1g2ω(k2 p−
2 )−1 = p+(g1g2ω)(kC p−)(k2 p−

2 )−1.

Since(kC p−)(k2 p−
2 )−1 is in K C P−, p+(g1 p+(g2ω)) = p+(g1g2ω). There-

fore (7.140) is a group action. The action is evidently smooth, and we have
seen that it is transitive.

If g is in G andk is in K , we can regard 1 as in� and write

p+(gk) = p+(gk1) = p+(gp+(k1)) = p+(g1)

sincek1 is in K ⊆ K C and hasP+ component 1. Thereforep+ : G → �

descends to a smooth map ofG/K onto�. Let us see that it is one-one.
If p+(g1) = p+(g2), theng1 = g2kC p− sinceK C P− is a group, and hence
g−1

2 g1 = kC p−. Thus the mapG/K → � will be one-one if we show that

(7.141) G ∩ K C P− = K .

To prove (7.141), we note that⊇ is clear. Then we argue in the same way
as for (7.132) that

(7.142) g0 ∩ (k ⊕ p
−) = k0.

SinceG and K C P− are closed inGC, their intersection is a closed sub-
group of G with Lie algebrak0. Let g = k expX be the global Cartan
decomposition of an elementg of G ∩ K C P−. Then Ad(g)k0 = k0, and
Lemma 7.22 implies that(adX)k0 ⊆ k0. Since adX is skew symmetric
relative toB, (adX)p0 ⊆ p0. But X ∈ p0 implies that(adX)k0 ⊆ p0 and
(adX)p0 ⊆ k0. Hence adX = 0 andX = 0. This proves (7.141).

To see thatG/K → � is everywhere regular, it is enough, since (7.140)
is a smooth group action, to show that the differential ofp+ : G → � at
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the identity is one-one onp0. But dp+ complexifies to the projection of
g = p+ ⊕ k⊕p− onp+, and (7.142) shows that the kernel of this projection
meetsp0 only in 0. Therefore the mapG/K → � is a diffeomorphism.

To see that� is bounded, we need to see thatp+(g) remains bounded as
g varies inG. If g ∈ G is given, writeg = k1ak2 according toG = K AK .
Then p+(g) = p+(k1a) = k1 p+(a)k−1

1 by (7.139) and Lemma 7.128.
Therefore it is enough to prove that‖ log p+(a)‖ remains bounded, and
this is just (7.136b). Thus the theorem reduces to proving (7.136), which
we do in Lemmas 7.143 and 7.145 below.

Lemma 7.143.Inductively defineγ1, . . . , γs in �+
n as follows:γ1 is the

largest member of�+
n , andγj is the largest member of�+

n orthogonal to
γ1, . . . , γj−1. For 1≤ j ≤ s, let Eγj be a nonzero root vector forγj . Then
the rootsγ1, . . . , γs are strongly orthogonal, and

a0 =
s⊕

j=1

R(Eγj + Eγj )

is a maximal abelian subspace ofp0.

PROOF. We make repeated use of the fact that ifEβ is in gβ , thenEβ is
in g−β . Since [p+, p+] = 0 by Lemma 7.128,γj + γi is never a root, and
theγj ’s are strongly orthogonal. Then it follows thata0 is abelian.

To see thata0 is maximal abelian inp0, let X be a member ofp0 com-
muting witha0. By (7.126) we can writeX = ∑

β∈�n
Xβ with Xβ ∈ gβ .

Without loss of generality, we may assume thatX is orthogonal toa0, and
then we are to prove thatX = 0. Assuming thatX �= 0, letβ0 be the largest
member of�n such thatXβ0 �= 0. SinceX = X , X−β0 �= 0 also; thusβ0 is
positive. Choosej as small as possible so thatβ0 is not orthogonal toγj .

First suppose thatβ0 �= γj . Since [p+, p+] = 0, β0 + γj is not a root.
Thereforeβ0 − γj is a root. The rootβ0 is orthogonal toγ1, . . . , γj−1, and
γj is the largest noncompact root orthogonal toγ1, . . . , γj−1. Thusβ0 < γj ,
andβ0 − γj is negative. We have

(7.144) 0= [ X, Eγj + Eγj ] =
∑
β∈�n

([ Xβ, Eγj ] + [ Xβ, Eγj ]),

and [Xβ0, Eγj ] is not 0, by Corollary 2.35. Thus there is a compensating
term [Xβ, Eγj ], i.e., there existsβ ∈ �n with β + γj = β0 − γj and with
Xβ �= 0. SinceX = X , X−β �= 0. By maximality ofβ0, β0 > −β. Since
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γj − β0 is positive,γj > β0 > −β. Thereforeβ + γj is positive. But
β + γj = β0 − γj , and the right side is negative, contradiction.

Next suppose thatβ0 = γj . Then [Xγj , Eγj ] �= 0, and (7.144) gives

[ X−γj , Eγj ] + [ Xγj , Eγj ] = 0.

Define scalarsc+ andc− by Xγj = c+Eγj andX−γj = c−Eγj . Substituting,
we obtain

−c−[Eγj , Eγj ] + c+[Eγj , Eγj ] = 0,

and thereforec+ = c−. ConsequentlyXγj + X−γj = c+(Eγj + Eγj ) makes a
contribution toX that is nonorthogonal toEγj + Eγj . Since the other terms
of X are orthogonal toEγj + Eγj , we have a contradiction. We conclude
that X = 0 and hence thata0 is maximal abelian inp0.

Lemma 7.145. With notation as in Lemma 7.143 and with theEγj ’s
normalized so that [Eγj , Eγj ] = 2|γj |−2Hγj , let Z = ∑s

j=1 tj(Eγj + Eγj ) be
in a0. Then

(7.146) expZ = expX0 expH0 expY0

with

X0 =
∑

(tanhtj)Eγj ∈ p
+, Y0 =

∑
(tanhtj)Eγj ∈ p

−,

H0 = −
∑

(log coshtj)[Eγj , Eγj ] ∈ it0 ⊆ k.

Moreover theP+ components expX0 of expZ remain bounded asZ varies
througha0.

REMARK. The given normalization is the one used with Cayley trans-
forms in §VI.7 and in particular is permissible.

PROOF. For the special case thatG = SU (1, 1) ⊆ SL(2, C), (7.146) is
just the identity(

cosht sinht
sinht cosht

)
=

(
1 tanht
0 1

) (
(cosht)−1 0

0 cosht

) (
1 0

tanht 1

)
.

Here we are usingEγ =
(

0 1

0 0

)
andEγ =

(
0 0

1 0

)
.
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We can embed the special case in the general case for eachγj , 1 ≤ j ≤ s,
since the inclusion

sl(2, C) = CHγj + CEγj + CEγj ⊆ g

induces a homomorphismSL(2, C) → GC, SL(2, C) being simply con-
nected. This embedding handles each of thes terms ofZ separately. Since
theγj ’s are strongly orthogonal, the contributions toX0, Y0, andH0 for γi

commute with those forγj wheni �= j , and (7.146) follows for generalZ .
Finally in the expression forX0, the coefficients of eachEγj lie between

−1 and+1 for all Z . Hence expX0 remains bounded inP+.

This completes the proof of Theorem 7.129. Let us see what it means
in examples. First suppose thatg0 is simple. Forc0 to be nonzero,g0

must certainly be noncompact. Consider the Vogan diagram ofg0 in a
good ordering. Lemma 7.128 rules out having the sum of two positive
noncompact roots be a root. Since the sum of any connected set of simple
roots in a Dynkin diagram is a root, it follows that there cannot be two
or more noncompact simple roots in the Vogan diagram. Hence there is
just one noncompact simple root, and the Vogan diagram is one of those
considered in §VI.10. Since there is just one noncompact simple root and
that root cannot occur twice in any positive root, every positive noncompact
root has the same restriction toc0. In particular, dimc0 = 1.

To see the possibilities, we can refer to the classification in §VI.10 and
see thatc0 �= 0 for the following cases and only these up to isomorphism:

(7.147)

g0 k0

su(p, q) su(p) ⊕ su(q) ⊕ R
so(2, n) so(n) ⊕ R
sp(n, R) su(n) ⊕ R
so∗(2n) su(n) ⊕ R

E III so(10) ⊕ R
E VII e6 ⊕ R

Conversely each of these cases corresponds to a groupG satisfying the
conditionZg0(c0) = k0, and henceG/K is Hermitian in each case.

If g0 is merely semisimple, then the conditionZg0(c0) = k0 forces the
center of the component ofk0 in each noncompact simple component of
g0 to be nonzero. The correspondingG/K is then the product of spaces
obtained in the preceding paragraph.
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10. Problems

1. Prove that the orthogonal groupO(2n) does not satisfy property (v) of a
reductive Lie group.

2. Let S̃L(2, R) be the universal covering group ofSL(2, R), and letϕ be the
covering homomorphism. Let̃K be the subgroup of̃SL(2, R) fixed by the
global Cartan involution�. ParametrizẽK ∼= R so that kerϕ = Z. Define
G̃ = S̃L(2, R) × R, and extend� to G̃ so as to be 1 in the second factor.
Within the subgroupR × R where� is 1, let D be the discrete subgroup
generated by(0, 1) and(1,

√
2), so thatD is central inG̃. DefineG = G̃/D.

(a) Prove thatG is a connected reductive Lie group with0G = G.
(b) Prove thatGss has infinite center and is not closed inG.

3. In G = SL(n, R), takeMp ApNp to be the upper-triangular subgroup.
(a) Follow the prescription of Proposition 7.76 to see that the proposition

leads to all possible full block upper-triangular subgroups ofSL(n, R).
(b) Give a direct proof forSL(n, R) that the only closed subgroups containing

Mp ApNp are the full block upper-triangular subgroups.
(c) Give a direct proof forSL(n, R) that no two distinct full block upper-

triangular subgroups are conjugate withinSL(n, R).

4. In the notation forG = SL(4, R) as in §VI.4, form the parabolic subgroup
M AN containing the upper-triangular group and corresponding to the subset
{ f3 − f4} of simple restricted roots.
(a) Prove that thea0 roots are±( f1 − f2), ±( f1 − 1

2( f3 + f4)), and
±( f2 − 1

2( f3 + f4)).
(b) Prove that thea0 roots do not all have the same length and do not form a

root system.

5. Show that a maximal proper parabolic subgroupM AN of SL(3, R) is cuspidal
and thatM �= M0Z M .

6. ForG equal to splitG2, show that there is a cuspidal maximal proper parabolic
subgroupM AN such that the set ofa0 roots is of the form{±η, ±2η, ±3η}.

7. The groupG = Sp(2, R) has at most four nonconjugate Cartan subalgebras,
according to §VI.7, and a representative of each conjugacy class is given in
that section.
(a) For each of the four, construct theM A of an associated cuspidal parabolic

subgroup as in Proposition 7.87.
(b) Use the result of (a) to show that the two Cartan subalgebras of noncom-

pact dimension one are not conjugate.

8. LetG be SO(n, 2)0.
(a) Show thatGC ∼= SO(n + 2, C).
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(b) Show thatZg0(c0) = k0.
(c) The isomorphism in (a) identifies the root system ofSO(n, 2) as of type

B(n+1)/2 if n is odd and of typeD(n+2)/2 if n is even. Identify which roots
are compact and which are noncompact.

(d) Decide on some particular good ordering in the sense of §9, and identify
the positive roots.

Problems 9–12 concern a reductive Lie groupG. Notation is as in §2.

9. Let a0 be maximal abelian inp0. The natural inclusionNK (a0) ⊆ NG(a0)

induces a homomorphismNK (a0)/Z K (a0) → NG(a0)/ZG(a0). Prove that
this homomorphism is an isomorphism.

10. Let t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra ofg0.
Prove that every element ofNK (a0) decomposes as a productzn, wheren is
in NK (t0 ⊕ a0) andz is in Z K (a0).

11. LetH be a Cartan subgroup ofG, and letsα be a root reflection inW (g, h).
(a) Prove thatsα is in W (G, H) if α is real orα is compact imaginary.
(b) Prove that ifH is compact andG is connected, thensα is not inW (G, H)

whenα is noncompact imaginary.
(c) Give an example of a reductive Lie groupG with a compact Cartan

subgroupH such thatsα is in W (G, H) for some noncompact imaginary
rootα.

12. Let H = T A be the global Cartan decomposition of a� stable Cartan
subgroup ofG. Let W (G, A) = NG(a0)/ZG(a0), and letM = 0ZG(a0).
Let W1(G, H) be the subgroup ofW (G, H) of elements normalizingit0 and
a0 separately.
(a) Show that restriction toa0 defines a homomorphism ofW1(G, H) into

W (G, A).
(b) Prove that the homomorphism in (a) is onto.
(c) Prove that the kernel of the homomorphism in (a) may be identified with

W (M, T ).

Problems 13–21 concern a reductive Lie groupG that is semisimple. Notation is
as in §2.

13. Let t0 ⊕ a0 be a maximally noncompactθ stable Cartan subalgebra ofg0,
impose an ordering on the roots that takesa0 before it0, let b be a Borel
subalgebra ofg containingt ⊕ a and built from that ordering, and let bar
denote the conjugation ofg with respect tog0. Prove that the smallest Lie
subalgebra ofg containingb and b̄ is the complexification of a minimal
parabolic subalgebra ofg0.

14. Prove thatNg0(k0) = k0.
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15. LetG have a complexificationGC. Prove that the normalizer ofg0 in GC is
a reductive Lie group.

16. LetG have a complexificationGC, letU ⊆ GC be the analytic subgroup with
Lie algebrak0 ⊕ ip0, and leth0 = t0 ⊕ a0 be the decomposition into+1 and
−1 eigenspaces of aθ stable Cartan subalgebra ofg0. Prove that expia0 is
closed inU .

17. Give an example of a semisimpleG with complexificationGC such that
K ∩ expia0 strictly containsKsplit ∩ expia0. Herea0 is assumed maximal
abelian inp0.

18. Suppose thatG has a complexificationGC and that rankG = rankK . Prove
that ZGC = ZG .

19. Suppose that rankG = rankK . Prove that any two complexifications ofG
are holomorphically isomorphic.

20. Show that the conclusions of Problems 18 and 19 are false forG = SL(3, R).

21. Suppose thatG/K is Hermitian and thatg0 is simple. Show that there are
only two ways to impose aG invariant complex structure onG/K .

Problems 22–24 compare the integer span of the roots with the integer span of the
compact roots. It is assumed thatG is a reductive Lie group with rankG = rankK .

22. Fix a positive system�+. Attach to each simple noncompact root the integer
1 and to each simple compact root the integer 0; extend additively to the group
generated by the roots, obtaining a functionγ �→ n(γ ). Arguing as in Lemma
6.98, prove thatn(γ ) is odd whenγ is a positive noncompact root and is even
whenγ is a positive compact root.

23. Making use of the functionγ �→ (−1)n(γ ), prove that a noncompact root can
never be an integer combination of compact roots.

24. Suppose thatG is semisimple, thatg0 is simple, and thatG/K is not Hermitian.
Prove that the lattice generated by the compact roots has index 2 in the lattice
generated by all the roots.

Problems 25–29 give further properties of semisimple groups with rankG =
rankK . Let t0 ⊆ k0 be a Cartan subalgebra ofg0, and form roots, compact and
noncompact.

25. K acts onp via the adjoint representation. Identify the weights as the non-
compact roots, showing in particular that 0 is not a weight.

26. Show that the subalgebras ofg containingk are of the formk ⊕ ⊕
α∈E gα for

some subsetE of noncompact roots.
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27. Suppose thatk ⊕ ⊕
α∈E gα is a subalgebra ofg. Prove that

k ⊕
∑
α∈E

(gα ⊕ g−α) and k ⊕
⊕

α∈(E∩(−E))

gα

are subalgebras ofg that are the complexifications of subalgebras ofg0.

28. Suppose thatg0 is simple. Prove that the adjoint representation ofK on p

splits into at most two irreducible pieces.

29. Suppose thatg0 is simple, and suppose that the adjoint representation ofK on
p is reducible (necessarily into two pieces, according to Problem 28). Show
that the centerc0 of k0 is nonzero, thatZg0(c0) = k0, and that the irreducible
pieces arep+ andp−.

Problems 30–33 concern the groupG = SU (n, n) ∩ Sp(n, C). In the notation of
§9, let� be the set of allZ ∈ Mnn(C) such that 1n − Z∗ Z is positive definite and
Z = Zt .

30. Using Problem 15b from Chapter VI, prove thatG ∼= Sp(n, R).

31. With the members ofG written in block form, show that (7.112) defines an
action ofG on� by holomorphic transformations.

32. Identify the isotropy subgroup ofG at 0 with

K =
{(

A 0
0 A

) ∣∣∣ A ∈ U (n)

}
.

33. The diagonal subalgebra ofg0 is a compact Cartan subalgebra. Exhibit a good
ordering such thatp+ consists of block strictly upper-triangular matrices.

Problems 34–36 concern the groupG = SO∗(2n). In the notation of §9, let� be
the set of allZ ∈ Mnn(C) such that 1n − Z∗ Z is positive definite andZ = −Zt .

34. With the members ofG written in block form, show that (7.112) defines an
action ofG on� by holomorphic transformations.

35. Identify the isotropy subgroup ofG at 0 with

K =
{(

A 0
0 A

) ∣∣∣ A ∈ U (n)

}
.

36. The diagonal subalgebra ofg0 is a compact Cartan subalgebra. Exhibit a good
ordering such thatp+ consists of block strictly upper-triangular matrices.

Problems 37–41 concern the restricted roots in cases whenG is semisimple and
G/K is Hermitian.

37. In the example of §9 withG = SU (n, m),
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(a) show that the rootsγj produced in Lemma 7.143 areγ1 = e1 − en+m ,
γ2 = e2 − en+m−1, . . . , γm = em − em+1.

(b) show that the restricted roots (apart from Cayley transform) always in-
clude all±γj and all 1

2(±γi ±γj ). Show that there are no other restricted
roots ifm = n and that± 1

2γi are the only other restricted roots ifm < n.

38. In the example of Problems 30–33 withG = SU (n, n) ∩ Sp(n, C), a group
that is shown in Problem 30 to be isomorphic toSp(n, R),
(a) show that the rootsγj produced in Lemma 7.143 areγ1 = 2e1, . . . , γn =

2en.
(b) show that the restricted roots (apart from Cayley transform) are all±γj

and all 1
2(±γi ± γj ).

39. In the example of Problem 6 of Chapter VI and Problems 34–36 above with
G = SO∗(2n),
(a) show that the rootsγj produced in Lemma 7.143 areγ1 = e1 + en,

γ2 = e2 + en−1, . . . , γ[n/2] = e[n/2] + en−[n/2]+1.
(b) find the restricted roots apart from Cayley transform.

40. For generalG with G/K Hermitian, suppose thatα, β, andγ are roots with
α compact and withβ andγ positive noncompact in a good ordering. Prove
thatα + β andα + β + γ cannot both be roots.

41. Let the expansion of a root in terms of Lemma 7.143 beγ = ∑s
i=1 ciγi + γ ′

with γ ′ orthogonal toγ1, . . . , γs .
(a) Prove for eachi that 2ci is an integer with|2ci | ≤ 3.
(b) Rule outci = − 3

2 by using Problem 40 and theγi string containingγ ,
and rule outci = + 3

2 by applying this conclusion to−γ .
(c) Rule outci = ±1 for somej �= i by a similar argument.
(d) Show thatci �= 0 for at most two indicesi by a similar argument.
(e) Deduce that each restricted root, apart from Cayley transform, is of one

of the forms±γi , 1
2(±γi ± γj ), or ± 1

2γi .
(f) If g0 is simple, conclude that the restricted root system is of type(BC)s

or Cs .

Problems 42–44 yield a realization ofG/K , in the Hermitian case, as a particularly
nice unbounded open subset�′ of P+. Let notation be as in §9.

42. In the special case thatG = SU (1, 1), let u be the Cayley transform matrix
1√
2

(
1 i
i 1

)
, let G ′ = SL(2, R), and let

�′ =
{(

1 z
0 1

) ∣∣∣ Im z > 0

}
.
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It is easily verified thatuGu−1 = G ′. Prove thatuG B = G ′u B = �′K C P−

and thatG ′ acts on�′ by the usual action ofSL(2, R) on the upper half plane.

43. In the general case as in §9, letγ1, . . . , γs be constructed as in Lemma 7.143.
For eachj , construct an elementuj in GC that behaves for the 3-dimensional
group corresponding toγj like the elementu of Problem 42. Putu = ∏s

j=1 uj .

(a) Exhibitu as inP+K C P−.
(b) Let a0 be the maximal abelian subspace ofp0 constructed in Lemma

7.143, and letAp = expa0. Show thatu Apu−1 ⊆ K C.
(c) Show for a particular ordering ona∗

0 thatuNpu−1 ⊆ P+K C if Np is built
from the positive restricted roots.

(d) Writing G = Np ApK by the Iwasawa decomposition, prove thatuG B ⊆
P+K C P−.

44. Let G ′ = uGu−1. Prove thatG ′u B = �′K C P− for some open subset�′

of P+. Prove also that the resulting action ofG ′ on �′ is holomorphic and
transitive, and identify�′ with G/K .

Problems 45–51 give further information about quasisplit Lie algebras and inner
forms, which were introduced in Problems 28–35 of Chapter VI. Fix a complex
semisimple Lie algebrag, and letN be the order of the automorphism group of
the Dynkin diagram ofg. If g is simple, thenN is 1, 2, or 6, but other values ofN
are possible for general complex semisimpleg.

45. Forg = sl(n, C) ⊕ sl(n, C) with n > 2, show thatsl(n, R) ⊕ su(n) and
su(n)⊕ sl(n, R) are isomorphic real forms ofg but are not inner forms of one
another.

46. Prove the following:
(a) The number of inner classes of real forms ofg is ≤ N .
(b) The number of isomorphism classes of quasisplit real forms ofg is ≤ N .

(c) If the number of isomorphism classes of quasisplit real forms equalsN ,
then the number of inner classes of real forms ofg equalsN and any two
isomorphic real forms ofg are inner forms of one another.

47. Under the assumption thatN = 1, deduce the following from Problem 46:
(a) Any two real forms ofg are inner forms of one another.
(b) The Lie algebrag has no real form that is quasisplit but not split.

48. Prove that Aut(gR)/Int(gR) has order 2N if g is simple.

49. Under the assumption thatN = 2, deduce from Problems 46 and 48 that any
two isomorphic real forms ofg are inner forms of one another.

50. By referring to the tables in Appendix C, observe that there are 2 nonisomor-
phic quasisplit real forms of each of the complex simple Lie algebras of types
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An for n > 1, Dn for n > 4, andE6. Conclude that there are two inner classes
of real forms in each case and that any two isomorphic real forms are inner
forms of one another.

51. This problem usestriality , which, for current purposes, refers to members
of Aut g/Int g of order 3 wheng is a complex Lie algebra of typeD4. The
objective is to show thatg = so(8, C) contains at least two distinct real forms
g0 andg′

0 that are isomorphic toso(5, 3) but that are not inner forms of one
another. Letg0 be a Lie algebra isomorphic toso(5, 3), let θ be a Cartan
involution, and introduce a maximally noncompact Cartan subalgebra given
in standard notation byh0 = a0 ⊕ t0. Choose an ordering that takesa0 before
it0. In the usual notation for a Dynkin diagram of typeD4, the simple roots
e1 − e2 ande2 − e3 are real, ande3 − e4 ande3 + e4 are complex. Introduce an
automorphismτ of so(8, C) that corresponds to a counterclockwise rotationτ

of theD4 diagram through 1/3 of a revolution. Putg′
0 = τ(g0). For a suitable

normalization of root vectors used in definingτ , show that the conjugations
σ andσ ′ of g with respect tog0 andg′

0 satisfyσ ′σ = τ−1, and conclude that
g0 andg′

0 are not inner forms of one another.

Problems 52–57 give further information about groups of real rank one beyond
that in §6. LetG be an analytic group whose Lie algebrag is simple of real
rank one, letθ be a Cartan involution ofg, let g = k ⊕ p be the corresponding
Cartan decomposition, leta be a (1-dimensional) maximal abelian subspace ofp,
letg = g−2β ⊕g−β ⊕a⊕m⊕gβ ⊕g2β be the restricted-root space decomposition,
and letmβ andm2β be the dimensions ofgβ andg2β . Select a maximal abelian
subspacet of m, so that the restricted roots are the restrictions toa of the roots
relative to the Cartan subalgebraa ⊕ t. Let g1 = g−2β ⊕ a ⊕ m ⊕ g2β and
k1 = g1 ∩ k. Finally let K , A, G1, andK1 be the analytic subgroups ofG with Lie
algebrask, a, g1, andk1, and letM be the centralizer ofA in K .

52. If α is a root, writeαR + αI with αR the restriction toα andαI the restriction
to t. The complex conjugate root is̄α = αR − αI . Supposeα is complex.
(a) Prove that 2〈α, ᾱ〉/|α|2 is 0 or−1.
(b) Prove that 2〈α, ᾱ〉/|α|2 = 0 implies |α|2 = 1

2|2αR|2 and that
2〈α, ᾱ〉/|α|2 = −1 implies|α|2 = |2αR|2.

53. Prove that ifmβ andm2β are both nonzero, then 2β is a root when extended
to be 0 ont. Conclude thatmβ is even andm2β is odd.

54. Prove that ifm2β �= 0 andα is a complex root with 2〈α, ᾱ〉/|α|2 = 0, thenαR

is ±2β.

55. Prove that ifmβ andm2β are both nonzero, theng has a Cartan subalgebra
that lies ink. Prove that this Cartan subalgebra may be assumed to be of the
form t ⊕ R(X + θ X) with X ∈ g2β , so that it lies ink1.
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56. Suppose thatm2β �= 0 and thatg has a Cartan subalgebra lying ink. Prove
the following:
(a) 2β is a root when extended to be 0 ont.
(b) If there are roots of two different lengths, then every noncompact root is

short.

57. Suppose thatG has a complexificationGC, thatm2β �= 0, and thatg has a
Cartan subalgebra lying ink1. Problem 10 of Chapter VI produces an element
gθ of G such that Ad(gθ ) = θ , and (7.54) produces a certain elementγ2β in
M . Prove the following:
(a) Ad(γ2β) = −1 ongβ andg−β .
(b) γ2β is in the center ofM , the center ofK1, and the center ofG1, but it is

not in the center ofK if mβ �= 0.
(c) gθ is in the center ofK1 and the center ofK , but it is not inM and is not

in the center ofG.






