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CHAPTER V

Finite-Dimensional Representations

Abstract. Inany finite-dimensional representation of a complex semisimple Lie algebra
g, a Cartan subalgebraacts completely reducibly, the simultaneous eigenvalues being
called “weights.” Once a positive system for the roats(g, ) has been fixed, one can
speak of highest weights. The Theorem of the Highest Weight says that irreducible finite-
dimensional representations are characterized by their highest weights and that the highest
weight can be any dominant algebraically integral linear functionay.offhe hard step
in the proof is the construction of an irreducible representation corresponding to a given
dominant algebraically integral form. This step is carried out by using “Verma modules,”
which are universal highest weight modules.

All finite-dimensional representations gfare completely reducible. Consequently the
nature of such a representation can be determined from the representdtiortioé space
of “n invariants.” The Harish-Chandra Isomorphism identifies the center of the universal
enveloping algebrbl (g) with the Weyl-group invariant members 0f(). The proof uses
the complete reducibility of finite-dimensional representations of

The center ofJ (g) acts by scalars in any irreducible representatiog, @fhether finite
dimensional or infinite dimensional. The result is a homomorphism of the cente€into
and is known as the “infinitesimal character” of the representation. The Harish-Chandra
Isomorphism makes it possible to parametrize all possible homomorphisms of the center
into C, thus to parametrize all possible infinitesimal characters. The parametrization is by
the quotient oh* by the Weyl group.

The Weyl Character Formula attaches to each irreducible finite-dimensional represen-
tation a formal exponential sum corresponding to the character of the representation. The
proof uses infinitesimal characters. The formula encodes the multiplicity of each weight,
and this multiplicity is made explicit by the Kostant Multiplicity Formula. The formula
encodes also the dimension of the representation, which is made explicit by the Weyl
Dimension Formula.

Parabolic subalgebras provide a framework for generalizing the Theorem of the Highest
Weight so that the Cartan subalgebra is replaced by a larger subalgebra called the “Levi
factor” of the parabolic subalgebra.

The theory of finite-dimensional representations of complex semisimple Lie algebras
has consequences for compact connected Lie groups. One of these is a formula for the order
of the fundamental group. Another is a version of the Theorem of the Highest Weight that
takes global properties of the group into account. The Weyl Character Formula becomes
more explicit, giving an expression for the character of any irreducible representation when
restricted to a maximal torus.
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274 V. Finite-Dimensional Representations

1. Weights

For most of this chapter we study finite-dimensional representations of
complex semisimple Lie algebras. As introduced in Example 4 of §l.5,
these are complex-linear homomorphisms of a complex semisimple Lie
algebrainto EndV, whereV is a finite-dimensional complex vector space.
Historically the motivation for studying such representations comes from
two sources—representationsadt2, C) and representations of compact
Lie groups. Representationsa#§2, C) were studied in 81.9, and the theory
of the present chapter may be regarded as generalizing the results of that
section to all complex semisimple Lie algebras.

Representations of compact connected Lie groups were studied in Chap-
ter IV. If G is a compact connected Lie group, then a representati@ of
on a finite-dimensional complex vector spateields a representation of
the Lie algebrai, onV and then a representation of the complexificagion
of go onV. The Lie algebray, is the direct sum of an abelian Lie algebra
and a semisimple Lie algebra, and the same thing is trye dfhrough
studying the representations of the semisimple pagt @fe shall be able,
with only little extra effort, to complete the study of the representations of
G at the end of this chapter.

The examples of representations in Chapter IV give us examples for the
present chapter, as well as clues for how to proceed. The easy examples,
apart from the trivial representation withacting as 0, are the standard
representations efi(n)© andso(n)®. These are obtained by differentiation
of the standard representations®J (n) and SO(n) and just amount to
multiplication of a matrix by a column vector, namely

Z1 Z;
pX)| + =X
Zn Zn

The differentiated versions of the other examples in 8IV.1 are more com-
plicated because they involve tensor products. Although tensor products
on the group level (4.2) are fairly simple, they become more complicated
onthe Lie algebralevel (4.3) because of the product rule for differentiation.
This complication persists for representations in spaces of symmetric or
alternating tensors, since such spaces are subspaces of tensor products.
Thus the usual representation®f (n) on /\'Cn is given simply by

CD(g)(é‘jl AREN /\Sjl) = ggh ARRRAN ggil’
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while the corresponding representatiorsofn)® on /\'(C” is given by
|
Pe(X)(gjy N+ NEgj) = Zajl Ao NEjy AN XE A Ejyy N NEj.
k=1

The second construction that enters the examples of §IV.1 is contra-
gredient, given on the Lie group level by (4.1) and on the Lie algebra level
by (4.4). Corollary A.24b, wittE = C", shows that the representation in
a spaceS'(E*) of polynomials may be regarded as the contragredient of
the representation in the spa8¥ E) of symmetric tensors.

The clue for how to proceed comes from the representation theory of
compact connected Lie grou@sin Chapter IV. Letgy be the Lie algebra
of G, and letg be the complexification. [T is a maximal torus irg5, then
the complexified Lie algebra oF is a Cartan subalgebtteof g. Insight
into g comes from roots relative t§ which correspond to simultaneous
eigenspaces for the action @&f according to (4.32). Ifb is any finite-
dimensional representation @fon a complex vector spadé then® may
be regarded as unitary by Proposition 4.6. Hebgeis unitary, and Corol-
lary 4.7 shows thab | splits as the direct sum of irreducible representations
of T. By Corollary 4.9 each of these irreducible representation of
1-dimensional. Thu¥ is the direct sum of simultaneous eigenspaces for
the action ofT, hence also for the action éf

At first this kind of decomposition seems unlikely to persist when
the compact groups are dropped and we have only a representation of
a complex semisimple Lie algebra, since Proposition 2.4 predicts only a
generalized weight-space decomposition. But a decomposition into si-
multaneous eigenspaces is nonetheless valid and is the starting point for
our investigation. Before coming to this, let us record that the proofs of
Schur’'s Lemma and its corollary in 8IV.2 are valid for representations of
Lie algebras.

Proposition 5.1 (Schur's Lemma). Suppose andg’ are irreducible
representations of a Lie algelyran finite-dimensional vector spacésand
V', respectively. IL : V — V’isalinear map such that(X)L = Lo(X)
forall X € g, thenL is one-one onto ot = 0.

PROOF We see easily that kérand imagd. are invariant subspaces of
V andV’, respectively, and then the only possibilities are the ones listed.

Corollary 5.2. Supposep is an irreducible representation of a Lie
algebrag on a finite-dimensional complex vector spatelf L : V — V
is a linear map such that(X)L = L¢(X) for all X € g, thenL is scalar.
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PROOF. Let A be an eigenvalue of. ThenL — Al is not one-one
onto, but it does commute with(X) for all X € g. By Proposition 5.1,
L—al =0.

Let g be a complex semisimple Lie algebra. Fix a Cartan subalgebra
h, and letA = A(g, h) be the set of roots. Following the notation first
introduced in Corollary 2.38, léf, be the real form of on which all roots
are real valued. LeB be any nondegenerate symmetric invariant bilinear
form on g that is positive definite ofy,. Relative toB, we can define
membersH, of ) for eacha € A. Thenho =), RH,.

Let ¢ be a representation on the complex vector spac®ecall from
8l1.2 that if A is in h*, we defineV, to be the subspace

{fveV](pH)—A(H)D"w =0forallH € hand somen = n(H, V)}.

If V, # 0, thenV, is called ageneralized weight spaceand A is a
weight. Members olV, are calledyeneralized weight vectors WhenV
is finite dimensionaly is the direct sum of its generalized weight spaces
by Proposition 2.4.

Theweight spacecorresponding ta. is

fveV |e(H)v=rH)vforall H € b},

i.e., the subspace &f; for whichn can be taken to be 1. Members of the
weight space are callegleight vectors The examples of weight vectors
below continue the discussion of examples in §IV.1.

EXAMPLES FORG = SU(n). Hereg = su(n)® = sl(n,C). As in
Example 1 of 8l1.1, we defing to be the diagonal subalgebra. The roots
are alle — e withi # j.

1) Let V consist of all polynomials irzy, ..., z,, Z,, ..., Z, homoge-
neous of degre®l. LetH = diag(ity, ..., it,) with ) t; = 0. Then the
Lie algebra representatignhas

d Z Z
w(H)P(Z,2)=d—rP e ). en|
Zn 2n r=0
e*irtlz eirt12
d A )
= dar P : ) :
e—irtnzn e,irtnzn -0

—Xn:( itz)" (2 2)+Xn:(it-z-)ap(z 7)
- j:1 1<) aZJ 4 j:l 14 azj b °
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If P is a monomial of the form
n
P(z2)=2-2Ze2' -0  with Y (K +I) =N,
j=1
then the above expression simplifies to

p(H)P = Z(I — k(it))P

Thus the monomiaP is a weight vector of Weigth”:0 (; —kpe.

2) LetV = A'C". Again letH = diag(ity, ..., it,) with Yt = 0.
Then the Lie algebra representatipimas

|
p(H)(Ej, A Ngj) =2811/\"'/\ Hej A2 Ng
.
=D () (e, A Ag).
k=1

Thuse, A --- A g is a weight vector of weight, _, &,

EXAMPLES FOR G = SO(2n + 1). Hereg = so(2n + )¢ =
so(2n + 1, C). As in Example 2 of 8lIl.1, we defing to be built from
the firstn diagonal blocks of size 2. The roots ate, and+e + g with
i # .

1) Letm = 2n+1, and letv consist of all complex-valued polynomials
onRR™ of degree< N. Let H; be the member df equal to _01 (1) in
the first 2-by-2 block and O elsewhere. Then the Lie algebra representation
¢ has

(5.3)
X1 COSI — X5 Sinr
i
X1 Xy Sinr + X, cosr ap 5P
p(HOPL : |=-P X3 = —Xo—(X) + Xg —(X).
« dr : 09Xy Xy
m .

Xm r=0
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For P(x) = (X; +i%)¥, ¢(H,) thus acts as the scalid. The other 2-by-2
blocks offh annihilate thisP, and it follows that(x; + i x,)* is a weight
vector of weight—ke;. Similarly (x; — i X,)¥ is a weight vector of weight
+ke1.

ReplacingP in (5.3) by (X;j_1 £ X;;) Q and making the obvious adjust-
ments in the computation, we obtain

P(H)(Xgj—1Ei1 %)) Q) = (Xoj_1EiX%5)(@(H) F&(H))Q for H € b.

Sincexyj_1 4 iXy; andXyj_; — iXy; together generate,;_, andx,; and
sincep(H) acts as 0 oxs, . ;, this equation tells us how to computeH )
on any monomial, hence on any polynomial.

It is clear that the subspace of polynomials homogeneous of dégree
is an invariant subspace under the representation. This invariant subspace
is spanned by the weight vectors

(X1 + %) (X1 — %) (X3 + 1 Xa)*® - - (Xon_1 — inn)I"XEﬁH,
where) ' ok; + > ,1; = N. Hence the weights of the subspace are all
expressiond ", (I —k)g with Y (ki + >, 1; = N.

2) LetV = A'C2*L. The element; of f in the above example acts on
g1 + ig, by the scalar-i and one; — g5 by the scalar-i. Thuse; +ies
ande; —i &, are weight vectors ift®"*! of respective weights-e; and+-e;.

Also &,,,1 has weight 0. Then the product rule for differentiation allows
us to compute the weights }1\' C>+1 and find that they are all expressions

:I:ellj::l:elr
with .
] i and {rgl ifl <n
<...<
s I f<2nt1—1 ifl>n

Motivated by Proposition 4.59 for compact Lie groups, we say that a
memberx of h* is algebraically integral if 2(A, «)/|«|? is in Z for each
o € A.

Proposition 5.4. Let g be a complex semisimple Lie algebra, fdte a
Cartan subalgebra, l&t = A(g, h) be the roots, and léfp = ), _, RH,.
If ¢ is a representation gfon the finite-dimensional complex vector space
V, then

(&) ¢(h) acts diagonably oW, so that every generalized weight vector
is a weight vector an¥ is the direct sum of all the weight spaces,

(b) every weight is real valued dyy and is algebraically integral,

(c) roots and weights are related pyg.)V, € Viiq-
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PROOF

(a, b) If ¢ is a root andg, andE_, are nonzero root vectors farand
—a, then{H,, E,, E_,} spans a subalgehsg of g isomorphic tcs((2, C),
with 2Ja|~2H, corresponding th = (; 701). Then the restriction af to
sl, is a finite-dimensional representationstf, and Corollary 1.72 shows
thate(2|a|~2H,) is diagonable with integer eigenvalues. This proves (a)
and the first half of (b). If, is a weight and € V; is nonzero, then we
have just seen that(2|a|2H,)v = 2|a| (), a)v is an integral multiple
of v. Hence 2, o) /|«|? is an integer, and is algebraically integral.

(c) LetE, be ing,, letv be inV,, and letH be inh. Then

p(H)p(E)v = ¢(E)e(H)v + ¢([H, E.Dv
= MH)p(Ex)v + a(H)e(E)v
= A+ a)(H)e(E)v.

Hencep(E,)visinV,_,.

2. Theorem of the Highest Weight

In this section lefg be a complex semisimple Lie algebra, lebe a
Cartan subalgebra, l&t = A(g, h) be the set of roots, and 18/ (A) be
the Weyl group. Letyy be the real form ofy on which all roots are real
valued, and leB be any nondegenerate symmetric invariant bilinear form
ong that is positive definite oh. Introduce an ordering ity in the usual
way, and letlT be the resulting simple system.

If ¢ is arepresentation gfon afinite-dimensional complex vector space
V, then the weights o¥ are inhg by Proposition 5.4b. The largest weight
in the ordering is called thiighest weightof ¢.

Theorem 5.5(Theorem of the Highest Weight). Apart from equivalence
the irreducible finite-dimensional representatignsf g stand in one-one
correspondence with the dominant algebraically integral linear functionals
A on b, the correspondence being thais the highest weight af,. The
highest weight. of ¢, has these additional properties:

(&) A depends only on the simple systdinand not on the ordering
used to definél,

(b) the weight spac¥, for A is 1-dimensional,

(c) each root vectoE, for arbitrarya € A*™ annihilates the members
of V,, and the members &f,_are the only vectors with this property,
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(d) every weight ofp, is of the forma — Z:zl n;c; with the integers

> 0 and theay; in IT,

(e) each weight spadé, for ¢, has dimv,,, = dimV, for all w in the
Weyl groupW(A), and each weight has|u| < |A| with equality
only if u is in the orbitW(A)A.

REMARKS.

1) Because of (e) the weights in the oM A) X are said to bextreme
The set of extreme weights does not depend on the choille of

2) Much of the proof of Theorem 5.5 will be given in this section after
some examples. The proof will be completed in 83. The examples continue
the notation of the examples in §1.

EXAMPLES.
1) With g = sl(n, C), let V consist of all polynomials irzy, ..., z,,
andz, ..., z, homogeneous of total degré¢ The weights are all ex-

pressions) |, (I; — kg with 37, (k +1j) = N. The highest weight
relative to the usual positive systemN®;. The subspace of holomorphic
polynomials is an invariant subspace, and it has highest weiblg,. The
subspace of antiholomorphic polynomials is another invariant subspace,
and it has highest weigliiNe;.

2) With g = sl(n, C), letV = /\'(C”. The weights are all expres-
sionsZ'k:l g,. The highest weight relative to the usual positive system is

|
2 ke &

3) With g = so(2n + 1, C), let the representation space consist of all
complex-valued polynomials iry, .. ., X2,.1 homogeneous of degréé.

The weights are all expressiops’_, (I; —k)g withko+ Y7, (k +1)) =
N. The highest weight relative to the usual positive systehéas

4) With g = so(2n + 1,C), letV = A'C>*, If | < n, the weights
are all expressionse, £---+ ¢, with j; <--- < j, andr <1, and the
highest weight relative to the usual positive systelﬁjgl &.

PROOF OF EXISTENCE OF THE CORRESPONDENCEety be anirreducible
finite-dimensional representation gfon a spacé/. The representation
¢ has weights by Proposition 2.4, and weAdbe the highest. Thehis
algebraically integral by Proposition 5.4b.

If «isin A, thenr +« exceeds and cannot be aweight. This € g,
andv € V, imply ¢(E,)v = 0 by Proposition 5.4c. This proves the first
part of (c).
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Extendy multiplicatively to be defined on all df (g) with ¢(1) = 1 by
Corollary 3.6. Since is irreducible ¢ (U (g))v = V foreachv #0in V.
Let B4, ..., Bx be an enumeration af*, and letH,, ..., H, be a basis of
h. By the Poincae=Birkhoff-Witt Theorem (Theorem 3.8) the monomials

(5.6) E® - E¥ H™ - HME} - Ep

form a basis ofJ (g). Let us applyp of each of these monomials toin
V.. TheEy’s give 0, theH’s multiply by constants (by Proposition 5.4a),
and theE_z’s push the weight down (by Proposition 5.4c). Consequently
the only members o¥/, that can be obtained by applyiggof (5.6) tov
are the vectors ofv. ThusV, is 1-dimensional, and (b) is proved.

The effect ofp of (5.6) applied ta in V, is to give a weight vector with
weight

k
(5.7) = Gp;,
j=1

and these weight vectors spah Thus the weights (5.7) are the only

weights ofp, and (d) follows from Proposition 2.49. Also (d) implies (a).
To prove the second half of (c), let¢ V, satisfyp(E,)v = 0 for all

«a € AT. Subtracting the component W), we may assume thathas 0

component inV,. Let Ao be the largest weight such thahas a nonzero

component inV;,, and letv’ be the component. ThenE,)v’ = O for all

a € AT, andgp(h)v’ < Cv'. Applying ¢ of (5.6), we see that

V=) Co(E_p)% - @(E_p)*v.

Every weight of vectors on the right side is strictly lower thgrand we
have a contradiction with the fact thiabccurs as a weight.

Next we prove that is dominant. Lete be inA*, and formH_, E/, and
E’, asin (2.26). These vectors span a Lie subalgehraf g isomorphic

l°>. Forv #0in

to sl(2, C), and the isomorphism carrig¢$, to h = (0 o

V,, the subspace d&f spanned by all
@(E )Pp(H)%(E,) v

is stable undesl,, and (c) shows that it is the same as the span of all
»(E’)Pv. On these vectorg(H/) acts with eigenvalue

2(\,
(h— pa)(H)) = <|a|§‘> _2p,
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and the largest eigenvaluegfH, ) is therefore 2., o) /|« |?. By Corollary
1.72 the largest eigenvalue forin any finite-dimensional representation
of s1(2, C) is > 0, andA is therefore dominant.

Finally we prove (e). Fixx € A, and formsl, as above. Proposition
5.4a shows tha¥ is the direct sum of its simultaneous eigenspaces under
and hence also under the subspacedad. Inturn, since kew commutes
with sl,, each of these simultaneous eigenspaces under ikenvariant
undersl, and is completely reducible by Theorem 1.67.

ThusV is the direct sum of subspaces invariant and irreducible under
sl, @ kera. Let V' be one of these irreducible subspaces. Singe
sl, @ kera, V' is the direct sum of its weight spaceg: = P (V' N V,).

If v andv’ are two weights occurring iN’, then the irreducibility under
sl, @ kera forcesy’” — v = na for some integen.

Fix a weightu, and consider such a spaZé The weights ofV’ are
w+na, and these are distinguished from one another by their valuklg.on
By Corollary 1.72, dingV' NV,) = dim(V’' N V;,,,). Summing oveN’,
we obtain dinVv, = dimV,,,. Since the root reflections generd&A),
it follows that dimV, = dimV,,, for all w € W(A). This proves the first
half of (e).

For the second half of (), Corollary 2.68 and the result just proved show
that there is no loss of generality in assuming thas dominant. Under
this restriction onu, let us use (d) to write. = u + Z::1 n;«; with all
n; > 0. Then

| |
P = (P 4o e) + D e [
i=1 i=1
|
> |ul®+ | Znioei]2 by dominance of.
i=1
The right side is> | |? with equality only ifz::1 nia; = 0. In this case

n=A.

PROOF THAT THE CORRESPONDENCE IS ONENE. Let ¢ and ¢’ be
irreducible finite dimensional ot andV’, respectively, both with highest
weighti, and regar@g andy’ as representations bf(g). Letv, andv, be
nonzero highest weight vectors. Fom® ¢’ onV @ V'. We claim that

S=(p® ¢)U(g)(vo & vp)

is an irreducible invariant subspace\oip V'.
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CertainlySisinvariant. Lefl € Sbe anirreducible invariant subspace,
and letv @ v’ be a nonzero highest weight vector. leoe A™, we have

0=(p®¢)NEHw B V) =9(E)v D ¢'(E)V,

and thusp(E,)v = 0 andy’'(E,)v' = 0. By (C),v = cvg andv’ = C'vj,
Hencev@v' = cvo®C'vg. Thisvector by assumptionis¢iU (g)) (voDvy).
When we apply of (5.6) tov,® vy, the Eg’s give 0, while theH’s multiply
by constants, namely

(¢ ® ¢")(H)(vo ® vp) = p(H)vo @ ¢'(H)vg = A(H)(vo @ vy).

Also theE_;'s push weights down by Proposition 5.4c. We conclude that
¢ =c. HenceT = S, andSis irreducible.

The projection ofSto V commutes with the representations and is not
identically 0. By Schur's Lemma (Proposition 5.%)® ¢'|s is equivalent
with ¢. Similarly it is equivalent withy’. Hencep and¢’ are equivalent.

To complete the proof of Theorem 5.5, we need to prove an existence
result. The existence result says that for any dominantalgebraically integral
A, there exists an irreducible finite-dimensional representatiai g with
highest weight. We carry out this step in the next section.

3. Verma Modules

In this section we complete the proof of the Theorem of the Highest
Weight (Theorem 5.5): Under the assumption th& algebraically inte-
gral, we give an algebraic construction of an irreducible finite-dimensional
representation gf with highest weight..

By means of Corollary 3.6, we can identify representationg wfith
unital leftU (g) modules, and henceforth we shall often drop the nhame of
the representation when working in this fashion. The idea is to consider
all U (g) modules, finite dimensional or infinite dimensional, that possess
a vector that behaves like a highest weight vector with weighAmong
these we shall see that there is one (called a “Verma module”) with a
universal mapping property. A suitable quotient of the Verma module will
give us our irreducible representation, and the main step will be to prove
that it is finite dimensional.
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We retain the notation of 82, and we wrlte= {«;, ..., o }. In addition
we let

(58) aeAt

Thenn, n~, andb are Lie subalgebras gf andg = b ®n~ as a direct sum
of vector spaces.

Let the complex vector spadébe a unital leflU (g) module. We allow
V to be infinite dimensional. Because of Corollary 3.6 we have already
defined in 81 the notions “weight,” “weight space,” and “weight vector”
for V. Departing slightly from the notation of that section, \ét be the
weight space for the weight. The sum_ V, is necessarily a direct sum.
As in Proposition 5.4c, we have

(59) ga (V/L) g V/H-a

if e isin A andu isinh*. Moreover, (5.9) and the root-space decomposition
of g show that

(5.10) g(@vﬂ) - (@vﬂ)
neb* neb*

A highest weight vectorfor V is by definition a weight vectow £ 0
withn(v) = 0. The seh(v) willbe 0 as soon ag,v = Oforthe rootvectors
E, of simple rootsy. In fact, we easily see this assertion by expanding any
positivee in terms of simple roots &5, nj«; and proceeding by induction
on the level}; n;.

A highest weight moduleis aU (g) module generated by a highest
weight vector. “Verma modules,” to be defined below, will be universal
highest weight modules.

Proposition 5.11.Let M be a highest weight module faf(g), and let
v be a highest weight vector generativlg Suppose is of weighti. Then
(@ M =U®m)v,
(b) M = P, M, with each M, finite dimensional and with
dmM, =1,
(c) every weight ofM is of the forma — Z:zl N With thee;’s in T1
and with eachn; an integer= 0.
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PROOF

(a) We havgy = n~ @ h @ n. By the Poincae=Birkhoff-Witt Theorem
(Theorem 3.8 and (3.14) (g) = Um)HU(H)U (). On the vectow,
U (n) andU (h) act to give multiples ob. ThusU (g)v = U (n")v. Since
v generate, M = U (g)v =Un")wv.

(b, ) By (5.10),p M,, is U(g) stable, and it contains. SinceM =
U(gv, M = M,. By (@, M = Un)v, and (5.9) shows that any
expression

(5.12) E% ---E% v  withall g e A"

is a weight vector with weight = A — g8, — - - - — Gk Bk, from which (c)
follows. The number of expressions (5.12) leading to this finite, and
sodimM,, < co. The number of expressions (5.12) leading ie 1, from
v itself, and so dinM, = 1.

Before defining Verma modules, we recall some facts about tensor prod-
ucts of associative algebras. (A special case has already been treated in
81.3.) Let M; and M, be complex vector spaces, and ktand B be
complex associative algebras with identity. Suppose Mhais a right B
module andM, is a left B module, and suppose thit; is also a leftA
module in such a way thgam,)b = a(m;b). We define

M; ®c M,

M M, = ,
18 Mo subspace generated by @ilb ® m, — m; ® bm,

and we letA act on the quotient ba(m; ® m,) = (am;) ® m,. Then
M; ®g M, is a left A module, and it has the following universal mapping
property: Whenevey: : M; x M, — E is a bilinear map into a complex
vector spacee such thaty (m;b, m;) = ¥ (my, bmy), then there exists a
unique linearmag : M;®gM, — E suchthaty(m;, m,) = ¢ (m;@my).
Now letA be inh*, and make into a leftU (b) moduleC; _; by defining

Hz=(-98)(H)z forHebh, ze C

(5.13) Xz=0 for X € n.

(Equation (5.13) defines a 1-dimensional representatiob, @nd thus
C,_s becomes a lett) (b) module.) The algebrd (g) itself is a rightU (b)
module and a leftJ (g) module under multiplication, and we define the
Verma module V (1) to be the leftU (g) module

V() =U(g) Que C-s.
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Proposition 5.14.Let A be inh*.

() V(1) is a highest weight module undek(g) and is generated by
1 ® 1 (thecanonical generato), which is of weight. — 3.

(b) The map ofU (n™) into V(1) given byu — u(l1® 1) is one-one
onto.

(c) If M is any highest weight module undg(g) generated by a highest
weight vectorv # 0 of weighti — §, then there exists one and only one
U(g) homomorphlsm// of V(1) into M such thatxp(l ® 1) = v. The
mapw is onto. Alsow is one-one if and only iti £ 0 in U (n™) implies
u(v) #0in M.

PrOOE
(a) ClearlyV () = U (g)(1® 1). Also

HI®D)=H®1=19H@L) =Gx-8)H)(1®1l forHeh
X1®1)=X®1=1® X(1) =0 for X e n,

and so I® 1 is a highest weight vector of weight— 3.

(b) By the Poincae=Birkhoff—Witt Theorem (Theorem 3.8 and (3.14)),
we haveU(g) = U(n™) ®c U(b), and this isomorphism is clearly an
isomorphism of lefJ (n~) modules. Thus we obtain a chain of canonical
left U (n™) module isomorphisms

V) =U(@) ®up C=Unm ) @ U(D) ®uw C
=UMm )& U®) Qup O)=Um)@cC=UMm),
and (b) follows.
(c) We consider the bilinear map &f(g) x C,_s into M given by

(U, 2) = u(zv). In terms of the action dfJ (b) onC, _;, we check foib in
h and then fob in n that

U, b(2)) = ub(2)v) = zu((b(1)v)
and (ub, 2) =~ ub(zv) = zub(v) = zu((b(1))v).

By the universal mapping property, there exists one and only one linear
map N
¥ U(g) Qup Cs > M

such thatu(zv) = x//(u ® z) forallu € U(g) andz € C, i.e., such that
u(v) = z//(u(1® 1)). This condition says thazt is aU (g) homomorphism
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and that I® 1 maps taw. Hence existence and uniqueness follow. Clearly
Y is onto.

Letu be inU (n"). If u(v) = Owithu # 0, theny (u(1® 1)) = 0 while
u(l® 1) # 0, by (b). Hencey is not one-one. Conversely ¥ is not
one-one, then Proposition 5.11a implies that there exigtdJ (n™) with
uz0andy(u® 1l =0. Then

u@) =u@Ae D) =Yulel) =yuel) =0
This completes the proof.

Proposition 5.15.LetA beinh*, andletvV (1), = @#H V(A),. Then
every propel (g) submodule o¥ (1) is contained iV (1).. Consequently
the sumS of all properU (g) submodules is a propér(g) submodule, and
L(A) = V(1)/Sis an irreducibleU (g) module. MoreoverL (1) is a
highest weight module with highest weight- §.

ProoF. If N is aU (h) submodule, theN = 5, (N NV (2),). Since
V (1),_s is 1-dimensional and generatési) (by Proposition 5.14a), the
A — & term must be 0 in the sum fo¥ if N is proper. ThusN € V(1),.
HenceSis proper, and. (1) = V (A)/Sis irreducible. The image of® 1
in L(A) is not 0, is annihilated by, and is acted upon bly according to
A —§8. ThusL (1) has all the required properties.

Theorem 5.16.Suppose that € h* is real valued ofy, and is dominant
and algebraically integral. Then the irreducible highest weight module
L(A 4+ 8) is an irreducible finite-dimensional representationgofvith
highest weight..

REMARKS. Theorem 5.16 will complete the proof of the Theorem of
the Highest Weight (Theorem 5.5). The proof of Theorem 5.16 will be
preceded by two lemmas.

Lemma5.17.In U (s[(2, C)), [e, "] = nf"1(h — (n - 1)).
PROOF. Let
Lf =leftby f inU(sl(2, C))

Rf =right by f
adf = Lf — Rf.
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ThenRf = Lf — adf, and the terms on the right commute. By the
binomial theorem,

n

(Rf)y'e=Y" (T) (LE)"i(—adf)ie

i=0

nn—-1)

=(Lf)"e+n(Lf)"(—adfe+ (LF)"?(—ad f)%e

since(ad f )®e = 0, and this expression is

(n-1
2

— (Lf)"e+nfth 4+ fr2(—2f)

= (Lf)"e+nf"1(h— (n—1)).

Thus
[e, "] = (Rf)"e— (LT)"e=nf""*(h — (n — 1)).

Lemma 5.18.For general complex semisimpgielet A be inp*, leta be
a simple root, and suppose tmat= 2(), «)/|x|? is a positive integer. Let
v,_s be the canonical generatoréii), and letM be theU (g) submodule
generated byE_,)™v,_;, whereE_, is a nonzero root vector for the root
—a. ThenM is isomorphic toV (s,1).

PROOF. The vectow = (E_,)™v,_s is not 0 by Proposition 5.14b. Since
SA=A—ma,visiNV(A);_s-my = V(X)g:-s. Thus the result will follow
from Proposition 5.14c if we show th&;v = 0 wheneverE; is a root
vector for a simple rooB. Forg # «, [Eg, E_,] = 0 sincep — « is not a
root (Lemma 2.51). Thus

Eﬂv = Eﬁ(Efa)mUxfa = (Efa)mEﬂUxﬂs =0.

For 8 = «, let us introduce a root vectdt, for « so that E,, E_,] =
2|a|2H,. The isomorphism (2.27) identifies sgéh, E,, E_,} with
sl(2, C), and then Lemma 5.17 gives

Ea(Efa)mkaﬁ = [Eou ETQ] Uy—s
=M(E_)" (2| ?H, — (M — 1)v; s

=m (L‘z“) —(m- 1)) S

|o |
=0,

the last step following from Proposition 2.69.
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PROOF OFTHEOREM 5.16. Letv, # 0 be a highest weight vector in
L(x + 8), with weight). We proceed in three steps.
First we show: For every simple roat E" v, = O for all n suffi-

ciently large. HereE_, is a nonzero root vector fora. In fact, for

n = W (which is positive by Proposition 2.69), the member
E",(1®1) of V(A + ) lies in a propeiJ (g) submodule, according to
Lemma 5.18, and hence is in the submodslie Proposition 5.15. Thus
E" v, =0inL( + ).

Second we show: The set of weights is stable under the Weyl group
W = W(A). In fact, letae be a simple root, leil, be the copy ofl((2, C)
given bysl, = sparfH,, E,, E_,}, setv® = E' v,, and letn be the
largest integer such that” = 0 (existence by the first step above). Then
Cv©@ + ... + Cv™ is stable undesl,. The sum of all finite-dimensional
U (sl,) submodules thus contain® = v,, and we claim it igy stable.

In fact, if T is a finite-dimensiondl (s[,) submodule, then

gT ={)_Xt| X egandt e T}
is finite dimensional and foY € sl, andX € g we have
YXt = XYt +[Y, X]t = Xt' +[Y, X]t € gT.

SogT is sl, stable, and the claim follows.

Since the sum of all finite-dimensiondl(sl,) submodules of (A + §)
is g stable, the irreducibility oL (1 4 §) implies that this sum is all of
L(A+3). By Corollary 1.73L (A +6) isthe direct sum of finite-dimensional
irreducibleU (sl,) submodules.

Let 1 be a weight, and lét= 0 be inV,. We have just shown thaties
in a finite direct sum of finite-dimensional irreducitil&s(,) submodules.
Letus writet =) . _, t with t; in aU (sl,) submoduleT; andt; # 0. Then

iel

Y Ht = Hot = u(Hot = D i(Ht,,

and so t = t for eachi € 1.

If (1, ) > 0, we know that(E_, )2/’ £ 0 from Theorem 1.66.
Hence(E_, )2/t £ 0, and we see that

2(u, o)

|o]?

n— o =S,
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is a weight. If(x, @) < 0 instead, we know thaE,)2=/=t, £ 0 from
Theorem 1.66. HencgE, ) 2=/l2*t £ 0, and so

2, a)
|a|2

/"l’_

is a weight. If{u,a) = 0, thens,u = w. In any cases,u is a weight.
So the set of weights is stable under each refletidior « simple, and
Proposition 2.62 shows that the set of weights is stable wter

Third we show: The set of weights af(A + §) is finite, andL (A + 8) is
finite dimensional. In fact, Corollary 2.68 shows that any linear functional
on ho is W conjugate to a dominant one. Since the second step above
says that the set of weights is stable undgrthe number of weights is at
most|W| times the number of dominant weights, which are of the form
A— Z::l n;«; by Proposition 5.11c. Each such dominant form must satisfy

(h.8) = > oy, 8),

i=1

and Proposition 2.69 shows thatn; is bounded; thus the number of dom-
inant weights is finite. Theh (A 4 §) is finite dimensional by Proposition
5.11b.

4. Complete Reducibility

Let g be a finite-dimensional complex Lie algebra, andUgi) be
its universal enveloping algebra. As a consequence of the generalization
of Schur's Lemma given in Proposition 5.19 below, the ceztgy) of
U (g) acts by scalars in any irreducible unital |&f{g) module, even an
infinite-dimensional one. The resulting homomorphigm Z(g) — C
is the first serious algebraic invariant of an irreducible representatign of
and is called thénfinitesimal character. This invariant is most useful in
situations whereZ(g) can be shown to be large, which will be the case
wheng is semisimple.

Proposition 5.19(Dixmier). Letg be a complex Lie algebra, and Mt
be an irreducible unital left) (g) module. Then the only (g) linear maps
L : V — V are the scalars.
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PrROOF. The spacé& = End,,(V, V) is an associative algebra ovéy
and Schur’s Lemma (Proposition 5.1) shows that every nonzero element of
E has a two-sided inverse, i.€,is a division algebra.

If v # 0isinV, then the irreducibility implies that = U (g)v. Hence
the dimension ol is at most countable. Since every nonzero element
of E is invertible, theC linear mapL +— L(v) of E into V is one-one.
Therefore the dimension & overC is at most countable.

Let L be inE. Arguing by contradiction, suppose thais not a scalar
multiple of the identity. Form the field extensidi(L) < E. SinceC is
algebraically closed.. is not algebraic ove€. ThusL is transcendental
overC. In the transcendental extensi@iX), the set of al( X — ¢)~* for
c € Cislinearly independent, and consequently the dimensid( &) is
uncountable. Thereforé(L) has uncountable dimension, and so dBes
contradiction.

Let us introduceadjoint representations on the universal enveloping
algebraU (g) wheng is a finite-dimensional complex Lie algebra. We
define a representation ad@bn U (g) by

(adX)u = Xu —uX for X € gandu € U (g).

(The representation property follows from the fact tiat— Y X = [X, Y]
in U(g).) Lemma 3.9 shows that &l carriesU, (g) to itself. Therefore ad
provides for alln a consistently defined family of representationg @in
Un(9)-

Eachg € Intg gives an automorphism gf. Composing with the
inclusion ofg into U (g), we obtain a complex-linear map gfinto U (g),
and it will be convenient to call this map Agl). This composition has the
property that

Ad@I[X, Y] =[Ad(9)X, Ad(9)Y]
= (Ad(9) X)(Ad(9)Y) — (Ad(9)Y)(Ad(g) X).
By Proposition 3.3 (withA = U (g)), Ad(g) extends to a homomorphism
of U(g) into itself carrying 1 to 1. Moreover

(5.20) Adg:)Ad(g,) = Ad(0:02)

because of the uniqueness of the extension and the validity of this formula
onUy(g). Therefore each Ad)) is an automorphism dfl (g). Because
Ad(g) leavedJ; (g) stable, it leaves eadl, (g) stable. Its smoothnessin
onU,(g) implies its smoothness igon U, (g). Thus we obtain for alh a
consistently defined family Ad of smooth representationG an U, (g).
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Proposition 5.21. Let g be a finite-dimensional complex Lie algebra.
Then

(a) the differential at 1 of Ad obJ,(g) is ad, and
(b) oneachJ,(g), Ad(expX) = e forall X € g.

PROOF. For (a) letu = X ... X* be a monomial i, (g). ForX in g,
we have

Ad(expr X)u = (Ad(expr X) X)X - - - (Ad(expr X) X,k

since each A@h) for g € Int g is an automorphism &f (g). Differentiating
both sides with respect taand applying the product rule for differentiation,
we obtainat =0

d
ar Ad(expr X)u|r=0

s id |
= Z Z Xt X Xi'_l(— Ad(expr X)Xi) oxiki‘J Xl X

n
io1 =1 dr r=

= (adX)u.

Then (a) follows from Proposition 1.91, and (b) follows from Corollary
1.85.

Proposition 5.22.1f g is a finite-dimensional complex Lie algebra, then
the following conditions on an elemeatof U (g) are equivalent:

(a) uisinthe centeZ(yg),

(b) uX = Xuforall X € g,

(c) eXu=uforall X e g,

(d) Ad(g)u =uforallge Intg.

ProoF. Conclusion (a) implies (b) trivially, and (b) implies (a) since
g generated) (g). If (b) holds, then(adX)u = 0, and (c) follows by
summing the series for the exponential. Conversely if (c) holds, then we
can replaceX by r X in (¢) and differentiate to obtain (b). Finally (c)
follows from (d) by takingg = exp X and applying Proposition 5.21b,
while (d) follows from (c) by (5.20) and Proposition 5.21b.

Inthe casethatis semisimple, we shall construct some explicit elements
of Z(g) and use them to extend to all semisimptbe theorem of complete
reducibility proved fos[(2, C) in Theorem 1.67. To begin with, here is an
explicit element ofZ(g) wheng = s1(2, C).
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EXAMPLE. g = s[(2, C). LetZ = h?+ef + fewithh, e, f asin(1.5).
The action ofZ in a representation already appeared in Lemma 1.68. We
readily check thaZ is in Z(g) by seeing thaZ commutes withh, e, and
f. The elemenk is a multiple of the Casimir elemef defined below.

For a general semisimplg let B be the Killing form. (To fix the
definitions in this section, we shall not allow more general invariant forms
in place ofB.) Let X; be any basis of overC, and letX; be the dual basis
relative toB, i.e., the basis with

B(Xi, X)) = §;.
TheCasimir element is defined by
(5.23) Q=) B(X.X)XX.
i

Proposition 5.24.1n a complex semisimple Lie algebgathe Casimir
elementQ is defined independently of the ba¥Xsand is a member of the
centerZ(g) of U (g).

PROOF. Let a second basiX/ be given by means of a nonsingular
complex matrix(a;;) as

(5.25a) Xi =" am Xn.
m
Let (by;) be the inverse of the matrig;;), and define
(5.25b) Xi=> "X,
|
Then

B()~(i/, X)) = Zbilamj B(Xi, Xm) = Zbilalj = &ij.
I,m |

ThusX is the dual basis oK. The element to consider is

Q=" B(X[. X)X X]
a

N
= Z Z Zami Ay j i1 by B(Xin, er)% )~(I’

mm LI

- Z Z Smi S B(Xm, me))’Z| )’Zy

mm |l

= Z B(X, Xi) X X,
E

= Q.
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This proves thaf2 is independent of the basis.
Let g be in Intg, and take the second basis toXfe= gX; = Ad(g) X;.
Because of Proposition 1.119 the invariance of the Killing form gives

(5.26)  B(Ad(9)Xi. X)) = B(Xi, Ad(@) X)) = B(X;, X)) = &,

and we conclude thal/ = Ad(g)X;. Therefore

Ad(@S =Y B(Xi. X)Ad(9)(Xi X))
ij
= > " B(Ad(@X;. Ad(@)X))X/X; by Proposition 1.119

i
= " B(X/, X)X/ X
i]
= Z B(Xi, X)X X; by change of basis
_ o
By Proposition 5.22Q2 is in Z(g).

ExampLE. g = sl(2,C). We take as basis the elemelfitse, f as
in (1.5). The Killing form has already been computed in Example 2 of
§1.3, and we find thalt = th, &= 1 f, f = ze. Then

Q = B(h, h)h? + B(e, f)&f + B(f,e) f&
—8h? 4+ 48 + 4f&
(5.27) =ih*+ jef + 1fe,

which is‘—l1 of the elemenZ = %hz + ef + fewhose action in a represen-
tation appeared in Lemma 1.68.

Lety be anirreducible finite-dimensional representatiog of a space
V. Schur's Lemma (Proposition 5.1) and Proposition 5.24 imply fhat
acts as a scalar iW. We shall compute this scalar, making use of the
Theorem of the Highest Weight (Theorem 5.5). Thus let us introduce a
Cartan subalgebrig, the setA = A(g, h) of roots, and a positive system
AT = A%(g, h).



4. Complete Reducibility 295

Proposition 5.28. In the complex semisimple Lie algebgalet by be
the real form ofy on which all roots are real valued, and {ét;}|_, be an
orthonormal basis dij relative to the Killing formB of g. Choose root
vectorsk, so thatB(E,, E_,) = 1foralla € A. Then

(@ Q=Y H2+ Y,y E.E,

(b) © operates by the scal@k|? + 2(x, ) = |» + 8> — |§]? in an
irreducible finite-dimensional representatiorgaff highest weight
A, wheres is half the sum of the positive roots,

(c) the scalar value by whicl2 operates in an irreducible finite-
dimensional representation gfis nonzero if the representation
is not trivial.

PROOF. N

(@) SinceB(h, E,) = 0 foralla € A, H; = H;. Also the normaliza-
tion B(E,, E_,) = 1 makesg, = E_,. Then (a) follows immediately
from (5.23).

(b) Let ¢ be an irreducible finite-dimensional representationy @fith
highest weighty, and letv, be a nonzero vector of weight Using the
relation [E,, E_,] = H, from Lemma 2.18a, we rewrit@ from (a) as

Q= ZH2+ZE E_Q+ZE_QE

aeAT aeAT
_ZH2+ > H,+2) ELE,
aeAt aeAt

:ZH2+2H5+ZZ E ,E,.

acAt
When we appl\2 to v, and use Theorem 5.5¢, the last term gives 0. Thus

|
Qu; = ) A(H)? v, + 20 (Hy)v, = (A7 + 24, 8))v.

i=1

Schur's Lemma (Proposition 5.1) shows tkaacts by a scalar, and hence
that scalar must bk—?»l2 +2(A, 8).

(c) We have(r, 8) = 3 3,4+ (%, ). Sincex is dominant, this is= 0
with equality only if (A a) = O for all o, i.e., only if . = 0. Thus the
scalar in (b) is> |A|? and can be 0 only if is O.
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Theorem 5.29.Lety be a complex-linear representation of the complex
semisimple Lie algebrg on a finite-dimensional complex vector space
V. ThenV is completely reducible in the sense that there exist invariant
subspacel, ..., U, of V suchthaV = U; & ---®U, and the restriction
of the representation to eath is irreducible.

REMARKS. The proof is very similar to the proof of Theorem 1.67. It
is enough by induction to show that any invariant subspade V has an
invariant complemenrit)’. For the case thai has codimension 1, we shall
prove this result as alemma. Then we return to the proof of Theorem 5.29.

Lemma 5.30. Let ¢ : g — EndV be a finite-dimensional representa-
tion, and lelJ C V be an invariant subspace of codimension 1. Then there
is a 1-dimensional invariant subspaaesuch thaty = U @ W.

PROOF

Case 1. Suppose did = 1. Form the quotient representatipnon
V /U, with dim(V/U) = 1. This quotient representation is irreducible of
dimension 1, and Lemma 4.28 shows that it is 0. Consequently

p(g)V CU and p(@UuU =0.

Hence ifY = [ X4, X5], we have

P(Y)V C o(XD)9e(X2)V + ¢(X2)p(X)V
C 9(XDU + (XU = 0.

Since Corollary 1.55 giveg = [g, g], we conclude thap(g) = 0. There-
fore any complementary subspacdXavill serve asw.

Case 2. Suppose thap(-)|y is irreducible and dind > 1. Since
dimV/U = 1, the quotient representation is 0 apth)V < U. The
formula for<2 in (5.23) then shows th& (V) < U, and Proposition 5.28c
says that2 is a nonzero scalar od. Therefore dintker2) = 1 and
U N (ker2) = 0. Since2 commutes withp(g), kerQ2 is an invariant
subspace. Takingy = ker2, we haveV = U & W as required.

Case 3. Suppose thap(-)|y is not necessarily irreducible and that
dimU > 1. We induct on dinV. The base case is divh = 2 and is
handled by Case 1. When divh > 2, letU; € U be an irreducible
invariant subspace, and form the quotient representations on

U/U;, cV/U;
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with quotientV /U of dimension 1. By inductive hypothesis we can write
V/U; =U/U; @ Y/Uy,

whereY is an invariant subspaceihand dimY/U,; = 1. Case 1 or Case 2
is applicable to the representatigr - )|y and the irreducible invariant
subspacdJ;. ThenY = U; & W, whereW is a 1-dimensional invariant
subspace. Sinc&/ C Y andY NU C U,, we find that

WNnU=WnY)NnU=Wn{(YnNnuU)cwnu,; =0.
ThereforeV = U @ W as required.

PROOF OFTHEOREM5.29. Letyp be a representation gfon M, and let
N # 0 be an invariant subspace. Put

V ={y e EndM | y(M) € N andy|y is scala}.

Linear algebra shows th&t is nonzero. Define a linear functienfrom g
into EndEndM) by

o(X)y = o(X)y — ye(X) fory € EndM andX € g.

Checking directly thatr[ X, Y] ando (X)o (Y) — o (Y)o (X) are equal, we
see that is a representation @fon EndM.

We claim that the subspade € EndM is an invariant subspace under
o. Infact, lety (M) € N andy|y = A1. Intheright side of the expression

o(X)y = e(X)y —ye(X),
the first term carried! to N sincey carriesM to N andg(X) carriesN
to N. The second term carried into N sincep(X) carriesM to M and
y carriesM to N. Thuso (X)y carriesM into N. On N, the action of
o (X)y is given by

o (X)y () = (X)y(n) — ye(X)(N) = 1p(X)(N) — 2p(X)(n) = 0.
ThusV is an invariant subspace.

Actually the above argument shows also that the subdpaife/ given
by

U={yeV|y=0o0nN}

is an invariant subspace. Clearly diiU = 1. By Lemma 5.30V =
U @ W for a 1-dimensional invariant subspa®é = Cy. Herey is a
nonzero scalakl on N. The invariance of means that(X)y = 0
since 1-dimensional representations are 0 by Lemma 4.28. Thegefore
commutes withp(X) for all X € g. But then ke is a nonzero invariant
subspace df1. Sincey is nonsingular oMN (being a nonzero scalar there),
we must haveVl = N @ kery. This completes the proof.
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Let us return to the notation introduced before Proposition 5.28, taking
h to be a Cartan subalgebra, = A(g, h) to be the set of roots, and
AT = A*(g, b) to be a positive system. Defimeandn~ as in (5.8).

Corollary 5.31. Let a finite-dimensional representationgbe given
on a spacé#/, and letV" be the subspace afinvariants given by

Vi={veV | Xv=0forall X € n}.

Then the subspadé” is aU (h) module, and

@ V =V"@®nV asU (h) modules,

(b) the natural map/* — V/(n~V) is an isomorphism ofJ (h)
modules,

(c) theU (h) moduleV" determines th& (g) moduleV up to equiv-
alence; the dimension d¥" equals the number of irreducible
constituents o, and the multiplicity of a weight inv" equals
the multiplicity inV of the irreducible representation gfvith that
highest weight.

PrROOF To see tha¥" is aU (h) module, letH be inh andv be inV™".
If Xisinn,thenX(Hv) = H(Xv)+[X, HJv = 0+ X'v with X"inn, and
it follows thatHwv isinV". ThusV" is aU () module. Similarlyn~V is a
U (h) module. Conclusion (b) is immediate from (a), and conclusion (c) is
immediate from Theorems 5.29 and 5.5. Thus we are left with proving (a).

By Theorem 5.29V is a direct sum of irreducible representations, and
hence there is no loss of generality for the proof of (a) in assumingthat
isirreducible, say of highest weight With V irreducible, choose nonzero
root vectorskg, for every rootx, and letH,, ..., H, be a basis ofj. By the
Poincae-Birkhoff-Witt Theorem (Theorem 3.8)) (g) is spanned by all
elements

E - EgH, --HE, E.,

where they; andpg; are positive roots, not necessarily distinct. SiNces
irreducible,V is spanned by all elements

E - E gty HEy - Eyv

with v in V,. SinceV, is annihilated byh, such an element is 0 unless
r = 0. The spac®/, is mapped into itself by, and we conclude that is
spanned by all elements

E_g - Epv
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withvinV,. If p > 0, such an elementis iV and has weight less than
A, while if p=0, itisinV,. Consequently

V = V)L @n_V.

Theorem 5.5¢ shows thet” is just thex weight space o¥, and (a) follows.
This completes the proof of the corollary.

We conclude this section by giving a generalization of Proposition 5.24
that yields many elements ifi(g) wheng is semisimple. We shall use this
result in the next section.

Proposition 5.32. Let ¢ be a finite-dimensional representation of a
complex semisimple Lie algebgg and letB be the Killing form ofg. If
X; is a basis ofg overC, let X; be the dual basis relative . Fix an
integern > 1 and define

as a member dfl (g). Thenzis independent of the choice of basisand
is a member of the cent&t(g) of U (g).

PROOF. The proof is modeled on the argument for Proposition 5.24. Let
a second basiX/ be given by (5.25a), with dual basks given by (5.25b).
The element to consider is
7= TreX, - X)X/ X

il...

Z Z Z Amyiy *** Bmgin 1T O (K, - -+ X))

i1
my,..., my 1,000 i, in

x b b, )?|1"')’Z|n

|1|1 : nln

= D> ) S S, TrO( Ky -+ X)Xy, - X,

my,..., My lg,..., In

=) TreX, - X)X, - X,

This proves thar is independent of the basis.
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The groupG = Intg has Lie algebraadg)®, and its simply connected
coverG is a simply connected analytic group with Lie algelpfa Re-
garding the representatignof g as a representation gf, we can lift it to
a representatiod® of G sinceG is simply connected. Fig € G. Inthe
earlier part of the proof let the new basis Ke= Ad(g) X;. Then (5.26)
shows thaX! = Ad(g)X;. Consequently Ad)z is

Z Tro(X, - Xi )Ad(@) (X, - - - Xi.)

.....

Z TH(@ (@@ (Xi, - Xi ) D@ HX - X/,

.....

ZTr((dxg)qo(X.l)@(g) . (@(@e(X,)P(g) NX - X

.....

= Z Tr(pAd@)X) - - - 9(Ad(@ X N X, - X!
= Z Tr(p((Ad(@)X,,) - - - (Ad(@ X )N X, - X!
= Trlp(X) - XX X

and this equals, by the result of the earlier part of the proof. By Proposition
5.22,zisin Z(g).

5. Harish-Chandra Isomorphism

Let g be a complex semisimple Lie algebra, andfjetA = A(g, b),
W = W(A), andB be as in 82. Defing{ = U (). Sincep is abelian,
the algebrd coincides with the symmetric algeb&dh). By Proposition
A.20b every linear transformation @f into an associative commutative
algebraA with identity extends uniquely to a homomorphisnit¢into A
sending 1 into 1. Consequently

(i) W acts oriH (since it map$ intoh € H, withA*(H) = A(H* ),

(i) H may be regarded as the space of polynomial functiong*on
(because it is in bh*, A is linear fromp into C and so extends to a
homomorphism of{ into C; we can think of. on a member o
as the value of the member &f at the point).
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LetHY = U ()Y = S(h)™W be the subalgebra of Weyl-group invariants
of H. In this section we shall establish the “Harish-Chandra isomorphism”
y . Z(g) — HY, and we shall see an indication of how this isomorphism
allows us to work with infinitesimal characters whgis semisimple.

The Harish-Chandra mapping is motivated by considering how an ele-
mentz € Z(g) acts in an irreducible finite-dimensional representation with
highest weight.. The action is by scalars, by Proposition 5.19, and we
compute those scalars by testing the action on a nonzero highest-weight
vector.

First we use the PoincarBirkhoff-Witt Theorem (Theorem 3.8) to
introduce a suitable basis f(g) for making the computation. Introduce
a positive systemA™ = A*(g, h), and definen, n—, b, ands as in (5.8). As
in (5.6), enumerate the positive roots@s. . ., Sk, and letH,, ..., H, be
a basis oy overC. For each rootr € A, let E, be a honzero root vector.
Then the monomials

(5.33) E®, - E¥

H™ .- H™ Ef?ll E,?:
are a basis dfJ (g) overC.

If we expand the central elementn terms of the above basis bf(g)
and consider the effect of the term (5.33), there are two possibilities. One
is that somep; is > 0, and then the term acts as 0. The other is thap;all
are 0. In this case, as we shall see in Proposition 5.34b belogy,axié O.
TheU (h) part acts on a highest weight vecigrby the scalar

A(H)™ - A(H)™,

and that is the total effect of the term. Hence we can compute the effect of
z if we can extract those terms in the expansion relative to the basis (5.33)
such that only th&J (h) part is present. This idea was already used in the
proof of Proposition 5.28b.

Thus define

P=Y U@E, and N=) E,U(@.
aeAt aEAT
Proposition 5.34.

@U@ =He P+ N),
(b) Any member ofZ(g) has itsP + A component irP.
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PROOF

(a) The factthal) (g) = H+ (P+N) follows by the Poinca=Birkhoff-—
Witt Theorem (Theorem 3.8) from the fact that the elements (5.33) span
U (g). Fixthe basis of elements (5.33). For any nonzero eleméht@re,
with @ € AT, write out theU (g) factor in terms of the basis (5.33), and
consider a single term of the product, say

(5.35) CE%, - E% H™..-H™E} .. ENE..

The factorEf - -- ESE, is in U(n) and has no constant term. By the
Poincae—Birkhoff-Witt Theorem, we can rewrite it as a linear combination
of termsEy, - -- Ej withry +--- +r > 0. Putting

v Ok my m
CE*,Bl"' EfﬂkHl HI

in place onthe left of each term, we see that (5.35) is a linear combination of
terms (5.33) withp; +- - - + pc > 0. Similarly any member of/is a linear
combination of terms (5.33) with; + --- 4+ g« > 0. Thus any member
of P+ Nis a linear combination of terms (5.33) wifh + --- + px > 0
orgy+---+ g« > 0. Any member ofH{ hasp; +---+ p« = 0 and
0.+ - - - + g« = 0 in every term of its expansion, and thus (a) follows.

(b) In terms of the representation adQiig) given in Proposition 5.21,
the monomials (5.33) are a basisWfg) of weight vectors for ag, the
weight of (5.33) being

(536) —CI1/31 -t qkﬂk + pl:Bl +-+ pkﬂk-

Any memberz of Z(g) satisfies(adH)z = Hz—zH = 0forH € §

and thus is of weight 0. Hence its expansion in terms of the basis (5.33)
involves only terms of weight 0. In the proof of (a) we saw that any member
of P+ AN has eachtermwitp; +---+ pc > 0orqg,+---+g¢ > 0. Since

the p’s andq’s are constrained by the condition that (5.36) equal 0, each
term must have botp; +---+ px > Oandg; + - - - + g« > 0. Hence each
termis inP.

Let y; be the projection oZ(g) into theH term in Proposition 5.34a.
Applying the basis elements (5.33) to a highest weight vector of a finite-
dimensional representation, we see that

A(y.(2)) is the scalar by whiclz acts in an irreducible

(5.37) finite-dimensional representation of highest weight
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Despite the tidiness of this result, Harish-Chandra found that a slight ad-
justment ofy, leads to an even more symmetric formula. Define a linear
maprz, : h — H by
(5.38) 7.(H)=H —§(H)1,
and extend, to an algebra automorphism &f by the universal mapping
property for symmetric algebras. Thiarish-Chandra map y is defined
by
(5.39) Yy =Ta0Y,
as a mapping oZ (g) into H.

Any element. € h* defines an algebra homomorphisamH — C with
A(1) = 1, because the universal mapping property of symmetric algebras
allows us to extend : h — C to H. In terms of this extension, the maps
y andy, are related by
(5.40a) My(@) =0 -0y, () forze Z(g), »ebh"

If instead we think ofH{ as the space of polynomial functions b this
formula may be rewritten as

(5.40b) Y@ A) =y (2) (A —§) forze Z(g), » € b*.
We define
(5.41) x.(2) = A(y(2) forze Z(g),

sothaty; isamap oZ(g) intoC. This map has the following interpretation.

Proposition 5.42.Forx € h*andz € Z(g), x,(2) is the scalar by which
Z operates on the Verma modulgh).

REMARK. In this notation we can restate (5.37) as follows:
X.+5(2) is the scalar by whichacts in an irreducible finite-
dimensional representation of highest weight

PROOF. Write z =y, (z) + p with p € P. If v;_; denotes the canonical
generator ol (1), then

(5.43)

v, = Y (DV_s + PUi_s
= =@
= My (@) V-5 by (5.40)
= X (Dvis by (5.41)

Foru € U(g), we therefore haveuv,_; = uzv,_; = x,(2)uv,_s. Since
V(1) = U (g)v,_s, the result follows.
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Theorem 5.44(Harish-Chandra). The mappingn (5.40) is an algebra
isomorphism ofZ (g) onto the algebr& of Weyl-group invariants i,
and it does not depend on the choice of the positive syaém

EXAMPLE. g = s[(2, C). LetZ = sh?+ef 4 fewithh, e, f asin(1.5).
We noted in the first example in 84 thatis in Z(sl(2, C)). Let us agree
thate corresponds to the positive raot Thenef = fe+[e, f] = fe+h
implies

Z=ih+ef + fe=(3Gh°+h) +2fec HoP.

Hence
Now §(h) = J« (é 701) =1, and so
.(hy=h -1

Thus

y(Z2)=3th-1°+ (-1 =1in*-1
The nontrivial element of the 2-element Weyl group act3#doy sendindh
to —h, and thus we have a verification thatZ) is invariant under the Weyl
group. Moreover it is now clear that = C[h?] and thaty (C[Z]) =

C[h?]. Theorem 5.44 therefore implies thats((2, C)) = C[Z].

The proof of Theorem 5.44 will occupy the remainder of this section
and will take five steps.

PROOF THATImagey) € HW.
Since members dff are determined by the effect of alle h* on them,
we need to prove that

Mw(y(2) =1y (2)
forall» € h*andw € W. In other words, we need to see that everg W
has

(5.45) (W™ (¥ (2) = My (2)),

and it is enough to handle equal to a reflection in a simple root by
Proposition 2.62. Moreover each side for fixed a polynomial im., and
thus it is enough to prove (5.45) fardominant integral.

Form the Verma modul® (1). We know from Proposition 5.42 that
acts inV (1) by the scala.(y(2)). Also z acts inV(s,A) by the scalar
(A (¥ (2)). Since 24, «)/|a|? is an integer> 0, Lemma 5.18 says that
V (s,2) isisomorphic to a (clearly nonzerd)g) submodule o¥/ (). Thus
the two scalars must match, and (5.45) is proved.
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PROOF THAT y DOES NOT DEPEND ON THE CHOICE ORA™.

Let A be algebraically integral and dominant far", let V be a finite-
dimensionalirreducible representatiorgoefith highest weight (Theorem
5.5), and lety be the infinitesimal character &f. Temporarily, let us drop
the subscript from y’. By Theorem 2.63 any other positive system of
roots is related ilA* by a member ofVW(A). Thus letw be inW(A),
and lety” andy be defined relative taa ™™~ = wA™. We are to prove that
y = y. The highest weight o¥ relative towA* is wi. If zisin Z(g),
then (5.37) gives

(5.46) My'(2) = x(2) = wr(Y'(2).
Sincey (2) is invariant undelV(A),
(WA +wé)(y(2) = (A + 0¥ (2) =1 (2)
= wAi(Y'(2) = (wAr + wé) (¥ (2)),

the next-to-last step following from (5.46). Singéz) andy (z) are poly-
nomial functions equal at the lattice points of an octant, they are equal
everywhere.

PROOF THAT y IS MULTIPLICATIVE .
Sincer, is an algebra isomorphism, we need to show that

(5.47) Yo(ZaZo) = v (Z) v, (22).

We have

212, — ¥, () v () = 21(Z2 — v (Z) + Vo (Z2) (21 — v, (Z2)),
which is inP, and therefore (5.47) follows.

PROOF THAT y IS ONE-ONE.

If y(2) = 0, theny, (z) = 0, and (5.37) shows thatacts as 0 in every
irreducible finite-dimensional representatiorgoBy Theorem 5.29 acts
as 0 in every finite-dimensional representatiory.of

In the representation ad gionU,,(g), U,_1(g) is an invariant subspace.
Thus we obtain a representation adgan U, (g)/U,_1(g) for eachn. Itis
enough to show that i € U (g) acts as 0 in each of these representations,
thenu = 0. Specifically let us expandlin terms of the basis

(5.48) E® - EX H™- - H™EL - ER
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of U(g). We show that if ad is 0 on all elements
(5.49) HMEjR - Ej modU™-"171(g),

thenu = 0. (Here as usuaé, is half the sum of the positive roots.)

In (5.48) letm’ = ijzl(pj + q;). The effect of a monomial term of
on (5.49) will be to produce a sum of monomials, all of whéséactors
have total degree m — m'. There will be one monomial whogé factors
have total degree- m— m’, and we shall be able to identify that monomial
and its coefficient exactly.

Let us verify this assertion. Kising, the action of ack on amonomial
Xy Xpis

(5.50)
@AdX)(Xy--+ Xp) = XXq -+ Xy — Xq -+ Xp X

=[X, Xq]Xo - X+ Xq[ X, Xo] Xz X+ - 4+ Xp- -+ Xpoa[ X, Xi]

If Xi,..., X, are root vectors or members pfand if X has the same
property, then so does eacK,[X;]. Moreover, Lemma 3.9 allows us to
commute a bracket into its correct position in (5.49), modulo lower-order
terms.

Consider the effect of al.., when applied to an expression (5.49). The
result is a sum of terms as in (5.50). WhenEgd acts on theH part,
the degree of thé{ part of the resulting term goes down by 1, whereas if
adE., acts on aroot vector, the degree of igart of the resulting term
goes up by 1 or stays the same. When somid;aaitts on an expression of
the form (5.49), the degree of tfié part of each term stays the same.

Thus when ad of (5.48) acts on (5.49), every term of the resultfzert
of degree= m — m', and degree= m — m'’ arises only when all al.,’s
act on one of the factoid;. To compute exactly the term at the end with
part of degree= m — m', let us follow this process step by step. When we
apply adEg, to (5.49), we get a contribution ¢f g, §) from each factor
of H; in (5.49), plus irrelevant terms. Thus &g, of (5.49) gives

M(—Bn, §)HEf: - Ef* + irrelevant terms
By the time we have applied all of &’ - - - ES) to (5.49), the result is
(5.51)

k
>R pi+r1 Petr i
—B;. ) ) H, =P E}™ ... Ep"“+irrelevant terms
(m— ij)'(]l_[ “
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Next we apply adH, to (5.51). The main term is multiplied by the
constantzrzl(pj +1r;)B;(H). Repeating this kind of computation for the
other factors from a@), we see that agH,™ - -- H™) of (5.51) is

k |

S (L) (S @+ )’

j=1 i=1

(5.52)

x H"=PERTL L EPT | rrelevant terms

Finally we apply adE_g4 to (5.52). The main term gets multiplied by
(m—>" p;){B«. 8), another factor oH; gets dropped, and a factor Bf 4,
appears. Repeating this kind of computation for the other factoks ad
we see that aE?, --- E¥, ) of (5.52) is

! s K m
(7m Tm/)! (1_[ =P (B, 8)Dj+qj) 1_[ (; (P + 1B (Hi)>

j=1 i=1
(5.53) x E®, - EX HM™ES™ . ERT 4 irrelevant terms

This completes our exact computation of the main term of ad of (5.48)
on (5.49).

We regardn and the;’s fixed for the present. Among the termapfve
consider the effect of ad of only those witti as large as possible. From
these, the powers of the root vectors in (5.53) allow us to reconstruct the
p;’s andg;’s. The question is whether the different termsidér whichm'’
is maximal and thep;’s andq;’s take on given values can have their main
contributions to (5.53) add to 0. Thus we ask whether a finite sum

k m;
> Cmn [T( 20 (o + 1B (HD)
j=1

my,...,m i=1

can be O for all choices of integers> 0.
Assume it is O for all such choices. Then

3 ]l_[ (Xk:zjﬂj(Hi))m' _0
=1

ms,...,m i=1

for all complexz, ..., z. Hence
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for all u € h*, and we obtain

and it follows that all the terms under consideration iwere 0. Thug is
one-one.

PROOF THAT y IS ONTO.

To prove thaty is ontoH"Y, we need a supply of members &fg).
Proposition 5.32 will fulfill this need. Let{, andH," be the subspaces
of H and’H" of elements homogeneous of degredit is clear from the
Poincag-Birkhoff-Witt Theorem that

(5.54) y(Z(g) NUn(@) < P HY.
d=0

Let be any dominant algebraically integral membeljgfand letp, be
the irreducible finite-dimensional representatiorgafith highest weight
A. Let A()L) be the weights of,, repeated as often as their multiplicities.
In Proposition 5.32 leK; be the ordered basis dual to one consisting of
a basisH,, ..., H, of y followed by the root vector&,. The proposition
says that the following elementis in Z(g):

Z= Z Trgox()’zil cee iin)Xil cee Xin
= Z Trou(H, - - H)H, - H, + Z Trou (X, - X)X, -+ X,
il,m.in. jl ----- jn,
all <l at least one-|

Inthe second sum on the right side of the equality, some facy, of - X,
is a root vector. Commuting the factors into their positions to match terms
with the basis vectors (5.33) tf(g), we see that

Xj, -+ Xj, =u modU,_;(g) withu e P+ W\,

J1

-1
ie., X, X, =0 mod(éDHd@(P-l—N)).
d=0
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Application ofy; to z therefore gives

The automorphism, of H affects elements only modulo lower-order terms,
and thus

n—-1
y@= Y Tro(F, - AH, - H, mod (D)
i1, d=0

all <l
~ ~ n-1
= > > wF) - uFOH, - H, mod (D Ha).
WEA) i1,..in, d=0
all <|
Now
(5.55) > w(H)H = H,
i
since
<ZM(|'~|i)Hi, |_~|j>:/1«(|:v|j)=<HM,|:v|j) for all j.
i
Thus

y@= > (H)" mod(ém).
d=0

HEA(R)

The set of weights ob,, together with their multiplicities, is invariant
underW by Theorem 5.5e. Hencg’, .., (H,)" is in H", and we can
write

n—-1
(5.56) y@= 3 (H)" mod(@HgV).
d=0

HEAR)

To prove thay is ontoH", we show that the image pfcontaingpy,_, HY’
for everym. Form = 0, we havey (1) = 1, and there is nothing further to
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prove. Assuming the result fon = n — 1, we see from (5.56) that we can
choosez; € Z(g) with

(5.57) yZ—z)= Y (H)"

X

To complete the induction, we shall show that

(5.58) the elements ~ (H,)" span™,)’.

neA)

Let Ap(2) be the set of dominant weights of, repeated according
to their multiplicities. Since again the set of weights, together with their
multiplicities, is invariant undew, we can rewrite the right side of (5.58)
as

(5.59) = Y c Y (Hy",

neAD (L) weW

wherec,;1 is the order of the stabilizer @f in W. We know thatp, contains
the weighth with multiplicity 1. Equation (5.57) shows that the elements
(5.59) are in the image af in K. To complete the induction, it is thus
enough to show that

(5.60) the elements (5.59) spaf}’.

We do so by showing that

the span of all elements (5.59) includes all
(5.61a) elementsy  _,,(H,,)" for v dominant and
algebraically integral,

Hy' is spanned by all elemen}s, _,,(H,.,)"

(5.61b) for v dominant and algebraically integral.

To prove (5.61a), note that the set of dominant algebraically integral
in a compact set is finite because the set of integral points forms a lattice
in the real linear span of the roots. Hence it is permissible to induct on
[v]. The trivial case for the induction i®| = 0. Suppose inductively
that (5.61a) has been proved for all dominant algebraically integséth
[v] < |Al. If uis any dominant weight ap, other tham, then|u| < |A]
by Theorem 5.5e. Thus the expression (5.59) involvirig the sum of
G Y ,ew(Hy)" and a linear combination of terms for which (5.61a) is
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assumed by induction already to be proved. Sigice: 0, (5.61a) holds
for )" .w(H.:)". This completes the induction and the proof of (5.61a).
To prove (5.61b), it is enough (by summing owere W) to prove that

H, is spanned by all elementsi,)" for

(5.61c) v dominant and algebraically integral,

and we do so by induction an The trivial case of the induction is= 0.
Forl<i < dimb, we can choose dominantalgebraically integral forms
Ai such thatfA;} is aC basis forh*. Since the;’'s spanh*, the H;, spanh.
Consequently the™ degree monomials in thid,, spant,,.
Assuming (5.61c) inductively fon — 1, we now prove it fom. Let
v, ..., vy be dominant and algebraically integral. It is enough to show
that the monomiaH,, - - - H,, is a linear combination of elemen¢si,)"
with v dominant and algebraically integral. By the induction hypothesis,

(Hvl e HVn—l) an = Z C, H§71 an’

and it is enough to show thai"*H, is a linear combination of terms
(H,4r,)" withr > 0in Z. By the invertibility of a Vandermonde matrix,
choose constants, . .., ¢, with

1 1 1 ... 1 C1 0
1 2 3 - n C2 1
1 2 ¥ ... n G|=1]0
1 2n—1 3n—1 . nn—l Cn 0

Then

n n
Y oG (He) =Y ¢ (Ho+ jH)"
j=1 j=1

ThusH"*H, has the required expansion, and the induction is complete.
This proves (5.61c), and consequentlys onto . This completes the
proof of Theorem 5.44.
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For g complex semisimple we say that a unital Mftg) moduleV “has
an infinitesimal character” iZ(g) acts by scalars iV. In this case the
infinitesimal character of V is the homomorphisny : Z(g) — C with
x (2) equal to the scalar by whichacts. Proposition 5.19 says that every
irreducible unital leftJ (g) module has an infinitesimal character.

The Harish-Chandra isomorphism allows us to determine explicitly all
possible infinitesimal characters. Ligbe a Cartan subalgebragfIf A is
in b*, thena is meaningful on the elememt(z) of H. Earlier we defined
in (5.41) a homomorphism; : Z(g) — C by x,.(2) = A(y(2)).

Theorem 5.62.1f g is a reductive Lie algebra aridis a Cartan subal-
gebra, then every homomorphisma(g) into C sending 1 into 1 is of the
form yx, for somei € h*. If A’ andx are inh*, theny,, = x, if and only if
A’ andx are in the same orbit under the Weyl grotip= W(g, h).

PROOF Let x : Z(g) — C be a homomorphism with (1) = 1. By
Theorem 5.44y carriesZ(g) ontoH", and therefore (ker x) is an ideal
in K. Let us check that the corresponding ideak Hy (kery) in ‘H is
proper. Assuming the contrary, suppase. .., U, in H andH,, ..., H,
in y(kery) are such thad_, uiH; = 1. Application ofw € W gives
> i (wu)H = 1. Summing orw, we obtain

Z(Z wui)Hi —|W|.

i weW

Since ", . wui is in W, we can applyx o y ! to both sides. Since
x (1) =1, theresultis

3 (v (3 ) ek = .

weW

But the left side is 0 since (y~1(H;)) = 0 for all i, and we have a
contradiction. We conclude that the idéak proper.

By Zorn’s Lemma, extend to a maximal ideal of . The Hilbert
Nullstellensatz tells us that there is some h* with

I'={H e H | A(H) = 0}.
Sincey(kery) C | C I, we havey; (2) = A(y(2)) = 0 forall z € kery.

In other wordsy (z) = x,(2) for z € kery and forz = 1. Thesez's span
HY, and hencer = y;.
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If A" andA are in the same orbit undgv, say)’ = wa, then the identity
w(y(2)) = y(2) for w € W forces

X2 =X (@) =Ny (@) =w Ny @) =ry@) = x2.

Finally suppose.’ and are not in the same orbit undé/. Choose a
polynomial p on h* that is 1 onWi and 0 onW.'. The polynomialp on
h* is nothing more than an elemektof 7 with

(5.63) wi(H)=1 and wA'(H)=0 forallw e W.

The element of H with H = |W|1Y", _,, wH isin’#" and satisfies the
same properties (5.63) &s. By Theorem 5.44 we can choozes Z(g)
with y(2) = H. Theny, (2) = A(y(2) = A(H) = 1 while x;.(2) = 0.
Hencey, # x.

Now suppose that is aU (g) module with infinitesimal charactey.
By Theorem 5.62y = yx, for somex € h*. We often abuse notation and
say thatv hasinfinitesimal character 1. The element is determined up
to the operation of the Weyl group, again by Theorem 5.62.

EXAMPLES.

1) LetV be a finite-dimensional irreduciblé (g) module with highest
weighti. By (5.43),V has infinitesimal character+ §.

2) If A isin h*, then the Verma modulé (1) has infinitesimal character
A by Proposition 5.42.

3) WhenB is the Killing form and2 is the Casimir element, Proposition
5.28b shows that (y/(Q)) = |» — §|*> — |§]? if A is dominant and alge-
braically integral. The same proof shows that this formula remains valid
as long as. is in the real linear span of the roots. Combining this result
with the definition (5.41), we obtain

(5.64) X () = A2 — [5]°

for A in the real linear span of the roots.
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6. Weyl Character Formula

We saw in §IV.2 that the character of a finite-dimensional representation
of a compact group determines the representation up to equivalence. Thus
characters provide an effective tool for working with representations in a
canonical fashion. In this section we shall deal with characters in a formal
way, working in the context of complex semisimple Lie algebras, deferring
until 88 the interpretation in terms of compact connected Lie groups.

To understand where the formalism comes from, it is helpful to think of
the groupSL (2, C) and its compact subgrouglJ (2). The groupSU (2)
is simply connected, being homeomaorphic to the 3-sphere, and it follows
from Proposition 1.143 th&BL (2, C) is simply connected also. A finite-
dimensional representation8f (2) is automatically smooth. Thusitleads
via differentiation to a representation«af(2), then via complexification to
a representation afi(2, C), and then via passage to the simply connected
group to a holomorphic representation®if (2, C). We can recover the
original representation &U (2) by restriction, and we can begin this cycle
atany stage, continuing all the way around. This construction is aninstance
of “Weyl’s unitary trick,” which we shall study later.

Let us see the effect of this construction as we follow the character of

an irreducible representatich with differentialg. Leth = (; °)- The

diagonal subalgebra = {zh | z € C} is a Cartan subalgebra sf(2, C),
and the roots are 2 and2 onh. We take the root that is 2 dm(and has

e= (0 l) as root vector) to be positive, and we calkit The weights

00
of ¢ are determined by the eigenvaluesggh). According to Theorem
1.65, the eigenvalues are of the foom — 2, ..., —n. Hence if we define

A € b* by A(zh) = zn, then the weights are
AA—a, A —2a, ..., —A.
Thus the matrix ofp(zh) relative to a basis of weight vectors is
@(zh) = diagA(zh), (» — @)(zh), (A — 2a)(zh), ..., —A(zh)).

Exponentiating this formula in order to pass to the gr&p2, C), we
obtain

& (expzh) = diage®@, e*-0@  gh-2m@ = gi@)y

This formula makes sense withfU (2) if z is purely imaginary. In any
event if x, denotes the character df (i.e., the trace ofd of a group
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element), then we obtain

Yo (EXpzh) = @ | gh-a@) | qG-20@) 4y g

e()\—HS)(Zh) — e (A+38)(zh)

ed@h) _ @—8(zh) ’

wheres = %(x takes the value 1 om. We can drop the group element from
the notation if we introduce formal exponentials. Then we can write

@+ _ @049

—e e peF et =
Xo =€ +€"+ +o g~

In this section we shall derive a similar expression involving formal
exponentials for the character of an irreducible representation of a complex
semisimple Lie algebra with a given highest weight. This result is the
“Weyl Character Formula.” We shall interpret the result in terms of compact
connected Lie groups in 88.

The first step is to develop the formalism of exponentials. We fix a
complex semisimple Lie algebgg a Cartan subalgebifg the setA of
roots, the Weyl groupV, and a simple systel = {«y, ..., o }. LetA*
be the set of positive roots, and &be half the sum of the positive roots.

Following customary set-theory notation, 8t be the additive group
of all functions fromh* to Z. If f isin Z"", then thesupport of f is the
set of A € h* where f (1) # 0. Fori € b*, definee* to be the member of
Zb thatis 1 atx and O elsewhere.

Within Z%", let Z[h*] be the subgroup of elements of finite support. For
such elements we can write = ), .. f(3)€" since the sum is really a
finite sum. However, it will be convenient to allow this notation also for
f in the larger grouf?”, since the notation is unambiguous in this larger
context.

Let Q" be the set of all members bf given asZ!:1 n;a; with all then;
equal to integers- 0. TheKostant partition function P is the function
from QT to the nonnegative integers that tells the number of ways, apart
from order, that a member d@* can be written as the sum of positive
roots. By conventionP(0) = 1.

Let Z(h*) be the set of allf € Z" whose support is contained in the
union of a finite number of sets — Q* with eachy; in h*. This is an
abelian group, and we have

ZIh] € Z(p*) C Z".
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Within Z(h*), we introduce the multiplication

(5.65) (; cke*)(l;?:‘ﬂeﬂ = Z( Z CAE,L)e”.

veb*  Adpu=v

To see that (5.65) makes sense, we have to check that the interior sum
on the right side is finite. Because we are working withifh*), we can
write A = Ao — g;" with g;” € Q* and with only finitely many possibilities
for 1o, and we can similarly writge = 110 — g/ Then

(ho— Q)+ (o—0)) =v
and hence Of +a =v—io— Ko

Finiteness follows since there are only finitely many possibilitieg §@nd
o and sinceP(v — Ag — ug) < oo for each.

Under the definition of multiplication in (5.65%(h*) is a commutative
ring with identitye®. Sincee’e* = e***, the natural multiplication i[5*]
is consistent with the multiplication i@ (h*).

The Weyl groupW acts onZ"". The definition iswf (u) = f(w™w)
for f € Z", u € b*, andw € W. Thenw(e') = e”*. Eachw € W leaves
Z[h*] stable, but in generab does not leav&.(h*) stable.

We shall make use of the sign function ¥ Let e(w) = detw for
w € W. Thisis alwayst1. Any root reflectiors, hass(s,) = —1. Thus
if w is written as the product d¢f root reflections, thea(w) = (—1)¥. By
Proposition 2.70,

(5.66) e(w) = (=1,

wherel (w) is the length ofw as defined in §lI.6.

Wheng is a representation gfonV, we shall sometimes abuse notation
and refer toV as the representation. W is a representation, we say that
V has a characterif V is the direct sum of its weight spaces unger.e.,

V =D, Vi, andif dimV, < oo for u € h*. In this case theharacter
is
charV) = Z dimV,)e".

pneb*

ExAMPLE. Let V(1) be a Verma module, and lei_; be the canonical
generator. Let~ be the sum of the root spacesgffior the negative roots.
By Proposition 5.14b the map &f(n™) into V(1) given byu +— uv,_; is
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one-one onto. Also the action of(h) onV (1) matches the action &f (h)
onUm™) ® Cv,_s. Thus

dmV@®), =dimUm7), .

Let E_g4, ..., E_4 be a basis ofi~ consisting of root vectors. The
Poincae-Birkhoff-Witt Theorem (Theorem 3.8) shows that monomials in
this basis form a basis &f (n™), and it follows that dind (n™)_, = P(v).
Therefore

dimV (), = P(A —8 — ),

andV (1) has a character. The character is given by

(5.67)  chatV(a) =Y Ph—s—pwe ==Y Pye”.

neb* yeQt

Let us establish some properties of charactersViat a representation
of g with a character, and suppose thais a subrepresentation. Then the
representationy’ andV/V' have characters, and

(5.68) cha¢V) = charV’) + charVv/V’).

In fact, we just extend a basis of weight vectors¥orto a basis of weight
vectors ofV. Then it is apparent that

dimV, =dimV, +dimV/V'),,

and (5.68) follows.
The relationship amony, V', andV/V’ is summarized by saying that

0 & v V/V/ 0

is anexact sequence This means that the kernel of each map going out
equals the image of each map going in.
In these terms, we can generalize (5.68) as follows. Whenever

O Vl b1 V2 P2 V3 ¢3 . $n-1 Vn o

is an exact sequence of representationgwith characters, then

n

(5.69) > (=D’charVy) = 0.

i=1
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To prove (5.69), we note that the following are exact sequences; in each
case “inc” denotes an inclusion:

0 —— imaggy,) SLLIVARELIN image¢,) — 0,

0 —— imagey,) —<> Vs —2 imageps) — O,

inc Pn-1

0 —— imag€gn_») Vi1

imag€yn_1) — 0.
For2<j <n-1, (5.68) gives

—charimagéy;_1)) + charV;) — chatimagegy;)) = 0.
Multiplying by (—1)! and summing, we obtain

0 = —charimag&;)) + charV,) — char(Vs)
+ -+ (=D *charV,_ 1) + (—1)"charimagee, 1)).

SinceV; = imag€y;) andV, = imag€g,_1), (5.69) follows.

Suppose thal; and V, are representations @f having characters
that are inZ{h*). ThenV; ® V,, which is a representation under the
definition (4.3), has a character, and

(5.70) (V1 ® V) = (charVp))(charV)).

In fact, the tensor product of weight vectors is a weight vector, and we can
form a basis oW, ® V, from such tensor-product vectors. Hence (5.70) is
an immediate consequence of (5.65).

TheWeyl denominator is the member oZ[h*] given by

(5.71) d=¢ J] @-e™.
aeAT

Define K=Y Pype”.
yeQt

This is a member af.(h*).
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Lemma5.72.Inthe ringZ(h*), Ke=*d = 1. Henced ! exists inZ(h*).

PrROOF. From the definition in (5.71), we have

(5.73) e’d=[] @a-e™.
aeAt
Meanwhile
(5.74) [[a+e“+e*+..)= > Py =K.
a€EAT yeQ+t

Since(1 -e*)(1+e*+e2 4 ...) = 1 for a positive, the lemma
follows by multiplying (5.74) by (5.73).

Theorem 5.75Weyl Character Formula). L&t be anirreducible finite-
dimensional representation of the complex semisimple Lie algebiith
highest weight.. Then

charVv) =d* Z e(w)e" 0.

weW

ReEMARKS. We shall prove this theorem below after giving three lemmas.
But first we deduce an alternative formulation of the theorem.

Corollary 5.76 (Weyl Denominator Formula).

e ]_[ l-—e9 = Z s(w)e™.

aeAt weW

ProoOFE Takei = 0 in Theorem 5.75. TheN is the 1-dimensional
trivial representation, and chiaf) = €° = 1.

Theorem 5.77(Weyl Character Formula, alternative formulation). Let
V be an irreducible finite-dimensional representation of the complex
semisimple Lie algebrg with highest weighi.. Then

< Z s(w)e“’s) charVv) = Z e(w)e"0+d,

weW weW

ProOF This follows by substituting the result of Corollary 5.76 into the
formula of Theorem 5.75.
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Lemma 5.78.If A in h* is dominant, then n@ # 1 in W fixesA + §.

PROOF. If w # 1 fixesA + §, then Chevalley’s Lemma in the form of
Corollary 2.73 shows that some rephas(ir + 8, «) = 0. We may assume
thata is positive. But theni, @) > 0 by dominance ands, «) > 0 by
Proposition 2.69, and we have a contradiction.

Lemma 5.79. The Verma module/ (1) has a character belonging to
Z(h*), and chafV (1)) = d~1e’.

ProoF. Formula (5.67) shows that

chatV() =€~ > P(y)e” = Ke™’¢,

yeQt

and thus the result follows by substituting from Lemma 5.72.

Lemma 5.80.Let Ao be inh*, and suppose thadl is a representation of
g such that

() M has infinitesimal characteg and
(i) M has a character belongingZgh*).

Let
Dy ={A € Wi | (A — 8 + QF) N supportcharM)) #£ #}.

Then cha¢M) is a finiteZ linear combination of cha¥ (1)) for A in Dy,.

REMARK. Dy, is a finite set, being a subset of an orbit of the finite
groupW.

PrOOF. We may assume thdil # 0, and we proceed by induction on
|[Dw|. First assume thaDy,| = 0. SinceM has a character belonging to
Z{b*), we can findu in h* such thaj — § is a weight ofM butu — 8§ +q*
is not a weight ofM for anyg* # 0in Q*. Setm = dimM,_s;. Since
the root vectors for positive roots evidently annihildg_;, the universal
mapping property for Verma modules (Proposition 5.14c) shows that we
can find aU (g) homomorphismp : V(u)™ — M such that(V (u)™),.—s
maps one-one ontdl,,_;. The infinitesimal character, of M must match
the infinitesimal character of («), which is u by Proposition 5.42. By
Theorem 5.62u isinWao. Thenu isin Dy, and|Dy| = Oisimpossible.
This completes the base case of the induction.



6. Weyl Character Formula 321

Now assume the result of the lemma for modesatisfying (i) and (ii)
such thatDy has fewer thanDy | members. Construgt, m, andy as
above. Letl be the kernel of, and putN = M/imagep. Then

v

0O—sL—>Vww"—t> M N 0

is an exact sequence of representations. By (5.68)(kchand cha¢N)
exist. Thus (5.69) gives

chartM) = —charL) + mcharV (r)) + charN).

MoreoverL and N satisfy (i) and (ii). The induction will be complete if
we show thatD_| < |Dy| and|Dy| < |Dwu].

In the case ofN, we clearly haveDy € Dy. Sincey is onto, the
equalityM,,_s = imageyp implies thatN,,_s; = 0. Thusu is notinDy, and
|Dnl < [Dwl.

In the case oL, if A isiin D, theni — § + Q* has nonempty inter-
section with suppoftharL)) and hence with suppdacharV (1))). Then
uw—2=48isinA —é& + QF, and hence:r — § is a member of the intersection
(A—8+QT)NsupportchatM)). ThatisAisin Dy. ThereforeD, C Dy,.
But wisnotinD_, and hencéD, | < |Dy|. This completes the proof.

PROOF OFTHEOREMS.75. By (5.43)V has infinitesimal charactert§.
Lemma 5.80 applies i@ with A, replaced by.+ 8, and Lemma 5.79 allows
us to conclude that

charV) = d! Z c, e’
weW
for some unknown integexs,. We rewrite this formula as
(5.81) dcharV) = Z c, e+,
weW

Let us say that a membdr of Z[§*] is even(underW) if wf = f for
allwin W. ltisoddif wf = e(w) f for all w in W. Theorem 5.5e shows
that cha¢V) is even. Let us see thdtis odd. In fact, we can writd as

(5.82) d=[] ?—-e?.
aeAT

If we replace eackx by wa, we get the same factors on the right side of
(5.82) except for minus signs, and the number of minus signs is the number
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of positive roots such thatva is negative. By (5.66) this product of minus
signs is jusk(w).

Consequently the left side of (5.81) is odd untlé¢rand application of
wy to both sides of (5.81) gives

Z C,&(wg) " = g(we)d charV) = wo(d charV))

weW
_ wow(A+8) __ w(A+3)
= E c,€e" = E Cuytu€ .

weW weW

By Lemma 5.78 the two sides of this formula are equal term by term.
Thus we have,.1,, = C,&(wo) for w in W. Takingw = 1 givesc,1 =
cie(wo) = Ge(wyt), and hence,, = cie(wo). Therefore

dcharV) = ¢, Z e(w)e 0+,

weW

Expanding the left side and taking Theorem 5.5b into account, we see that
the coefficient ofe*™ on the left side is 1. Thus another application of
Lemma 5.78 gives; = 1.

Corollary 5.83 (Kostant Multiplicity Formula). LeV be anirreducible
finite-dimensional representation of the complex semisimple Lie algebra
with highest weight.. If « is in h*, then the multiplicity ofu as a weight
of Vis

Y e)PO.+8) = (1 +8).

weW

REMARK. By convention in this formulgP?(v) = 0 if vis not in Q™.

PrROOF. Lemma 5.72 and Theorem 5.75 combine to give

charVV) = d~*(d charV))
= (Ke®)(dcharV))

_ ( ) P(y)e—é-y) ( 3 8(w)e‘”“+‘”).

yeQt weW

Hence the required multiplicity is

E Py)e(w) = E e(W)PwA +68) —u —9).
yeQt, weW weW
—§—y+wr+8)=n



6. Weyl Character Formula 323

Theorem 5.84(Weyl Dimension Formula). LeV be an irreducible
finite-dimensional representation of the complex semisimple Lie algebra
with highest weigh&.. Then

[oear 438, @)
IIaeA+<8’a> .

PrROOF For H € b*, we introduce the ring homomorphism called
“evaluation atH,” which is writteney, : Z[h*] — C and is given by

f = Z f(Le — Z f (e,

Then dimV = ¢g(charV)). The idea is thus to apply, to the Weyl
Character Formula as given in Theorem 5.75 or Theorem 5.77. But a
direct application will give @0 for the value oky(charV)), and we have
to proceed more carefully. In effect, we shall use a version afpithl’'s
Rule.

For f € Z[h*] andgy € b*, we define

dimV =

d
9, f(H) = - f(H +TH,)l.

Then

d
(5.85) 0,8 = S @M o= (1, )& .
Consider any derivative,, - - - 9,,, of order less than the number of positive
roots, and apply it to the Weyl denominator (5.71), evaluatingl atWwe
are then considering

o ( 0 [ @ 1)

aeAt

Eachd,, operates by the product rule and differentiates one factor, leaving
the others alone. Thus each term in the derivative has an undifferentiated
e — 1 and will give 0 when evaluated &t = 0.

We apply[],..: 9. to both sides of the identity given by the Weyl
Character Formula

dcharV) =) e(w)e"**.

weW
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Then we evaluate a8l = 0. The result on the left side comes from the
Leibniz rule and involves many terms, but all of them give 0 (according to
the previous paragraph) except the one that comes from applying all the
derivatives tad and evaluating the other factor ldt= 0. Thus we obtain

((TT a)drh)@dimv = (( ] &) 3= eawe ) ).

aeAt aeAt weW

By Corollary 5.76 we can rewrite this formula as
586) (([To.) X ewe ™) ©@dimv
aeAt weW
= ([T 2) > swe ).

aeAt weW

We calculate

( 1_[ 3a) ( Z g(w)e'”“*‘s)(H))

aeAt weW

=Y ew) [] (wi +6), a)e ¢ by (5.85)

weW aeAT

— Zs(w—l) l_[ O+ 8, wia)er @ HHH

weW aeAt

=Y [] »+6 a)eeo® by (5.66)

weW aeAt

(5.87) = ( [T 0 +5. a)> Y e,

aeAt weW

Wheni = 0, (5.87) has a nonzero limit &$ tends to O by Proposition
2.69. Therefore we can evaluate difrfrom (5.86) by taking the quotient
with H in place and then lettingd tend to 0. By (5.87) the result is the
formula of the theorem.

The Weyl Dimension Formula provides a convenient tool for deciding
irreducibility. Lety be a finite-dimensional representationgofand sup-
pose thati is the highest weight of. Theorem 5.29 shows that is
completely reducible, and one of the irreducible summands musithase
highest weight. Call this summagg. Theorem 5.84 allows us to compute
dimg,. Then it follows thalp is irreducible if and only if dimp matches
the value of dimp, given by Theorem 5.84.
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ExampLE. With g = sl(n, C), let ¢ be the representation on the space
consisting of all holomorphic polynomials @, ..., z, homogeneous of
degreeN. We shall prove that this representation is irreducible. From the
first example in 82, we know that this representation has highest weight
N+n—-1

N
n—1of N+ n— 1 objects as dividers and the others as monomials
z;. To check thatp is irreducible, it is enough to see from the Weyl
Dimension Formula that the irreducible representagiof., with highest
N+n-1

N

—Ne,. Its dimension i , the number of ways of labeling

weightiA = —Neg, has dimensior< ) Easy calculation gives

§=3(n—De+3(n—3e+--+3(1-nke,.

(A48, a)

A quotient will be 1 unlessii, o) # 0. Therefore

’

n-1 n—-1 -
: (=Nen+6,6 — &) N+n—j <N+n—1>
dimg_ye, = | | =] —= ,
Ner j=1 (8’61 _en> 1 n—| N

j=

as required.

7. Parabolic Subalgebras

Letg be a complex semisimple Lie algebra, andilet = A(g, ), and
B be as in §2. Aorel subalgebraof g is a subalgebra = h & n, where
n =, .+ g. for some positive system* within A. Any subalgebra
of g containing a Borel subalgebra is callegarabolic subalgebraof g.
Our goal in this section is to classify parabolic subalgebras and to relate
them to finite-dimensional representationgof

We regardh andn as fixed in our discussion, and we study only para-
bolic subalgebrag that containb = h & n. Let IT be the simple system
determiningA* andn, and definen™ as in (5.8). Sincg 2 h and since
the root spaces are 1-dimensiongis necessarily of the form

(5.88) 1=5®P g..

wherel is a subset oA (g, h) containingA* (g, h). The extreme cases are
g=b(WwithT = A*(g, h)) andg = g (withT" = A(g, b)).
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To obtain further examples of parabolic subalgebras, we fix a slibset
of the seflT of simple roots and let

(5.89) I'=A%(g,h) U{x € A(g, ) | « € sparIl’)}.

Then (5.88) is a parabolic subalgebra containing the given Borel subalgebra
b. (Closure under brackets follows from the fact that &ndg are inI" and

if «+ B isaroot, therr+ 8 isinT; this factis an immediate consequence of
Proposition 2.49.) All examples are of this form, according to Proposition
5.90 below. Withl™ as in (5.88), define-T" to be the set of negatives of the
members of".

Proposition 5.90. The parabolic subalgebrag containing b are
parametrized by the set of subsets of simple roots; the one corresponding
to a subsefl’ is of the form (5.88) with" as in (5.89).

PROOF If qis given, we defind (q) to be thel" in (5.88), and we define
IT'(q) to be the set of simple roots in the linear spair af) N\ —I"(gq). Then
q — IT'(q) is a map from parabolic subalgebrasontainingb to subsets
of simple roots. In the reverse direction Iif is given, we defind (IT")
to be therl” in (5.89), and them(IT") is defined by means of (5.88). We
have seen thaf(IT’) is a subalgebra, and th@is +— q(IT") is a map from
subsets of simple roots to parabolic subalgebras contakning

To complete the proof we have to show that these two maps are inverse
to one another. To see thAt(q(IT")) = IT’, we observe that

{o € Ag, b) | a € spanlIl’)}
is closed under negatives. Therefore (5.89) gives
L(IT) N =T(IT) = (A™(g, h) U {o € Ag, b) | @ € spanIl)})
N(—=A%(g, h) U{a € A(g, h) | « € spanl’)})
= (AT(g,hH)N—AT(g, b))
U{a € A(g, h) | o € spanIl’)}
= {a € A(g, b) | @ € spanIl)}.
The simple roots in the span of the right side are the membdis @fy the
independence in Proposition 2.49, and it follows thaty (11')) = IT'.
To see thatj(IT'(q)) = g, we are to show thdt(IT'(q)) = I'(q). Since

A*(g,h) € I'(g), the inclusionl" (IT'(q)) < T'(q) will follow if we show
that

(5.91) {o € Ag, b) | & € spanIl’(q)} € I'(a).
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Sincel'(q) = A™(g, h) U (T (q) N —T(g)), the inclusion" (IT'(q)) 2 I'(q)
will follow if we show that

(5.92) [(g) N =T(q) € AT (9).

Let us first prove (5.91). The positive members of the left side of (5.91)
are elements of the right side sineecC q. Any negative root in the left
side is a negative-integer combination of member@@#) by Proposition
2.49. Let—« be such a root, and expandin terms of the simple roots
I = {o}l_, ase = Y nj;. We prove by induction on the lev3T n; that
anonzero root vectde_, for —« isingq. When the level is 1, this assertion
is just the definition of T'(q). When the level ok is > 1, we can choose
positive roots3 andy witha = 8 + v. Theng andy are positive integer
combinations of members &f'(q). By inductive hypothesis;-8 and—y
are inI"(q). Hence the corresponding root vect@s,; andE_, are ing.

By Corollary 2.35, E_g4, E_, ] is @a nonzero root vector fora. Sinceq is
a subalgebra;-a must be inl"(q). This proves (5.91).

Finally let us prove (5.92). Let« be a negative root if'(q), and
expandw in terms of simple roots a8 = ), njej. The assertion is that
eachy; for whichn; > 0isinII'(q), i.e., has—«; € I'(q). We prove this
assertion by induction on the lev®l n;, the case of level 1 being trivial.
If the level of« is > 1, thena = B + y with g andy in A*(g, ). The
root vectorsE_, andE; are ing, and hence so is their bracket, which is a
nonzero multiple ofe_, by Corollary 2.35. SimilarlyE_, andE, are in
q, and hence so i&_4. Thus—y and—p are inI'(q). By induction the
constituent simple roots ¢f andy are inIT’(q), and thus the same thing
is true of«. This proves (5.92) and completes the proof of the proposition.

Now define
(5.93a) (=h® P 9. and u=Pg..
acl'N-T" ael’,
a¢—T
so that
(5.93b) qg=[du.

Corollary 5.94. Relative to a parabolic subalgelhy@ontainingb,

(a) andu are subalgebras @f andu is an ideal inqg,
(b) uis nilpotent,



328 V. Finite-Dimensional Representations

(c) [is reductive with centety’ = [, .., kere < bh and with
semisimple partss having root-space decomposition

lss = hlea @ L

acl'N-T
wherehy =" ., CH,.

PrROOF. By Proposition 5.90 leg be built fromIT" by means of (5.89)
and (5.88). Then (a) is clear. In (b), we haveC n, and hence: is
nilpotent.

Let us prove (c). Leby be the real form ofy on which all roots are
real valued. Thefy, = ho N " andhg = ho N h” are real forms ofy’ and
h”, respectively. The fornB for g hasB|y,.y, positive definite, and it is
clear thath, andhg are orthogonal complements of each other. Therefore
ho = by @ by andh = b’ @ h”. Thus withls defined as in the statement of
(c), I =b" & Is. Moreover it is clear thalf” andlg are ideals il and that
h” is contained in the center. To complete the proof, it is enough to show
thatls is semisimple.

Thus letB’ be the Killing form ofls. Relative toB’, iy’ is orthogonal to
eachg, in [, and eacly, in [ is orthogonal to all, in [ exceptg_,. For
o € ' 1 —T, choose root vectorg, andE_, with B(E,, E_,) = 1, so
that [E,, E_,] = H,. We shall show thaB'(E,, E_,) > 0 and thatB'’ is
positive definite orhy, x h;. Then it follows thatB’ is nondegenerate, and
[ss is semisimple by Cartan’s Criterion for Semisimplicity (Theorem 1.45).

In consideringB'(E,, E_,), we observe from Corollary 2.37 that
adE, adE_, acts with eigenvalue- 0 on anygs. OnH € b, it gives
a(H)H,, which is a positive multiple oH,, if H = H, and is 0 ifH is
in kere. Thus adg, adE_, has trace> 0 onh and trace> 0 on eachy;.
ConsequenthB'(E,, E_,) > 0.

If Hisin by, thenB'(H, H) = > «(H)? and each termis 0.

To get 0, we must have(H) = O for alle € ' N —TI". This condition
forcesH to be inh”. Sinceh’' Nh” = 0, we find thatH = 0. Consequently
B’ is positive definite oy, x by, as asserted.

In the decomposition (5.93) af, [ is called theLevi factor andu is
called thenilpotent radical. The nilpotent radical can be characterized
solely in terms ofy as the radical of the symmetric bilinear for},,,
whereB is the invariant form fogy. But the Levi factorl depends oty as
well asq.
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Define
(5.95a) u = @ [s
ael’,
ag¢—T
and
(5.95b) g =[u,

(The subalgebrg~ is a parabolic subalgebra containing the Borel subal-
gebrab~ = h ® n~.) Then we have the important identities

(5.96) [=qNq”
and
(5.97) g=u lPu.

Now we shall examine parabolic subalgebras in terms of centralizers
and eigenvalues. We begin with some notation. In the background will
be our Cartan subalgebhaand the Borel subalgebta We suppose that
V is a finite-dimensional completely reducible representatidy ahd we
denote byA (V) the set of weights df in V. Some examples are

A(g) = A(g, h) U {0}
A(n) = A™(g. h)

A(q) =T U{0)

A(l) = (TN =T) U {0}
AW ={a el | —a¢l).

For each weightv € A(V), letm,, be the multiplicity ofw. We define

(5.98) SV)=13 Y mo,

weA(V)

half the sum of the weights with multiplicities counted. An example is that
d(n) = &, with § defined as in 811.6 and again in (5.8). The following result
generalizes Proposition 2.69.
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Proposition 5.99. Let V be a finite-dimensional representationgof
and letA be a subset oA (V). Suppose that is a root such that € A
anda + A € A(V) together implyo + 1 € A. Then<ZmAA, a> > 0.

reA
Strict inequality holds when the representation is the adjoint representation

ofgonV =ganda isin A and—«a is notinA.

PrOOF. Theorem 5.29 shows thstis completely reducible. IE, and
E_., denote nonzero root vectors ferand—«, V is therefore completely
reducible undeh + spariH,, E,, E_,}. LetA be in A, and suppose that
(A, a) < 0. Then the theory fosl(2, C) shows thak, A + «, ..., S,A are
in A(V), and the hypothesis forces all of these weights to ba.inin
particulars, A is in A. Theorem 5.5e says that, = mg ;. Therefore

me)»: Z m, (A + S,A) + Z m, A -+ Z M, \.

rEA AEA, LEA, rEA, SSAEA,
(A, a)<0 (A, a)=0 (A, a)>0
The inner product o with the first two sums on the right is 0, and the
inner product ofr with the third sum is term-by-term positive. This proves
the first assertion. In the case of the adjoint representationgifA and
—a ¢ A, thena occurs in the third sum and gives a positive inner product.
This proves the second assertion.

Corollary 5.100. Let q be a parabolic subalgebra containtnglf « is
in A*(g, ), then
=0 ifaeA(b)
>0 ifaeA).

PROOF. In Proposition 5.99 le¥ = gandA = A(w). If e isin A(l, ),
the proposition applies te and —« and gives(s(u),«) = 0. If ¢ isin
A(u), then—a is not in A and the proposition gives (i), «) > 0.

(8(u),a) is {

Corollary 5.101. Let g = [ & u be a parabolic subalgebra containing
b. Then the element = Hj;,, of h has the property that all roots are real
valued onH and
u = sum of eigenspaces of &tifor positive eigenvalues
[= Z,(H) = eigenspace of a for eigenvalue 0
u~ = sum of eigenspaces of &tIfor negative eigenvalues

PROOF. This is immediate from Corollary 5.100.
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We are ready to examine the role of parabolic subalgebras in finite-
dimensional representations. The idea is to obtain a generalization of the
Theorem ofthe Highest Weight (Theorem 5.5) in whj@ndn get replaced
by [ andu.

The Levi factor of a parabolic subalgebrgcontainingd is reductive by
Corollary 5.94c, butitis usually not semisimple. Inthe representations that
we shall studyp will act completely reducibly, and hence the subalgebra
h” in that corollary will act completely reducibly. Each simultaneous
eigenspace df” will give a representation dfs, which will be completely
reducible by Theorem 5.29. We summarize these remarks as follows.

Proposition 5.102.Let q be a parabolic subalgebra containingn any
finite-dimensional representationldbr whichh acts completely reducibly,
[ acts completely reducibly. This happens in particular when the action of
a representation gf is restricted td.

Each irreducible constituent from Proposition 5.102 consists of a scalar
action byh” and an irreducible representatiorigf and the Theorem of the
Highest Weight (Theorem 5.5) is applicable for the latter. Reassembling
matters, we see that we can trgaas a Cartan subalgebra lo&nd treat
I’ N —T as the root system(l, ). The Theorem of the Highest Weight
may then be reinterpreted as valid foEven though is merely reductive,
we shall work withl in this fashion without further special comment.

Let a finite-dimensional representationgbe given on a spacé, and
fix a parabolic subalgebra = [ @ u containingb. The key tool for our
investigation will be the subspace wfnvariants given by

V¥={veV | Xv=0forall X € u}.

This subspace carries a representatiolsgiceH < [,v € V*,andX € u
imply

X(Hv) = HXv) +[X,Hlv =04+0=0
by Corollary 5.94a. By Corollary 5.31c the representation af V" is
determined up to equivalence by the representation af the space of
[ N ninvariants. But

(5103) (Vu)lﬂn — Vu@([ﬂn) — Vn’

and the right side is given by the Theorem of the Highest Weighg for
This fact allows us to treat the representatiohaf V" as a generalization
of the highest weight of the representatiorgain V.
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Theorem 5.104.Let g be a complex semisimple Lie algebra, bebe
a Cartan subalgebra, latt (g, ) be a positive system for the set of roots,
and definen by (5.8). Letq = [ & u be a parabolic subalgebra containing
the Borel subalgebrai= h @ n.

(a) If an irreducible finite-dimensional representatiorga$ given on
V, then the corresponding representatiorl of V* is irreducible. The
highest weight of this representationlohatches the highest weight of
and is therefore algebraically integral and dominantAdKg, h).

(b) If irreducible finite-dimensional representationg@re given o,
andV, such that the associated irreducible representatiohsmV;* and
V3 are equivalent, thew, andV, are equivalent.

(c) If anirreducible finite-dimensional representatiori oh M is given
whose highest weight is algebraically integral and dominantfogg, h),
then there exists an irreducible finite-dimensional representatigmoofa
spaceV such thatv* = M as representations of

PROOF

(a) By (5.103),(V*")'™ = V™. Parts (b) and (c) of Theorem 5.5 fgr
say thatv" is 1-dimensional. Hence the spacel of n invariants forv*
is 1-dimensional. Since* is completely reducible undéby Proposition
5.102, Theorem 5.5c¢ fdrshows that/* is irreducible undet. If A is the
highest weight ofV underg, thenx is the highest weight o¥/* underl
sinceV, = V" C V. Thenx is algebraically integral and dominant for
A*(g, h) by Theorem 5.5 foy.

(b) If V* andV;,* are equivalent unddr then(V,*)'™ and (V") are
equivalent undef. By (5.103),V;* andV,' are equivalent undey. By
uniqueness in Theorem 5.8, andV, are equivalent undey.

(c) LetM have highest weight, which is assumed algebraically integral
and dominant forA* (g, ). By Theorem 5.5 we can form an irreducible
finite-dimensional representation ®bn a spac&’ with highest weighk..
ThenV* has highest weight by (a), andv* = M as representations of
by uniqueness in Theorem 5.5 for

Proposition 5.105. Let g be a complex semisimple Lie algebra, and
letg = [ ® u be a parabolic subalgebra containitglf V is any finite-
dimensionalJ (g) module, then

@ V=V'ouV,

(b) the natural map/* — V/(u~V) is an isomorphism otJ ()

modules,
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(c) theU () moduleV* determines th&) (g) moduleV up to equiv-
alence; the number of irreducible constituents\of equals the
number of irreducible constituents ¥f and the multiplicity of an
irreducibleU (I) module inV* equals the multiplicity inv of the
irreducibleU (g) module with that same highest weight.

PrROOF. We have seen that" is aU (I) module, and similarly~V is a
U (f) module. Conclusion (b) is immediate from (a), and conclusion (c) is
immediate from Theorems 5.29 and 5.104. Thus we are left with proving
(@).

By Theorem 5.29V is a direct sum of irreducible representations, and
thereis no loss of generality in assuming tas irreducible, say of highest
weighta.

With V irreducible, we argue as in the proof of Corollary 5.31, using a
Poincae-Birkhoff—-Witt basis olU (g) built from root vectors ini~, root
vectors in'together with members ¢f and root vectors in. We may do so
because of (5.97). Each such root vector is an eigenvector undg,ad
and the eigenvalues are negative, zero, and positive in the three cases by
Corollary 5.101. Using this eigenvalue as a substitute for “weight” in the
proof of Corollary 5.31, we see that

V=UWDHV,pu V.

But [ acts irreducibly orv* by Theorem 5.104a, and, = V" C V.
HenceU ()V, = V", and (a) is proved. This completes the proof of the
proposition.

8. Application to Compact Lie Groups

As was mentioned in 81, one of the lines of motivation for studying
finite-dimensional representations of complex semisimple Lie algebras is
the representation theory of compact connected Lie groups. We now return
to that theory in order to interpret the results of this chapter in that context.

Throughout this section we & be a compact connected Lie group
with Lie algebrag, and complexified Lie algebrg, and we letT be a
maximal torus with Lie algebr& and complexified Lie algebra The
Lie algebrag is reductive (Corollary 4.25), and we saw in 8IV.4 how to
interprett as a Cartan subalgebra and how the theory of roots extended
from the semisimple case to this reductive case. Aet A(g, t) be the
set of roots, and 18tV = W(A) be the Weyl group.
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Recallthata memberof t* isanalytically integral ifitis the differential
of a multiplicative charactef, of T, i.e., if & (expH) = e for all
H € t. If A is analytically integral, thei takes purely imaginary values
onty by Proposition 4.58. Every root is analytically integral by Proposition
4.58. Every analytically integral member ©fis algebraically integral by
Proposition 4.59.

Lemma5.106.If ®isafinite-dimensional representation of the compact
connected Lie groufs and if A is a weight of the differential o®, thenx
is analytically integral.

PrROOF. We observed in 81 thab|; is the direct sum of 1-dimensional
invariant subspaces with| acting in each by a multiplicative charactgr.
Then the weights are the variokss. Since each weight is the differential
of a multiplicative character of, each weight is analytically integral.

Theorem 5.107.Let G be a simply connected compact semisimple Lie
group, letT be a maximal torus, and lebe the complexified Lie algebra of
T. Then every algebraically integral membertbfs analytically integral.

PROOF Leti € t* be algebraically integral. Thenis real valued on
i t, and the real span of the roots(igy)* by semisimplicity ofg. Hencex
is in the real span of the roots. By Proposition 2.67 we can introduce
a positive systermA* (g, t) such thati is dominant. By the Theorem
of the Highest Weight (Theorem 5.5), there exists an irreducible finite-
dimensional representatigrof g with highest weight.. SinceG is simply
connected, there exists an irreducible finite-dimensional represendtion
of G with differential¢|,,. By Lemma 5.106 is analytically integral.

Corollary 5.108. If G is acompact semisimple Lie group, then the order
of the fundamental group @ equals the index of the group of analytically
integral forms forG in the group of algebraically integral forms.

PROOF. LetG be a simply connected covering group®f By Weyl's
Theorem (Theorem 4.69% is compact. Theorem 5.107 shows that the
analytically integral forms foks coincide with the algebraically integral
forms. Then it follows from Proposition 4.67 that the index of the group of
analytically integral forms fo& in the group of algebraically integral forms
equals the order of the kernel of the covering homomorpl&r> G.
SinceG is simply connected, this kernel is isomorphic to the fundamental
group ofG.



8. Application to Compact Lie Groups 335

EXAMPLE. LetG = SO(2n + 1) withn > 1 orG = SO(2n) with
n > 2. The analytically integral forms in standard notation are all ex-
pressionsZ}‘=1 cig with all ¢; in Z. The algebraically integral forms are
all expressions " ; ¢; with all ¢; in Z or all ¢; in Z + 3. Corollary
5.108 therefore implies that the fundamental groudfas order 2. This
conclusion sharpens Proposition 1.136.

Corollary 5.109. If G is a simply connected compact semisimple Lie
group, then the order of the centég of G equals the determinant of the
Cartan matrix.

PROOF. Let G’ be the adjoint group of5 so thatZg is the kernel
of the covering mapgc — G’. The analytically integral forms foG
coincide with the algebraically integral forms by Theorem 5.107, and the
analytically integral forms fo&’ coincide with theZ combinations of roots
by Proposition 4.68. Thus the corollary follows by combining Propositions
4.64 and 4.67.

Now we give results that do not assume t@ais semisimple. Sincg,
is reductive, we can writgo = Z;, @ [go, go] With [go, go] semisimple.
Putty = t, N [go, go]- The root-space decomposition @fs then

i=to P s=20(e P a)
a€A(g,t) aeA(g,t)

By Proposition 4.24 the compactness3implies that there is an invari-
ant inner product on the Lie algebgg and we letB be its negative. (This
form was used in Chapter IV, beginning in 85.) If we were assuming that
go is semisimple, them could be taken to be the Killing form, according
to Corollary 4.26. We exten® to be complex bilinear oy x g. The
restriction ofB to ity x ito is an inner product, which transfers to give an
inner product oniity)*. Analytically integral forms are always i€ity)*.

If a positive systerA ™ (g, t) is given for the roots, then the condition of
dominance for the form depends only on the restriction of the forngto

Theorem 5.110(Theorem of the Highest Weight). L& be a compact
connected Lie group with complexified Lie algelrdet T be a maximal
torus with complexified Lie algebraand letA* (g, t) be a positive system
for the roots. Apart from equivalence the irreducible finite-dimensional
representation® of G stand in one-one correspondence with the dominant
analytically integral linear functionalsont, the correspondence being that
A is the highest weight ob.
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REMARK. The highest weight has the additional properties given in
Theorem 5.5.

PROOF. Let notation be as above. df is given, then the highest weight
A of @ is analytically integral by Lemma 5.106. To see dominance; ket
the differential ofd. Extendy complex linearly fromy, to g, and restrict
to [g, g]. The highest weight op on [g, g] is the restriction of to t', and
this must be dominant by Theorem 5.5. Therefors dominant.

By Theorem 4.29¢G is a commuting produdd = (Zg)oGss With Ggs
compact semisimple. Suppose tthednd®’ are irreducible representations
of G, both with highest weight. By Schur's Lemma (Corollary 4.9),
®D| (2, andd’| ., are scalar, and the scalar is determined by the restriction
of A to the Lie algebraZ,, of (Zg)o. Henced|z), = P'l(zq),- ON Gss,
the differentialsy andg’ give irreducible representations gf [g] with the
same highest weighit|,, and these are equivalent by Theorem 5.5. Then
it follows thaty ande’ are equivalent as representationgpdnd® and
®’ are equivalent as representationszof

Finally if an analytically integral dominaritis given, we shall produce
a representatio® of G with highest weighk. The forma is algebraically
integral by Proposition 4.59. We construct an irreducible representation
¢ of g with highest weight: This comes in two parts, with|, , equal
to the representation in Theorem 5.5 corresponding taand withg|z,
given by scalar operators equalitfy .

LetG be the universal covering group@f SlnceG is simply connected,
there exists an irreducible representatrbmf G with differential @lgos
hence with highest weight To complete the proof, we need to show that
¢ descends to a representatidrof G. _ _

SinceG = (Zg)oGss, G is of the formR" x Gg, whereGg; is the
universal covering group dbs. Let Z be the discrete subgroup of the
centerZg of G such thatG = G/Z By Weyl's Theorem (Theorem
4.69),G ss IS compact. Thus Corollary 4.47 shows that the cent&@gis
contained in every maximal torus Gks. SinceZg C R" x Zg_, it follows
thatZs C expto. Now 1 is analytically integral foiG, and consequently
the corresponding multiplicative charactgron expt, < G is trivial on
Z. By Schur's Lemmag is scalar orZg, and its scalar values must agree
with those of, sincel is a weight. Thusb is trivial on Z, and® descends
to a representatiof® of G, as required.

Next we take up characters. Létbe an irreducible finite-dimensional
representation of the compact connected Lie g®@uwyth highestweight,



8. Application to Compact Lie Groups 337

letV be the underlying vector space, andgdie the differential, regarded

as arepresentation @f The Weyl Character Formula, as stated in Theorem
5.75, gives akind of generating function for the weights of anirreducible Lie
algebra representation in the semisimple case. Hence itis applicable to the
semisimple Lie algebrg] g], the Cartan subalgebtg the representation
¢liq.q1» @nd the highest weight|,. By Schur's Lemma®| ), is scalar,
necessarily with differentiap|z, = A|z,. Thus we can extend the Weyl
Character Formula as stated in Theorem 5.75 to be meaningful for our
reductiveg by extending all weights frortf to t with A|z_ as their values

on Z,. The formula looks the same:

(5.111) (e‘s [Ta- eﬂ)) charV) = 3 e(w)e" .

aeAt weW

We can apply the evaluation homomorphisgrto both sides for ani € t,

but we want to end up with an expression for ghgras a function on the
maximal torusT . Thisis a question of analytic integrality. The expressions
charV) and[ [ (1—e*) give well defined functions on since each weight
androotis analytically integral. Bet need not give a well defined function
onT sinces need not be analytically integral. (Itis not analytically integral
for SO(3), for example.) Matters are resolved by the following lemma.

Lemma 5.112. For eachw € W, § — wé is analytically integral. In
fact,§ — wé is the sum of all positive root8 such thatw=8 is negative.

PROOF. We write
6=3D B1B>0wp>01+3) (BIf>0w'p<0)
and
w8=%w2{a|a>0, wa>0}+%w2{a|a>0, wa < 0}
:%Z{wa|a>0, w“>0}+%2{wa|a>0, wer < 0)

:%Z{ﬂ|w_lﬂ>0,,B>O}+%Z{n|w_ln>0,n<0}
underg = wa andn = wa

=13 Blwp>0 >0 -1 {Blw'p <0 >0}
underg = —n.
Subtracting, we obtain
(S _ -1
—ws=> {B|B>0 w's <0
as required.
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Theorem 5.113(Weyl Character Formula). L&k be a compact con-
nected Lie group, lef be a maximal torus, lex* = A* (g, t) be a positive
system for the roots, and I&te t* be analytically integral and dominant.
Then the characteys, of the irreducible finite-dimensional representation
@, of G with highest weight. is given by

ngw E(U))fw(/wa)—a(t)
[Tocar X —E_o (V)

ateveryt € T where nc, takes the value 1 an If G is simply connected,
then this formula can be rewritten as

> wew EW)Ew1s) (1) _ > wew EW)Ewa1s (1)
fg(t) ]_[aEA+ (l - é:fa (t)) ZweW S(W)Sws(t) ‘
REMARK. Theorem 4.36 says that every membefGofs conjugate to

a member ofT. Since characters are constant on conjugacy classes, the
above formulas determine the characters everywhefg.on

Xo, (1) =

Xo, (1) =

PrROOF. Theorem 5.110 shows thdt, exists when is analytically
integral and dominant. We apply Theorem 5.75 in the form of (5.111).
When we divide (5.111) bg’, Lemma 5.112 says that all the exponentials
yield well defined functions of. The first formula follows. IfG is simply
connected, thefs is semisimple as a consequence of Proposition 1.122.
The linear functionad is algebraically integral by Proposition 2.69, hence
analytically integral by Theorem 5.107. Thus we can regroup the formula
as indicated. The version of the formula with an alternating sum in the
denominator uses Theorem 5.77 in place of Theorem 5.75.

Finally we discuss how parabolic subalgebras play a role in the repre-
sentation theory of compact Lie groups. W&randT given, fix a positive
systemA™ (g, t) for the roots, defina as in (5.8), and le = [ & u be a
parabolic subalgebra g@f containingb = h & n. Corollary 5.101 shows
thatl = Z,(H;.,), and we can equally well write= Z(i H;.,). Since
i Hsq isinty € go, [ is the complexification of the subalgebra

lo = Zg,(i Hsq)

of go. Define
L = ZG(| HS(U))'

This is a compact subgroup & containingT. Since the closure of
expiRH;q, is a torus inG, L is the centralizer of a torus i and is
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connected by Corollary 4.51. Thus we have an inclusion of compact
connected Lie group¥ € L C G, andT is a maximal torus in both

L andG. Hence analytic integrality is the same foas forG. Combining
Theorems 5.104 and 5.110, we obtain the following result.

Theorem 5.114.Let G be a compact connected Lie group with maximal
torusT, let go andt, be the Lie algebras, and lgtandt be the complexi-
fications. LetA*(g, t) be a positive system for the roots, and defintay
(5.8). Letq = [ & u be a parabolic subalgebra containing= h & n, let
lo = [N go, and letL be the analytic subgroup & with Lie algebral,.

(a) The subgrouh. is compact connected, afidis a maximal torus in
it.

(b) If an irreducible finite-dimensional representation®fs given on
V, then the corresponding representatiorLodn V* is irreducible. The
highest weight of this representationlofmatches the highest weight gf
and is therefore analytically integral and dominant£or(g, b).

(c) If irreducible finite-dimensional representations®fare given on
V: andV; such that the associated irreducible representatiohsaof V,*
andVy are equivalent, theW; andV, are equivalent.

(d) Ifanirreducible finite-dimensional representatioh.ain M is given
whose highest weight is analytically integral and dominantAo«g, b),
then there exists an irreducible finite-dimensional representati@ari
a spacé/ such thalv* = M as representations tf.

9. Problems

1. Letgbe acomplex semisimple Lie algebra, andddte a finite-dimensional
representation gf on the spac®. The contragredieni® is defined in (4.4).
(a) Show that the weights @f are the negatives of the weightsgf
(b) Let wg be the element of the Weyl group produced in Problem 18 of
Chapter Il such thatvgA™ = —A™T. If ¢ is irreducible with highest
weighta, prove thaip® is irreducible with highest weight woA.

2. As in Problems 9-14 of Chapter IV, I8} be the space of polynomials in
X1, - .., Xn homogeneous of degrég and letHy be the subspace of harmonic
polynomials. The compact growp = SO(n) acts onVy, and hence so does
the complexified Lie algebras(n, C). The subspacédy is an invariant
subspace. In the parts of this problem, it is appropriate to handle separately
the cases afi odd andh even.
(&) The weights oy are identified in 81. Check thade, is the highest

weight, and conclude th&d e is the highest weight ofly.
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(b) Calculate the dimension of the irreducible representatien(@f C) with
highest weightNe;, compare with the result of Problem 14 of Chapter IV,
and conclude thato(n, C) acts irreducibly orHy.

3. Asin Problems 15-17 of Chapter IV, I be the space of polynomials in
71, ..., Zn, 21, ..., Zn homogeneous of degrég, and letV, 4 be the subspace
of polynomials withp z-type factors and z-type factors. The compact group
G = SU(n) acts onVy, and hence so does the complexified Lie algebra
sl(n, C). The subspacel, 4 of harmonic polynomials iV, 4 is an invariant
subspace.

(a) The weights oWV, 4 are identified in §1. Check thafe; — pe, is the
highest weight, and conclude tha#; — pe, is the highest weight of
Hp.q-

(b) Calculate the dimension of the irreducible representatiefiof C) with
highest weightge; — pe,, compare with the result of Problem 17 of
Chapter IV, and conclude thal(n, C) acts irreducibly orHp, q.

4. Forg = sl(3, C), show that the spack"’ of Weyl-group invariants contains
a nonzero element homogeneous of degree 3.

5. Give aninterpretation of the Weyl Denominator Formulaston, C) in terms
of the evaluation of Vandermonde determinants.

6. Prove that the Kostant partition functighsatisfies the recursion formula

P =— Y e)Ph— (8 —wd))
weW,
w#l

for A # 0in Q*. HereP(v) is understood to be 0 if is not in Q™.

Problems 7-10 address irreducibility of certain representations in spaces of alter-
nating tensors.

7. Show that the representation ©ifn, C) on /\I C" is irreducible by show-
ing that the dimension of the irreducible representation with highest weight

> ks & IS (T)

8. Show that the representationsef2n + 1, C) on /\I C>*1 js irreducible for
I < n by showing that the dimension of the irreducible representation with

highest WeighE'k:l & is <2n|+ 1).

9. Show that the representationsef(2n, C) on /\'(CZ” is irreducible fol < n
by showing that the dimension of the irreducible representation with highest

weight "\, & is ( 2|n ) :
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10. Show that the representation @f(2n, C) on A"C?" is reducible, being
the sum of two irreducible representations with respective highest weights
( n-1 e&) 4 en

k=1 .

Problems 11-13 concern Verma modules.

11. Prove for arbitrary andu in b* that every nonzerb (g) linear map ofV (1)
into V(1) is one-one.

12. Prove for arbitraryh and p in b* that if V(u) is isomorphic to aJ (g)
submodule ofV (1), thenu is in A — QF and is in the orbit ofA under
the Weyl group.

13. Letx be inh*, and letM be an irreducible quotient of@d (g) submodule of
V(). Prove thatM is isomorphic to theJ (g) moduleL (1) of Proposition
5.15 for someu in A — QT such thatu is in the orbit ofA under the Weyl
group.

Problems 14-15 concern tensor products of irreducible representationsbéet

a complex semisimple Lie algebra, and let notation be as in §2.

14. Letg, andg, be irreducible representationsgtvith highest weights. and
A/, respectively. Prove that the weights@f® ¢;, are all sums. + ', where
w is aweight ofp; andu’ is a weight ofp,,. How is the multiplicity ofu + u’
related to multiplicities inp, andg, ?

15. Letwv, andv;, be highest weight vectors i, andg;,., respectively. Prove that
v, ® vy IS a highest weight vector ip; ® ¢;,. Conclude that; ., occurs
exactly once inp, ® ;. (This occurrence is sometimes called ©artan
compositionof ¢; andeg;..)

Problems 16-18 begin a construction of “spin representations.ulet ., u,

be the standard orthonormal basis®f. The Clifford algebra CIliff (R") is an

associative algebra ov& of dimension 2 with a basis parametrized by subsets
of {1, ..., n} and given by

{uiluiz-nuik | il < i2 < e < Ik}
The generators multiply by the rules
us = -1, uuj = —uju; if i # j.

16. Verify that the Clifford algebra is associative.

17. The Clifford algebra, like any associative algebra, becomes a Lie algebra
under the bracket operatior,[y] = xy — yx. Put

q:ZRUin.

i#]



342 V. Finite-Dimensional Representations

Verify thatq is a Lie subalgebra of CIifR") isomorphic tase(n), the isomor-
phism beingp : so(n) — g with

¢(Eji — Eij) = 3uil;.

18. Withg as in Problem 17, verify that
[e(X), u;] = Xy for all X € so(n).

Here the left side is a bracket in CliR"), and the right side is the product
of the matrixx by the column vectou;, the product being reinterpreted as a
member of CliffR").

Problems 19-27 continue the construction of spin representations. We form the

complexification Cliff (R") and denote left multiplication by, puttingc(x)y =
xy. Thenc is a representation of the associative algebra ‘G&") on itself,
hence also of the Lie algebra CliffR") on itself, hence also of the Lie subalgebra
q% = so(n, C) on CIiff®(R™). Letn = 2m+ 1 orn = 2m, according a# is odd
oreven. Forl< j <m,let

Z; =U2]',1+iU2j and 21' =U2j,1—iU2]'.
For each subseéd of {1, ..., m}, define
m
zs=([1a)(I12)
jes j=1

with each product arranged so that the indices are in increasing ordds ddd,

define also -
Z/S = (sz)(nzj)u2m+l~

jeS j=1
19. Check that
Zj2 = _]-2 =0 and 2717 = —4Zj s
and deduce that

475 ifj¢S

C(Zj)Zs = { o -
0 ifjeS
_ 0 ifj ¢S

C(Zj)ZsZ .
+4z5 4 if jeS.

20. Whenn is odd, check that(z;)zg andc(z;)zg are given by formulas similar
to those in Problem 19, and compute at$0om+1)Zs andc(Uzm1)Zs, UP to
sign.
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22.

23.

24.

25.

26.
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Forn even let

S= Y Czs,

Scil....m}

of dimension 2. Forn odd let

S= Y Cz+ Y Cz,
Sc{1,...,m} T<{1,...,m}

of dimension 2+1. Prove that(Cliff ©(R")) carriesS to itself, hence that
c(q®) carriesS to itself.

Forn even, writeS = St @ S, whereS* refers to setsS with an even
number of elements and whefe corresponds to se&with an odd number
of elements. Prove that* andS~ are invariant subspaces undgq®), of
dimension 2-1. (The representatiod®” andS~ are thespin representations
of so(2m, C).)

Forn odd, write§S = ST & S, whereS* corresponds to setS with an
even number of elements and s&twith an odd number of elements and
whereS~ corresponds to setS with an odd number of elements and sets
T with an even number of elements. Prove tl§atand S~ are invariant
subspaces underq®), of dimension 2, and that they are equivalent under
right multiplication byu,mi1. (Thespin representationof so(2m+ 1, C) is
either of the equivalent representatidfisandS~.)

Lettg be the maximal abelian subspacesofn) in 8IV.5. In terms of the
isomorphismy in Problem 17, check that the corresponding maximal abelian
subspace of is ¢(tg) = > _Ruyjuyj_1. In the notation of §ll.1, check also
that%i UgjUzj—1 is ¢ of the element of on whiche; is 1 ande is O fori # j.

In the notation of the previous problem, prove that

1
cp(h))zs = E(Zej . Ze,)(h)zs
¢S jes
for h e t. Prove also that a similar formula holds for the actioregavhenn
is odd.

Suppose that is even.

(a) Conclude from Problem 25 that the weightsSf are all expressions
%(iel +- ..+ eyn) with an even number of minus signs, while the weights
of S~ are all expression%(iel =+ ...+ ey) with an odd number of minus
signs.

(b) Compute the dimensions of the irreducible representations with highest
weights% (e1+---+€m_1+6€mn) and%(e1+~ --+6n_1—€m), and conclude
thatso(2m, C) acts irreducibly orS*™ andS-.
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27. Suppose thatis odd.
(a) Conclude from Problem 25 that the weightsSf are all expressions
%(iel + ... £+ en) and that the weights &~ are the same.
(b) Compute the dimension of the irreducible representation with highest
weight%(e1+- --+€y), and conclude thab(2m+ 1, C) acts irreducibly
onSt andS~.

Problems 28-33 concern fundamental representations. ai,et., o be the
simple roots, and definer, ..., @y by 2(wi,a,-)/|ozj|2 = §jj. The dominant
algebraically integral linear functionals are then all expressjons; w; with all

n; integers> 0. We callw; thefundamental weight attached to the simple root
aj, and the corresponding irreducible representation is calledutiamental
representationattached to that simple root.

28. Letg = sl(n, C).
(a) Verify that the fundamental weights aZt}:'k:leK forl<l<n-1.
(b) Using Problem 7, verify that the fundamental representations are the usual
alternating-tensor representations.

29. Letg=s0(2n+1,C). Leto; =g —e 1 fori < n, and lety; = e,.
(a) Verify that the fundamental weights ame = Z'k:l gforl<l<n-1
andw, = 3 3¢ e
(b) Using Problem 8, verify that the fundamental representations attached to
simple roots other than the last one are alternating-tensor representations.
(c) Using Problem 27, verify that the fundamental representation attached to
the last simple root is the spin representation.

30. Letg =s0(2n,C). Letaj = —g 1 fori <n—1,andlety,_1 =€_1—€,

andoan, = €,_1 + &,.

(a) Verify that the fundamental weights ang = Z'k:1 gforl<l <n-2,
Wn-1 = % Y k1 &, anda, = %(22;1@ —€n).

(b) Using Problem 9, verify that the fundamental representations attached to
simple roots other than the last two are alternating-tensor representations.

(c) Using Problem 26, verify that the fundamental representations attached
to the last two simple roots are the spin representations.

31. Letx and)’ be dominant algebraically integral, and suppose that}’ is
dominant and nonzero. Prove that the dimension of an irreducible represen-
tation with highest weight is greater than the dimension of an irreducible
representation with highest weighit

32. Giveng, prove for each integed that there are only finitely many irreducible
representations gf, up to equivalence, of dimensign N.
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33. Letg be a complex simple Lie algebra of tyfe.

(a) Using Problem 42 in Chapter Il, construct a 7-dimensional nonzero rep-
resentation of.

(b) Leta; be the long simple root, and let be the short simple root. Verify
thatw, = 201 + 3ap and thato, = ay + 2.

(c) Verify that the dimensions of the fundamental representatiopsacé 7
and 14. Which one has dimension 77?

(d) Using Problem 31, conclude that the representation constructed in (a) is
irreducible.

Problems 34-35 concern Borel subalgebbasf a complex semisimple Lie

algebrag.

34. Leth be a Cartan subalgebragflet A = A(g, h) be the system of roots, let
A* be a system of positive roots, let= >, _,: g. be the sum of the root
spaces corresponding o', and letb = h & n be the corresponding Borel
subalgebra ofi. If H € h hasa(H) # Oforalla € At and if X is inn,
prove that the centralizet, (H + X) is a Cartan subalgebra gf

35. Within the complex semisimple Lie algebgalet (b, b, {X,}) be a triple
consisting of a Borel subalgebkaof g, a Cartan subalgebria of g that
lies in b, and a system of nonzero root vectors for the simple roots in the
positive system of roots definirtg Let (b/, ', {X,}) be a second such triple.
Suppose that there is a compact Lie algelyrthat is a real form of and has
the property thahy = h N ug is a maximal abelian subalgebraigf. Prove
that there exists an elemente Intg such that Adg)b = b’, Ad(g)h =y,
and Adg){xa} = {Xu}.








