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CHAPTER X

Prehomogeneous Vector Spaces

Abstract. If G is a connected complex Lie group that is the complexification of
a compact Lie groupJ, a “prehomogeneous vector space” faris a complex finite-
dimensional vecto¥ together with a holomorphic representation®bn V such thatG
has an open orbit iv. The open orbit is necessarily unique. Easy examples include the
standard representation &L (n, C) on C", the standard representation $b(n, C) on
C?, the action oK € onp™ whenG/K is Hermitian, and certain actions obtained from the
standard Vogan diagrams of some of the indefinite orthogonal groups.

The question that is to be studied is the decomposition of the symmetric algébya
underU. For any prehomogeneous vector space, the symmetric al§eyeembeds in a
naturalU equivariant fashion inth. (U /U,), whereU, is the subgroup df fixing a point
v in V whoseG orbit is open. This fact gives a first limitation on what representations can
occur inS(V).

A “nilpotent element’e in a finite-dimensional Lie algebrgis an element for which
ade is nilpotent. Ifg is complex semisimple, the Jacobson—Morozov Theorem says that
such ane, if nonzero, can be embedded in astiy“triple” (h, e, f), spanning a copy of
50(2, C).

When a complex semisimple Lie algebra is gradedagt, adg® provides a represen-
tation of g° on g*, and Vinberg’s Theorem says that the result yields a prehomogeneous
vector space. All such gradings arise from parabolic subalgebgasitfe examples above
of the action oK € onp* and of certain actions obtained from indefinite orthogonal groups
are prehomogeneous vector spaces of this kind.

For the first of these two examples, the actiorkobn S(p*) is described by a theorem
of Schmid. In the special case 8U (m, n), this theorem reduces to a classical theorem
about the action of the product of two unitary groups on the space of polynomials on a
matrix space. For the second of these two examples, the action on the symmetric algebra
can be analyzed by using this classical theorem in combination with Littlewood’s Theorem
about restricting respresentations from unitary groups to orthogonal groups.

In the general case of Vinberg’s Theoremy if suitably chosen in the prehomogeneous
vector spac¥, thenU /(U,), fibers by a succession of three compact symmetric spaces, and
hencelL?(U/(U,)o) can be analyzed by iterating various branching theorems for compact
symmetric spaces. This fact gives a second limitation on what representations can occur in
S(V).

615



616 X. Prehomogeneous Vector Spaces
1. Definitions and Examples

A consequence of Chapter IX is that we are able to use branching
theorems to give a representation-theoretic analysis of_thfinctions
on certain compact quotient spaces that arise in the structure theory of non-
compact groups. The goal of the present chapter is to develop methods for
giving a representation-theoretic analysis of some spaces of holomorphic
functions. The discussion will be necessarily incomplete as the topics in
the chapter remain an active area of ongoing research.

The context will be as follows. L& be a connected complex Lie group;
usually we shall assume th@t is the complexification of a compact Lie
groupU. A prehomogeneous vector spactr G is a complex finite-
dimensional vector spadétogether with a holomorphic representation of
G onV such thatG has an open orbit i. The representation @ onV
yields a holomorphic representation®fon each summan8"(V) of the
symmetric algebr&(V), and, whenG is the complexification otJ, the
same thing is true of the restriction of the representation f®otaU. We
can lump the representations on B&V) together and think in terms of
a single infinite-dimensional representation@®br U on S(V) itself. We
do so even thougls(V) is not a Hilbert space; we shall compleeV)
to a Hilbert space shortly. The question is what can be said about this
infinite-dimensional representation.

Let g be the (complex) Lie algebra &, and lety be the differential
of the representation @& on V. By the Inverse Function Theorem, the
condition that the orbit ofc throughv be open inV can be expressed
equivalently as

(i) every member oV is of the formg(X)v with X in g, or
(ii) the subalgebrgy, of g annihilatingv has dim:V + dimcg, =
dim¢ g.

EXAMPLES.

1) The standard representation® = GL(N,C) onV = CN. The
nonzero vectors form an open orbit. The grdupmay be taken to be
U (N), and the representation bf on S'(CV) is irreducible with highest
weightne;.

2) The standard representation®f= Sp(N,C) onV = C®. The

members of the Lie algebrg are of the form(é _E;> with B andC

symmetric. A count of the dimension of the subspace of membegs of
whose first column is 0 shows that (ii) holds foequal to the first standard
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basis vector, and hence the orbit of thas open. The groupy may be
taken to beSp(N), and the representation bf on S(C?V) is irreducible
with highest weighhe,, as a consequence of Example 1 and Theorem 9.76.

3) The action ofK© on p* by Ad whenG/K is Hermitian. LetG be
a linear semisimple group, I& be a maximal compact subgroup, and let
G/K be Hermitian in the sense of §VI1.9. Inthe notation of that section, the
complexificationK © of K acts holomorphically on the supt of the root
spaces for the noncompact roots that are positive in a good ordering. Let
{y1, ..., vs} be a maximal set of strongly orthogonal positive noncompact
roots, and leg,,, ..., E,, be corresponding nonzero root vectors. Let us
use (i) above to see that th€® orbit of e = Y, E,, is open. By way
of preliminaries, we show that i is a compact root, thefi + y; and
B + ¥; cannot be roots for two different indiceandj. If, on the contrary,
both are roots, then the sum pf4- y; andp + y; cannot be a root since
[p*, p*] = O and the difference cannot be a root sipcandy; are strongly
orthogonal. Thus G= (8 + ¥, B+ ¥) = IBI>+ (B, »i) + (B, y;). One
of the inner products on the right side must be negative;(gay,) < 0.
Then(B+y;, ) = (B, n) <0, andg + y + y; is aroot, in contradiction
to [p*,p*] = 0. We conclude thag + y; and g + y; cannot both be
roots. Now letx be any positive noncompact root. We show that a nonzero
multiple of the root vectoE, lies in adt)e, £ being the Lie algebra df ©.
If « =y, then H,,, €] is a nonzero multiple oE,,. Thus assume that
is not somey;. Since pt,p*™] = 0, noa + y, is a root. By maximality
of {y1,..., ¥}, someB = a — y; is a root, necessarily compact. Our
preliminary computation shows thaEf, €] is a nonzero multiple o&,,
and we conclude from (i) that th€® orbit of e is open. The analysis of
S(p*) will be discussed in §4.

4) Action of a certain grouf.® on a space: N p relative to either of
the groupsG given by SO(2m, 2n), or SO(2m, 2n + 1), whenm < n.
Form the standard Vogan diagram associated with the Lie algglafaG
as in Figure 6.1 or Appendix C, relative to a compact Cartan subalgebra
ho. There is one simple noncompact root, namely e, — en.1. Write
the complexification ofi, asg = @);__, g¥, wheregX is the sum of the
root spaces for roots whose coefficientofs k in an expansion in terms
of simple roots; include the Cartan subalgebraithin g°. This direct
sum decomposition exhibitsasgradedin the sense that|, g<] < g/ **.

If I = g°andu = >, _, g% then in particular [ g¥] < g* for all k and
[ ® u is a maximal parabolic subalgebra g@f For the complexification
g = £ ® p of the usual Cartan decompositiongf we havep = g* ® g1,
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and thuatNp = g'is stable under ad Now let us pass to a group action.
The centralizer irg of the elemenH = He .., IS justl, andiH is in

t,. By Corollary 4.51 the centralizer i of i H is a compact connected
subgroupL of K, and the complexificatioh® of L has Lie algebra The
adjoint representation df® onu N p is the holomorphic representation
of interest to us. We show that® acts onu N p with an open orbit. For
each noncompact positive roft choose a root vectde; normalized as

in 8VI.7 so that E4, Eg] = H;; here the bar denotes the conjugatiory of
with respect tgyo. Lete be the sum of thé&,’s for g equal toe; £ €y;1,

& + €eno ..., nt &, let f be the sum of the corresponding elements
Ejg, and leth = [e, f]. We prove that the.© orbit of eis open by showing
that [, €] contains a basis af N p = g. The strong orthogonality of the
roots 8 we have used makes it so that e, f} spans a copy of s[(2, C)
and so thah is a multiple of the elementl above. By Theorem 1.67%,

is the direct sum of subspaces on whichcts irreducibly. Sincéis the
centralizer oh, [is spanned by the weight vectors untdef weight O from
the various irreducible subspaces. Theorem 1.66 then showd,tejis|
the sum of the weight vectors of weight 2, and this includes all the root
vectors for the noncompact positive roots. Henceltherbit of eis open.

A partial analysis ofS(u N p) will be discussed in 84.

Proposition 10.1. If V is a prehomogeneous vector space@rthen
there is just one open orbit, and that orbit is dense.

PROOF Fix bases oveC for the vector spaceg¢ andg, and let® and
¢ be the representations & andg on V. For eachv in V, consider
X = @(X)v as a linear transformation froginto V, and letA, be the
(dimV) x (dimg) matrix of this map relative to these bases. The entries
of A, are linear functions o6 < V, with values inC. For somev = vy,
we know thatp(g)vy = V sinceV is assumed prehomogeneous. Thus the
rank of A,, is dimV, and somé&dimV) x (dimV) minor of A,, has to be
nonzero. IfF denotes the vector-valued function ¥nwhose value at is
the tuple of allldimV) x (dimV) minors of A,, thenF is a vector-valued
polynomial function oriv whose value aty is not zero. By Lemma 2.14
the set ofv for which F(v) # 0 is connected, and it is certainly open and
dense. Hence the subsef v € V for whichg(g)v = V is open, dense,
and connected.

If gisin G ande(g)v =V, theng(g)®(g9)v = ®(g)e(Ad(g) tgv =
P (Qe(gv = ®(@V = V, and it follows that2 is carried to itself
by ®(G). ThusQ is the union of disjoint orbits undeb(G). For any
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v € 2, we havep(g)v = V, and hence the orbib (G)(v) is open inV.
Consequenth2 is exhibited as the disjoint union of open orbits, and the
connectivity ofQ2 implies that there is just one orbit .

Proposition 10.2.Let G be the complexification of a compact connected
groupU, letV be a prehomogeneous vector spaceéFpand suppose that
the G orbit of v, is open. 1fU,, denotes the subgroup f fixing vo, then
S(V) embeds in a natural one-obleequivariant fashion intd.2(U/U,,).

In particular the multiplicity of any irreducible representatiotdoiin S(V)
is bounded by the degree of the representation.

REMARK. For example, in the action &L (1, C) onC?, the grougJ is
U (1). Fixanonzero membetof Ct. Theactionby (1)is(€?)Z =€?Z,
and the subgroup'; is trivial. The symmetric algebr&(C?) consists of
all polynomial expressionp(Z), and the action is€?)p(Z) = p(€?Z).
The embedding o8(C?) is into L2 of the circle; ife¢ denotes a point on
the circle, the embedding sendéZ) into the functiong? — p(e€¥). The
closure of the image is the subspace of membeis?dhat are boundary
values of analytic functions on the unit disc.

PrROOF. Let P(V) be the space of all holomorphic polynomial functions
from V into C, and letP"(V) be the subspace of those functions that are
homogeneous of degree The spaceP"(V) is the vector space dual of
S'(V) by Corollary A.24, and the representation @for U on P"(V)
given byg(p(v)) = p(g~tv) is contragredient to the representation on
S'(V). For eachpin P(V), definep : G — C by p(g) = p(guo); this is
holomorphic, being the composition of the functi®n vy — V followed
by p. The mapp — P is one-one because the only holomorphic function
vanishing on the open sy is the 0 function. Restriction of holomorphic
functions fromG to U is one-one since, in a chart about the identity, the
function onG can be reconstructed from the power series expansion of
the function onU. In this way we obtain an embedding &f(V) into
L2(U/U,,), and this embedding certainly respects the actiobl by

To complete the proof, we pass from edeh(V) to its contragredient
S'(V), and thereby embed ea@i(V) into the contragredient of a finite-
dimensional invariant subspace bf(U/U,,). Complex conjugation of
functions carries invariant subspaces withfrto their contragredients, and
in this wayS(V) is embedded intt >(U/U,,). We may regard.?(U/U,,)
as a subspace &f?(U), and thus the bound on the multiplicities follows
from the Peter—Weyl Theorem (Theorem 4.20).
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2. Jacobson—Morozov Theorem

A membere of a finite-dimensional Lie algebr@overC is said to be
nilpotent if ade is a nilpotent linear transformation. In this section we
develop tools for working with nilpotent elements.

A triple (h, e, f) of nonzero elements igis called arsl, triple if the
elements satisfy the bracket relations of (1.8):] = 2e, [h, f] = —2f,

[e, f] = h. Inthis case the span of the elemémts, f isisomorphic with
s[(2, C). Theorem 1.67 shows that the complex-linear representation of
this copy ofs((2, C) ong by ad is completely reducible, and Theorem 1.66
allows us to conclude that &ds nilpotent ory; consequently the member
ofthes(, triple (h, e, f)isanilpotentelementig. The Jacobson—Morozov
Theorem is a converse to this fact wheis semisimple.

Theorem 10.3(Jacobson—Morozov). His a nonzero nilpotent element
in a complex semisimple Lie algebga thene can be included in asl,
triple (h, e, f). More specifically, there exists a nonzdran (ade)(g)
such thath, €] = 2e, and, for any nonzerb in (ade)(g) with [h, €] = 2e,
there exists a uniqué in g such thath, e, f) is ansl; triple.

The proof will be preceded by a lemma.

Lemma 10.4.1f V is a finite-dimensional complex vector space and if
A andB are linear transformations from to itself with A nilpotent and
with [A, [A, B]] = 0, thenAB is nilpotent.

ProOOF. PutC = [A, B]. Then[A, C] = 0 by hypothesis, and it follows
for every integen > O that

[A, BC"] = ABC" — BC"A = ABC" — BAC" = [A, B]C" = C"!,

ConsequentlZ"*! is exhibited as a commutator, and it follows tRthas
trace O for everyp > 1. Let us see thdt is therefore nilpotent. Arguing
by contradiction, suppose thét is not nilpotent, so that the numbdr
of distinct nonzero roots of the characteristic polynomialCofs > 1.
Let A4, ..., Aq be these distinct nonzero roots, andrgt ..., my be the
multiplicities. The condition on the trace is that
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for everyp > 1. If we regard this condition for ¥ p < d as a homo-
geneous linear system with thg as unknowns, then the 0 solution is the
only solution because the determinant of the coefficient ma?tgl)g,q:l is

]‘[;’:1 Aq times a Vandermonde determinant and is therefore nonzero. Thus
we have a contradiction, and we conclude tBas nilpotent.

Now letx be any eigenvalue oAB, and letv # 0 be an eigenvector for
A. Since B, A]A = A[B, A] by hypothesis, we have

n—-1 n—1
[B. A =) AJ[B, AJA" ™ = > "[B, AJA"" = n[B, AJA" ™.
j=0 i=0

The transformatior is assumed nilpotent, and thus there exists an integer
r > 0 such thatA’1v £ 0 andA'v = 0. For thisr,

AA Ty = ATTABy = A Bu = BA'v — [B, A'lu = 0—r[B, AJA v,

and we see that) /r is an eigenvalue offf, A]. Since [B, A]is nilpotent,
we conclude that = 0. ThereforeAB is nilpotent.

PROOF OF THEOREM 10.3. LetB be the Killing form. If n denotes
the kernel of(ade)?, then everyz € n has 0= (ade)’z = [e, [, Z]] and
therefore 0= ad e, [e, Z]] = [ade, [ade, adZ]]. Applying Lemma 10.4
with A = ade andB = adz, we find that(ade)(adz) is nilpotent. Hence
Tr((ade)(adz)) = 0 and
(10.5) B(e,n) =0.

The invariance oB implies that

(10.6) B((ade)?x, y) = B(x, (ade)?y)

for all x andy in g. Takingy arbitrary inn and using (10.6), we obtain
B((ade)?g, n) = 0. Therefore

(10.7) (ade)’g C n*,

where(-)* is as in 81.7. Takingy arbitrary in((ade)?g)* in (10.6) and
using the nondegeneracy Bfgiven in Theorem 1.45, we see that

((ade)?g)* C ker((ade)?) = n.
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Application of the operatioi-)* to both sides and use of (10.7) gives
(10.8) (ade)’s < n* C ((ade)’p)**.

But Proposition 1.43 and the nondegeneracyBatombine to show that
V++ =V for every subspac¥ of g, and therefore (10.8) yields

(10.9) nt = (ade)?g.

From (10.5) and (10.9), it follows tha = (ade)®x for somex < g.
If we puth = —2[e, x], thenh is a nonzero member afde)g with
[h, e] = —2[[e, X], €] = 2[e, [e, X]] = 2e. This proves the existence bf
Next leth be any nonzero member ¢&de)g such that p, ] = 2e.

If £ = ker(ade), then the equatiotadh)(ade) — (ade)(adh) = 2(ade)
shows that(adh)(¢) € ¢. Choosez such thath = —[e, z]. For A in
End- g, defineL (A), R(A), and adA to mean left byA, right by A, and
L(A) — R(A), respectively. Then we have

(ad(ade))(adz) = [ade, adz] = ad[e, z] = —adh

(adade))*(adz) = [ade, —adh] = ad[e, —h] = 2 ade

(ad(ade))®(adz) = [ade, 2 ade] = 0.

Imitating part of the proof of Lemma 5.17, we obtain, for evary 0,

(L(ade))"(adz) = (R(ade) + adade))" (adz)
= (R(ade))"(adz) + n(R(ade))"(adade))(adz)
+ 3n(n — D(R(ade))"*(ad(ade))*(adz) + 0
= (R(ade))"(adz) — n(adh)(ade)"*
+n(n — 1)(ade)" .

Therefore
n(adh — (n — 1))(ade)"! = (adz)(ade)" — (ade)"(adz).
This equation applied to with v = (ade)"~*u shows that
n(adh — (n — 1))v — (adz)(ade)v isin (ade)"(g).
If visin¢€in addition, thenfadh)v is in ¢t and(adz)(ade)v = 0, so that

nadh - (n—-1))v isin ¢
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Thus(adh — (n — 1)) carriest N (ade)"~1(g) into €N (ade)"(g). For some
N, (ade)N(g) = 0 since ac is nilpotent. It follows that

N-1
(g (adh — p))(E) —0.

Consequently the eigenvalues offadn £ are all> 0, and(adh + 2) must
be invertible ort. The elementH, z] 4+ 2z is in £ because

[e, [h, Z]] +2[e, z] = —[h, [z €]] — [z [e h]] + 2[e, Z]
=[h, h] + 2[z. €] + 2[e, Z] = 0.

Thus we can defing = (adh + 2)7([h, z] + 2z) as a member of. Then
we have b, z] + 2z = [h, z] + 2zand hencelj, Z — z] = —2(Z — z). In
other words the elemerit=z —zhas h, f] = —2f. Sincez isin ¢, we
have p, f] =[e, Z] — [e, Z] = h, and f has the required properties.

Finally we are to show thaf is unique. Thus suppose that has
[h, f] = —2f" and |e, f'] = h. Theorem 1.67 shows thatis fully
reducible under the adjoint action of the spasf h, e, f, and we may take
s itself to be one of the invariant subspaces. Wiite= ) f according
to this decomposition into invariant subspaces. Fre2) _ f/ = —2f' =
[h, ] = >_[h, f/], we see thath, f'] = —2f/ for alli. Alsoh =
[e, f'] =D _[e, f/]showsthat§, f'] = Oforallcomponentd; otherthan
the one ins. If any f; outsides is nonzero, then we obtain a contradiction
to Theorem 1.66 since that theorem shows that @@hnot annihilate any
nonzero vector whose eigenvalue undehdd —2. We conclude that
f/ = 0 except in the componest and therefore we must havé = f.

Theorem 10.10(Malcev—Kostant). LetG be a complex semisimple
group with Lie algebra;, and let(ho, ey, fo) be ansl, triple in g. For each
integerk, definegt = {X € g | [ho, X] = kX}, and letG° be the analytic
subgroup ofG with Lie algebrag®. Then the sef2 of all ein g2 such that
ade carriesg® onto g2

() containgy,

(b) is open, dense, and connectegin

(c) is a single orbit unde®®, and

(d) consists of alé € g2 that can be included in ait, triple (ho, €, f).

PROOF. Let s be the span ofhg, &, fo}. Theorem 1.67 allows us to
decomposg into the direct sum of irreducible spacésunder ad, and



624 X. Prehomogeneous Vector Spaces

Theorem 1.66 describes the possibilities for the Since ad, carries
eachV, into itself, we haveg = @, (Vi N g*) for all k. From Theorem
1.66,(adey)(V; N g°) =V, N g2, and therefored, g°] = g°. This proves
part (a).

Part (a) says thaf? is a prehomogeneous vector space@dr and (b)
and (c) then follow from Proposition 10.1.

Finally if e € g?is in Q, write e = Ad(g)&, with g € G°, by (a) and (c).
Thene is included in thesl, triple (hy, Ad(g)ey, Ad(g) fp). Conversely
the argument that proves (a) shows that amycluded in somel, triple
(ho, &, ) lies in2. This proves (d).

Proposition 10.11.1f g is a complex reductive Lie algebra, then

(a) any abelian subalgebseaof g for which the members of 3@ are
diagonable can be extended to a Cartan subalgebra and
(b) the elemenh of anysl, triple in g lies in some Cartan subalgebra.

PrROOF. Part (a) follows from Proposition 2.13, and part (b) is the special
case of (a) in whicls = Ch.

Proposition 10.12. Let g be a complex semisimple Lie algebra, et
be a Cartan subalgebra, and(eie, f) be ansl, triple such thah lies in
h. Then in a suitable system of positive roots, each simplegdasg (h)
equalto 0, 1, or 2.

PrROOF Theorems 1.67 and 1.66 show that the eigenvalues lofaad
integers, and henae(h) is an integer for every roat. Consequenthh
lies in the real formhy of h on which all roots are real, and we can tdke
to be the first member of an orthogonal basig)gthat defines a system
of positive roots. Thew(h) is > 0 for every simple roo#, and we are to
prove thatx(h) cannot be> 3.

Using Theorem 1.67, writgg = €V, with eachV, invariant and
irreducible under the span ¢h, e, f}. Suppose thai is a root with
a(h) = n > 3. Decompose a nonzero root vecky as) _ X; with X; in
Vi. From the equality >~ X; = a(h)X, = [h, X,] = >_[h, Xi] and the
invariance ofV; under ad, we see thatl, X;] = nX; wheneverX; # 0.
Sincen > 1, Theorem 1.66 shows thaf,[X;] # 0 for any such, and
therefore [f, X,] # 0. Writing f as a sum of root vectors and possibly a
member off), we see in the same way thatis a sum of root vectorX_,
with y (h) = 2. Since [f, X,] # 0, we must haveX_,, X,] # 0 for some
y with y(h) = 2. Theng = o — y is aroot withg(h) = n—2 > 0,
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and g must be positive. Sincg(h) = 2 > 0, y is positive as well. Thus
o = B + y exhibitsa as not being simple.

Corollary 10.13. Let g be a complex reductive Lie algebra, and let
G = Intg. Up to the adjoint action o& on g, there are only finitely many
elementd of g that can be the first element of af triple in g.

ProOOF. All s, triples lie in [g, g], and thus we may assungds semi-
simple. Ifh is given, Proposition 10.11b produces a Cartan subalggbra
containingh. With b fixed, Proposition 10.12 shows, for a certain system
of positive roots, that there are at mostpssibilities forh, wherel is
the rank. Any two Cartan subalgebras are conjugatesyiaccording to
Theorem 2.15, and the number of distinct positive systems equals the order
of the Weyl group. The corollary follows.

Proposition 10.14. Let g be a semisimple Lie algebra, and lebe
a Cartan subalgebra. #fis a subspace df, then the centralizeZ,(s)
is the Levi subalgebra of some parabolic subalgebrg ahd hence it is
reductive.

PROOF. Let A be the set of roots, and g be the real form of) on
which all roots are real. The centralizersofontaing), is therefore stable
under ady, and consequently is a subspace of the fgran @yew g, for
some subse¥ of A, g, being the root space for the ropt If y isin W,
theny vanishes o, and conversely. Henc& = {y € A | y(s) = O}.

If bar denotes the conjugation gfwith respect tdy,, then eachly € Vv,
being real or,, vanishes ors. Hence eacly € W vanishes o + 5,
which we write ag. Sincet is stable under bar, it is the complexification
of the real formty = tN o of t. Thus¥ = {y € A | y(to) = 0}. Let
ty be the orthogonal complement @fin b, relative to the Killing form,
choose an orthogonal basis Igf consisting of an orthogonal basis f
followed by an orthogonal basis ¢f, and letIT be the simple roots for
the corresponding ordering. DefiliE to be the set of members bf that
vanish onty. If a positive root in¥ is expanded in terms of simple roots,
then each of the simple roots with nonzero coefficient must vanisy on
as a consequence of the choice of ordering; thus each simple root with
nonzero coefficient is ifl’. ConsequentlyZ,(s) is the Levi subalgebra
of the parabolic subalgebra correspondingltdn Proposition 5.90. The
Levi subalgebra is reductive by Corollary 5.94c.
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3. Vinberg’s Theorem

A complex semisimple Lie algebrag is said to begraded if vector
subspaceg® are specified such thgt= @,- _ g¢* and g!, g¢] < g'**
for all integersj andk. In other wordsg is to be graded as a vector space
in the sense of (A.35), and the grading is to be consistent with the bracket
structure. Since is by assumption finite dimensionak has to be 0 for
all but finitely manyk. The statement of Theorem 10.10 gives an example,
showing how anyl, triple (h, e, f) leads to a grading; the indices in the
grading are integers because Theorems 1.67 and 1.66 show thatesd
diagonably with integer eigenvalues. Examples 3 and 4 of §1 arise from
gradings associated with special parabolic subalgebggswire generally
any parabolic subalgebra gfleads to gradings as follows.

ExampLE. Gradings associated with a parabolic subalgebra. Fix a
Cartan subalgebifaand a choice\ ™ of a system of positive roots gfwith
respect td). Let IT be the set of simple roots, and lebe the sum of the
root spaces for the membersaf, so thath = h @ n is a Borel subalgebra
of g. Proposition 5.90 shows how to associate a parabolic subalggbra
containingb to each subsdi’ of simple roots. FiXT’, associate a positive
integerm, to each membeg of the complementary sét — IT', and letH
be the member df such that

0 if BisinIl’
B(H) = I ,

mpg if BisinIl —IT.
Thena(H) is an integer for every roat. Define

=ho P o and ¢*= P g fork#0.
a€eA, aEeA,
a(H)=0 a(H)=k

Theng = @, g* exhibitsg as graded in such a way that = Do g5,
the Levi factor ofqr is g° and the nilpotent radical efy is B, _, g*.

In fact, the next proposition shows that any grading= P, g* of a
complex semisimple Lie algebgearises as in the above example. First we
prove a lemma.

Lemma 10.15. If g = P, g is a graded complex semisimple Lie
algebra, then there exists in g° such thatg = {X € g | [H, X] = kX}
for all k.
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PrOOF. Define a membeb of End- g to be multiplication byk on g.
Direct computation shows thdd is a derivation, and Proposition 1.121
produces an elemeht in g such thatD (X) = [H, X] forall X ing. Since
[H,H] =0, Hising°.

Proposition 10.16.1f g = P, g* is a graded complex semisimple Lie
algebra, then there exist a Borel subalgebea h & n, a subsell’ of the
setIl of simple roots, and a s¢m; | B € IT — IT'} of positive integers
such that the grading arises from the parabolic subalggbrand the set
{m;} of positive integers.

PROOF. LetH be asin Lemma 10.15. Proposition 10.11a wita CH
produces a Cartan subalgebiaf g containingH. The memberX of g that
commute withH are exactly those witld (X) = [H, X] = 0 and hence
are exactly those ip°. In particular, is contained ig®. The eigenvalues
of adH are integers, and thus is in the real formy, of § on which all the
roots are real. Extend to an orthogonal basis ¢f, and use this basis to
define positivity of roots. Lell be the set of simple roots, and Iét be the
subset on whictB(H) = 0. Forg in IT1 — IT, definem,; = B(H); since
H comes first in the ordering, the nonzero integgrhas to be positive.
Then the given grading is the one associated to the parabolic subalgebra
qrn and the set of positive integefsy, | g € IT — IT'}.

Corollary 10.17. In any graded complex semisimple Lie algebra
g= &P, g¥, the subalgebrg’ is reductive.

ProoF. Combine Proposition 10.16 and Corollary 5.94c.

Lemma 10.18. Let g = P, g be a graded complex semisimple Lie
algebra, and suppose theis a nonzero element igt. Then there exish
in g®and f in g~* such thaih, e, f) is ansl, triple.

PROOF. Since(ade)! (g¢) < g/*, eis nilpotent. Theorem 10.3 produces
elementdh’ and f’ in g such that(h’, e, f’) is ansl, triple. Decompose
h" and f’ according to the grading &8 = ) _h, and f’ = )_ f.. From
2e = [, e] = > [h;, €], we see thatl, €] = 2e and h;, e] = 0 for
k#0. From)_[e, f,] =[e f']=h =)_h|, weseethatd, f’,] = hy,
hence thahj is in (ade)(g). A second application of Theorem 10.3 shows
thatthere exist$” such thathy, e, f”)isans(,triple. Writing f” = )_ f/,
we obtain g, f”;] = hyand |y, f”,] = —2f”,. Therefore(hy, e, f”)) is
the requireds(; triple.



628 X. Prehomogeneous Vector Spaces

In any gradingg = P, g* of the complex semisimple Lie algebga
adg® provides a complex-linear representatiorg®bn eachg. Let G be
a connected complex Lie group with Lie algelgrdor exampleG = Int g,
and letG° be the analytic subgroup @& with Lie algebrag®. Then the
adjoint action ofG on g yields a holomorphic representation Gf on
eachg.

Theorem 10.19(Vinberg). LetG be a complex semisimple Lie group
with a graded Lie algebra= P, g*, and letG° be the analytic subgroup
of G with Lie algebrag®. Then the adjoint action o&° on g* has only
finitely many orbits. Hence one of them must be open.

REMARK. In other words the representation®f on g* makesg? into
a prehomogeneous vector space @& This kind of prehomogeneous
vector space is said to be parabolic type.

PROOF Once it is proved that there are only finitely many orbits, one of
them must be open as a consequence of (8.18). To prove that there are only
finitely many orbits, we shall associate noncanonically to each eleenent
of g* a member of a certain finite set of data. Then we shall show that two
elements that can be associated to the same member of the finite set are
necessarily in the same orbit GF.

Let e be ing!, and extendt by Lemma 10.18 to asl, triple (h, e, f)
with hin g® and f in g=1. Write sl, for the copy ofsl(2, C) spanned by
{h, e, f}. By Lemma 10.15, there exists an elemehin g° such that, for
every integek, [H, X] = kX for all X in gk.

Among all abelian subalgebras of the centraliZg(s(,) whose mem-
bersT have adl' diagonable, let be a maximal one. The subalgebra
t = t® Ch of g° is abelian. The elementi commutes with every
member of becausé C g° and hence so doés-2H. Also[h—2H, €] =
[h, ] — 2[H, €] = 2e— 2e = 0 since aH acts as the identity o'. Thus
h — 2H centralizes andh. From Theorems 1.67 and 1.66 we know that
any element of that centralizeseandh automatically centralizes,. Thus
h — 2H is a member o, (sl,) such that ath — 2H) is diagonable and
[h—2H, X] = 0forall X in t. By maximality oft, h — 2H isint. Let us
write

(10.20) h=2H+T, with Toint.

By Proposition 10.11a we can extenim a Cartan subalgebbeof g. From
(10.20) we see that{, h] = 0, and thereforg < g°.
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Let3; = Z,(t). By Proposition 10.14; is a Levi subalgebra aof, and
the definition oft implies thatsl, C 3. Let us see that the grading of
induces a grading o) i.e., that the subspacgs= 3N g~ have the property
that; = @ ;*. If X isin 3, decompose&X according to the grading efas
X = > Xk ForanyT int, we have 0= [X, T] = Y [Xy, T]. SinceT is
in g% [X, T]isin g, and thus K., T] = O for all k. Hence eactX, is in
3, and we conclude thatis graded.

Sincej is a Levi subalgebra, Proposition 5.94c shows jhisiteductive.
Using Corollary 1.56, writg as the sum of its center and its commutator
ideal, the latter being semisimple:

(10.21) 3=2,®s with s = [3, 3]

We shallidentifyZ, ast. Infact, we know thaly is contained i, and hence
so is the subalgebta Since; is defined as the centralizer 9t commutes
with each member of. Thereforet € Z,. In the reverse direction let
X beinZ,. Then [X, h] = 0. Sincel satisfiesN,(h) = b by definition
of Cartan subalgebra must be inh. Therefore a is diagonable. We
know thatsl, is contained iry, and thereforeX, sl,] = 0. Consequently
Xisin Zy(sly), and the maximality of shows thaiX is in t. Thus indeed
Z, =t

Let us see that is graded, i.e., that the subspaeks= s N g« have the
property that = @ s*. The subalgebrais generated by alk[, 3¥], and
such a subspace is containegin*, hence ins’+%. Thus every member of
sliesin @5", ands is graded. We can identify easha little better; since
t centralizes, (10.20) yields

s“=sNgt={Xes|[H X]=kX}={Xes|[h X] =2kX}

for all k.

The subalgebraz, is graded, being completely contained jf.
Hence (10.21) giveg = (Z,)* & s* for all k, and we conclude thaf = 3*
forallk # 0. Thuseisin3! =standf isin3; ! = s, and we see that
the triple(h, e, f) liesins. Let S be the analytic subgroup & with Lie
algebras®. Sinces is semisimple ang® = {X € s | [h, X] = 0}, Theorem
10.10 applies and shows trelies in the unique open orbit & in 5.

Let us now exhibit a finite set of data in the above construction. The
grading ofg was fixed throughout, and the other gradings were derived
from it. Starting frome, we worked with the tupld€e, h, t, b, 3, s), and
then we locatee in the open orbit o8 in s. If we had started witle, let
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us write (€, h', ¢, by, 3, s') for the tuple we would have obtained. Before
comparing our two tuples, we introduce a normalization. The Lie algebra
g° is reductive, and) andh’ are Cartan subalgebras of it. By Theorem 2.15
we can findg € G° such that Adg)h’ = h. We replacege’, h', t', b, 3, s")

by Ad(g) of the tuple, namely

(e, h", ", h, 3", 8") = (Ad(Q)€, Ad(@)h’, Ad(9)t', h, Ad(9)3', Ad(9)s"),

and then we readily check that if we had started with g, we could
have arrived at this tuple through our choices. Sidcande” are in the
sameG° orbit, we may comparewith € rather thare with €. That is our
normalization: we insist on the sarheén every case.

Once} is fixed, 3 is the Levi subalgebra of a parabolic subalgebrg of
containingh, h is an element of that is constrained by Proposition 10.12
to lie in a finite sett is the center of, ands is the commutator subalgebra
of 3. Our data set consists of all pairs

(Levi subalgebra containing elementh in h as in Proposition 10.22

The number of Borel subalgebras containingguals the order of a Weyl
group, and the number of parabolic subalgebras containing a given Borel
subalgebra is finite; therefore the number of Levi subalgebrgsoiitain-

ing b is finite. Consequently our data set is finite.

What we have seen is that aeypossibly after an initial application of
some member of A@°), leads to a member of this finite set. Suppose
thate ande’ lead to the same member of the set. Theas”, elies in the
unique open orbit o8° ons', ande’ lies in that same orbit. Sinc® < G°,

e ande’ lie in the same orbit unde®®. This completes the proof.

Corollary 10.22. Let G be a complex semisimple Lie group with a
graded Lie algebrg = P, g’, and letG° be the analytic subgroup &
with Lie algebrag®. Then the adjoint action d&° on anygX, with k # 0,
has only finitely many orbits. Hence one of them must be open.

PROOF. Let H be as in Lemma 10.15, and Iétbe the automorphism
of g given by ® = Ad(exp 2riH/k). The subalgebra fixed by ® is
P, ¢’ and thuss is graded withs® = g° ands* = g*. ExtendCH to a
Cartan subalgebiaof g that lies withing®. Thens containg, and we find
thats =h @ @yew g,, whereW is the set of rooty for whichy (H) is a
multiple ofk. The set¥ is closed undey — —y, and that is all that is
needed for the proof of Corollary 5.94cto show thiad reductive with its
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center contained ig° = g°. Replacings by [s, s] and applying Theorem
10.19, we obtain the corollary.

Examples 3 and 4 in 81 are cases of Theorem 10.19 that contain the
overlay of a real form of the underlying complex group. This additional
structure can be imposed in complete generality. The grading of the com-
plex semisimple Lie algebraleads, via an elemeht asin Lemma 10.15,
to a parabolic subalgebga= [®u. It does not completely specify a Cartan
subalgebra or a system of positive roots, only the 1-dimensional subspace
CH of a Cartan subalgebra and the positivity of the roots that are positive on
H, namely those that contributerto Let us therefore exteridH to a Cartan
subalgebra by means of Proposition 10.11a and then introduce a system of
positive roots that taked first in the ordering. To this much information
we can associate a Dynkin diagram gprThis diagram we make into an
abstract Vogan diagram by imposing zero 2-element orbits and by painting
the simple roots that contribute to Theorem 6.88 says that this abstract
Vogan diagram arises from a real fogm of g and a Cartan involutiof
of go. Changing the meaning @, let us writeG for the analytic group
corresponding tg, andGF¢ for its complexification with Lie algebrg. Let
K be the maximal compact subgroup®fcorresponding t@. Since the
Vogan diagram has zero 2-element orbits, we have @ekrankK. The
closure of ex@RH) is a torus inK and its centralizet. is a connected
compact group whose Lie algebra is the real fdgra: g° N go of [ = g°.

The complexificatiorL© of L has Lie algebr& Then Theorem 10.19 says
thatL® acts ong* with an open orbit. In the definition of prehomogeneous
space in 81, the complex group is therefare and the vector space is
V = g'. The compact form oE¢, which was called) in the definition of
prehomogeneous space, is the graup

We will be especially interested in the special case in which the parabolic
subalgebra is maximal parabolic. This is the case in whichIT’' consists
of just one root, say. If mg = Kk, then the indexing for the grading uses
only the integers irkZ; so we may as well normalize matters by making
mg = 1. If the complexified Cartan decomposition is writtergas ¢ @ p,
thent = @, .8’ andp = @, 440’ Instances of this situation arise in
Examples 3and 4in 81. Example 3 covers all cases in which the underlying
group is simple and the unique noncompact simple root occurs just once in
the largest root. The instances®D with m > 2 in Example 4 are some
classical cases in which the underlying group is simple and the unique
noncompact simple root occurs twice in the largest root.
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4. Analysis of Symmetric Tensors

Using notation as at the end of 83, let us examine Examples 3 and 4 of
§1 from the point of view of decomposirf§g!) under the adjoint action
of L or L€.

We begin with the instance of Example 3 in whiéh= SU (m, n). This
example is discussed at length in §VII.9. The notation will be less cum-
bersome if we work instead witB = U (m, n) andG® = GL(m + n, C).
HereK = U(m) xU(n), andK® = GL(m, C) x GL(n, C). We can write
members ofy = gl(m + n, C) in blocks of sizesnandn as( ;). Inthe
complexified Cartan decompositigr= £¢®p, £ consists of all the matrices

(Z S) andp consists of all the matriceéf ;) We are interested in the

action ofK or K€ onp*, which consists of all the matrice(sg ’g) Then

Ad of a member(‘;1 IZ) of K€ on thep* matrix (g E) is thep™ matrix

(g klx('f 1). Thus we can identifyp™ with the spaceM,,(C) of m-by-n
matrices, andk or K ©is acting by(k;, k») (x) = k;xk,*. Onthe Lie algebra
level,t = gl(m, C)®gl(n, C)isacting orp* by (X1, X3)(X) = XiX—XX,.

We use the direct sum of the diagonal subalgebras as Cartan subalgebra,
and the positive roots are tlee— e withi < j. We are interested in the
decomposition o5(M,,(C)) underK = U (m) x U (n), and the result is

as follows.

Theorem 10.23. Letr = min(m, n). In the action ofU (m) x U(n)
on S(Mn(C)), the irreducible representations that occur are exactly the
outer tensor produc@“@(r{‘)ﬂ wherei is any nonnegative highest weight
of depth < r, and the multiplicities are all 1. Here™ and " refer
to irreducible representations tf(m) andU (n), respectively, and - )°
indicates contragredient.

REMARK. Letm < n for definiteness, so that = m; the argument

form > nis similar. If1 = (ay,...,ay), thent" has highest weight
(&, ..., an), and(r))° haslowest weight(—ay, ..., —am, 0,...,0). The
highest weight of 7")¢ is thereforeg(0, ..., 0, —an, ..., —ai).

FIRST PART OF THE ARGUMENT Let us prove that the indicated ir-
reducible representations actually occur. It is more convenient to work
with the spaceP (M, (C)) of polynomials with actionky, k,)(p)(X) =
p(k;*xkz) than to work with the space of symmetric tensors; we take con-
tragredients, one degree at a time, to get the decompositisfivi, (C)).
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Let P¢(M;n(C)) be the subspace of polynomials homogeneous of degree
d. Since the representation Kf° on eachP?(M,,(C)) is holomorphic§
acts by

(10.24) (X1, X2) P)(X) = & P((EXPLX1) "X (EXPtX2))|t—o.

We are to show that eacla,,, ..., —a1), (a1,...,ay, 0, ..., 0)) occurs
as a highest weight.

Forl1 <1 < m, letx* = x*(I) be thel-by- submatrix ofx obtained
by using rowsm — | 4+ 1 throughm and columns 1 through and let
d(x) = det(x*). Suppose thakt; andk, are upper triangular. Lé¢/ be
the lower righti-by- block ofk;, and letk be the upper left-by- block
of ko. A little computation shows that, (k; 'xk,) = det(ki~ix*k¥) =
(detk?)~*d (x)(detk®), and it follows thatd, is a nonzero highest weight
vector with weight—Y"" ., & + > e. From formula (10.24)
we see that a product of powers of highest weight vectors is a highest
weight vector and the weights are additive. alf > --- > a,, > 0,
thend*d3* ™ ... dim *"da is a highest weight vector with the required
highest weight.

SECOND PART OF THE ARGUMENT We give a heuristic proof that the
multiplicities are 1 and that the only highest weights are the ones mentioned;
the heuristic proof can be made rigorous without difficulty, but we will omit
here the steps needed for that purpose.

There is one rigorous part. The linear functions> x;; on p* with
i <m < j form a basis forP*(M,,(C)), and (10.24) shows that such a
function is a weight vector with weighte +¢;. Since linear combinations
of products of such functions yield all polynomials, we can conclude that
the only weights are sums of the expressiere + g. That is, all the
weights are of the forni(by, ..., by), (C1, ..., ¢,)) withallb, < 0and all
¢; > 0. In particular, this is true of the highest weight of any irreducible
constituent.

For the heuristic part, we use the chojge= € — ey jforl < j <m
in Example 3 of 81. Ther = ij:l Ejm+j IS @ member ob™ in the
unique open orbit undeK©. If we write (m + n)-by-(m + n) matrices

0

10
in block form with blocks of sizesn, m, andn — m, thene = { oo o),
000
where 1 is tham-by-m identity matrix. The members &€ are anything
z00
invertible of the form(o a b). Let (K©), be the subgroup oK € fixing
Ocd
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e; direct computation shows thak ). consists of all invertible matrices
a0o0
(o a 0>. We can identifyK ©/(K®), with the open subset A& ©)e of

Ocd
pt. We are interested in identifying the action Kf° on the restric-

tions of the holomorphic polynomials to this set, and we only make the
space of functions bigger if we considall holomorphic functions on
K€/(K%)e. The result is something like an induced representation except
that only holomorphic functions are allowed. We introduce the notation
“holo-ind” for this ill-defined construction, which we might call “holomor-
phic induction.” We seek to understand holo—('iﬁgle 1. If we write (K®)in

z00
for the intermediate group consisting of all invertible matri¢esa o),

Ocd
then the formal computation, which we explain in a moment, is

holo-indf,, 1 = holo-indz, (holo-ind.™ 1)
= holo-ind., (P (rM°®7"®1)
A

= @ (z™°®(holo-ind -, (1"®1))
=@ (1)°®7.

The symbol@ here admits an interpretation as an orthogonal sum of
Hilbert spaces, but let us not belabor the point. What deserves attention
is the formal reasoning behind each line: The first line is holomorphic
induction in stages, and the second line is the usual result for induction
when a groufH is embedded diagonally iH x H. The embedding here

is of thea as the diagonal subgroup of paes a); the inner representation
does not depend on the variabteandd. The parametex varies over all
highest weights of deptke m. The third line uses commutativity ¢p

and holomorphic induction, and again the innermost representation does
not depend on the variableandd. The fourth line is the crux of the matter
and follows from the Borel-Weil Theorem, which is discussed briefly in
the Historical Notes. The highest weighof z;" has to be nonnegative, as
we saw above, and we obtain the desired upper bound for the multiplicities.

Let us state without proof a generalization of Theorem 10.24 that handles
all instances of Example 3 of 8§1.

Theorem 10.25(Schmid). IfG/K is Hermitian and if a good ordering
is used to define positivity of roots, introdu€p, . .., ys} as follows: y;
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is the largest positive noncompact root, and, inductivglys the largest
positive noncompact strongly orthogonal to allef ..., y,_;. Then the
highest weights of the representation&dtthat occur inS(p*) are exactly
all expressions |_, ay; with all & € Z and withgy > --- > as > 0.
Moreover, all these representations occusip™) with multiplicity 1.

Lemma 7.143 shows thatin Theorem 10.25 is the real rank Gf For
this s, the theorem says that aparameter family of representations of
K® handles the analysis &(p™).

Now let us turn to Example 4 in 81. The two classes of groups behave
similarly, and we concentrate dd = SO(2m, 2n),. A look at the roots
shows thaty, = R @ su(m) & so(2n), and one readily checks that =
U (m) x SO(2n). The noncompact positive roots, namelyelt- g with
i < m < j, are the weights occurring in N p. The variouse’s are
the weights of the standard representatiok ¢fn), and thet-g’s are the
weights of the standard representatios@f(2n). As aresult we can check
thatuNp = Mny 20 (C) and that the action df on P(uNp) corresponds to
the action onP (My,2,(C)) by U (m) on the left andSO(2n) on the right.
Hence the action df on S(unyp) corresponds to the action &My, 2,(C))
by U (m) on the left and5O (2n) on the right. This is the natural restriction
of the action ofU (m) x U(2n) on S(Mp,2,(C)), which is addressed in
Theorem 10.23. According to that theorem, the irreducible constituents are
all r{”@(rf”)c for A nonnegative of deptk m, and the multiplicities are
all 1. Sincem < n, the restriction of" to SO(2n) is given by Littlewood’s
result stated as Theorem 9.75; from the theorem we see that only the first
m entries of than-tuple highest weight of an irreducible constituent can be
nonzero. Moreover, the resulting reducible representati®@0aRn) is its
own contragredient, and hence the restrictiorizdf)° is the same as the
restriction oft. This much argument proves Theorem 10.26 below for
SO(2m, 2n),, and a similar argument handI&® (2m, 2n + 1),.

Theorem 10.26(Greenleaf). ForG equal to either of the groups
SO(2m, 2n), or SO(2m, 2n + 1)q with m < n, every highest weight
of L in the adjoint action ors(u N p) is in the span oy, .. ., &n.

Thus the number of parameters of irreducible representatiohsapt
pearing inS(u N p) is bounded above by the real rank2f G. (The
multiplicities may be greater than 1, however.) Of course, the number of
parameters for all the irreducible representatioris isfthe (complex) rank
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m+ n of G, and hence only very special representationis on occur in
S(u N p) whenm is much less than.

Theorem 9.75 is explicit enough so that one can say more about the
decomposition. The grou0(2, 2n), and SO(2, 2n + 1), are handled
by Theorem 10.25. Here is a precise result a4, 2n),. To avoid
becoming too cumbersome, the statement takes liberties with the notion
of representation, allowing a countable sum of irreducible representations,
with no topology, to be considered as a representation.

Theorem 10.27(Gross—Wallach). FoB0(4, 2n), with n > 2, the
1-dimensional representatiarof L with highest weight &, + 2e, occurs
in S*(u N p) and has the property that the adjoint representation oh
S(u N p) decomposes as the tensor product g* @ > @ 3@ - --
with a multiplicity-free representatiom whose irreducible constituents
have highest weights described as follows: (&tb, k, d) be any integer
4-tuple satisfying

a>b>0  0=<k=<la/2], max0,b-—2k) <d < min(b,a— 2k).

Then the corresponding highest weightifior 3 isae; + be, + ce; + dey,
wherec = a+b— 2k —d. Forn = 2, the same parameters are to be used,
but the 4-tuple yields two highest weiglas, + be, + ce; +de, if d # 0.

ProoOF. As we observed before the statement of Theorem 10.26, we
are to decompose, for each integer p@rb) with a > b > 0, the
representation dfl (2) x U (2n) with highest weighte; + be, + ae; + be,
under the subgroug (2) x SO(2n). We use Theorem 9.75 for this purpose.
The expressiop in that theorem takes values of the forkez+ 2l e, with
k>1>0,Z%& <a,and 2 < b. The contributions fromn = 2ke; will be
part ofo, and the other contributions will hake> | > 1. Writing o both
for the representation and for the space on which it acts and comparing the
analysis that is to be done f¢k, |) with that for (k — 1,1 — 1), we see that
S"unNp) = (e NS"(uNp)) ® (r ® S"*(unNp)) form> 4. The tensor
product relation follows, and we are left with analyzing

With a andb fixed, we now want to work withh. = ae; + bey, andp =
2kes, where 0< k < [a/2]. Consider the possibilities for an expression
v = ces+de, thatis to contribute a Littlewood—Richardson coeffichamt
visatleastto have > d > 0,c < a, andd < b. The diagram that arises
in the statement of Theorem 9.74 has two rows. The first row consisks of 2
0’s followed bya — 2k x’s, and the second row hbx’s. The number of x’s
must matctt+-d, and thux+d = a+b—2k. The pattern ob consists of
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cl'sandd 2's, and only 1's can be used for the x’s in the first row because
of (a) and (c) in Theorem 9.74. Also the substitution of 1's and 2’s for the
X’s in the second row must result in 1's followed by 2’s because of (a) in
that theorem. This fact already means that the diagram can be completed
in at most one way, and we see as a resultdhat multiplicity free. The
count of 1's and 2’s is that we must hage- (a — 2k) 1's andd 2’s in

the second row. Condition (b) in the theorem says that no column in the
completed diagram can have a 1 above a 1; this means that the number of
1's in the second row, which s5— (a — 2k), must be< 2k. This condition
simplifies toc < a and is already satisfied. Finally condition (c) in the
theorem says that the number of 2's in the appropriate listing, when all 2's
have been listed, must not exceed the number of 1's to that point, and this
means thatl < a — 2k. The complete list of constraints is therefore

c+d=a+b—-2k,0<c<a 0O<d<b,c>a—-—2k, d<a-2k.

Definecbyc =a+ b — 2k — d. The conditiorc > a — 2k is equivalent
with d < b, andc > a — 2k forcesc > 0. Thus the condition G d <
min(b, a — 2k) incorporates all the inequalities excepk a. From the
definition ofc, this is equivalent witld > b — 2k. The theorem follows.

Apart from Examples 3and 4 in 81, what can be said in some generality?
We give just one result of this kind. It allows the induced representation in
Proposition 10.2 to be analyzed in stages using three compact symmetric
spaces.

Proposition 10.28.Suppose that the grading of the complex semisimple
g is built from a maximal parabolic subalgebra, and supposethat f)
is ansl, triplewithh € [,e € g*, andf € g~*suchthah = —hande = f,
where bar is the conjugation gfwith respect to the real forrg,. Define
c= Ad(exp%ni (e+ f)). This is an element of Int of order dividing 8.
Then the set oX e [, with [ X, €] = 0 equals the subalgebra @ffixed
by c.

SKETCH OF PROOF If X € [phas [X, €] =0,then X, f]=[X,& =0
andc(X) = X. Conversely ifX isin [andc(X) = X, let H be as in
Lemma 10.15. The Lie algebra= sparfH, h, e, f} is reductive with
centerC(H — %h). Decomposg into irreduciblesv; under ads, and write
X =) X; accordingly. Thenl, X;] = 0 andc(X;) = X; for alli. Also
adH — %h) is scalar on eack;, and henceX; is a weight vector for a.
An easy check shows thatannot fix a nonzero weight vectorifiunless



638 X. Prehomogeneous Vector Spaces

dimV; = 1;inthis case,4, X;] = 0. Summing on gives [, X] = 0. The
result follows.

5. Problems

1. LetG beSO(n, C) with the nonzero scalar matrices adjoined. Prove that the
standarch-dimensional representation @fyields a prehomogeneous vector
space folG.

2. Provethatthe usual representatiotaf(2n, C) on /\*C2" makes/\*C?" into
a prehomogeneous vector space@ar(2n, C). Prove that the corresponding
statement is false fq{\3<C“ if nis large enough.

3. Fixacomplex semisimple growp. Prove that, up to isomorphism, there can
be only finitely many representations@fthat yield prehomogeneous vector
spaces.

4. Letg be a complex reductive Lie algebra, and@t= Intg. Starting from
Corollary 10.13, prove that, up to the adjoint actiofsothere are only finitely
many nilpotent elements i

5. Letthe grading = &, g of the complex semisimple Lie algebra be associ-
ated to a maximal parabolic subalgebra, and supposgthkat0. Prove that
the representation @f on g is irreducible.

6. State and prove a converse result to Problem 5.

Problems 7-9 develop and apply a sufficient condition for recognizing the open
orbit in a prehomogeneous vector space of parabolic type.

7. Letg = @, g~ be a graded complex semisimple Lie algebra@et Intg,
and letGP be the analytic subgroup @& with Lie algebrag®. Suppose that
e # 0is in g, and suppose thatcan be included in asl, triple (h, e, f)
such thah is a multiple of the elemerttl given in Lemma 10.15. Prove that
the GO orbit of e is open ing?.

8. For the grousp(2, 2), let the simple roots be as in (2.50), and take- e;
to be the only simple root that is noncompact. In the notation at the end of
83,u N p is then spanned by root vectdes for o equal toe; & €3, €1 £ €y,
& =+ e3, ande, & 4. Prove for all nonzero constardsandb that the orbit
underL® of e = aEe, e, + bEe,e, iS Open inu N p.

9. Inthe notation of Example 4 of 81 and the end of 83, the vector spage
was shown in §1 to be prehomogeneous for the subgréupf SO(2m, 2n),
whenm < n, but Vinberg’s Theorem says thatN p is prehomogeneous
without this restriction. By mixing the definitions in Example 4 of 81 and in
Problem 8 and by using Problem 7, obtain an explicit formula for an element
e in the open orbit under the weaker restriction< 2n.





