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CHAPTER V

Finite-Dimensional Representations

Abstract. In any finite-dimensional representation of a complex semisimple Lie algebra
g, a Cartan subalgebrah acts completely reducibly, the simultaneous eigenvalues being
called “weights.” Once a positive system for the roots�+(g, h) has been fixed, one can
speak of highest weights. The Theorem of the Highest Weight says that irreducible finite-
dimensional representations are characterized by their highest weights and that the highest
weight can be any dominant algebraically integral linear functional onh. The hard step
in the proof is the construction of an irreducible representation corresponding to a given
dominant algebraically integral form. This step is carried out by using “Verma modules,”
which are universal highest weight modules.

All finite-dimensional representations ofg are completely reducible. Consequently the
nature of such a representation can be determined from the representation ofh in the space
of “n invariants.” The Harish-Chandra Isomorphism identifies the center of the universal
enveloping algebraU (g) with the Weyl-group invariant members ofU (h). The proof uses
the complete reducibility of finite-dimensional representations ofg.

The center ofU (g) acts by scalars in any irreducible representation ofg, whether finite
dimensional or infinite dimensional. The result is a homomorphism of the center intoC
and is known as the “infinitesimal character” of the representation. The Harish-Chandra
Isomorphism makes it possible to parametrize all possible homomorphisms of the center
into C, thus to parametrize all possible infinitesimal characters. The parametrization is by
the quotient ofh∗ by the Weyl group.

The Weyl Character Formula attaches to each irreducible finite-dimensional represen-
tation a formal exponential sum corresponding to the character of the representation. The
proof uses infinitesimal characters. The formula encodes the multiplicity of each weight,
and this multiplicity is made explicit by the Kostant Multiplicity Formula. The formula
encodes also the dimension of the representation, which is made explicit by the Weyl
Dimension Formula.

Parabolic subalgebras provide a framework for generalizing the Theorem of the Highest
Weight so that the Cartan subalgebra is replaced by a larger subalgebra called the “Levi
factor” of the parabolic subalgebra.

The theory of finite-dimensional representations of complex semisimple Lie algebras
has consequences for compact connected Lie groups. One of these is a formula for the order
of the fundamental group. Another is a version of the Theorem of the Highest Weight that
takes global properties of the group into account. The Weyl Character Formula becomes
more explicit, giving an expression for the character of any irreducible representation when
restricted to a maximal torus.
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274 V. Finite-Dimensional Representations

1. Weights

For most of this chapter we study finite-dimensional representations of
complex semisimple Lie algebras. As introduced in Example 4 of §I.5,
these are complex-linear homomorphisms of a complex semisimple Lie
algebra into EndC V, whereV is a finite-dimensional complex vector space.
Historically the motivation for studying such representations comes from
two sources—representations ofsl(2, C) and representations of compact
Lie groups. Representations ofsl(2, C) were studied in §I.9, and the theory
of the present chapter may be regarded as generalizing the results of that
section to all complex semisimple Lie algebras.

Representations of compact connected Lie groups were studied in Chap-
ter IV. If G is a compact connected Lie group, then a representation ofG
on a finite-dimensional complex vector spaceV yields a representation of
the Lie algebrag0 onV and then a representation of the complexificationg

of g0 on V . The Lie algebrag0 is the direct sum of an abelian Lie algebra
and a semisimple Lie algebra, and the same thing is true ofg. Through
studying the representations of the semisimple part ofg, we shall be able,
with only little extra effort, to complete the study of the representations of
G at the end of this chapter.

The examples of representations in Chapter IV give us examples for the
present chapter, as well as clues for how to proceed. The easy examples,
apart from the trivial representation withg acting as 0, are the standard
representations ofsu(n)C andso(n)C. These are obtained by differentiation
of the standard representations ofSU (n) and SO(n) and just amount to
multiplication of a matrix by a column vector, namely

ϕ(X)

 z1
...

zn

 = X

 z1
...

zn

 .

The differentiated versions of the other examples in §IV.1 are more com-
plicated because they involve tensor products. Although tensor products
on the group level (4.2) are fairly simple, they become more complicated
on the Lie algebra level (4.3) because of the product rule for differentiation.
This complication persists for representations in spaces of symmetric or
alternating tensors, since such spaces are subspaces of tensor products.
Thus the usual representation ofSU (n) on

∧lCn is given simply by

�(g)(εj1 ∧ · · · ∧ εjl ) = gεj1 ∧ · · · ∧ gεjl ,
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while the corresponding representation ofsu(n)C on
∧lCn is given by

ϕ(X)(εj1 ∧ · · · ∧ εjl ) =
l∑

k=1

εj1 ∧ · · · ∧ εjk−1 ∧ Xεjk ∧ εjk+1 ∧ · · · ∧ εjl .

The second construction that enters the examples of §IV.1 is contra-
gredient, given on the Lie group level by (4.1) and on the Lie algebra level
by (4.4). Corollary A.24b, withE = Cn, shows that the representation in
a spaceSn(E∗) of polynomials may be regarded as the contragredient of
the representation in the spaceSn(E) of symmetric tensors.

The clue for how to proceed comes from the representation theory of
compact connected Lie groupsG in Chapter IV. Letg0 be the Lie algebra
of G, and letg be the complexification. IfT is a maximal torus inG, then
the complexified Lie algebra ofT is a Cartan subalgebrat of g. Insight
into g comes from roots relative tot, which correspond to simultaneous
eigenspaces for the action ofT , according to (4.32). If� is any finite-
dimensional representation ofG on a complex vector spaceV, then� may
be regarded as unitary by Proposition 4.6. Hence�|T is unitary, and Corol-
lary 4.7 shows that�|T splits as the direct sum of irreducible representations
of T . By Corollary 4.9 each of these irreducible representations ofT is
1-dimensional. ThusV is the direct sum of simultaneous eigenspaces for
the action ofT , hence also for the action oft.

At first this kind of decomposition seems unlikely to persist when
the compact groups are dropped and we have only a representation of
a complex semisimple Lie algebra, since Proposition 2.4 predicts only a
generalized weight-space decomposition. But a decomposition into si-
multaneous eigenspaces is nonetheless valid and is the starting point for
our investigation. Before coming to this, let us record that the proofs of
Schur’s Lemma and its corollary in §IV.2 are valid for representations of
Lie algebras.

Proposition 5.1 (Schur’s Lemma). Supposeϕ andϕ′ are irreducible
representations of a Lie algebrag on finite-dimensional vector spacesV and
V ′, respectively. IfL : V → V ′ is a linear map such thatϕ′(X)L = Lϕ(X)

for all X ∈ g, thenL is one-one onto orL = 0.

PROOF. We see easily that kerL and imageL are invariant subspaces of
V andV ′, respectively, and then the only possibilities are the ones listed.

Corollary 5.2. Supposeϕ is an irreducible representation of a Lie
algebrag on a finite-dimensional complex vector spaceV . If L : V → V
is a linear map such thatϕ(X)L = Lϕ(X) for all X ∈ g, thenL is scalar.
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PROOF. Let λ be an eigenvalue ofL. Then L − λI is not one-one
onto, but it does commute withϕ(X) for all X ∈ g. By Proposition 5.1,
L − λI = 0.

Let g be a complex semisimple Lie algebra. Fix a Cartan subalgebra
h, and let� = �(g, h) be the set of roots. Following the notation first
introduced in Corollary 2.38, leth0 be the real form ofh on which all roots
are real valued. LetB be any nondegenerate symmetric invariant bilinear
form on g that is positive definite onh0. Relative toB, we can define
membersHα of h for eachα ∈ �. Thenh0 = ∑

α∈� RHα.
Let ϕ be a representation on the complex vector spaceV . Recall from

§II.2 that if λ is in h∗, we defineVλ to be the subspace

{v ∈ V | (ϕ(H) − λ(H)1)nv = 0 for all H ∈ h and somen = n(H, V )}.
If Vλ �= 0, then Vλ is called ageneralized weight spaceand λ is a
weight. Members ofVλ are calledgeneralized weight vectors. WhenV
is finite dimensional,V is the direct sum of its generalized weight spaces
by Proposition 2.4.

Theweight spacecorresponding toλ is

{v ∈ V | ϕ(H)v = λ(H)v for all H ∈ h},
i.e., the subspace ofVλ for which n can be taken to be 1. Members of the
weight space are calledweight vectors. The examples of weight vectors
below continue the discussion of examples in §IV.1.

EXAMPLES FOR G = SU (n). Hereg = su(n)C = sl(n, C). As in
Example 1 of §II.1, we defineh to be the diagonal subalgebra. The roots
are allei − ej with i �= j .

1) Let V consist of all polynomials inz1, . . . , zn, z̄1, . . . , z̄n homoge-
neous of degreeN . Let H = diag(i t1, . . . , i tn) with

∑
tj = 0. Then the

Lie algebra representationϕ has

ϕ(H)P(z, z̄) = d

dr
P

e−r H

 z1
...

zn

 , er H

 z̄1
...

z̄n


r=0

= d

dr
P

 e−ir t1z1
...

e−ir tn zn

 ,

 eirt1 z̄1
...

eirtn z̄n


r=0

=
n∑

j=1

(−i tj z j)
∂ P

∂zj
(z, z̄) +

n∑
j=1

(i tj z̄ j)
∂ P

∂ z̄ j
(z, z̄).
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If P is a monomial of the form

P(z, z̄) = zk1
1 · · · zkn

n z̄l1
1 · · · z̄ln

n with
n∑

j=1

(kj + lj) = N ,

then the above expression simplifies to

ϕ(H)P = ( n∑
j=0

(lj − kj)(i tj)
)
P.

Thus the monomialP is a weight vector of weight
∑n

j=0 (lj − kj)ej .

2) Let V = ∧lCn. Again let H = diag(i t1, . . . , i tn) with
∑

tj = 0.
Then the Lie algebra representationϕ has

ϕ(H)(εj1 ∧ · · · ∧ εjl ) =
l∑

k=1

εj1 ∧ · · · ∧ Hεjk ∧ · · · ∧ εjl

=
l∑

k=1

(i tjk )(εj1 ∧ · · · ∧ εjl ).

Thusεj1 ∧ · · · ∧ εjl is a weight vector of weight
∑l

k=1 ejk .

EXAMPLES FOR G = SO(2n + 1). Here g = so(2n + 1)C =
so(2n + 1, C). As in Example 2 of §II.1, we defineh to be built from
the firstn diagonal blocks of size 2. The roots are±ej and±ei ± ej with
i �= j .

1) Letm = 2n +1, and letV consist of all complex-valued polynomials

on Rm of degree≤ N . Let H1 be the member ofh equal to

(
0 1

−1 0

)
in

the first 2-by-2 block and 0 elsewhere. Then the Lie algebra representation
ϕ has

ϕ(H1)P

 x1
...

xm

= d

dr
P


x1 cosr − x2 sinr
x1 sinr + x2 cosr

x3
...

xm


r=0

= −x2
∂ P

∂x1
(x)+ x1

∂ P

∂x2
(x).

(5.3)
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For P(x) = (x1 + i x2)
k , ϕ(H1) thus acts as the scalarik. The other 2-by-2

blocks ofh annihilate thisP, and it follows that(x1 + i x2)
k is a weight

vector of weight−ke1. Similarly (x1 − i x2)
k is a weight vector of weight

+ke1.
ReplacingP in (5.3) by(x2 j−1 ± x2 j)Q and making the obvious adjust-

ments in the computation, we obtain

ϕ(H)((x2 j−1± i x2 j)Q) = (x2 j−1± i x2 j)(ϕ(H)∓ej(H))Q for H ∈ h.

Sincex2 j−1 + i x2 j and x2 j−1 − i x2 j together generatex2 j−1 and x2 j and
sinceϕ(H) acts as 0 onxk

2n+1, this equation tells us how to computeϕ(H)

on any monomial, hence on any polynomial.
It is clear that the subspace of polynomials homogeneous of degreeN

is an invariant subspace under the representation. This invariant subspace
is spanned by the weight vectors

(x1 + i x2)
k1(x1 − i x2)

l1(x3 + i x4)
k2 · · · (x2n−1 − i x2n)

ln xk0
2n+1,

where
∑n

j=0 kj + ∑n
j=1 lj = N . Hence the weights of the subspace are all

expressions
∑n

j=1 (lj − kj)ej with
∑n

j=0 kj + ∑n
j=1 lj = N .

2) LetV = ∧lC2n+1. The elementH1 of h in the above example acts on
ε1 + iε2 by the scalar+i and onε1 − iε2 by the scalar−i . Thusε1 + iε2

andε1− iε2 are weight vectors inC2n+1 of respective weights−e1 and+e1.
Also ε2n+1 has weight 0. Then the product rule for differentiation allows
us to compute the weights in

∧lC2n+1 and find that they are all expressions

±ej1 ± · · · ± ejr

with

j1 < · · · < jr and

{
r ≤ l if l ≤ n

r ≤ 2n + 1 − l if l > n.

Motivated by Proposition 4.59 for compact Lie groups, we say that a
memberλ of h∗ is algebraically integral if 2〈λ, α〉/|α|2 is in Z for each
α ∈ �.

Proposition 5.4.Let g be a complex semisimple Lie algebra, leth be a
Cartan subalgebra, let� = �(g, h) be the roots, and leth0 = ∑

α∈� RHα.
If ϕ is a representation ofg on the finite-dimensional complex vector space
V, then

(a) ϕ(h) acts diagonably onV, so that every generalized weight vector
is a weight vector andV is the direct sum of all the weight spaces,

(b) every weight is real valued onh0 and is algebraically integral,
(c) roots and weights are related byϕ(gα)Vλ ⊆ Vλ+α.
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PROOF.
(a, b) If α is a root andEα andE−α are nonzero root vectors forα and

−α, then{Hα, Eα, E−α} spans a subalgebraslα of g isomorphic tosl(2, C),

with 2|α|−2Hα corresponding toh =
(

1 0

0 −1

)
. Then the restriction ofϕ to

slα is a finite-dimensional representation ofslα, and Corollary 1.72 shows
thatϕ(2|α|−2Hα) is diagonable with integer eigenvalues. This proves (a)
and the first half of (b). Ifλ is a weight andv ∈ Vλ is nonzero, then we
have just seen thatϕ(2|α|−2Hα)v = 2|α|−2〈λ, α〉v is an integral multiple
of v. Hence 2〈λ, α〉/|α|2 is an integer, andλ is algebraically integral.

(c) Let Eα be ingα, let v be inVλ, and letH be inh. Then

ϕ(H)ϕ(Eα)v = ϕ(Eα)ϕ(H)v + ϕ([H, Eα])v

= λ(H)ϕ(Eα)v + α(H)ϕ(Eα)v

= (λ + α)(H)ϕ(Eα)v.

Henceϕ(Eα)v is in Vλ+α.

2. Theorem of the Highest Weight

In this section letg be a complex semisimple Lie algebra, leth be a
Cartan subalgebra, let� = �(g, h) be the set of roots, and letW (�) be
the Weyl group. Leth0 be the real form ofh on which all roots are real
valued, and letB be any nondegenerate symmetric invariant bilinear form
ong that is positive definite onh0. Introduce an ordering inh∗

0 in the usual
way, and let� be the resulting simple system.

If ϕ is a representation ofg on a finite-dimensional complex vector space
V, then the weights ofV are inh∗

0 by Proposition 5.4b. The largest weight
in the ordering is called thehighest weightof ϕ.

Theorem 5.5(Theorem of the Highest Weight). Apart from equivalence
the irreducible finite-dimensional representationsϕ of g stand in one-one
correspondence with the dominant algebraically integral linear functionals
λ on h, the correspondence being thatλ is the highest weight ofϕλ. The
highest weightλ of ϕλ has these additional properties:

(a) λ depends only on the simple system� and not on the ordering
used to define�,

(b) the weight spaceVλ for λ is 1-dimensional,
(c) each root vectorEα for arbitraryα ∈ �+ annihilates the members

of Vλ, and the members ofVλ are the only vectors with this property,
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(d) every weight ofϕλ is of the formλ − ∑l
i=1 niαi with the integers

≥ 0 and theαi in �,
(e) each weight spaceVµ for ϕλ has dimVwµ = dim Vµ for all w in the

Weyl groupW (�), and each weightµ has|µ| ≤ |λ| with equality
only if µ is in the orbitW (�)λ.

REMARKS.
1) Because of (e) the weights in the orbitW (�)λ are said to beextreme.

The set of extreme weights does not depend on the choice of�.
2) Much of the proof of Theorem 5.5 will be given in this section after

some examples. The proof will be completed in §3. The examples continue
the notation of the examples in §1.

EXAMPLES.

1) With g = sl(n, C), let V consist of all polynomials inz1, . . . , zn,
and z̄1, . . . , z̄n homogeneous of total degreeN . The weights are all ex-
pressions

∑n
j=1 (lj − kj)ej with

∑n
j=1 (kj + lj) = N . The highest weight

relative to the usual positive system isNe1. The subspace of holomorphic
polynomials is an invariant subspace, and it has highest weight−Nen. The
subspace of antiholomorphic polynomials is another invariant subspace,
and it has highest weightNe1.

2) With g = sl(n, C), let V = ∧lCn. The weights are all expres-
sions

∑l
k=1 ejk . The highest weight relative to the usual positive system is∑l

k=1 ek .

3) With g = so(2n + 1, C), let the representation space consist of all
complex-valued polynomials inx1, . . . , x2n+1 homogeneous of degreeN .
The weights are all expressions

∑n
j=1 (lj −kj)ej with k0 +∑n

j=1 (kj + lj) =
N . The highest weight relative to the usual positive system isNe1.

4) With g = so(2n + 1, C), let V = ∧lC2n+1. If l ≤ n, the weights
are all expressions±ej1 ± · · · ± ejr with j1 < · · · < jr andr ≤ l, and the
highest weight relative to the usual positive system is

∑l
k=1 ek .

PROOF OF EXISTENCE OF THE CORRESPONDENCE. Letϕ be an irreducible
finite-dimensional representation ofg on a spaceV . The representation
ϕ has weights by Proposition 2.4, and we letλ be the highest. Thenλ is
algebraically integral by Proposition 5.4b.

If α is in�+, thenλ+α exceedsλ and cannot be a weight. ThusEα ∈ gα

andv ∈ Vλ imply ϕ(Eα)v = 0 by Proposition 5.4c. This proves the first
part of (c).
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Extendϕ multiplicatively to be defined on all ofU (g) with ϕ(1) = 1 by
Corollary 3.6. Sinceϕ is irreducible,ϕ(U (g))v = V for eachv �= 0 in V .
Let β1, . . . , βk be an enumeration of�+, and letH1, . . . , Hl be a basis of
h. By the Poincar´e–Birkhoff–Witt Theorem (Theorem 3.8) the monomials

(5.6) Eq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk

form a basis ofU (g). Let us applyϕ of each of these monomials tov in
Vλ. The Eβ ’s give 0, theH ’s multiply by constants (by Proposition 5.4a),
and theE−β ’s push the weight down (by Proposition 5.4c). Consequently
the only members ofVλ that can be obtained by applyingϕ of (5.6) tov

are the vectors ofCv. ThusVλ is 1-dimensional, and (b) is proved.
The effect ofϕ of (5.6) applied tov in Vλ is to give a weight vector with

weight

(5.7) λ −
k∑

j=1

qjβj ,

and these weight vectors spanV . Thus the weights (5.7) are the only
weights ofϕ, and (d) follows from Proposition 2.49. Also (d) implies (a).

To prove the second half of (c), letv /∈ Vλ satisfyϕ(Eα)v = 0 for all
α ∈ �+. Subtracting the component inVλ, we may assume thatv has 0
component inVλ. Let λ0 be the largest weight such thatv has a nonzero
component inVλ0, and letv′ be the component. Thenϕ(Eα)v

′ = 0 for all
α ∈ �+, andϕ(h)v′ ⊆ Cv′. Applying ϕ of (5.6), we see that

V =
∑

Cϕ(E−β1)
q1 · · · ϕ(E−βk )

qk v′.

Every weight of vectors on the right side is strictly lower thanλ, and we
have a contradiction with the fact thatλ occurs as a weight.

Next we prove thatλ is dominant. Letα be in�+, and formH ′
α, E ′

α, and
E ′

−α as in (2.26). These vectors span a Lie subalgebraslα of g isomorphic

to sl(2, C), and the isomorphism carriesH ′
α to h =

(
1 0

0 −1

)
. Forv �= 0 in

Vλ, the subspace ofV spanned by all

ϕ(E ′
−α)

pϕ(H ′
α)

qϕ(E ′
α)

rv

is stable underslα, and (c) shows that it is the same as the span of all
ϕ(E ′

−α)
pv. On these vectorsϕ(H ′

α) acts with eigenvalue

(λ − pα)(H ′
α) = 2〈λ, α〉

|α|2 − 2p,
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and the largest eigenvalue ofϕ(H ′
α) is therefore 2〈λ, α〉/|α|2. By Corollary

1.72 the largest eigenvalue forh in any finite-dimensional representation
of sl(2, C) is ≥ 0, andλ is therefore dominant.

Finally we prove (e). Fixα ∈ �, and formslα as above. Proposition
5.4a shows thatV is the direct sum of its simultaneous eigenspaces underh

and hence also under the subspace kerα of h. In turn, since kerα commutes
with slα, each of these simultaneous eigenspaces under kerα is invariant
underslα and is completely reducible by Theorem 1.67.

ThusV is the direct sum of subspaces invariant and irreducible under
slα ⊕ kerα. Let V ′ be one of these irreducible subspaces. Sinceh ⊆
slα ⊕ kerα, V ′ is the direct sum of its weight spaces:V ′ = ⊕

ν(V ′ ∩ Vν).
If ν andν ′ are two weights occurring inV ′, then the irreducibility under
slα ⊕ kerα forcesν ′ − ν = nα for some integern.

Fix a weightµ, and consider such a spaceV ′. The weights ofV ′ are
µ+nα, and these are distinguished from one another by their values onH ′

α.
By Corollary 1.72, dim(V ′ ∩ Vµ) = dim(V ′ ∩ Vsαµ). Summing overV ′,
we obtain dimVµ = dim Vsαµ. Since the root reflections generateW (�),
it follows that dimVµ = dim Vwµ for all w ∈ W (�). This proves the first
half of (e).

For the second half of (e), Corollary 2.68 and the result just proved show
that there is no loss of generality in assuming thatµ is dominant. Under
this restriction onµ, let us use (d) to writeλ = µ + ∑l

i=1 niαi with all
ni ≥ 0. Then

|λ|2 = |µ|2 +
l∑

i=1

ni〈µ, αi〉 + ∣∣ l∑
i=1

niαi

∣∣2

≥ |µ|2 + ∣∣ l∑
i=1

niαi

∣∣2
by dominance ofµ.

The right side is≥ |µ|2 with equality only if
∑l

i=1 niαi = 0. In this case
µ = λ.

PROOF THAT THE CORRESPONDENCE IS ONE-ONE. Let ϕ and ϕ′ be
irreducible finite dimensional onV andV ′, respectively, both with highest
weightλ, and regardϕ andϕ′ as representations ofU (g). Let v0 andv′

0 be
nonzero highest weight vectors. Formϕ ⊕ ϕ′ on V ⊕ V ′. We claim that

S = (ϕ ⊕ ϕ′)(U (g))(v0 ⊕ v′
0)

is an irreducible invariant subspace ofV ⊕ V ′.
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CertainlyS is invariant. LetT ⊆ S be an irreducible invariant subspace,
and letv ⊕ v′ be a nonzero highest weight vector. Forα ∈ �+, we have

0 = (ϕ ⊕ ϕ′)(Eα)(v ⊕ v′) = ϕ(Eα)v ⊕ ϕ′(Eα)v
′,

and thusϕ(Eα)v = 0 andϕ′(Eα)v
′ = 0. By (c),v = cv0 andv′ = c′v′

0.
Hencev⊕v′ = cv0⊕c′v′

0. This vector by assumption is inϕ(U (g))(v0⊕v′
0).

When we applyϕ of (5.6) tov0⊕v′
0, theEβ ’s give 0, while theH ’s multiply

by constants, namely

(ϕ ⊕ ϕ′)(H)(v0 ⊕ v′
0) = ϕ(H)v0 ⊕ ϕ′(H)v′

0 = λ(H)(v0 ⊕ v′
0).

Also theE−β ’s push weights down by Proposition 5.4c. We conclude that
c′ = c. HenceT = S, andS is irreducible.

The projection ofS to V commutes with the representations and is not
identically 0. By Schur’s Lemma (Proposition 5.1),ϕ ⊕ ϕ′|S is equivalent
with ϕ. Similarly it is equivalent withϕ′. Henceϕ andϕ′ are equivalent.

To complete the proof of Theorem 5.5, we need to prove an existence
result. The existence result says that for any dominant algebraically integral
λ, there exists an irreducible finite-dimensional representationϕλ of g with
highest weightλ. We carry out this step in the next section.

3. Verma Modules

In this section we complete the proof of the Theorem of the Highest
Weight (Theorem 5.5): Under the assumption thatλ is algebraically inte-
gral, we give an algebraic construction of an irreducible finite-dimensional
representation ofg with highest weightλ.

By means of Corollary 3.6, we can identify representations ofg with
unital left U (g) modules, and henceforth we shall often drop the name of
the representation when working in this fashion. The idea is to consider
all U (g) modules, finite dimensional or infinite dimensional, that possess
a vector that behaves like a highest weight vector with weightλ. Among
these we shall see that there is one (called a “Verma module”) with a
universal mapping property. A suitable quotient of the Verma module will
give us our irreducible representation, and the main step will be to prove
that it is finite dimensional.
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We retain the notation of §2, and we write� = {α1, . . . , αl}. In addition
we let

(5.8)

n =
⊕
α∈�+

gα

n
− =

⊕
α∈�+

g−α

b = h ⊕ n

δ = 1
2

∑
α∈�+

α.

Thenn, n−, andb are Lie subalgebras ofg, andg = b⊕n− as a direct sum
of vector spaces.

Let the complex vector spaceV be a unital leftU (g) module. We allow
V to be infinite dimensional. Because of Corollary 3.6 we have already
defined in §1 the notions “weight,” “weight space,” and “weight vector”
for V . Departing slightly from the notation of that section, letVµ be the
weight space for the weightµ. The sum

∑
Vµ is necessarily a direct sum.

As in Proposition 5.4c, we have

(5.9) gα(Vµ) ⊆ Vµ+α

if α is in� andµ is inh∗. Moreover, (5.9) and the root-space decomposition
of g show that

(5.10) g

( ⊕
µ∈h∗

Vµ

)
⊆

( ⊕
µ∈h∗

Vµ

)
.

A highest weight vectorfor V is by definition a weight vectorv �= 0
withn(v) = 0. The setn(v)will be 0 as soon asEαv = 0 for the root vectors
Eα of simple rootsα. In fact, we easily see this assertion by expanding any
positiveα in terms of simple roots as

∑
i niαi and proceeding by induction

on the level
∑

i ni .
A highest weight moduleis a U (g) module generated by a highest

weight vector. “Verma modules,” to be defined below, will be universal
highest weight modules.

Proposition 5.11.Let M be a highest weight module forU (g), and let
v be a highest weight vector generatingM . Supposev is of weightλ. Then

(a) M = U (n−)v,
(b) M = ⊕

µ∈h∗ Mµ with each Mµ finite dimensional and with
dim Mλ = 1,

(c) every weight ofM is of the formλ − ∑l
i=1 niαi with theαi ’s in �

and with eachni an integer≥ 0.



3. Verma Modules 285

PROOF.
(a) We haveg = n− ⊕ h ⊕ n. By the Poincar´e–Birkhoff–Witt Theorem

(Theorem 3.8 and (3.14)),U (g) = U (n−)U (h)U (n). On the vectorv,
U (n) andU (h) act to give multiples ofv. ThusU (g)v = U (n−)v. Since
v generatesM , M = U (g)v = U (n−)v.

(b, c) By (5.10),
⊕

Mµ is U (g) stable, and it containsv. SinceM =
U (g)v, M = ⊕

Mµ. By (a), M = U (n−)v, and (5.9) shows that any
expression

(5.12) Eq1

−β1
· · · Eqk

−βk
v with all βj ∈ �+

is a weight vector with weightµ = λ − q1β1 − · · · − qkβk , from which (c)
follows. The number of expressions (5.12) leading to thisµ is finite, and
so dimMµ < ∞. The number of expressions (5.12) leading toλ is 1, from
v itself, and so dimMλ = 1.

Before defining Verma modules, we recall some facts about tensor prod-
ucts of associative algebras. (A special case has already been treated in
§I.3.) Let M1 and M2 be complex vector spaces, and letA and B be
complex associative algebras with identity. Suppose thatM1 is a right B
module andM2 is a left B module, and suppose thatM1 is also a leftA
module in such a way that(am1)b = a(m1b). We define

M1 ⊗B M2 = M1 ⊗C M2

subspace generated by allm1b ⊗ m2 − m1 ⊗ bm2
,

and we letA act on the quotient bya(m1 ⊗ m2) = (am1) ⊗ m2. Then
M1 ⊗B M2 is a left A module, and it has the following universal mapping
property: Wheneverψ : M1 × M2 → E is a bilinear map into a complex
vector spaceE such thatψ(m1b, m2) = ψ(m1, bm2), then there exists a
unique linear map̃ψ : M1⊗B M2 → E such thatψ(m1, m2) = ψ̃(m1⊗m2).

Now letλ be inh∗, and makeC into a leftU (b) moduleCλ−δ by defining

(5.13)
H z = (λ − δ)(H)z for H ∈ h, z ∈ C
Xz = 0 for X ∈ n.

(Equation (5.13) defines a 1-dimensional representation ofb, and thus
Cλ−δ becomes a leftU (b) module.) The algebraU (g) itself is a rightU (b)

module and a leftU (g) module under multiplication, and we define the
Verma module V (λ) to be the leftU (g) module

V (λ) = U (g) ⊗U (b) Cλ−δ.
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Proposition 5.14.Let λ be inh∗.

(a) V (λ) is a highest weight module underU (g) and is generated by
1 ⊗ 1 (thecanonical generator), which is of weightλ − δ.

(b) The map ofU (n−) into V (λ) given byu �→ u(1 ⊗ 1) is one-one
onto.

(c) If M is any highest weight module underU (g) generated by a highest
weight vectorv �= 0 of weightλ − δ, then there exists one and only one
U (g) homomorphism̃ψ of V (λ) into M such that̃ψ(1 ⊗ 1) = v. The
mapψ̃ is onto. Alsoψ̃ is one-one if and only ifu �= 0 in U (n−) implies
u(v) �= 0 in M .

PROOF.
(a) ClearlyV (λ) = U (g)(1 ⊗ 1). Also

H(1 ⊗ 1) = H ⊗ 1 = 1 ⊗ H(1) = (λ − δ)(H)(1 ⊗ 1) for H ∈ h

X (1 ⊗ 1) = X ⊗ 1 = 1 ⊗ X (1) = 0 for X ∈ n,

and so 1⊗ 1 is a highest weight vector of weightλ − δ.
(b) By the Poincar´e–Birkhoff–Witt Theorem (Theorem 3.8 and (3.14)),

we haveU (g) ∼= U (n−) ⊗C U (b), and this isomorphism is clearly an
isomorphism of leftU (n−) modules. Thus we obtain a chain of canonical
left U (n−) module isomorphisms

V (λ) = U (g) ⊗U (b) C ∼= (U (n−) ⊗C U (b)) ⊗U (b) C
∼= U (n−) ⊗C (U (b) ⊗U (b) C) ∼= U (n−) ⊗C C ∼= U (n−),

and (b) follows.
(c) We consider the bilinear map ofU (g) × Cλ−δ into M given by

(u, z) �→ u(zv). In terms of the action ofU (b) onCλ−δ, we check forb in
h and then forb in n that

(u, b(z)) �→ u(b(z)v) = zu((b(1))v)

(ub, z) �→ ub(zv) = zub(v) = zu((b(1))v).and

By the universal mapping property, there exists one and only one linear
map

ψ̃ : U (g) ⊗U (b) Cλ−δ → M

such thatu(zv) = ψ̃(u ⊗ z) for all u ∈ U (g) andz ∈ C, i.e., such that
u(v) = ψ̃(u(1⊗1)). This condition says that̃ψ is aU (g) homomorphism
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and that 1⊗ 1 maps tov. Hence existence and uniqueness follow. Clearly
ψ̃ is onto.

Let u be inU (n−). If u(v) = 0 with u �= 0, thenψ̃(u(1⊗1)) = 0 while
u(1 ⊗ 1) �= 0, by (b). Hencẽψ is not one-one. Conversely if̃ψ is not
one-one, then Proposition 5.11a implies that there existsu ∈ U (n−) with
u �= 0 andψ̃(u ⊗ 1) = 0. Then

u(v) = u(ψ̃(1 ⊗ 1)) = ψ̃(u(1 ⊗ 1)) = ψ̃(u ⊗ 1) = 0.

This completes the proof.

Proposition 5.15.Letλ be inh∗, and letV (λ)+ = ⊕
µ�=λ−δ V (λ)µ. Then

every properU (g)submodule ofV (λ) is contained inV (λ)+. Consequently
the sumS of all properU (g) submodules is a properU (g) submodule, and
L(λ) = V (λ)/S is an irreducibleU (g) module. Moreover,L(λ) is a
highest weight module with highest weightλ − δ.

PROOF. If N is aU (h) submodule, thenN = ⊕
µ(N ∩ V (λ)µ). Since

V (λ)λ−δ is 1-dimensional and generatesV (λ) (by Proposition 5.14a), the
λ − δ term must be 0 in the sum forN if N is proper. ThusN ⊆ V (λ)+.
HenceS is proper, andL(λ) = V (λ)/S is irreducible. The image of 1⊗ 1
in L(λ) is not 0, is annihilated byn, and is acted upon byh according to
λ − δ. ThusL(λ) has all the required properties.

Theorem 5.16.Suppose thatλ ∈ h∗ is real valued onh0 and is dominant
and algebraically integral. Then the irreducible highest weight module
L(λ + δ) is an irreducible finite-dimensional representation ofg with
highest weightλ.

REMARKS. Theorem 5.16 will complete the proof of the Theorem of
the Highest Weight (Theorem 5.5). The proof of Theorem 5.16 will be
preceded by two lemmas.

Lemma 5.17.In U (sl(2, C)), [e, f n] = n f n−1(h − (n − 1)).

PROOF. Let

L f = left by f in U (sl(2, C))

R f = right by f

ad f = L f − R f.
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Then R f = L f − ad f , and the terms on the right commute. By the
binomial theorem,

(R f )ne =
n∑

j=0

(
n
j

)
(L f )n− j(−ad f ) j e

= (L f )ne + n(L f )n−1(−ad f )e + n(n − 1)

2
(L f )n−2(−ad f )2e

since(ad f )3e = 0, and this expression is

= (L f )ne + n f n−1h + n(n − 1)

2
f n−2(−2 f )

= (L f )ne + n f n−1(h − (n − 1)).

Thus
[e, f n] = (R f )ne − (L f )ne = n f n−1(h − (n − 1)).

Lemma 5.18.For general complex semisimpleg, letλ be inh∗, letα be
a simple root, and suppose thatm = 2〈λ, α〉/|α|2 is a positive integer. Let
vλ−δ be the canonical generator ofV (λ), and letM be theU (g) submodule
generated by(E−α)

mvλ−δ, whereE−α is a nonzero root vector for the root
−α. ThenM is isomorphic toV (sαλ).

PROOF. The vectorv = (E−α)
mvλ−δ is not 0 by Proposition 5.14b. Since

sαλ = λ−mα, v is in V (λ)λ−δ−mα = V (λ)sαλ−δ. Thus the result will follow
from Proposition 5.14c if we show thatEβv = 0 wheneverEβ is a root
vector for a simple rootβ. Forβ �= α, [Eβ, E−α] = 0 sinceβ − α is not a
root (Lemma 2.51). Thus

Eβv = Eβ(E−α)
mvλ−δ = (E−α)

m Eβvλ−δ = 0.

For β = α, let us introduce a root vectorEα for α so that [Eα, E−α] =
2|α|−2Hα. The isomorphism (2.27) identifies span{Hα, Eα, E−α} with
sl(2, C), and then Lemma 5.17 gives

Eα(E−α)
mvλ−δ = [Eα, Em

−α]vλ−δ

= m(E−α)
m−1(2|α|−2Hα − (m − 1))vλ−δ

= m

(
2〈λ − δ, α〉

|α|2 − (m − 1)

)
Em−1

−α vλ−δ

= 0,

the last step following from Proposition 2.69.
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PROOF OFTHEOREM 5.16. Letvλ �= 0 be a highest weight vector in
L(λ + δ), with weightλ. We proceed in three steps.

First we show: For every simple rootα, En
−αvλ = 0 for all n suffi-

ciently large. HereE−α is a nonzero root vector for−α. In fact, for

n = 2〈λ + δ, α〉
|α|2 (which is positive by Proposition 2.69), the member

En
−α(1 ⊗ 1) of V (λ + δ) lies in a properU (g) submodule, according to

Lemma 5.18, and hence is in the submoduleS in Proposition 5.15. Thus
En

−αvλ = 0 in L(λ + δ).
Second we show: The set of weights is stable under the Weyl group

W = W (�). In fact, letα be a simple root, letslα be the copy ofsl(2, C)

given by slα = span{Hα, Eα, E−α}, setv(i) = Ei
−αvλ, and letn be the

largest integer such thatv(n) �= 0 (existence by the first step above). Then
Cv(0) + · · · + Cv(n) is stable underslα. The sum of all finite-dimensional
U (slα) submodules thus containsv(0) = vλ, and we claim it isg stable.

In fact, if T is a finite-dimensionalU (slα) submodule, then

gT = { ∑
Xt | X ∈ g andt ∈ T

}
is finite dimensional and forY ∈ slα andX ∈ g we have

Y Xt = XY t + [Y, X ]t = Xt ′ + [Y, X ]t ∈ gT .

SogT is slα stable, and the claim follows.
Since the sum of all finite-dimensionalU (slα) submodules ofL(λ + δ)

is g stable, the irreducibility ofL(λ + δ) implies that this sum is all of
L(λ+δ). By Corollary 1.73,L(λ+δ) is the direct sum of finite-dimensional
irreducibleU (slα) submodules.

Let µ be a weight, and lett �= 0 be inVµ. We have just shown thatt lies
in a finite direct sum of finite-dimensional irreducibleU (slα) submodules.
Let us writet = ∑

i∈I ti with ti in aU (slα) submoduleTi andti �= 0. Then∑
Hαti = Hαt = µ(Hα)t =

∑
µ(Hα)ti ,

2Hα

|α|2 ti = 2〈µ, α〉
|α|2 ti for eachi ∈ I.and so

If 〈µ, α〉 > 0, we know that(E−α)
2〈µ,α〉/|α|2ti �= 0 from Theorem 1.66.

Hence(E−α)
2〈µ,α〉/|α|2t �= 0, and we see that

µ − 2〈µ, α〉
|α|2 α = sαµ
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is a weight. If〈µ, α〉 < 0 instead, we know that(Eα)
−2〈µ,α〉/|α|2ti �= 0 from

Theorem 1.66. Hence(Eα)
−2〈µ,α〉/|α|2t �= 0, and so

µ − 2〈µ, α〉
|α|2 α = sαµ

is a weight. If〈µ, α〉 = 0, thensαµ = µ. In any casesαµ is a weight.
So the set of weights is stable under each reflectionsα for α simple, and
Proposition 2.62 shows that the set of weights is stable underW .

Third we show: The set of weights ofL(λ+ δ) is finite, andL(λ+ δ) is
finite dimensional. In fact, Corollary 2.68 shows that any linear functional
on h0 is W conjugate to a dominant one. Since the second step above
says that the set of weights is stable underW , the number of weights is at
most |W | times the number of dominant weights, which are of the form
λ−∑l

i=1 niαi by Proposition 5.11c. Each such dominant form must satisfy

〈λ, δ〉 ≥
l∑

i=1

ni〈αi , δ〉,

and Proposition 2.69 shows that
∑

ni is bounded; thus the number of dom-
inant weights is finite. ThenL(λ + δ) is finite dimensional by Proposition
5.11b.

4. Complete Reducibility

Let g be a finite-dimensional complex Lie algebra, and letU (g) be
its universal enveloping algebra. As a consequence of the generalization
of Schur’s Lemma given in Proposition 5.19 below, the centerZ(g) of
U (g) acts by scalars in any irreducible unital leftU (g) module, even an
infinite-dimensional one. The resulting homomorphismχ : Z(g) → C
is the first serious algebraic invariant of an irreducible representation ofg

and is called theinfinitesimal character. This invariant is most useful in
situations whereZ(g) can be shown to be large, which will be the case
wheng is semisimple.

Proposition 5.19(Dixmier). Letg be a complex Lie algebra, and letV
be an irreducible unital leftU (g) module. Then the onlyU (g) linear maps
L : V → V are the scalars.
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PROOF. The spaceE = EndU (g)(V, V ) is an associative algebra overC,
and Schur’s Lemma (Proposition 5.1) shows that every nonzero element of
E has a two-sided inverse, i.e.,E is a division algebra.

If v �= 0 is in V, then the irreducibility implies thatV = U (g)v. Hence
the dimension ofV is at most countable. Since every nonzero element
of E is invertible, theC linear mapL �→ L(v) of E into V is one-one.
Therefore the dimension ofE overC is at most countable.

Let L be in E . Arguing by contradiction, suppose thatL is not a scalar
multiple of the identity. Form the field extensionC(L) ⊆ E . SinceC is
algebraically closed,L is not algebraic overC. ThusL is transcendental
overC. In the transcendental extensionC(X), the set of all(X − c)−1 for
c ∈ C is linearly independent, and consequently the dimension ofC(X) is
uncountable. ThereforeC(L) has uncountable dimension, and so doesE ,
contradiction.

Let us introduceadjoint representationson the universal enveloping
algebraU (g) wheng is a finite-dimensional complex Lie algebra. We
define a representation ad ofg onU (g) by

(adX)u = Xu − u X for X ∈ g andu ∈ U (g).

(The representation property follows from the fact thatXY −Y X = [ X, Y ]
in U (g).) Lemma 3.9 shows that adX carriesUn(g) to itself. Therefore ad
provides for alln a consistently defined family of representations ofg on
Un(g).

Each g ∈ Int g gives an automorphism ofg. Composing with the
inclusion ofg into U (g), we obtain a complex-linear map ofg into U (g),
and it will be convenient to call this map Ad(g). This composition has the
property that

Ad(g)[ X, Y ] = [Ad(g)X, Ad(g)Y ]

= (Ad(g)X)(Ad(g)Y ) − (Ad(g)Y )(Ad(g)X).

By Proposition 3.3 (withA = U (g)), Ad(g) extends to a homomorphism
of U (g) into itself carrying 1 to 1. Moreover

(5.20) Ad(g1)Ad(g2) = Ad(g1g2)

because of the uniqueness of the extension and the validity of this formula
on U1(g). Therefore each Ad(g) is an automorphism ofU (g). Because
Ad(g) leavesU1(g) stable, it leaves eachUn(g) stable. Its smoothness ing
onU1(g) implies its smoothness ing onUn(g). Thus we obtain for alln a
consistently defined family Ad of smooth representations ofG onUn(g).
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Proposition 5.21. Let g be a finite-dimensional complex Lie algebra.
Then

(a) the differential at 1 of Ad onUn(g) is ad, and
(b) on eachUn(g), Ad(expX) = eadX for all X ∈ g.

PROOF. For (a) letu = Xk1
1 · · · Xkn

n be a monomial inUn(g). For X in g,
we have

Ad(expr X)u = (Ad(expr X)X1)
k1 · · · (Ad(expr X)Xn)

kn

since each Ad(g) for g ∈ Int g is an automorphism ofU (g). Differentiating
both sides with respect tor and applying the product rule for differentiation,
we obtain atr = 0

d

dr
Ad(expr X)u

∣∣∣
r=0

=
n∑

i=1

ki∑
j=1

Xk1
1 · · · Xki−1

i−1 X j−1
i

( d

dr
Ad(expr X)Xi

)
r=0

Xki − j
i X ki+1

i+1 · · · Xkn
n

= (adX)u.

Then (a) follows from Proposition 1.91, and (b) follows from Corollary
1.85.

Proposition 5.22.If g is a finite-dimensional complex Lie algebra, then
the following conditions on an elementu of U (g) are equivalent:

(a) u is in the centerZ(g),
(b) u X = Xu for all X ∈ g,
(c) eadX u = u for all X ∈ g,
(d) Ad(g)u = u for all g ∈ Int g.

PROOF. Conclusion (a) implies (b) trivially, and (b) implies (a) since
g generatesU (g). If (b) holds, then(adX)u = 0, and (c) follows by
summing the series for the exponential. Conversely if (c) holds, then we
can replaceX by r X in (c) and differentiate to obtain (b). Finally (c)
follows from (d) by takingg = exp X and applying Proposition 5.21b,
while (d) follows from (c) by (5.20) and Proposition 5.21b.

In the case thatg is semisimple, we shall construct some explicit elements
of Z(g) and use them to extend to all semisimpleg the theorem of complete
reducibility proved forsl(2, C) in Theorem 1.67. To begin with, here is an
explicit element ofZ(g) wheng = sl(2, C).
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EXAMPLE. g = sl(2, C). Let Z = 1
2h2+e f + f e with h, e, f as in (1.5).

The action ofZ in a representation already appeared in Lemma 1.68. We
readily check thatZ is in Z(g) by seeing thatZ commutes withh, e, and
f . The elementZ is a multiple of the Casimir element� defined below.

For a general semisimpleg, let B be the Killing form. (To fix the
definitions in this section, we shall not allow more general invariant forms
in place ofB.) Let Xi be any basis ofg overC, and letX̃i be the dual basis
relative toB, i.e., the basis with

B(X̃i , X j) = δi j .

TheCasimir element� is defined by

(5.23) � =
∑

i, j

B(Xi , X j)X̃i X̃ j .

Proposition 5.24. In a complex semisimple Lie algebrag, the Casimir
element� is defined independently of the basisXi and is a member of the
centerZ(g) of U (g).

PROOF. Let a second basisX ′
i be given by means of a nonsingular

complex matrix(ai j) as

(5.25a) X ′
j =

∑
m

amj Xm .

Let (bi j) be the inverse of the matrix(ai j), and define

(5.25b) X̃ ′
i =

∑
l

bil X̃l .

Then
B(X̃ ′

i , X ′
j) =

∑
l,m

bilamj B(X̃l, Xm) =
∑

l

bilal j = δi j .

Thus X̃ ′
i is the dual basis ofX ′

j . The element to consider is

�′ =
∑

i, j

B(X ′
i , X ′

j)X̃ ′
i X̃ ′

j

=
∑
m,m ′

∑
l,l ′

∑
i, j

ami am ′ j bilbjl ′ B(Xm, Xm ′)X̃l X̃l ′

=
∑
m,m ′

∑
l,l ′

δmlδm ′l ′ B(Xm, Xm ′)X̃l X̃l ′

=
∑
l,l ′

B(Xl, Xl ′)X̃l X̃l ′

= �.
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This proves that� is independent of the basis.
Let g be in Intg, and take the second basis to beX ′

i = gXi = Ad(g)Xi .
Because of Proposition 1.119 the invariance of the Killing form gives

(5.26) B(Ad(g)X̃i , X ′
j) = B(X̃i , Ad(g)−1X ′

j) = B(X̃i , X j) = δi j ,

and we conclude that̃X ′
i = Ad(g)X̃i . Therefore

Ad(g)� =
∑

i, j

B(Xi , X j)Ad(g)(X̃i X̃ j)

=
∑

i, j

B(Ad(g)Xi , Ad(g)X j)X̃ ′
i X̃ ′

j by Proposition 1.119

=
∑

i, j

B(X ′
i , X ′

j)X̃ ′
i X̃ ′

j

=
∑

i, j

B(Xi , X j)X̃i X̃ j by change of basis

= �.

By Proposition 5.22,� is in Z(g).

EXAMPLE. g = sl(2, C). We take as basis the elementsh, e, f as
in (1.5). The Killing form has already been computed in Example 2 of
§I.3, and we find that̃h = 1

8h, ẽ = 1
4 f, f̃ = 1

4e. Then

� = B(h, h)̃h2 + B(e, f )̃e f̃ + B( f, e) f̃ ẽ

= 8̃h2 + 4̃e f̃ + 4 f̃ ẽ

= 1
8h2 + 1

4e f + 1
4 f e,(5.27)

which is 1
4 of the elementZ = 1

2h2 + e f + f e whose action in a represen-
tation appeared in Lemma 1.68.

Letϕ be an irreducible finite-dimensional representation ofg on a space
V . Schur’s Lemma (Proposition 5.1) and Proposition 5.24 imply that�

acts as a scalar inV . We shall compute this scalar, making use of the
Theorem of the Highest Weight (Theorem 5.5). Thus let us introduce a
Cartan subalgebrah, the set� = �(g, h) of roots, and a positive system
�+ = �+(g, h).
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Proposition 5.28. In the complex semisimple Lie algebrag, let h0 be
the real form ofh on which all roots are real valued, and let{Hi}l

i=1 be an
orthonormal basis ofh0 relative to the Killing formB of g. Choose root
vectorsEα so thatB(Eα, E−α) = 1 for all α ∈ �. Then

(a) � = ∑l
i=1 H 2

i + ∑
α∈� Eα E−α,

(b) � operates by the scalar|λ|2 + 2〈λ, δ〉 = |λ + δ|2 − |δ|2 in an
irreducible finite-dimensional representation ofg of highest weight
λ, whereδ is half the sum of the positive roots,

(c) the scalar value by which� operates in an irreducible finite-
dimensional representation ofg is nonzero if the representation
is not trivial.

PROOF.
(a) SinceB(h, Eα) = 0 for all α ∈ �, H̃i = Hi . Also the normaliza-

tion B(Eα, E−α) = 1 makesẼα = E−α. Then (a) follows immediately
from (5.23).

(b) Let ϕ be an irreducible finite-dimensional representation ofg with
highest weightλ, and letvλ be a nonzero vector of weightλ. Using the
relation [Eα, E−α] = Hα from Lemma 2.18a, we rewrite� from (a) as

� =
l∑

i=1

H 2
i +

∑
α∈�+

Eα E−α +
∑
α∈�+

E−α Eα

=
l∑

i=1

H 2
i +

∑
α∈�+

Hα + 2
∑
α∈�+

E−α Eα

=
l∑

i=1

H 2
i + 2Hδ + 2

∑
α∈�+

E−α Eα.

When we apply� to vλ and use Theorem 5.5c, the last term gives 0. Thus

�vλ =
l∑

i=1

λ(Hi)
2vλ + 2λ(Hδ)vλ = (|λ|2 + 2〈λ, δ〉)vλ.

Schur’s Lemma (Proposition 5.1) shows that� acts by a scalar, and hence
that scalar must be|λ|2 + 2〈λ, δ〉.

(c) We have〈λ, δ〉 = 1
2

∑
α∈�+〈λ, α〉. Sinceλ is dominant, this is≥ 0

with equality only if 〈λ, α〉 = 0 for all α, i.e., only if λ = 0. Thus the
scalar in (b) is≥ |λ|2 and can be 0 only ifλ is 0.
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Theorem 5.29.Letϕ be a complex-linear representation of the complex
semisimple Lie algebrag on a finite-dimensional complex vector space
V . ThenV is completely reducible in the sense that there exist invariant
subspacesU1, . . . , Ur of V such thatV = U1 ⊕· · ·⊕Ur and the restriction
of the representation to eachUi is irreducible.

REMARKS. The proof is very similar to the proof of Theorem 1.67. It
is enough by induction to show that any invariant subspaceU in V has an
invariant complementU ′. For the case thatU has codimension 1, we shall
prove this result as a lemma. Then we return to the proof of Theorem 5.29.

Lemma 5.30. Let ϕ : g → EndV be a finite-dimensional representa-
tion, and letU ⊆ V be an invariant subspace of codimension 1. Then there
is a 1-dimensional invariant subspaceW such thatV = U ⊕ W .

PROOF.
Case 1. Suppose dimU = 1. Form the quotient representationϕ on

V/U , with dim(V/U ) = 1. This quotient representation is irreducible of
dimension 1, and Lemma 4.28 shows that it is 0. Consequently

ϕ(g)V ⊆ U and ϕ(g)U = 0.

Hence ifY = [ X1, X2], we have

ϕ(Y )V ⊆ ϕ(X1)ϕ(X2)V + ϕ(X2)ϕ(X1)V

⊆ ϕ(X1)U + ϕ(X2)U = 0.

Since Corollary 1.55 givesg = [g, g], we conclude thatϕ(g) = 0. There-
fore any complementary subspace toU will serve asW .

Case 2. Suppose thatϕ( · )|U is irreducible and dimU > 1. Since
dim V/U = 1, the quotient representation is 0 andϕ(g)V ⊆ U . The
formula for� in (5.23) then shows that�(V ) ⊆ U , and Proposition 5.28c
says that� is a nonzero scalar onU . Therefore dim(ker�) = 1 and
U ∩ (ker�) = 0. Since� commutes withϕ(g), ker� is an invariant
subspace. TakingW = ker�, we haveV = U ⊕ W as required.

Case 3. Suppose thatϕ( · )|U is not necessarily irreducible and that
dimU ≥ 1. We induct on dimV . The base case is dimV = 2 and is
handled by Case 1. When dimV > 2, let U1 ⊆ U be an irreducible
invariant subspace, and form the quotient representations on

U/U1 ⊆ V/U1
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with quotientV/U of dimension 1. By inductive hypothesis we can write

V/U1 = U/U1 ⊕ Y/U1,

whereY is an invariant subspace inV and dimY/U1 = 1. Case 1 or Case 2
is applicable to the representationϕ( · )|Y and the irreducible invariant
subspaceU1. ThenY = U1 ⊕ W , whereW is a 1-dimensional invariant
subspace. SinceW ⊆ Y andY ∩ U ⊆ U1, we find that

W ∩ U = (W ∩ Y ) ∩ U = W ∩ (Y ∩ U ) ⊆ W ∩ U1 = 0.

ThereforeV = U ⊕ W as required.

PROOF OFTHEOREM5.29. Letϕ be a representation ofg on M , and let
N �= 0 be an invariant subspace. Put

V = {γ ∈ EndM | γ (M) ⊆ N andγ |N is scalar}.
Linear algebra shows thatV is nonzero. Define a linear functionσ from g

into End(EndM) by

σ(X)γ = ϕ(X)γ − γ ϕ(X) for γ ∈ EndM andX ∈ g.

Checking directly thatσ [ X, Y ] andσ(X)σ (Y ) − σ(Y )σ (X) are equal, we
see thatσ is a representation ofg on EndM .

We claim that the subspaceV ⊆ EndM is an invariant subspace under
σ . In fact, letγ (M) ⊆ N andγ |N = λ1. In the right side of the expression

σ(X)γ = ϕ(X)γ − γ ϕ(X),

the first term carriesM to N sinceγ carriesM to N andϕ(X) carriesN
to N . The second term carriesM into N sinceϕ(X) carriesM to M and
γ carriesM to N . Thusσ(X)γ carriesM into N . On N , the action of
σ(X)γ is given by

σ(X)γ (n) = ϕ(X)γ (n) − γ ϕ(X)(n) = λϕ(X)(n) − λϕ(X)(n) = 0.

ThusV is an invariant subspace.
Actually the above argument shows also that the subspaceU of V given

by
U = {γ ∈ V | γ = 0 on N }

is an invariant subspace. Clearly dimV/U = 1. By Lemma 5.30,V =
U ⊕ W for a 1-dimensional invariant subspaceW = Cγ . Hereγ is a
nonzero scalarλ1 on N . The invariance ofW means thatσ(X)γ = 0
since 1-dimensional representations are 0 by Lemma 4.28. Thereforeγ

commutes withϕ(X) for all X ∈ g. But then kerγ is a nonzero invariant
subspace ofM . Sinceγ is nonsingular onN (being a nonzero scalar there),
we must haveM = N ⊕ kerγ . This completes the proof.
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Let us return to the notation introduced before Proposition 5.28, taking
h to be a Cartan subalgebra,� = �(g, h) to be the set of roots, and
�+ = �+(g, h) to be a positive system. Definen andn− as in (5.8).

Corollary 5.31. Let a finite-dimensional representation ofg be given
on a spaceV, and letV n be the subspace ofn invariants given by

V n = {v ∈ V | Xv = 0 for all X ∈ n}.

Then the subspaceV n is aU (h) module, and

(a) V = V n ⊕ n−V asU (h) modules,
(b) the natural mapV n → V/(n−V ) is an isomorphism ofU (h)

modules,
(c) theU (h) moduleV n determines theU (g) moduleV up to equiv-

alence; the dimension ofV n equals the number of irreducible
constituents ofV, and the multiplicity of a weight inV n equals
the multiplicity inV of the irreducible representation ofg with that
highest weight.

PROOF. To see thatV n is aU (h) module, letH be inh andv be inV n.
If X is inn, thenX (Hv) = H(Xv)+ [ X, H ]v = 0+ X ′v with X ′ in n, and
it follows thatHv is in V n. ThusV n is aU (h) module. Similarlyn−V is a
U (h) module. Conclusion (b) is immediate from (a), and conclusion (c) is
immediate from Theorems 5.29 and 5.5. Thus we are left with proving (a).

By Theorem 5.29,V is a direct sum of irreducible representations, and
hence there is no loss of generality for the proof of (a) in assuming thatV
is irreducible, say of highest weightλ. With V irreducible, choose nonzero
root vectorsEα for every rootα, and letH1, . . . , Hl be a basis ofh. By the
Poincaré–Birkhoff–Witt Theorem (Theorem 3.8),U (g) is spanned by all
elements

E−β1 · · · E−βp Hi1 · · · Hiq Eα1 · · · Eαr ,

where theαi andβj are positive roots, not necessarily distinct. SinceV is
irreducible,V is spanned by all elements

E−β1 · · · E−βp Hi1 · · · Hiq Eα1 · · · Eαr v

with v in Vλ. SinceVλ is annihilated byn, such an element is 0 unless
r = 0. The spaceVλ is mapped into itself byh, and we conclude thatV is
spanned by all elements

E−β1 · · · E−βpv
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with v in Vλ. If p > 0, such an element is inn−V and has weight less than
λ, while if p = 0, it is in Vλ. Consequently

V = Vλ ⊕ n
−V .

Theorem 5.5c shows thatV n is just theλ weight space ofV, and (a) follows.
This completes the proof of the corollary.

We conclude this section by giving a generalization of Proposition 5.24
that yields many elements inZ(g) wheng is semisimple. We shall use this
result in the next section.

Proposition 5.32. Let ϕ be a finite-dimensional representation of a
complex semisimple Lie algebrag, and letB be the Killing form ofg. If
Xi is a basis ofg over C, let X̃i be the dual basis relative toB. Fix an
integern ≥ 1 and define

z =
∑

i1,...,in

Tr ϕ(Xi1 · · · Xin)X̃i1 · · · X̃in

as a member ofU (g). Thenz is independent of the choice of basisXi and
is a member of the centerZ(g) of U (g).

PROOF. The proof is modeled on the argument for Proposition 5.24. Let
a second basisX ′

i be given by (5.25a), with dual basis̃X ′
i given by (5.25b).

The element to consider is

z′ =
∑

i1,...,in

Tr ϕ(X ′
i1

· · · X ′
in
)X̃ ′

i1
· · · X̃ ′

in

=
∑

m1,...,mn

∑
l1,...,ln

∑
i1,...,in

am1i1 · · · amnin Tr ϕ(Xm1 · · · Xmn)

× bi1l1 · · · binln X̃l1 · · · X̃ln

=
∑

m1,...,mn

∑
l1,...,ln

δm1l1 · · · δmnln Tr ϕ(Xm1 · · · Xmn)X̃l1 · · · X̃ln

=
∑

l1,...,ln

Tr ϕ(Xl1 · · · Xln)X̃l1 · · · X̃ln

= z.

This proves thatz is independent of the basis.
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The groupG = Int g has Lie algebra(adg)R, and its simply connected
cover G̃ is a simply connected analytic group with Lie algebragR. Re-
garding the representationϕ of g as a representation ofgR, we can lift it to
a representation� of G̃ sinceG̃ is simply connected. Fixg ∈ G̃. In the
earlier part of the proof let the new basis beX ′

i = Ad(g)Xi . Then (5.26)
shows that̃X ′

i = Ad(g)X̃i . Consequently Ad(g)z is

=
∑

i1,...,in

Tr ϕ(Xi1 · · · Xin)Ad(g)(X̃i1 · · · X̃in)

=
∑

i1,...,in

Tr(�(g)ϕ(Xi1 · · · Xin)�(g)−1)X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr((�(g)ϕ(Xi1)�(g)−1) · · · (�(g)ϕ(Xin)�(g)−1))X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr(ϕ(Ad(g)Xi1) · · · ϕ(Ad(g)Xin))X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr(ϕ((Ad(g)Xi1) · · · (Ad(g)Xin)))X̃ ′
i1

· · · X̃ ′
in

=
∑

i1,...,in

Tr(ϕ(X ′
i1

· · · X ′
in
))X̃ ′

i1
· · · X̃ ′

in
,

and this equalsz, by the result of the earlier part of the proof. By Proposition
5.22,z is in Z(g).

5. Harish-Chandra Isomorphism

Let g be a complex semisimple Lie algebra, and leth, � = �(g, h),
W = W (�), and B be as in §2. DefineH = U (h). Sinceh is abelian,
the algebraH coincides with the symmetric algebraS(h). By Proposition
A.20b every linear transformation ofh into an associative commutative
algebraA with identity extends uniquely to a homomorphism ofH into A
sending 1 into 1. Consequently

(i) W acts onH (since it mapsh intoh ⊆ H, with λw(H) = λ(Hw−1
)),

(ii) H may be regarded as the space of polynomial functions onh∗

(because ifλ is in h∗, λ is linear fromh into C and so extends to a
homomorphism ofH into C; we can think ofλ on a member ofH
as the value of the member ofH at the pointλ).



5. Harish-Chandra Isomorphism 301

LetHW = U (h)W = S(h)W be the subalgebra of Weyl-group invariants
of H. In this section we shall establish the “Harish-Chandra isomorphism”
γ : Z(g) → HW , and we shall see an indication of how this isomorphism
allows us to work with infinitesimal characters wheng is semisimple.

The Harish-Chandra mapping is motivated by considering how an ele-
mentz ∈ Z(g) acts in an irreducible finite-dimensional representation with
highest weightλ. The action is by scalars, by Proposition 5.19, and we
compute those scalars by testing the action on a nonzero highest-weight
vector.

First we use the Poincar´e–Birkhoff–Witt Theorem (Theorem 3.8) to
introduce a suitable basis ofU (g) for making the computation. Introduce
a positive system�+ = �+(g, h), and definen, n−, b, andδ as in (5.8). As
in (5.6), enumerate the positive roots asβ1, . . . , βk , and letH1, . . . , Hl be
a basis ofh overC. For each rootα ∈ �, let Eα be a nonzero root vector.
Then the monomials

(5.33) Eq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk

are a basis ofU (g) overC.
If we expand the central elementz in terms of the above basis ofU (g)

and consider the effect of the term (5.33), there are two possibilities. One
is that somepj is > 0, and then the term acts as 0. The other is that allpj

are 0. In this case, as we shall see in Proposition 5.34b below, allqj are 0.
TheU (h) part acts on a highest weight vectorvλ by the scalar

λ(H1)
m1 · · · λ(Hl)

ml ,

and that is the total effect of the term. Hence we can compute the effect of
z if we can extract those terms in the expansion relative to the basis (5.33)
such that only theU (h) part is present. This idea was already used in the
proof of Proposition 5.28b.

Thus define

P =
∑
α∈�+

U (g)Eα and N =
∑
α∈�+

E−αU (g).

Proposition 5.34.

(a)U (g) = H ⊕ (P + N),
(b) Any member ofZ(g) has itsP + N component inP.
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PROOF.
(a) The fact thatU (g) = H+(P+N) follows by the Poincar´e–Birkhoff–

Witt Theorem (Theorem 3.8) from the fact that the elements (5.33) span
U (g). Fix the basis of elements (5.33). For any nonzero element ofU (g)Eα

with α ∈ �+, write out theU (g) factor in terms of the basis (5.33), and
consider a single term of the product, say

(5.35) cEq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk
Eα.

The factorE p1

β1
· · · E pk

βk
Eα is in U (n) and has no constant term. By the

Poincaré–Birkhoff–Witt Theorem, we can rewrite it as a linear combination
of termsEr1

β1
· · · Erk

βk
with r1 + · · · + rk > 0. Putting

cEq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l

in place on the left of each term, we see that (5.35) is a linear combination of
terms (5.33) withp1 +· · ·+ pk > 0. Similarly any member ofN is a linear
combination of terms (5.33) withq1 + · · · + qk > 0. Thus any member
of P + N is a linear combination of terms (5.33) withp1 + · · · + pk > 0
or q1 + · · · + qk > 0. Any member ofH has p1 + · · · + pk = 0 and
q1 + · · · + qk = 0 in every term of its expansion, and thus (a) follows.

(b) In terms of the representation ad onU (g) given in Proposition 5.21,
the monomials (5.33) are a basis ofU (g) of weight vectors for adh, the
weight of (5.33) being

(5.36) −q1β1 − · · · − qkβk + p1β1 + · · · + pkβk .

Any memberz of Z(g) satisfies(adH)z = H z − zH = 0 for H ∈ h

and thus is of weight 0. Hence its expansion in terms of the basis (5.33)
involves only terms of weight 0. In the proof of (a) we saw that any member
of P+N has each term withp1 +· · ·+ pk > 0 orq1 +· · ·+qk > 0. Since
the p’s andq ’s are constrained by the condition that (5.36) equal 0, each
term must have bothp1 +· · ·+ pk > 0 andq1 +· · ·+ qk > 0. Hence each
term is inP.

Let γ ′
n

be the projection ofZ(g) into theH term in Proposition 5.34a.
Applying the basis elements (5.33) to a highest weight vector of a finite-
dimensional representation, we see that

(5.37)
λ(γ ′

n
(z)) is the scalar by whichz acts in an irreducible

finite-dimensional representation of highest weightλ.
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Despite the tidiness of this result, Harish-Chandra found that a slight ad-
justment ofγ ′

n
leads to an even more symmetric formula. Define a linear

mapτn : h → H by

(5.38) τn(H) = H − δ(H)1,

and extendτn to an algebra automorphism ofH by the universal mapping
property for symmetric algebras. TheHarish-Chandra map γ is defined
by

(5.39) γ = τn ◦ γ ′
n

as a mapping ofZ(g) intoH.
Any elementλ ∈ h∗ defines an algebra homomorphismλ : H → C with

λ(1) = 1, because the universal mapping property of symmetric algebras
allows us to extendλ : h → C to H. In terms of this extension, the maps
γ andγ ′

n
are related by

(5.40a) λ(γ (z)) = (λ − δ)(γ ′
n
(z)) for z ∈ Z(g), λ ∈ h

∗.

If instead we think ofH as the space of polynomial functions onh∗, this
formula may be rewritten as

(5.40b) γ (z)(λ) = γ ′
n
(z)(λ − δ) for z ∈ Z(g), λ ∈ h

∗.

We define

(5.41) χλ(z) = λ(γ (z)) for z ∈ Z(g),

so thatχλ is a map ofZ(g) intoC. This map has the following interpretation.

Proposition 5.42.Forλ ∈ h∗ andz ∈ Z(g), χλ(z) is the scalar by which
z operates on the Verma moduleV (λ).

REMARK. In this notation we can restate (5.37) as follows:

(5.43)
χλ+δ(z) is the scalar by whichz acts in an irreducible finite-
dimensional representation of highest weightλ.

PROOF. Write z = γ ′
n
(z) + p with p ∈ P. If vλ−δ denotes the canonical

generator ofV (λ), then

zvλ−δ = γ ′
n
(z)vλ−δ + pvλ−δ

= (λ − δ)(γ ′
η(z))vλ−δ

= λ(γ (z))vλ−δ by (5.40)

= χλ(z)vλ−δ by (5.41).

For u ∈ U (g), we therefore havezuvλ−δ = uzvλ−δ = χλ(z)uvλ−δ. Since
V (λ) = U (g)vλ−δ, the result follows.
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Theorem 5.44(Harish-Chandra). The mappingγ in (5.40) is an algebra
isomorphism ofZ(g) onto the algebraHW of Weyl-group invariants inH,
and it does not depend on the choice of the positive system�+.

EXAMPLE. g = sl(2, C). Let Z = 1
2h2+e f + f e with h, e, f as in (1.5).

We noted in the first example in §4 thatZ is in Z(sl(2, C)). Let us agree
thate corresponds to the positive rootα. Thene f = f e + [e, f ] = f e +h
implies

Z = 1
2h2 + e f + f e = ( 1

2h2 + h) + 2 f e ∈ H ⊕ P.

Hence
γ ′

n
(Z) = 1

2h2 + h.

Now δ(h) = 1
2α

(
1 0

0 −1

)
= 1, and so

τn(h) = h − 1.

Thus
γ (Z) = 1

2(h − 1)2 + (h − 1) = 1
2h2 − 1

2.

The nontrivial element of the 2-element Weyl group acts onH by sendingh
to−h, and thus we have a verification thatγ (Z) is invariant under the Weyl
group. Moreover it is now clear thatHW = C[h2] and thatγ (C[Z ]) =
C[h2]. Theorem 5.44 therefore implies thatZ(sl(2, C)) = C[Z ].

The proof of Theorem 5.44 will occupy the remainder of this section
and will take five steps.

PROOF THAT image(γ ) ⊆ HW .
Since members ofH are determined by the effect of allλ ∈ h∗ on them,

we need to prove that

λ(w(γ (z))) = λ(γ (z))

for all λ ∈ h∗ andw ∈ W . In other words, we need to see that everyw ∈ W
has

(5.45) (w−1λ)(γ (z)) = λ(γ (z)),

and it is enough to handlew equal to a reflection in a simple root by
Proposition 2.62. Moreover each side for fixedz is a polynomial inλ, and
thus it is enough to prove (5.45) forλ dominant integral.

Form the Verma moduleV (λ). We know from Proposition 5.42 thatz
acts inV (λ) by the scalarλ(γ (z)). Also z acts inV (sαλ) by the scalar
(sαλ)(γ (z)). Since 2〈λ, α〉/|α|2 is an integer≥ 0, Lemma 5.18 says that
V (sαλ) is isomorphic to a (clearly nonzero)U (g) submodule ofV (λ). Thus
the two scalars must match, and (5.45) is proved.
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PROOF THATγ DOES NOT DEPEND ON THE CHOICE OF�+.
Let λ be algebraically integral and dominant for�+, let V be a finite-

dimensional irreducible representation ofgwith highest weightλ (Theorem
5.5), and letχ be the infinitesimal character ofV . Temporarily, let us drop
the subscriptn from γ ′. By Theorem 2.63 any other positive system of
roots is related in�+ by a member ofW (�). Thus letw be in W (�),
and letγ̃ ′ andγ̃ be defined relative to�+∼ = w�+. We are to prove that
γ = γ̃ . The highest weight ofV relative tow�+ is wλ. If z is in Z(g),
then (5.37) gives

(5.46) λ(γ ′(z)) = χ(z) = wλ(γ̃ ′(z)).

Sinceγ (z) is invariant underW (�),

(wλ + wδ)(γ (z)) = (λ + δ)(γ (z)) = λ(γ ′(z))

= wλ(γ̃ ′(z)) = (wλ + wδ)(γ̃ (z)),

the next-to-last step following from (5.46). Sinceγ (z) andγ̃ (z) are poly-
nomial functions equal at the lattice points of an octant, they are equal
everywhere.

PROOF THATγ IS MULTIPLICATIVE .
Sinceτn is an algebra isomorphism, we need to show that

(5.47) γ ′
n
(z1z2) = γ ′

n
(z1)γ

′
n
(z2).

We have

z1z2 − γ ′
n
(z1)γ

′
n
(z2) = z1(z2 − γ ′

n
(z2)) + γ ′

n
(z2)(z1 − γ ′

n
(z1)),

which is inP, and therefore (5.47) follows.

PROOF THATγ IS ONE-ONE.
If γ (z) = 0, thenγ ′

n
(z) = 0, and (5.37) shows thatz acts as 0 in every

irreducible finite-dimensional representation ofg. By Theorem 5.29,z acts
as 0 in every finite-dimensional representation ofg.

In the representation ad ofg onUn(g), Un−1(g) is an invariant subspace.
Thus we obtain a representation ad ofg onUn(g)/Un−1(g) for eachn. It is
enough to show that ifu ∈ U (g) acts as 0 in each of these representations,
thenu = 0. Specifically let us expandu in terms of the basis

(5.48) Eq1

−β1
· · · Eqk

−βk
H m1

1 · · · H ml
l E p1

β1
· · · E pk

βk
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of U (g). We show that if adu is 0 on all elements

(5.49) H m
δ Er1

β1
· · · Erk

βk mod U m+∑
rj −1(g),

thenu = 0. (Here as usual,δ is half the sum of the positive roots.)
In (5.48) letm ′ = ∑k

j=1(pj + qj). The effect of a monomial term ofu
on (5.49) will be to produce a sum of monomials, all of whoseH factors
have total degree≥ m − m ′. There will be one monomial whoseH factors
have total degree= m −m ′, and we shall be able to identify that monomial
and its coefficient exactly.

Let us verify this assertion. IfX is ing, the action of adX on a monomial
X1 · · · Xn is

(adX)(X1 · · · Xn) = X X1 · · · Xn − X1 · · · Xn X

= [ X, X1] X2 · · · Xn + X1[ X, X2] X3 · · · Xn + · · · + X1 · · · Xn−1[ X, Xn].

(5.50)

If X1, . . . , Xn are root vectors or members ofh and if X has the same
property, then so does each [X, X j ]. Moreover, Lemma 3.9 allows us to
commute a bracket into its correct position in (5.49), modulo lower-order
terms.

Consider the effect of adE±α when applied to an expression (5.49). The
result is a sum of terms as in (5.50). When adE±α acts on theH part,
the degree of theH part of the resulting term goes down by 1, whereas if
adE±α acts on a root vector, the degree of theH part of the resulting term
goes up by 1 or stays the same. When some adHj acts on an expression of
the form (5.49), the degree of theH part of each term stays the same.

Thus when ad of (5.48) acts on (5.49), every term of the result hasH part
of degree≥ m − m ′, and degree= m − m ′ arises only when all adE±α ’s
act on one of the factorsHδ. To compute exactly the term at the end withH
part of degree= m − m ′, let us follow this process step by step. When we
apply adEβk to (5.49), we get a contribution of〈−βk, δ〉 from each factor
of Hδ in (5.49), plus irrelevant terms. Thus adEβk of (5.49) gives

m〈−βn, δ〉H m−1
δ Er1

β1
· · · Erk+1

βk
+ irrelevant terms.

By the time we have applied all of ad(E p1

β1
· · · E pk

βk
) to (5.49), the result is

m!

(m−∑
pj)!

( k∏
j=1

〈−βj , δ〉pj

)
H

m−∑
pj

δ E p1+r1

β1
· · · E pk+rk

βk
+irrelevant terms.

(5.51)
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Next we apply adHl to (5.51). The main term is multiplied by the
constant

∑k
j=1(pj + rj)βj(Hl). Repeating this kind of computation for the

other factors from ad(H), we see that ad(H m1
1 · · · H ml

l ) of (5.51) is

(5.52)

m!

m − ∑
pj

( k∏
j=1

〈−βj , δ〉pj

) l∏
i=1

( k∑
j=1

(pj + rj)βj(Hi)
)mi

× H
m−∑

pj

δ E p1+r1

β1
· · · E pk+rk

βk
+ irrelevant terms.

Finally we apply adE−βk to (5.52). The main term gets multiplied by
(m −∑

pj)〈βk, δ〉, another factor ofHδ gets dropped, and a factor ofE−βk

appears. Repeating this kind of computation for the other factors adE−βj ,
we see that ad(Eq1

−β1
· · · Eqk

−βk
) of (5.52) is

m!

(m − m ′)!

( k∏
j=1

(−1)pj 〈βj , δ〉pj +qj

) l∏
i=1

( k∑
j=1

(pj + rj)βj(Hi)
)mi

× Eq1

−β1
· · · Eqk

−βk
H m−m ′

δ E p1+r1

β1
· · · E pk+rk

βk
+ irrelevant terms.(5.53)

This completes our exact computation of the main term of ad of (5.48)
on (5.49).

We regardm and therj ’s fixed for the present. Among the terms ofu, we
consider the effect of ad of only those withm ′ as large as possible. From
these, the powers of the root vectors in (5.53) allow us to reconstruct the
pj ’s andqj ’s. The question is whether the different terms ofu for whichm ′

is maximal and thepj ’s andqj ’s take on given values can have their main
contributions to (5.53) add to 0. Thus we ask whether a finite sum

∑
m1,...,ml

cm1,...,ml

l∏
i=1

( k∑
j=1

(pj + rj)βj(Hi)
)mi

can be 0 for all choices of integersrj ≥ 0.
Assume it is 0 for all such choices. Then∑

m1,...,ml

cm1,...,ml

l∏
i=1

( k∑
j=1

zjβj(Hi)
)mi = 0

for all complexz1, . . . , zk . Hence

∑
m1,...,ml

cm1,...,ml

l∏
i=1

(µ(Hi))
mi = 0
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for all µ ∈ h∗, and we obtain

µ
( ∑

m1,...,ml

cm1,...,ml H
m1
1 · · · H ml

l

)
= 0

for all µ ∈ h∗. Therefore∑
m1,...,ml

cm1,...,ml H
m1
1 · · · H ml

l = 0,

and it follows that all the terms under consideration inu were 0. Thusγ is
one-one.

PROOF THATγ IS ONTO.
To prove thatγ is ontoHW , we need a supply of members ofZ(g).

Proposition 5.32 will fulfill this need. LetHn andHW
n be the subspaces

of H andHW of elements homogeneous of degreen. It is clear from the
Poincaré–Birkhoff–Witt Theorem that

(5.54) γ (Z(g) ∩ Un(g)) ⊆
n⊕

d=0

HW
d .

Letλ be any dominant algebraically integral member ofh∗, and letϕλ be
the irreducible finite-dimensional representation ofg with highest weight
λ. Let �(λ) be the weights ofϕλ, repeated as often as their multiplicities.
In Proposition 5.32 letXi be the ordered basis dual to one consisting of
a basisH1, . . . , Hl of h followed by the root vectorsEα. The proposition
says that the following elementz is in Z(g):

z =
∑

i1,...,in

Tr ϕλ(X̃i1 · · · X̃in)Xi1 · · · Xin

=
∑

i1,...,in ,

all ≤l

Tr ϕλ(H̃i1 · · · H̃in)Hi1 · · · Hin +
∑

j1,..., jn ,

at least one>l

Tr ϕλ(X̃ j1 · · · X̃ jn)X j1 · · · X jn .

In the second sum on the right side of the equality, some factor ofX j1 · · · X jn

is a root vector. Commuting the factors into their positions to match terms
with the basis vectors (5.33) ofU (g), we see that

X j1 · · · X jn ≡ u mod Un−1(g) with u ∈ P + N,

i.e., X j1 · · · X jn ≡ 0 mod
( n−1⊕

d=0

Hd ⊕ (P + N)
)
.
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Application ofγ ′
n

to z therefore gives

γ ′
n
(z) ≡

∑
i1,...,in ,

all ≤l

Tr ϕλ(H̃i1 · · · H̃in)Hi1 · · · Hin mod
( n−1⊕

d=0

Hd

)
.

The automorphismτn ofHaffects elements only modulo lower-order terms,
and thus

γ (z) ≡
∑

i1,...,in ,

all ≤l

Tr ϕλ(H̃i1 · · · H̃in)Hi1 · · · Hin mod
( n−1⊕

d=0

Hd

)

=
∑

µ∈�(λ)

∑
i1,...,in ,

all ≤l

µ(H̃i1) · · · µ(H̃in)Hi1 · · · Hin mod
( n−1⊕

d=0

Hd

)
.

Now

(5.55)
∑

i

µ(H̃i)Hi = Hµ

since 〈 ∑
i

µ(H̃i)Hi , H̃j

〉
= µ(H̃j) = 〈Hµ, H̃j〉 for all j.

Thus

γ (z) ≡
∑

µ∈�(λ)

(Hµ)n mod
( n−1⊕

d=0

Hd

)
.

The set of weights ofϕλ, together with their multiplicities, is invariant
underW by Theorem 5.5e. Hence

∑
µ∈�(λ)(Hµ)n is in HW , and we can

write

(5.56) γ (z) ≡
∑

µ∈�(λ)

(Hµ)n mod
( n−1⊕

d=0

HW
d

)
.

To prove thatγ is ontoHW , we show that the image ofγ contains
⊕m

d=0 HW
d

for everym. Form = 0, we haveγ (1) = 1, and there is nothing further to
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prove. Assuming the result form = n − 1, we see from (5.56) that we can
choosez1 ∈ Z(g) with

(5.57) γ (z − z1) =
∑

µ∈�(λ)

(Hµ)n.

To complete the induction, we shall show that

(5.58) the elements
∑

µ∈�(λ)

(Hµ)n spanHW
n .

Let �D(λ) be the set of dominant weights ofϕλ, repeated according
to their multiplicities. Since again the set of weights, together with their
multiplicities, is invariant underW , we can rewrite the right side of (5.58)
as

(5.59) =
∑

µ∈�D(λ)

cµ

∑
w∈W

(Hwµ)n,

wherec−1
µ is the order of the stabilizer ofµ in W . We know thatϕλ contains

the weightλ with multiplicity 1. Equation (5.57) shows that the elements
(5.59) are in the image ofγ in HW

n . To complete the induction, it is thus
enough to show that

(5.60) the elements (5.59) spanHW
n .

We do so by showing that

the span of all elements (5.59) includes all
elements

∑
w∈W (Hwν)

n for ν dominant and
algebraically integral,

(5.61a)

HW
n is spanned by all elements

∑
w∈W (Hwν)

n

for ν dominant and algebraically integral.
(5.61b)

To prove (5.61a), note that the set of dominant algebraically integralν

in a compact set is finite because the set of integral points forms a lattice
in the real linear span of the roots. Hence it is permissible to induct on
|ν|. The trivial case for the induction is|ν| = 0. Suppose inductively
that (5.61a) has been proved for all dominant algebraically integralν with
|ν| < |λ|. If µ is any dominant weight ofϕλ other thanλ, then|µ| < |λ|
by Theorem 5.5e. Thus the expression (5.59) involvingλ is the sum of
cλ

∑
w∈W (Hwλ)

n and a linear combination of terms for which (5.61a) is
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assumed by induction already to be proved. Sincecλ �= 0, (5.61a) holds
for

∑
w∈W (Hwλ)

n. This completes the induction and the proof of (5.61a).
To prove (5.61b), it is enough (by summing overw ∈ W ) to prove that

(5.61c)
Hn is spanned by all elements(Hν)

n for
ν dominant and algebraically integral,

and we do so by induction onn. The trivial case of the induction isn = 0.
For 1≤ i ≤ dimh, we can choose dominant algebraically integral forms

λi such that{λi} is aC basis forh∗. Since theλi ’s spanh∗, theHλi spanh.
Consequently thenth degree monomials in theHλi spanHn.

Assuming (5.61c) inductively forn − 1, we now prove it forn. Let
ν1, . . . , νn be dominant and algebraically integral. It is enough to show
that the monomialHν1 · · · Hνn is a linear combination of elements(Hν)

n

with ν dominant and algebraically integral. By the induction hypothesis,

(Hν1 · · · Hνn−1)Hνn =
∑

ν

cν H n−1
ν Hνn ,

and it is enough to show thatH n−1
ν Hν ′ is a linear combination of terms

(Hν+rν ′)n with r ≥ 0 in Z. By the invertibility of a Vandermonde matrix,
choose constantsc1, . . . , cn with

1 1 1 · · · 1
1 2 3 · · · n
1 22 32 · · · n2

...

1 2n−1 3n−1 · · · nn−1




c1

c2

c3
...

cn

 =


0
1
0
...

0

 .

Then

n∑
j=1

cj(Hν+ jν ′)n =
n∑

j=1

cj(Hν + j Hν ′)n

=
n∑

k=0

(
n
k

)
H n−k

ν H k
ν ′

n∑
j=1

cj j k

= nH n−1
ν Hν ′ .

Thus H n−1
ν Hν ′ has the required expansion, and the induction is complete.

This proves (5.61c), and consequentlyγ is ontoHW . This completes the
proof of Theorem 5.44.
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Forg complex semisimple we say that a unital leftU (g) moduleV “has
an infinitesimal character” ifZ(g) acts by scalars inV . In this case the
infinitesimal character of V is the homomorphismχ : Z(g) → C with
χ(z) equal to the scalar by whichz acts. Proposition 5.19 says that every
irreducible unital leftU (g) module has an infinitesimal character.

The Harish-Chandra isomorphism allows us to determine explicitly all
possible infinitesimal characters. Leth be a Cartan subalgebra ofg. If λ is
in h∗, thenλ is meaningful on the elementγ (z) of H. Earlier we defined
in (5.41) a homomorphismχλ : Z(g) → C by χλ(z) = λ(γ (z)).

Theorem 5.62. If g is a reductive Lie algebra andh is a Cartan subal-
gebra, then every homomorphism ofZ(g) into C sending 1 into 1 is of the
form χλ for someλ ∈ h∗. If λ′ andλ are inh∗, thenχλ′ = χλ if and only if
λ′ andλ are in the same orbit under the Weyl groupW = W (g, h).

PROOF. Let χ : Z(g) → C be a homomorphism withχ(1) = 1. By
Theorem 5.44,γ carriesZ(g) ontoHW , and thereforeγ (kerχ) is an ideal
in HW . Let us check that the corresponding idealI = Hγ (kerχ) in H is
proper. Assuming the contrary, supposeu1, . . . , un in H and H1, . . . , Hn

in γ (kerχ) are such that
∑

i ui Hi = 1. Application ofw ∈ W gives∑
i(wui)Hi = 1. Summing onw, we obtain∑

i

( ∑
w∈W

wui

)
Hi = |W |.

Since
∑

w∈W wui is in HW , we can applyχ ◦ γ −1 to both sides. Since
χ(1) = 1, the result is∑

i

χ
(
γ −1

( ∑
w∈W

wui

))
χ(γ −1(Hi)) = |W |.

But the left side is 0 sinceχ(γ −1(Hi)) = 0 for all i , and we have a
contradiction. We conclude that the idealI is proper.

By Zorn’s Lemma, extendI to a maximal ideal̃I of H. The Hilbert
Nullstellensatz tells us that there is someλ ∈ h∗ with

Ĩ = {H ∈ H | λ(H) = 0}.

Sinceγ (kerχ) ⊆ I ⊆ Ĩ , we haveχλ(z) = λ(γ (z)) = 0 for all z ∈ kerχ .
In other words,χ(z) = χλ(z) for z ∈ kerχ and forz = 1. Thesez’s span
HW , and henceχ = χλ.



5. Harish-Chandra Isomorphism 313

If λ′ andλ are in the same orbit underW , sayλ′ = wλ, then the identity
w(γ (z)) = γ (z) for w ∈ W forces

χλ′(z) = λ′(γ (z)) = λ′(w(γ (z))) = w−1λ′(γ (z)) = λ(γ (z)) = χλ(z).

Finally supposeλ′ andλ are not in the same orbit underW . Choose a
polynomial p on h∗ that is 1 onWλ and 0 onWλ′. The polynomialp on
h∗ is nothing more than an elementH of H with

(5.63) wλ(H) = 1 and wλ′(H) = 0 for all w ∈ W.

The element̃H ofHwith H̃ = |W |−1
∑

w∈W wH is inHW and satisfies the
same properties (5.63) asH . By Theorem 5.44 we can choosez ∈ Z(g)

with γ (z) = H̃ . Thenχλ(z) = λ(γ (z)) = λ(H̃) = 1 while χλ′(z) = 0.
Henceχλ′ �= χλ.

Now suppose thatV is aU (g) module with infinitesimal characterχ .
By Theorem 5.62,χ = χλ for someλ ∈ h∗. We often abuse notation and
say thatV hasinfinitesimal character λ. The elementλ is determined up
to the operation of the Weyl group, again by Theorem 5.62.

EXAMPLES.

1) Let V be a finite-dimensional irreducibleU (g) module with highest
weightλ. By (5.43),V has infinitesimal characterλ + δ.

2) If λ is in h∗, then the Verma moduleV (λ) has infinitesimal character
λ by Proposition 5.42.

3) WhenB is the Killing form and� is the Casimir element, Proposition
5.28b shows thatλ(γ ′

n
(�)) = |λ − δ|2 − |δ|2 if λ is dominant and alge-

braically integral. The same proof shows that this formula remains valid
as long asλ is in the real linear span of the roots. Combining this result
with the definition (5.41), we obtain

(5.64) χλ(�) = |λ|2 − |δ|2

for λ in the real linear span of the roots.
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6. Weyl Character Formula

We saw in §IV.2 that the character of a finite-dimensional representation
of a compact group determines the representation up to equivalence. Thus
characters provide an effective tool for working with representations in a
canonical fashion. In this section we shall deal with characters in a formal
way, working in the context of complex semisimple Lie algebras, deferring
until §8 the interpretation in terms of compact connected Lie groups.

To understand where the formalism comes from, it is helpful to think of
the groupSL(2, C) and its compact subgroupSU (2). The groupSU (2)

is simply connected, being homeomorphic to the 3-sphere, and it follows
from Proposition 1.143 thatSL(2, C) is simply connected also. A finite-
dimensional representation ofSU (2) is automatically smooth. Thus it leads
via differentiation to a representation ofsu(2), then via complexification to
a representation ofsl(2, C), and then via passage to the simply connected
group to a holomorphic representation ofSL(2, C). We can recover the
original representation ofSU (2) by restriction, and we can begin this cycle
at any stage, continuing all the way around. This construction is an instance
of “Weyl’s unitary trick,” which we shall study later.

Let us see the effect of this construction as we follow the character of
an irreducible representation� with differentialϕ. Let h =

(
1 0

0 −1

)
. The

diagonal subalgebrah = {zh | z ∈ C} is a Cartan subalgebra ofsl(2, C),
and the roots are 2 and−2 onh. We take the root that is 2 onh (and has

e =
(

0 1

0 0

)
as root vector) to be positive, and we call itα. The weights

of ϕ are determined by the eigenvalues ofϕ(h). According to Theorem
1.65, the eigenvalues are of the formn, n − 2, . . . , −n. Hence if we define
λ ∈ h∗ by λ(zh) = zn, then the weights are

λ, λ − α, λ − 2α, . . . , −λ.

Thus the matrix ofϕ(zh) relative to a basis of weight vectors is

ϕ(zh) = diag(λ(zh), (λ − α)(zh), (λ − 2α)(zh), . . . , −λ(zh)).

Exponentiating this formula in order to pass to the groupSL(2, C), we
obtain

�(expzh) = diag(eλ(zh), e(λ−α)(zh), e(λ−2α)(zh), . . . , e−λ(zh)).

This formula makes sense withinSU (2) if z is purely imaginary. In any
event if χ� denotes the character of� (i.e., the trace of� of a group
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element), then we obtain

χ�(expzh) = eλ(zh) + e(λ−α)(zh) + e(λ−2α)(zh) + · · · + e−λ(zh)

= e(λ+δ)(zh) − e−(λ+δ)(zh)

eδ(zh) − e−δ(zh)
,

whereδ = 1
2α takes the value 1 onh. We can drop the group element from

the notation if we introduce formal exponentials. Then we can write

χ� = eλ + eλ−α + eλ−2α + · · · + e−λ = eλ+δ − e−(λ+δ)

eδ − e−δ
.

In this section we shall derive a similar expression involving formal
exponentials for the character of an irreducible representation of a complex
semisimple Lie algebra with a given highest weight. This result is the
“Weyl Character Formula.” We shall interpret the result in terms of compact
connected Lie groups in §8.

The first step is to develop the formalism of exponentials. We fix a
complex semisimple Lie algebrag, a Cartan subalgebrah, the set� of
roots, the Weyl groupW , and a simple system� = {α1, . . . , αl}. Let �+

be the set of positive roots, and letδ be half the sum of the positive roots.
Following customary set-theory notation, letZh∗

be the additive group
of all functions fromh∗ to Z. If f is in Zh∗

, then thesupport of f is the
set ofλ ∈ h∗ where f (λ) �= 0. Forλ ∈ h∗, defineeλ to be the member of
Zh∗

that is 1 atλ and 0 elsewhere.
Within Zh∗

, let Z[h∗] be the subgroup of elements of finite support. For
such elements we can writef = ∑

λ∈h∗ f (λ)eλ since the sum is really a
finite sum. However, it will be convenient to allow this notation also for
f in the larger groupZh∗

, since the notation is unambiguous in this larger
context.

Let Q+ be the set of all members ofh∗ given as
∑l

i=1 niαi with all theni

equal to integers≥ 0. TheKostant partition function P is the function
from Q+ to the nonnegative integers that tells the number of ways, apart
from order, that a member ofQ+ can be written as the sum of positive
roots. By convention,P(0) = 1.

Let Z〈h∗〉 be the set of allf ∈ Zh∗
whose support is contained in the

union of a finite number of setsνi − Q+ with eachνi in h∗. This is an
abelian group, and we have

Z[h∗] ⊆ Z〈h∗〉 ⊆ Zh∗
.
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Within Z〈h∗〉, we introduce the multiplication

(5.65)
( ∑

λ∈h∗
cλeλ

)( ∑
µ∈h∗

c̃µeµ
)

=
∑
ν∈h∗

( ∑
λ+µ=ν

cλc̃µ

)
eν.

To see that (5.65) makes sense, we have to check that the interior sum
on the right side is finite. Because we are working withinZ〈h∗〉, we can
write λ = λ0 − q+

λ with q+
λ ∈ Q+ and with only finitely many possibilities

for λ0, and we can similarly writeµ = µ0 − q+
µ . Then

(λ0 − q+
λ ) + (µ0 − q+

µ ) = ν

q+
λ + q+

µ = ν − λ0 − µ0.and hence

Finiteness follows since there are only finitely many possibilities forλ0 and
µ0 and sinceP(ν − λ0 − µ0) < ∞ for each.

Under the definition of multiplication in (5.65),Z〈h∗〉 is a commutative
ring with identitye0. Sinceeλeµ = eλ+µ, the natural multiplication inZ[h∗]
is consistent with the multiplication inZ〈h∗〉.

The Weyl groupW acts onZh∗
. The definition isw f (µ) = f (w−1µ)

for f ∈ Zh∗
, µ ∈ h∗, andw ∈ W . Thenw(eλ) = ewλ. Eachw ∈ W leaves

Z[h∗] stable, but in generalw does not leaveZ〈h∗〉 stable.
We shall make use of the sign function onW . Let ε(w) = detw for

w ∈ W . This is always±1. Any root reflectionsα hasε(sα) = −1. Thus
if w is written as the product ofk root reflections, thenε(w) = (−1)k . By
Proposition 2.70,

(5.66) ε(w) = (−1)l(w),

wherel(w) is the length ofw as defined in §II.6.
Whenϕ is a representation ofg onV, we shall sometimes abuse notation

and refer toV as the representation. IfV is a representation, we say that
V has a characterif V is the direct sum of its weight spaces underh, i.e.,
V = ⊕

µ∈h∗ Vµ, and if dimVµ < ∞ for µ ∈ h∗. In this case thecharacter
is

char(V ) =
∑
µ∈h∗

(dim Vµ)eµ.

EXAMPLE. Let V (λ) be a Verma module, and letvλ−δ be the canonical
generator. Letn− be the sum of the root spaces ing for the negative roots.
By Proposition 5.14b the map ofU (n−) into V (λ) given byu �→ uvλ−δ is
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one-one onto. Also the action ofU (h) onV (λ) matches the action ofU (h)

onU (n−) ⊗ Cvλ−δ. Thus

dim V (λ)µ = dimU (n−)µ−λ+δ.

Let E−β1, . . . , E−βk be a basis ofn− consisting of root vectors. The
Poincaré–Birkhoff–Witt Theorem (Theorem 3.8) shows that monomials in
this basis form a basis ofU (n−), and it follows that dimU (n−)−ν = P(ν).
Therefore

dim V (λ)µ = P(λ − δ − µ),

andV (λ) has a character. The character is given by

(5.67) char(V (λ)) =
∑
µ∈h∗

P(λ − δ − µ)eµ = eλ−δ
∑
γ∈Q+

P(γ )e−γ .

Let us establish some properties of characters. LetV be a representation
of g with a character, and suppose thatV ′ is a subrepresentation. Then the
representationsV ′ andV/V ′ have characters, and

(5.68) char(V ) = char(V ′) + char(V/V ′).

In fact, we just extend a basis of weight vectors forV ′ to a basis of weight
vectors ofV . Then it is apparent that

dim Vµ = dim V ′
µ + dim(V/V ′)µ,

and (5.68) follows.
The relationship amongV, V ′, andV/V ′ is summarized by saying that

0 −−−→ V ′ −−−→ V −−−→ V/V ′ −−−→ 0

is anexact sequence. This means that the kernel of each map going out
equals the image of each map going in.

In these terms, we can generalize (5.68) as follows. Whenever

0 −−−→ V1
ϕ1−−−→ V2

ϕ2−−−→ V3
ϕ3−−−→ · · · ϕn−1−−−→ Vn −−−→ 0

is an exact sequence of representations ofg with characters, then

(5.69)
n∑

j=1

(−1) jchar(Vj) = 0.
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To prove (5.69), we note that the following are exact sequences; in each
case “inc” denotes an inclusion:

0 −−−→ image(ϕ1)
inc−−−→ V2

ϕ2−−−→ image(ϕ2) −−−→ 0,

0 −−−→ image(ϕ2)
inc−−−→ V3

ϕ3−−−→ image(ϕ3) −−−→ 0,

...

0 −−−→ image(ϕn−2)
inc−−−→ Vn−1

ϕn−1−−−→ image(ϕn−1) −−−→ 0.

For 2≤ j ≤ n − 1, (5.68) gives

−char(image(ϕj−1)) + char(Vj) − char(image(ϕj)) = 0.

Multiplying by (−1) j and summing, we obtain

0 = −char(image(ϕ1)) + char(V2) − char(V3)

+ · · · + (−1)n−1char(Vn−1) + (−1)nchar(image(ϕn−1)).

SinceV1
∼= image(ϕ1) andVn

∼= image(ϕn−1), (5.69) follows.
Suppose thatV1 and V2 are representations ofg having characters

that are inZ〈h∗〉. Then V1 ⊗ V2, which is a representation under the
definition (4.3), has a character, and

(5.70) (V1 ⊗ V2) = (char(V1))(char(V2)).

In fact, the tensor product of weight vectors is a weight vector, and we can
form a basis ofV1 ⊗ V2 from such tensor-product vectors. Hence (5.70) is
an immediate consequence of (5.65).

TheWeyl denominator is the member ofZ[h∗] given by

d = eδ
∏

α∈�+
(1 − e−α).(5.71)

K =
∑
γ∈Q+

P(γ )e−γ .Define

This is a member ofZ〈h∗〉.
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Lemma 5.72.In the ringZ〈h∗〉, K e−δd = 1. Henced−1 exists inZ〈h∗〉.
PROOF. From the definition in (5.71), we have

(5.73) e−δd =
∏

α∈�+
(1 − e−α).

Meanwhile

(5.74)
∏

α∈�+
(1 + e−α + e−2α + · · · ) =

∑
γ∈Q+

P(γ )e−γ = K .

Since(1 − e−α)(1 + e−α + e−2α + · · · ) = 1 for α positive, the lemma
follows by multiplying (5.74) by (5.73).

Theorem 5.75(Weyl Character Formula). LetV be an irreducible finite-
dimensional representation of the complex semisimple Lie algebrag with
highest weightλ. Then

char(V ) = d−1
∑
w∈W

ε(w)ew(λ+δ).

REMARKS. We shall prove this theorem below after giving three lemmas.
But first we deduce an alternative formulation of the theorem.

Corollary 5.76 (Weyl Denominator Formula).

eδ
∏

α∈�+
(1 − e−α) =

∑
w∈W

ε(w)ewδ.

PROOF. Takeλ = 0 in Theorem 5.75. ThenV is the 1-dimensional
trivial representation, and char(V ) = e0 = 1.

Theorem 5.77(Weyl Character Formula, alternative formulation). Let
V be an irreducible finite-dimensional representation of the complex
semisimple Lie algebrag with highest weightλ. Then( ∑

w∈W

ε(w)ewδ
)

char(V ) =
∑
w∈W

ε(w)ew(λ+δ).

PROOF. This follows by substituting the result of Corollary 5.76 into the
formula of Theorem 5.75.
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Lemma 5.78.If λ in h∗ is dominant, then now �= 1 in W fixesλ + δ.

PROOF. If w �= 1 fixesλ + δ, then Chevalley’s Lemma in the form of
Corollary 2.73 shows that some rootα has〈λ+δ, α〉 = 0. We may assume
thatα is positive. But then〈λ, α〉 ≥ 0 by dominance and〈δ, α〉 > 0 by
Proposition 2.69, and we have a contradiction.

Lemma 5.79. The Verma moduleV (λ) has a character belonging to
Z〈h∗〉, and char(V (λ)) = d−1eλ.

PROOF. Formula (5.67) shows that

char(V (λ)) = eλ−δ
∑
γ∈Q+

P(γ )e−γ = K e−δeλ,

and thus the result follows by substituting from Lemma 5.72.

Lemma 5.80.Let λ0 be inh∗, and suppose thatM is a representation of
g such that

(i) M has infinitesimal characterλ0 and
(ii) M has a character belonging toZ〈h∗〉.

Let

DM = {λ ∈ Wλ0 | (λ − δ + Q+) ∩ support(char(M)) �= ∅}.

Then char(M) is a finiteZ linear combination of char(V (λ)) for λ in DM .

REMARK. DM is a finite set, being a subset of an orbit of the finite
groupW .

PROOF. We may assume thatM �= 0, and we proceed by induction on
|DM |. First assume that|DM | = 0. SinceM has a character belonging to
Z〈h∗〉, we can findµ in h∗ such thatµ− δ is a weight ofM butµ− δ + q+

is not a weight ofM for anyq+ �= 0 in Q+. Setm = dim Mµ−δ. Since
the root vectors for positive roots evidently annihilateMµ−δ, the universal
mapping property for Verma modules (Proposition 5.14c) shows that we
can find aU (g) homomorphismϕ : V (µ)m → M such that(V (µ)m)µ−δ

maps one-one ontoMµ−δ. The infinitesimal characterλ0 of M must match
the infinitesimal character ofV (µ), which isµ by Proposition 5.42. By
Theorem 5.62,µ is in Wλ0. Thenµ is in DM , and|DM | = 0 is impossible.
This completes the base case of the induction.
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Now assume the result of the lemma for modulesN satisfying (i) and (ii)
such thatDN has fewer than|DM | members. Constructµ, m, andϕ as
above. LetL be the kernel ofϕ, and putN = M/imageϕ. Then

0 −−−→ L −−−→ V (µ)m ϕ−−−→ M
ψ−−−→ N −−−→ 0

is an exact sequence of representations. By (5.68), char(L) and char(N )

exist. Thus (5.69) gives

char(M) = −char(L) + m char(V (µ)) + char(N ).

MoreoverL and N satisfy (i) and (ii). The induction will be complete if
we show that|DL | < |DM | and|DN | < |DM |.

In the case ofN , we clearly haveDN ⊆ DM . Sinceψ is onto, the
equalityMµ−δ = imageϕ implies thatNµ−δ = 0. Thusµ is not inDN , and
|DN | < |DM |.

In the case ofL, if λ is in DL , thenλ − δ + Q+ has nonempty inter-
section with support(char(L)) and hence with support(char(V (µ))). Then
µ − δ is in λ − δ + Q+, and henceµ − δ is a member of the intersection
(λ−δ+Q+)∩support(char(M)). That is,λ is in DM . ThereforeDL ⊆ DM .
But µ is not in DL , and hence|DL | < |DM |. This completes the proof.

PROOF OFTHEOREM5.75. By (5.43),V has infinitesimal characterλ+δ.
Lemma 5.80 applies toV with λ0 replaced byλ+δ, and Lemma 5.79 allows
us to conclude that

char(V ) = d−1
∑
w∈W

cwew(λ+δ)

for some unknown integerscw. We rewrite this formula as

(5.81) d char(V ) =
∑
w∈W

cwew(λ+δ).

Let us say that a memberf of Z[h∗] is even(underW ) if w f = f for
all w in W . It is odd if w f = ε(w) f for all w in W . Theorem 5.5e shows
that char(V ) is even. Let us see thatd is odd. In fact, we can writed as

(5.82) d =
∏

α∈�+
(eα/2 − e−α/2).

If we replace eachα by wα, we get the same factors on the right side of
(5.82) except for minus signs, and the number of minus signs is the number
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of positive rootsα such thatwα is negative. By (5.66) this product of minus
signs is justε(w).

Consequently the left side of (5.81) is odd underW , and application of
w0 to both sides of (5.81) gives∑

w∈W

cwε(w0)e
w(λ+δ) = ε(w0)d char(V ) = w0(d char(V ))

=
∑
w∈W

cwew0w(λ+δ) =
∑
w∈W

cw−1
0 wew(λ+δ).

By Lemma 5.78 the two sides of this formula are equal term by term.
Thus we havecw−1

0 w = cwε(w0) for w in W . Takingw = 1 givescw−1
0

=
c1ε(w0) = c1ε(w

−1
0 ), and hencecw0 = c1ε(w0). Therefore

d char(V ) = c1

∑
w∈W

ε(w)ew(λ+δ).

Expanding the left side and taking Theorem 5.5b into account, we see that
the coefficient ofeλ+δ on the left side is 1. Thus another application of
Lemma 5.78 givesc1 = 1.

Corollary 5.83 (Kostant Multiplicity Formula). LetV be an irreducible
finite-dimensional representation of the complex semisimple Lie algebrag

with highest weightλ. If µ is in h∗, then the multiplicity ofµ as a weight
of V is ∑

w∈W

ε(w)P(w(λ + δ) − (µ + δ)).

REMARK. By convention in this formula,P(ν) = 0 if ν is not in Q+.

PROOF. Lemma 5.72 and Theorem 5.75 combine to give

char(V ) = d−1(d char(V ))

= (K e−δ)(d char(V ))

=
( ∑

γ∈Q+
P(γ )e−δ−γ

)( ∑
w∈W

ε(w)ew(λ+δ)
)
.

Hence the required multiplicity is∑
γ∈Q+, w∈W

−δ−γ+w(λ+δ)=µ

P(γ )ε(w) =
∑
w∈W

ε(w)P(w(λ + δ) − µ − δ).
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Theorem 5.84(Weyl Dimension Formula). LetV be an irreducible
finite-dimensional representation of the complex semisimple Lie algebrag

with highest weightλ. Then

dim V =
∏

α∈�+ 〈λ + δ, α〉∏
α∈�+ 〈δ, α〉 .

PROOF. For H ∈ h∗, we introduce the ring homomorphism called
“evaluation atH ,” which is writtenεH : Z[h∗] → C and is given by

f =
∑

f (λ)eλ �→
∑

f (λ)eλ(H).

Then dimV = ε0(char(V )). The idea is thus to applyε0 to the Weyl
Character Formula as given in Theorem 5.75 or Theorem 5.77. But a
direct application will give 0/0 for the value ofε0(char(V )), and we have
to proceed more carefully. In effect, we shall use a version of l’Hˆopital’s
Rule.

For f ∈ Z[h∗] andϕ ∈ h∗, we define

∂ϕ f (H) = d

dr
f (H + r Hϕ)|r=0.

Then

(5.85) ∂ϕeλ(H) = d

dr
eλ(H+r Hϕ)|r=0 = 〈λ, ϕ〉eλ(H).

Consider any derivative∂ϕ1 · · · ∂ϕn of order less than the number of positive
roots, and apply it to the Weyl denominator (5.71), evaluating atH . We
are then considering

∂ϕ1 · · · ∂ϕn

(
e−δ(H)

∏
α∈�+

(eα(H) − 1)
)
.

Each∂ϕj operates by the product rule and differentiates one factor, leaving
the others alone. Thus each term in the derivative has an undifferentiated
eα(H) − 1 and will give 0 when evaluated atH = 0.

We apply
∏

α∈�+ ∂α to both sides of the identity given by the Weyl
Character Formula

d char(V ) =
∑
w∈W

ε(w)ew(λ+δ).
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Then we evaluate atH = 0. The result on the left side comes from the
Leibniz rule and involves many terms, but all of them give 0 (according to
the previous paragraph) except the one that comes from applying all the
derivatives tod and evaluating the other factor atH = 0. Thus we obtain(( ∏

α∈�+
∂α

)
d(H)

)
(0) dim V =

(( ∏
α∈�+

∂α

) ∑
w∈W

ε(w)ew(λ+δ)(H)
)
(0).

By Corollary 5.76 we can rewrite this formula as

(5.86)
(( ∏

α∈�+
∂α

) ∑
w∈W

ε(w)e(wδ)(H)
)
(0) dim V

=
(( ∏

α∈�+
∂α

) ∑
w∈W

ε(w)ew(λ+δ)(H)
)
(0).

We calculate( ∏
α∈�+

∂α

)( ∑
w∈W

ε(w)ew(λ+δ)(H)
)

=
∑
w∈W

ε(w)
∏

α∈�+
〈w(λ + δ), α〉ew(λ+δ)(H) by (5.85)

=
∑
w∈W

ε(w−1)
∏

α∈�+
〈λ + δ, w−1α〉ew(λ+δ)(H)

=
∑
w∈W

∏
α∈�+

〈λ + δ, α〉ew(λ+δ)(H) by (5.66)

=
( ∏

α∈�+
〈λ + δ, α〉

) ∑
w∈W

ew(λ+δ)(H).(5.87)

Whenλ = 0, (5.87) has a nonzero limit asH tends to 0 by Proposition
2.69. Therefore we can evaluate dimV from (5.86) by taking the quotient
with H in place and then lettingH tend to 0. By (5.87) the result is the
formula of the theorem.

The Weyl Dimension Formula provides a convenient tool for deciding
irreducibility. Letϕ be a finite-dimensional representation ofg, and sup-
pose thatλ is the highest weight ofϕ. Theorem 5.29 shows thatϕ is
completely reducible, and one of the irreducible summands must haveλ as
highest weight. Call this summandϕλ. Theorem 5.84 allows us to compute
dimϕλ. Then it follows thatϕ is irreducible if and only if dimϕ matches
the value of dimϕλ given by Theorem 5.84.
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EXAMPLE. With g = sl(n, C), let ϕ be the representation on the space
consisting of all holomorphic polynomials inz1, . . . , zn homogeneous of
degreeN . We shall prove that this representation is irreducible. From the
first example in §2, we know that this representation has highest weight

−Nen. Its dimension is

(
N + n − 1

N

)
, the number of ways of labeling

n − 1 of N + n − 1 objects as dividers and the others as monomials
zj . To check thatϕ is irreducible, it is enough to see from the Weyl
Dimension Formula that the irreducible representationϕ−Nen with highest

weightλ = −Nen has dimension

(
N + n − 1

N

)
. Easy calculation gives

δ = 1
2(n − 1)e1 + 1

2(n − 3)e2 + · · · + 1
2(1 − n)en.

A quotient
〈λ + δ, α〉

〈δ, α〉 will be 1 unless〈λ, α〉 �= 0. Therefore

dimϕ−Nen =
n−1∏
j=1

〈−Nen + δ, ej − en〉
〈δ, ej − en〉 =

n−1∏
j=1

N +n− j

n − j
=

(
N +n−1

N

)
,

as required.

7. Parabolic Subalgebras

Letg be a complex semisimple Lie algebra, and leth, � = �(g, h), and
B be as in §2. ABorel subalgebraof g is a subalgebrab = h ⊕ n, where
n = ⊕

α∈�+ gα for some positive system�+ within �. Any subalgebraq
of g containing a Borel subalgebra is called aparabolic subalgebraof g.
Our goal in this section is to classify parabolic subalgebras and to relate
them to finite-dimensional representations ofg.

We regardh andn as fixed in our discussion, and we study only para-
bolic subalgebrasq that containb = h ⊕ n. Let � be the simple system
determining�+ andn, and definen− as in (5.8). Sinceq ⊇ h and since
the root spaces are 1-dimensional,q is necessarily of the form

(5.88) q = h ⊕
⊕
α∈�

gα,

where� is a subset of�(g, h) containing�+(g, h). The extreme cases are
q = b (with � = �+(g, h)) andq = g (with � = �(g, h)).
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To obtain further examples of parabolic subalgebras, we fix a subset�′

of the set� of simple roots and let

(5.89) � = �+(g, h) ∪ {α ∈ �(g, h) | α ∈ span(�′)}.
Then (5.88) is a parabolic subalgebra containing the given Borel subalgebra
b. (Closure under brackets follows from the fact that ifα andβ are in� and
if α+β is a root, thenα+β is in�; this fact is an immediate consequence of
Proposition 2.49.) All examples are of this form, according to Proposition
5.90 below. With� as in (5.88), define−� to be the set of negatives of the
members of�.

Proposition 5.90. The parabolic subalgebrasq containing b are
parametrized by the set of subsets of simple roots; the one corresponding
to a subset�′ is of the form (5.88) with� as in (5.89).

PROOF. If q is given, we define�(q) to be the� in (5.88), and we define
�′(q) to be the set of simple roots in the linear span of�(q)∩−�(q). Then
q �→ �′(q) is a map from parabolic subalgebrasq containingb to subsets
of simple roots. In the reverse direction, if�′ is given, we define�(�′)
to be the� in (5.89), and thenq(�′) is defined by means of (5.88). We
have seen thatq(�′) is a subalgebra, and thus�′ �→ q(�′) is a map from
subsets of simple roots to parabolic subalgebras containingb.

To complete the proof we have to show that these two maps are inverse
to one another. To see that�′(q(�′)) = �′, we observe that

{α ∈ �(g, h) | α ∈ span(�′)}
is closed under negatives. Therefore (5.89) gives

�(�′) ∩ −�(�′) = (�+(g, h) ∪ {α ∈ �(g, h) | α ∈ span(�′)})
∩ (−�+(g, h) ∪ {α ∈ �(g, h) | α ∈ span(�′)})

= (�+(g, h) ∩ −�+(g, h))

∪ {α ∈ �(g, h) | α ∈ span(�′)}
= {α ∈ �(g, h) | α ∈ span(�′)}.

The simple roots in the span of the right side are the members of�′, by the
independence in Proposition 2.49, and it follows that�′(q(�′)) = �′.

To see thatq(�′(q)) = q, we are to show that�(�′(q)) = �(q). Since
�+(g, h) ⊆ �(q), the inclusion�(�′(q)) ⊆ �(q) will follow if we show
that

(5.91) {α ∈ �(g, h) | α ∈ span(�′(q))} ⊆ �(q).
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Since�(q) = �+(g, h) ∪ (�(q) ∩ −�(q)), the inclusion�(�′(q)) ⊇ �(q)

will follow if we show that

(5.92) �(q) ∩ −�(q) ⊆ �(�′(q)).

Let us first prove (5.91). The positive members of the left side of (5.91)
are elements of the right side sinceb ⊆ q. Any negative root in the left
side is a negative-integer combination of members of�′(q) by Proposition
2.49. Let−α be such a root, and expandα in terms of the simple roots
� = {αi}l

i=1 asα = ∑
i niαi . We prove by induction on the level

∑
ni that

a nonzero root vectorE−α for −α is inq. When the level is 1, this assertion
is just the definition of�′(q). When the level ofα is > 1, we can choose
positive rootsβ andγ with α = β + γ . Thenβ andγ are positive integer
combinations of members of�′(q). By inductive hypothesis,−β and−γ

are in�(q). Hence the corresponding root vectorsE−β andE−γ are inq.
By Corollary 2.35, [E−β, E−γ ] is a nonzero root vector for−α. Sinceq is
a subalgebra,−α must be in�(q). This proves (5.91).

Finally let us prove (5.92). Let−α be a negative root in�(q), and
expandα in terms of simple roots asα = ∑

i niαi . The assertion is that
eachαi for which ni > 0 is in �′(q), i.e., has−αi ∈ �(q). We prove this
assertion by induction on the level

∑
ni , the case of level 1 being trivial.

If the level ofα is > 1, thenα = β + γ with β andγ in �+(g, h). The
root vectorsE−α andEβ are inq, and hence so is their bracket, which is a
nonzero multiple ofE−γ by Corollary 2.35. SimilarlyE−α andEγ are in
q, and hence so isE−β . Thus−γ and−β are in�(q). By induction the
constituent simple roots ofβ andγ are in�′(q), and thus the same thing
is true ofα. This proves (5.92) and completes the proof of the proposition.

Now define

(5.93a) l = h ⊕
⊕

α∈�∩−�

gα and u =
⊕
α∈�,
α/∈−�

gα,

so that

(5.93b) q = l ⊕ u.

Corollary 5.94. Relative to a parabolic subalgebraq containingb,

(a) l andu are subalgebras ofq, andu is an ideal inq,
(b) u is nilpotent,
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(c) l is reductive with centerh′′ = ⋂
α∈�∩−� kerα ⊆ h and with

semisimple partlss having root-space decomposition

lss = h
′ ⊕

⊕
α∈�∩−�

gα,

whereh′ = ∑
α∈�∩−� CHα.

PROOF. By Proposition 5.90 letq be built from�′ by means of (5.89)
and (5.88). Then (a) is clear. In (b), we haveu ⊆ n, and henceu is
nilpotent.

Let us prove (c). Leth0 be the real form ofh on which all roots are
real valued. Thenh′

0 = h0 ∩ h′ andh′′
0 = h0 ∩ h′′ are real forms ofh′ and

h′′, respectively. The formB for g hasB|h0×h0 positive definite, and it is
clear thath′

0 andh′′
0 are orthogonal complements of each other. Therefore

h0 = h′
0 ⊕ h′′

0 andh = h′ ⊕ h′′. Thus withlss defined as in the statement of
(c), l = h′′ ⊕ lss . Moreover it is clear thath′′ andlss are ideals inl and that
h′′ is contained in the center. To complete the proof, it is enough to show
thatlss is semisimple.

Thus letB ′ be the Killing form oflss . Relative toB ′, h′ is orthogonal to
eachgα in l, and eachgα in l is orthogonal to allgβ in l exceptg−α. For
α ∈ � ∩ −�, choose root vectorsEα and E−α with B(Eα, E−α) = 1, so
that [Eα, E−α] = Hα. We shall show thatB ′(Eα, E−α) > 0 and thatB ′ is
positive definite onh′

0 × h′
0. Then it follows thatB ′ is nondegenerate, and

lss is semisimple by Cartan’s Criterion for Semisimplicity (Theorem 1.45).
In considering B ′(Eα, E−α), we observe from Corollary 2.37 that

adEα adE−α acts with eigenvalue≥ 0 on anygβ . On H ∈ h, it gives
α(H)Hα, which is a positive multiple ofHα if H = Hα and is 0 if H is
in kerα. Thus adEα adE−α has trace> 0 onh and trace≥ 0 on eachgβ .
ConsequentlyB ′(Eα, E−α) > 0.

If H is in h′
0, thenB ′(H, H) = ∑

α∈�∩−� α(H)2, and each term is≥ 0.
To get 0, we must haveα(H) = 0 for all α ∈ � ∩ −�. This condition
forcesH to be inh′′. Sinceh′ ∩h′′ = 0, we find thatH = 0. Consequently
B ′ is positive definite onh′

0 × h′
0, as asserted.

In the decomposition (5.93) ofq, l is called theLevi factor andu is
called thenilpotent radical . The nilpotent radical can be characterized
solely in terms ofq as the radical of the symmetric bilinear formB|q×q,
whereB is the invariant form forg. But the Levi factorl depends onh as
well asq.
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Define

(5.95a) u
− =

⊕
α∈�,
α/∈−�

g−α.

and

(5.95b) q
− = l ⊕ u

−,

(The subalgebraq− is a parabolic subalgebra containing the Borel subal-
gebrab− = h ⊕ n−.) Then we have the important identities

(5.96) l = q ∩ q
−

and

(5.97) g = u
− ⊕ l ⊕ u.

Now we shall examine parabolic subalgebras in terms of centralizers
and eigenvalues. We begin with some notation. In the background will
be our Cartan subalgebrah and the Borel subalgebrab. We suppose that
V is a finite-dimensional completely reducible representation ofh, and we
denote by�(V ) the set of weights ofh in V. Some examples are

�(g) = �(g, h) ∪ {0}
�(n) = �+(g, h)

�(q) = � ∪ {0}
�(l) = (� ∩ −�) ∪ {0}
�(u) = {α ∈ � | −α /∈ �}.

For each weightω ∈ �(V ), let mω be the multiplicity ofω. We define

(5.98) δ(V ) = 1
2

∑
ω∈�(V )

mωω,

half the sum of the weights with multiplicities counted. An example is that
δ(n) = δ, with δ defined as in §II.6 and again in (5.8). The following result
generalizes Proposition 2.69.
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Proposition 5.99. Let V be a finite-dimensional representation ofg,
and let� be a subset of�(V ). Suppose thatα is a root such thatλ ∈ �

andα + λ ∈ �(V ) together implyα + λ ∈ �. Then
〈∑

λ∈�

mλλ, α
〉

≥ 0.

Strict inequality holds when the representation is the adjoint representation
of g on V = g andα is in � and−α is not in�.

PROOF. Theorem 5.29 shows thatV is completely reducible. IfEα and
E−α denote nonzero root vectors forα and−α, V is therefore completely
reducible underh + span{Hα, Eα, E−α}. Let λ be in�, and suppose that
〈λ, α〉 < 0. Then the theory forsl(2, C) shows thatλ, λ + α, . . . , sαλ are
in �(V ), and the hypothesis forces all of these weights to be in�. In
particularsαλ is in �. Theorem 5.5e says thatmλ = msαλ. Therefore∑

λ∈�

mλλ =
∑
λ∈�,

〈λ,α〉<0

mλ(λ + sαλ) +
∑
λ∈�,

〈λ,α〉=0

mλλ +
∑

λ∈�, sαλ/∈�,
〈λ,α〉>0

mλλ.

The inner product ofα with the first two sums on the right is 0, and the
inner product ofα with the third sum is term-by-term positive. This proves
the first assertion. In the case of the adjoint representation, ifα ∈ � and
−α /∈ �, thenα occurs in the third sum and gives a positive inner product.
This proves the second assertion.

Corollary 5.100. Let q be a parabolic subalgebra containingb. If α is
in �+(g, h), then

〈δ(u), α〉 is

{ = 0 if α ∈ �(l, h)

> 0 if α ∈ �(u).

PROOF. In Proposition 5.99 letV = g and� = �(u). If α is in �(l, h),
the proposition applies toα and−α and gives〈δ(u), α〉 = 0. If α is in
�(u), then−α is not in� and the proposition gives〈δ(u), α〉 > 0.

Corollary 5.101. Let q = l ⊕ u be a parabolic subalgebra containing
b. Then the elementH = Hδ(u) of h has the property that all roots are real
valued onH and

u = sum of eigenspaces of adH for positive eigenvalues

l = Zg(H) = eigenspace of adH for eigenvalue 0

u
− = sum of eigenspaces of adH for negative eigenvalues.

PROOF. This is immediate from Corollary 5.100.
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We are ready to examine the role of parabolic subalgebras in finite-
dimensional representations. The idea is to obtain a generalization of the
Theorem of the Highest Weight (Theorem 5.5) in whichhandnget replaced
by l andu.

The Levi factorl of a parabolic subalgebraq containingb is reductive by
Corollary 5.94c, but it is usually not semisimple. In the representations that
we shall study,h will act completely reducibly, and hence the subalgebra
h′′ in that corollary will act completely reducibly. Each simultaneous
eigenspace ofh′′ will give a representation oflss , which will be completely
reducible by Theorem 5.29. We summarize these remarks as follows.

Proposition 5.102.Letq be a parabolic subalgebra containingb. In any
finite-dimensional representation ofl for whichhacts completely reducibly,
l acts completely reducibly. This happens in particular when the action of
a representation ofg is restricted tol.

Each irreducible constituent from Proposition 5.102 consists of a scalar
action byh′′ and an irreducible representation oflss , and the Theorem of the
Highest Weight (Theorem 5.5) is applicable for the latter. Reassembling
matters, we see that we can treath as a Cartan subalgebra ofl and treat
� ∩ −� as the root system�(l, h). The Theorem of the Highest Weight
may then be reinterpreted as valid forl. Even thoughl is merely reductive,
we shall work withl in this fashion without further special comment.

Let a finite-dimensional representation ofg be given on a spaceV, and
fix a parabolic subalgebraq = l ⊕ u containingb. The key tool for our
investigation will be the subspace ofu invariants given by

V u = {v ∈ V | Xv = 0 for all X ∈ u}.
This subspace carries a representation ofl sinceH ∈ l, v ∈ V u, andX ∈ u

imply
X (Hv) = H(Xv) + [ X, H ]v = 0 + 0 = 0

by Corollary 5.94a. By Corollary 5.31c the representation ofl on V u is
determined up to equivalence by the representation ofh on the space of
l ∩ n invariants. But

(5.103) (V u)l∩n = V u⊕(l∩n) = V n,

and the right side is given by the Theorem of the Highest Weight forg.
This fact allows us to treat the representation ofl onV u as a generalization
of the highest weight of the representation ofg on V .
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Theorem 5.104.Let g be a complex semisimple Lie algebra, leth be
a Cartan subalgebra, let�+(g, h) be a positive system for the set of roots,
and definen by (5.8). Letq = l ⊕ u be a parabolic subalgebra containing
the Borel subalgebrab = h ⊕ n.

(a) If an irreducible finite-dimensional representation ofg is given on
V, then the corresponding representation ofl on V u is irreducible. The
highest weight of this representation ofl matches the highest weight ofV
and is therefore algebraically integral and dominant for�+(g, h).

(b) If irreducible finite-dimensional representations ofg are given onV1

andV2 such that the associated irreducible representations ofl on V u

1 and
V u

2 are equivalent, thenV1 andV2 are equivalent.
(c) If an irreducible finite-dimensional representation ofl on M is given

whose highest weight is algebraically integral and dominant for�+(g, h),
then there exists an irreducible finite-dimensional representation ofg on a
spaceV such thatV u ∼= M as representations ofl.

PROOF.
(a) By (5.103),(V u)l∩n = V n. Parts (b) and (c) of Theorem 5.5 forg

say thatV n is 1-dimensional. Hence the space ofl ∩ n invariants forV u

is 1-dimensional. SinceV u is completely reducible underl by Proposition
5.102, Theorem 5.5c forl shows thatV u is irreducible underl. If λ is the
highest weight ofV underg, thenλ is the highest weight ofV u underl
sinceVλ = V n ⊆ V u. Thenλ is algebraically integral and dominant for
�+(g, h) by Theorem 5.5 forg.

(b) If V u

1 andV u

2 are equivalent underl, then(V u

1 )l∩n and(V u

2 )l∩n are
equivalent underh. By (5.103),V n

1 andV n

2 are equivalent underh. By
uniqueness in Theorem 5.5,V1 andV2 are equivalent underg.

(c) LetM have highest weightλ, which is assumed algebraically integral
and dominant for�+(g, h). By Theorem 5.5 we can form an irreducible
finite-dimensional representation ofg on a spaceV with highest weightλ.
ThenV u has highest weightλ by (a), andV u ∼= M as representations ofl

by uniqueness in Theorem 5.5 forl.

Proposition 5.105. Let g be a complex semisimple Lie algebra, and
let q = l ⊕ u be a parabolic subalgebra containingb. If V is any finite-
dimensionalU (g) module, then

(a) V = V u ⊕ u−V ,
(b) the natural mapV u → V/(u−V ) is an isomorphism ofU (l)

modules,
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(c) theU (l) moduleV u determines theU (g) moduleV up to equiv-
alence; the number of irreducible constituents ofV u equals the
number of irreducible constituents ofV, and the multiplicity of an
irreducibleU (l) module inV u equals the multiplicity inV of the
irreducibleU (g) module with that same highest weight.

PROOF. We have seen thatV u is aU (l) module, and similarlyu−V is a
U (l) module. Conclusion (b) is immediate from (a), and conclusion (c) is
immediate from Theorems 5.29 and 5.104. Thus we are left with proving
(a).

By Theorem 5.29,V is a direct sum of irreducible representations, and
there is no loss of generality in assuming thatV is irreducible, say of highest
weightλ.

With V irreducible, we argue as in the proof of Corollary 5.31, using a
Poincaré–Birkhoff–Witt basis ofU (g) built from root vectors inu−, root
vectors inl together with members ofh, and root vectors inu. We may do so
because of (5.97). Each such root vector is an eigenvector under adHδ(u),
and the eigenvalues are negative, zero, and positive in the three cases by
Corollary 5.101. Using this eigenvalue as a substitute for “weight” in the
proof of Corollary 5.31, we see that

V = U (l)Vλ ⊕ u
−V .

But l acts irreducibly onV u by Theorem 5.104a, andVλ = V n ⊆ V u.
HenceU (l)Vλ = V u, and (a) is proved. This completes the proof of the
proposition.

8. Application to Compact Lie Groups

As was mentioned in §1, one of the lines of motivation for studying
finite-dimensional representations of complex semisimple Lie algebras is
the representation theory of compact connected Lie groups. We now return
to that theory in order to interpret the results of this chapter in that context.

Throughout this section we letG be a compact connected Lie group
with Lie algebrag0 and complexified Lie algebrag, and we letT be a
maximal torus with Lie algebrat0 and complexified Lie algebrat. The
Lie algebrag is reductive (Corollary 4.25), and we saw in §IV.4 how to
interprett as a Cartan subalgebra and how the theory of roots extended
from the semisimple case to this reductive case. Let� = �(g, t) be the
set of roots, and letW = W (�) be the Weyl group.
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Recall that a memberλof t∗ isanalytically integral if it is the differential
of a multiplicative characterξλ of T , i.e., if ξλ(expH) = eλ(H) for all
H ∈ t0. If λ is analytically integral, thenλ takes purely imaginary values
ont0 by Proposition 4.58. Every root is analytically integral by Proposition
4.58. Every analytically integral member oft∗ is algebraically integral by
Proposition 4.59.

Lemma 5.106.If � is a finite-dimensional representation of the compact
connected Lie groupG and ifλ is a weight of the differential of�, thenλ

is analytically integral.

PROOF. We observed in §1 that�|T is the direct sum of 1-dimensional
invariant subspaces with�|T acting in each by a multiplicative characterξλj .
Then the weights are the variousλj ’s. Since each weight is the differential
of a multiplicative character ofT , each weight is analytically integral.

Theorem 5.107.Let G be a simply connected compact semisimple Lie
group, letT be a maximal torus, and lett be the complexified Lie algebra of
T . Then every algebraically integral member oft∗ is analytically integral.

PROOF. Let λ ∈ t∗ be algebraically integral. Thenλ is real valued on
it0, and the real span of the roots is(it0)

∗ by semisimplicity ofg. Henceλ
is in the real span of the roots. By Proposition 2.67 we can introduce
a positive system�+(g, t) such thatλ is dominant. By the Theorem
of the Highest Weight (Theorem 5.5), there exists an irreducible finite-
dimensional representationϕ of g with highest weightλ. SinceG is simply
connected, there exists an irreducible finite-dimensional representation�

of G with differentialϕ|g0. By Lemma 5.106,λ is analytically integral.

Corollary 5.108. If G is a compact semisimple Lie group, then the order
of the fundamental group ofG equals the index of the group of analytically
integral forms forG in the group of algebraically integral forms.

PROOF. Let G̃ be a simply connected covering group ofG. By Weyl’s
Theorem (Theorem 4.69),̃G is compact. Theorem 5.107 shows that the
analytically integral forms for̃G coincide with the algebraically integral
forms. Then it follows from Proposition 4.67 that the index of the group of
analytically integral forms forG in the group of algebraically integral forms
equals the order of the kernel of the covering homomorphismG̃ → G.
SinceG̃ is simply connected, this kernel is isomorphic to the fundamental
group ofG.
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EXAMPLE. Let G = SO(2n + 1) with n ≥ 1 or G = SO(2n) with
n ≥ 2. The analytically integral forms in standard notation are all ex-
pressions

∑n
j=1 cj ej with all cj in Z. The algebraically integral forms are

all expressions
∑n

j=1 cj ej with all cj in Z or all cj in Z + 1
2. Corollary

5.108 therefore implies that the fundamental group ofG has order 2. This
conclusion sharpens Proposition 1.136.

Corollary 5.109. If G is a simply connected compact semisimple Lie
group, then the order of the centerZG of G equals the determinant of the
Cartan matrix.

PROOF. Let G ′ be the adjoint group ofG so that ZG is the kernel
of the covering mapG → G ′. The analytically integral forms forG
coincide with the algebraically integral forms by Theorem 5.107, and the
analytically integral forms forG ′ coincide with theZ combinations of roots
by Proposition 4.68. Thus the corollary follows by combining Propositions
4.64 and 4.67.

Now we give results that do not assume thatG is semisimple. Sinceg0

is reductive, we can writeg0 = Zg0 ⊕ [g0, g0] with [g0, g0] semisimple.
Putt′0 = t0 ∩ [g0, g0]. The root-space decomposition ofg is then

g = t ⊕
⊕

α∈�(g,t)

gα = Zg ⊕
(
t
′ ⊕

⊕
α∈�(g,t)

gα

)
.

By Proposition 4.24 the compactness ofG implies that there is an invari-
ant inner product on the Lie algebrag0, and we letB be its negative. (This
form was used in Chapter IV, beginning in §5.) If we were assuming that
g0 is semisimple, thenB could be taken to be the Killing form, according
to Corollary 4.26. We extendB to be complex bilinear ong × g. The
restriction ofB to it0 × it0 is an inner product, which transfers to give an
inner product on(it0)

∗. Analytically integral forms are always in(it0)
∗.

If a positive system�+(g, t) is given for the roots, then the condition of
dominance for the form depends only on the restriction of the form toit′0.

Theorem 5.110(Theorem of the Highest Weight). LetG be a compact
connected Lie group with complexified Lie algebrag, let T be a maximal
torus with complexified Lie algebrat, and let�+(g, t) be a positive system
for the roots. Apart from equivalence the irreducible finite-dimensional
representations� of G stand in one-one correspondence with the dominant
analytically integral linear functionalsλ ont, the correspondence being that
λ is the highest weight of�.
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REMARK. The highest weight has the additional properties given in
Theorem 5.5.

PROOF. Let notation be as above. If� is given, then the highest weight
λ of � is analytically integral by Lemma 5.106. To see dominance, letϕ be
the differential of�. Extendϕ complex linearly fromg0 to g, and restrict
to [g, g]. The highest weight ofϕ on [g, g] is the restriction ofλ to t′, and
this must be dominant by Theorem 5.5. Thereforeλ is dominant.

By Theorem 4.29,G is a commuting productG = (ZG)0Gss with Gss

compact semisimple. Suppose that�and�′ are irreducible representations
of G, both with highest weightλ. By Schur’s Lemma (Corollary 4.9),
�|(ZG )0 and�′|(ZG )0 are scalar, and the scalar is determined by the restriction
of λ to the Lie algebraZg0 of (ZG)0. Hence�|(ZG )0 = �′|(ZG )0. On Gss ,
the differentialsϕ andϕ′ give irreducible representations of [g, g] with the
same highest weightλ|t′ , and these are equivalent by Theorem 5.5. Then
it follows thatϕ andϕ′ are equivalent as representations ofg, and� and
�′ are equivalent as representations ofG.

Finally if an analytically integral dominantλ is given, we shall produce
a representation� of G with highest weightλ. The formλ is algebraically
integral by Proposition 4.59. We construct an irreducible representation
ϕ of g with highest weightλ: This comes in two parts, withϕ|[g,g] equal
to the representation in Theorem 5.5 corresponding toλ|t′ and withϕ|Zg

given by scalar operators equal toλ|Zg
.

LetG̃ be the universal covering group ofG. SincẽG is simply connected,
there exists an irreducible representation�̃ of G̃ with differential ϕ|g0,
hence with highest weightλ. To complete the proof, we need to show that
�̃ descends to a representation� of G.

SinceG = (ZG)0Gss , G̃ is of the formRn × G̃ss , whereG̃ss is the
universal covering group ofGss . Let Z be the discrete subgroup of the
center ZG̃ of G̃ such thatG ∼= G̃/Z . By Weyl’s Theorem (Theorem
4.69),G̃ss is compact. Thus Corollary 4.47 shows that the center ofG̃ss is
contained in every maximal torus of̃Gss . SinceZG̃ ⊆ Rn × ZG̃ss

, it follows
that ZG̃ ⊆ expt0. Now λ is analytically integral forG, and consequently
the corresponding multiplicative characterξλ on expt0 ⊆ G̃ is trivial on
Z . By Schur’s Lemma,̃� is scalar onZG̃ , and its scalar values must agree
with those ofξλ sinceλ is a weight. Thus̃� is trivial on Z , and�̃ descends
to a representation� of G, as required.

Next we take up characters. Let� be an irreducible finite-dimensional
representation of the compact connected Lie groupG with highest weightλ,
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let V be the underlying vector space, and letϕ be the differential, regarded
as a representation ofg. The Weyl Character Formula, as stated in Theorem
5.75, gives a kind of generating function for the weights of an irreducible Lie
algebra representation in the semisimple case. Hence it is applicable to the
semisimple Lie algebra [g, g], the Cartan subalgebrat′, the representation
ϕ|[g,g] , and the highest weightλ|t′ . By Schur’s Lemma,�|(ZG )0 is scalar,
necessarily with differentialϕ|Zg

= λ|Zg
. Thus we can extend the Weyl

Character Formula as stated in Theorem 5.75 to be meaningful for our
reductiveg by extending all weights fromt′ to t with λ|Zg

as their values
on Zg. The formula looks the same:

(5.111)
(

eδ
∏

α∈�+
(1 − e−α)

)
char(V ) =

∑
w∈W

ε(w)ew(λ+δ).

We can apply the evaluation homomorphismεH to both sides for anyH ∈ t,
but we want to end up with an expression for char(V ) as a function on the
maximal torusT . This is a question of analytic integrality. The expressions
char(V ) and

∏
(1−e−α) give well defined functions onT since each weight

and root is analytically integral. Buteδ need not give a well defined function
onT sinceδ need not be analytically integral. (It is not analytically integral
for SO(3), for example.) Matters are resolved by the following lemma.

Lemma 5.112. For eachw ∈ W , δ − wδ is analytically integral. In
fact,δ − wδ is the sum of all positive rootsβ such thatw−1β is negative.

PROOF. We write

δ = 1
2

∑
{β | β > 0, w−1β > 0} + 1

2

∑
{β | β > 0, w−1β < 0}

and

wδ = 1
2w

∑
{α | α > 0, wα > 0} + 1

2w
∑

{α | α > 0, wα < 0}
= 1

2

∑
{wα | α > 0, wα > 0} + 1

2

∑
{wα | α > 0, wα < 0}

= 1
2

∑
{β | w−1β > 0, β > 0} + 1

2

∑
{η | w−1η > 0, η < 0}

underβ = wα andη = wα

= 1
2

∑
{β | w−1β > 0, β > 0} − 1

2

∑
{β | w−1β < 0, β > 0}

underβ = −η.

Subtracting, we obtain

δ − wδ =
∑

{β | β > 0, w−1β < 0}
as required.
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Theorem 5.113(Weyl Character Formula). LetG be a compact con-
nected Lie group, letT be a maximal torus, let�+ = �+(g, t) be a positive
system for the roots, and letλ ∈ t∗ be analytically integral and dominant.
Then the characterχ�λ

of the irreducible finite-dimensional representation
�λ of G with highest weightλ is given by

χ�λ
(t) =

∑
w∈W ε(w)ξw(λ+δ)−δ(t)∏

α∈�+ (1 − ξ−α(t))

at everyt ∈ T where noξα takes the value 1 ont . If G is simply connected,
then this formula can be rewritten as

χ�λ
(t) =

∑
w∈W ε(w)ξw(λ+δ)(t)

ξδ(t)
∏

α∈�+ (1 − ξ−α(t))
=

∑
w∈W ε(w)ξw(λ+δ)(t)∑

w∈W ε(w)ξwδ(t)
.

REMARK. Theorem 4.36 says that every member ofG is conjugate to
a member ofT . Since characters are constant on conjugacy classes, the
above formulas determine the characters everywhere onG.

PROOF. Theorem 5.110 shows that�λ exists whenλ is analytically
integral and dominant. We apply Theorem 5.75 in the form of (5.111).
When we divide (5.111) byeδ, Lemma 5.112 says that all the exponentials
yield well defined functions onT . The first formula follows. IfG is simply
connected, thenG is semisimple as a consequence of Proposition 1.122.
The linear functionalδ is algebraically integral by Proposition 2.69, hence
analytically integral by Theorem 5.107. Thus we can regroup the formula
as indicated. The version of the formula with an alternating sum in the
denominator uses Theorem 5.77 in place of Theorem 5.75.

Finally we discuss how parabolic subalgebras play a role in the repre-
sentation theory of compact Lie groups. WithG andT given, fix a positive
system�+(g, t) for the roots, definen as in (5.8), and letq = l ⊕ u be a
parabolic subalgebra ofg containingb = h ⊕ n. Corollary 5.101 shows
that l = Zg(Hδ(u)), and we can equally well writel = Zg(i Hδ(u)). Since
i Hδ(u) is in t0 ⊆ g0, l is the complexification of the subalgebra

l0 = Zg0(i Hδ(u))

of g0. Define
L = ZG(i Hδ(u)).

This is a compact subgroup ofG containingT . Since the closure of
expiRHδ(u) is a torus inG, L is the centralizer of a torus inG and is
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connected by Corollary 4.51. Thus we have an inclusion of compact
connected Lie groupsT ⊆ L ⊆ G, and T is a maximal torus in both
L andG. Hence analytic integrality is the same forL as forG. Combining
Theorems 5.104 and 5.110, we obtain the following result.

Theorem 5.114.Let G be a compact connected Lie group with maximal
torusT , let g0 andt0 be the Lie algebras, and letg andt be the complexi-
fications. Let�+(g, t) be a positive system for the roots, and definen by
(5.8). Letq = l ⊕ u be a parabolic subalgebra containingb = h ⊕ n, let
l0 = l ∩ g0, and letL be the analytic subgroup ofG with Lie algebral0.

(a) The subgroupL is compact connected, andT is a maximal torus in
it.

(b) If an irreducible finite-dimensional representation ofG is given on
V, then the corresponding representation ofL on V u is irreducible. The
highest weight of this representation ofL matches the highest weight ofV
and is therefore analytically integral and dominant for�+(g, h).

(c) If irreducible finite-dimensional representations ofG are given on
V1 andV2 such that the associated irreducible representations ofL on V u

1

andV u

2 are equivalent, thenV1 andV2 are equivalent.
(d) If an irreducible finite-dimensional representation ofL onM is given

whose highest weight is analytically integral and dominant for�+(g, h),
then there exists an irreducible finite-dimensional representation ofG on
a spaceV such thatV u ∼= M as representations ofL.

9. Problems

1. Letg be a complex semisimple Lie algebra, and letϕ be a finite-dimensional
representation ofg on the spaceV . The contragredientϕc is defined in (4.4).
(a) Show that the weights ofϕc are the negatives of the weights ofϕ.
(b) Let w0 be the element of the Weyl group produced in Problem 18 of

Chapter II such thatw0�
+ = −�+. If ϕ is irreducible with highest

weightλ, prove thatϕc is irreducible with highest weight−w0λ.

2. As in Problems 9–14 of Chapter IV, letVN be the space of polynomials in
x1, . . . , xn homogeneous of degreeN , and letHN be the subspace of harmonic
polynomials. The compact groupG = SO(n) acts onVN , and hence so does
the complexified Lie algebraso(n, C). The subspaceHN is an invariant
subspace. In the parts of this problem, it is appropriate to handle separately
the cases ofn odd andn even.
(a) The weights ofVN are identified in §1. Check thatNe1 is the highest

weight, and conclude thatNe1 is the highest weight ofHN .
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(b) Calculate the dimension of the irreducible representation ofso(n, C) with
highest weightNe1, compare with the result of Problem 14 of Chapter IV,
and conclude thatso(n, C) acts irreducibly onHN .

3. As in Problems 15–17 of Chapter IV, letVN be the space of polynomials in
z1, . . . , zn, z̄1, . . . , z̄n homogeneous of degreeN , and letVp,q be the subspace
of polynomials withp z-type factors andq z̄-type factors. The compact group
G = SU (n) acts onVN , and hence so does the complexified Lie algebra
sl(n, C). The subspaceHp,q of harmonic polynomials inVp,q is an invariant
subspace.
(a) The weights ofVp,q are identified in §1. Check thatqe1 − pen is the

highest weight, and conclude thatqe1 − pen is the highest weight of
Hp,q .

(b) Calculate the dimension of the irreducible representation ofsl(n, C) with
highest weightqe1 − pen, compare with the result of Problem 17 of
Chapter IV, and conclude thatsl(n, C) acts irreducibly onHp,q .

4. Forg = sl(3, C), show that the spaceHW of Weyl-group invariants contains
a nonzero element homogeneous of degree 3.

5. Give an interpretation of the Weyl Denominator Formula forsl(n, C) in terms
of the evaluation of Vandermonde determinants.

6. Prove that the Kostant partition functionP satisfies the recursion formula

P(λ) = −
∑
w∈W,
w �=1

ε(w)P(λ − (δ − wδ))

for λ �= 0 in Q+. HereP(ν) is understood to be 0 ifν is not in Q+.

Problems 7–10 address irreducibility of certain representations in spaces of alter-
nating tensors.

7. Show that the representation ofsl(n, C) on
∧lCn is irreducible by show-

ing that the dimension of the irreducible representation with highest weight∑l
k=1 ek is

(
n
l

)
.

8. Show that the representation ofso(2n + 1, C) on
∧lC2n+1 is irreducible for

l ≤ n by showing that the dimension of the irreducible representation with

highest weight
∑l

k=1 ek is

(
2n + 1

l

)
.

9. Show that the representation ofso(2n, C) on
∧lC2n is irreducible forl < n

by showing that the dimension of the irreducible representation with highest

weight
∑l

k=1 ek is

(
2n
l

)
.
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10. Show that the representation ofso(2n, C) on
∧nC2n is reducible, being

the sum of two irreducible representations with respective highest weights( ∑n−1
k=1 ek

) ± en.

Problems 11–13 concern Verma modules.

11. Prove for arbitraryλ andµ in h∗ that every nonzeroU (g) linear map ofV (µ)

into V (λ) is one-one.

12. Prove for arbitraryλ and µ in h∗ that if V (µ) is isomorphic to aU (g)

submodule ofV (λ), then µ is in λ − Q+ and is in the orbit ofλ under
the Weyl group.

13. Letλ be inh∗, and letM be an irreducible quotient of aU (g) submodule of
V (λ). Prove thatM is isomorphic to theU (g) moduleL(µ) of Proposition
5.15 for someµ in λ − Q+ such thatµ is in the orbit ofλ under the Weyl
group.

Problems 14–15 concern tensor products of irreducible representations. Letg be
a complex semisimple Lie algebra, and let notation be as in §2.

14. Letϕλ andϕλ′ be irreducible representations ofg with highest weightsλ and
λ′, respectively. Prove that the weights ofϕλ ⊗ϕλ′ are all sumsµ+µ′, where
µ is a weight ofϕλ andµ′ is a weight ofϕλ′ . How is the multiplicity ofµ+µ′

related to multiplicities inϕλ andϕλ′?

15. Letvλ andvλ′ be highest weight vectors inϕλ andϕλ′ , respectively. Prove that
vλ ⊗ vλ′ is a highest weight vector inϕλ ⊗ ϕλ′ . Conclude thatϕλ+λ′ occurs
exactly once inϕλ ⊗ ϕλ′ . (This occurrence is sometimes called theCartan
compositionof ϕλ andϕλ′ .)

Problems 16–18 begin a construction of “spin representations.” Letu1, . . . , un

be the standard orthonormal basis ofRn. TheClifford algebra Cliff (Rn) is an
associative algebra overR of dimension 2n with a basis parametrized by subsets
of {1, . . . , n} and given by

{ui1ui2 · · · uik | i1 < i2 < · · · < ik}.
The generators multiply by the rules

u2
i = −1, ui uj = −uj ui if i �= j.

16. Verify that the Clifford algebra is associative.

17. The Clifford algebra, like any associative algebra, becomes a Lie algebra
under the bracket operation [x, y] = xy − yx . Put

q =
∑
i �= j

Rui uj .
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Verify thatq is a Lie subalgebra of Cliff(Rn) isomorphic toso(n), the isomor-
phism beingϕ : so(n) → q with

ϕ(Eji − Ei j ) = 1
2ui uj .

18. Withϕ as in Problem 17, verify that

[ϕ(x), uj ] = xuj for all x ∈ so(n).

Here the left side is a bracket in Cliff(Rn), and the right side is the product
of the matrixx by the column vectoruj , the product being reinterpreted as a
member of Cliff(Rn).

Problems 19–27 continue the construction of spin representations. We form the
complexification CliffC(Rn) and denote left multiplication byc, puttingc(x)y =
xy. Thenc is a representation of the associative algebra CliffC((Rn) on itself,
hence also of the Lie algebra CliffC(Rn) on itself, hence also of the Lie subalgebra
qC ∼= so(n, C) on CliffC(Rn). Let n = 2m + 1 or n = 2m, according asn is odd
or even. For 1≤ j ≤ m, let

zj = u2 j−1 + iu2 j and z̄ j = u2 j−1 − iu2 j .

For each subsetS of {1, . . . , m}, define

zS =
( ∏

j∈S

zj

)( m∏
j=1

z̄ j

)
,

with each product arranged so that the indices are in increasing order. Ifn is odd,
define also

z′
S =

( ∏
j∈S

zj

)( m∏
j=1

z̄ j

)
u2m+1.

19. Check that
z2

j = z̄2
j = 0 and z̄ j z j z̄ j = −4zj ,

and deduce that

c(zj )zS =
{ ±zS∪{ j} if j /∈ S

0 if j ∈ S

c(z̄ j )zS =
{

0 if j /∈ S

±4zS−{ j} if j ∈ S.

20. Whenn is odd, check thatc(zj )z′
S andc(z̄ j )z′

S are given by formulas similar
to those in Problem 19, and compute alsoc(u2m+1)zS andc(u2m+1)z′

S, up to
sign.
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21. Forn even let

S =
∑

S⊆{1,...,m}
CzS,

of dimension 2m . Forn odd let

S =
∑

S⊆{1,...,m}
CzS +

∑
T ⊆{1,...,m}

Cz′
T ,

of dimension 2m+1. Prove thatc(Cliff C(Rn)) carriesS to itself, hence that
c(qC) carriesS to itself.

22. Forn even, writeS = S+ ⊕ S−, whereS+ refers to setsS with an even
number of elements and whereS− corresponds to setsS with an odd number
of elements. Prove thatS+ andS− are invariant subspaces underc(qC), of
dimension 2m−1. (The representationsS+ andS− are thespin representations
of so(2m, C).)

23. Forn odd, writeS = S+ ⊕ S−, whereS+ corresponds to setsS with an
even number of elements and setsT with an odd number of elements and
whereS− corresponds to setsS with an odd number of elements and sets
T with an even number of elements. Prove thatS+ andS− are invariant
subspaces underc(qC), of dimension 2m , and that they are equivalent under
right multiplication byu2m+1. (Thespin representationof so(2m + 1, C) is
either of the equivalent representationsS+ andS−.)

24. Let t0 be the maximal abelian subspace ofso(n) in §IV.5. In terms of the
isomorphismϕ in Problem 17, check that the corresponding maximal abelian
subspace ofq is ϕ(t0) = ∑

Ru2 j u2 j−1. In the notation of §II.1, check also
that 1

2iu2 j u2 j−1 is ϕ of the element oft on whichej is 1 andei is 0 for i �= j .

25. In the notation of the previous problem, prove that

c(ϕ(h))zS = 1

2

( ∑
j /∈S

ej −
∑
j∈S

ej

)
(h)zS

for h ∈ t. Prove also that a similar formula holds for the action onz′
S whenn

is odd.

26. Suppose thatn is even.
(a) Conclude from Problem 25 that the weights ofS+ are all expressions

1
2(±e1±· · ·±em) with an even number of minus signs, while the weights
of S− are all expressions12(±e1±· · ·±em) with an odd number of minus
signs.

(b) Compute the dimensions of the irreducible representations with highest
weights1

2(e1+· · ·+em−1+em) and1
2(e1+· · ·+em−1−em), and conclude

thatso(2m, C) acts irreducibly onS+ andS−.
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27. Suppose thatn is odd.
(a) Conclude from Problem 25 that the weights ofS+ are all expressions

1
2(±e1 ± · · · ± em) and that the weights ofS− are the same.

(b) Compute the dimension of the irreducible representation with highest
weight 1

2(e1+· · ·+em), and conclude thatso(2m +1, C) acts irreducibly
onS+ andS−.

Problems 28–33 concern fundamental representations. Letα1, . . . , αl be the
simple roots, and define�1, . . . , �l by 2〈�i , αj 〉/|αj |2 = δi j . The dominant
algebraically integral linear functionals are then all expressions

∑
i ni�i with all

ni integers≥ 0. We call�i the fundamental weight attached to the simple root
αi , and the corresponding irreducible representation is called thefundamental
representationattached to that simple root.

28. Letg = sl(n, C).

(a) Verify that the fundamental weights are
∑l

k=1 ek for 1 ≤ l ≤ n − 1.
(b) Using Problem 7, verify that the fundamental representations are the usual

alternating-tensor representations.

29. Letg = so(2n + 1, C). Let αi = ei − ei+1 for i < n, and letαi = en.

(a) Verify that the fundamental weights are�l = ∑l
k=1 ek for 1 ≤ l ≤ n −1

and�n = 1
2

∑n
k=1 ek .

(b) Using Problem 8, verify that the fundamental representations attached to
simple roots other than the last one are alternating-tensor representations.

(c) Using Problem 27, verify that the fundamental representation attached to
the last simple root is the spin representation.

30. Letg = so(2n, C). Letαi = ei −ei+1 for i < n −1, and letαn−1 = en−1−en

andαn = en−1 + en.

(a) Verify that the fundamental weights are�l = ∑l
k=1 ek for 1 ≤ l ≤ n −2,

�n−1 = 1
2

∑n
k=1 ek , and�n = 1

2

( ∑n−1
k=1 ek − en

)
.

(b) Using Problem 9, verify that the fundamental representations attached to
simple roots other than the last two are alternating-tensor representations.

(c) Using Problem 26, verify that the fundamental representations attached
to the last two simple roots are the spin representations.

31. Letλ andλ′ be dominant algebraically integral, and suppose thatλ − λ′ is
dominant and nonzero. Prove that the dimension of an irreducible represen-
tation with highest weightλ is greater than the dimension of an irreducible
representation with highest weightλ′.

32. Giveng, prove for each integerN that there are only finitely many irreducible
representations ofg, up to equivalence, of dimension≤ N .
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33. Letg be a complex simple Lie algebra of typeG2.
(a) Using Problem 42 in Chapter II, construct a 7-dimensional nonzero rep-

resentation ofg.
(b) Letα1 be the long simple root, and letα2 be the short simple root. Verify

that�1 = 2α1 + 3α2 and that�2 = α1 + 2α2.
(c) Verify that the dimensions of the fundamental representations ofg are 7

and 14. Which one has dimension 7?
(d) Using Problem 31, conclude that the representation constructed in (a) is

irreducible.

Problems 34–35 concern Borel subalgebrasb of a complex semisimple Lie
algebrag.

34. Leth be a Cartan subalgebra ofg, let� = �(g, h) be the system of roots, let
�+ be a system of positive roots, letn = ∑

α∈�+ gα be the sum of the root
spaces corresponding to�+, and letb = h ⊕ n be the corresponding Borel
subalgebra ofg. If H ∈ h hasα(H) �= 0 for all α ∈ �+ and if X is in n,
prove that the centralizerZb(H + X) is a Cartan subalgebra ofg.

35. Within the complex semisimple Lie algebrag, let (b, h, {Xα}) be a triple
consisting of a Borel subalgebrab of g, a Cartan subalgebrah of g that
lies in b, and a system of nonzero root vectors for the simple roots in the
positive system of roots definingb. Let (b′, h′, {Xα′ }) be a second such triple.
Suppose that there is a compact Lie algebrau0 that is a real form ofg and has
the property thath0 = h ∩ u0 is a maximal abelian subalgebra ofu0. Prove
that there exists an elementg ∈ Int g such that Ad(g)b = b′, Ad(g)h = h′,
and Ad(g){Xα} = {Xα′ }.






