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CHAPTER X

Prehomogeneous Vector Spaces

Abstract. If G is a connected complex Lie group that is the complexification of
a compact Lie groupU , a “prehomogeneous vector space” forG is a complex finite-
dimensional vectorV together with a holomorphic representation ofG on V such thatG
has an open orbit inV . The open orbit is necessarily unique. Easy examples include the
standard representation ofGL(n, C) on Cn , the standard representation ofSp(n, C) on
C2n , the action ofK C onp+ whenG/K is Hermitian, and certain actions obtained from the
standard Vogan diagrams of some of the indefinite orthogonal groups.

The question that is to be studied is the decomposition of the symmetric algebraS(V )

underU . For any prehomogeneous vector space, the symmetric algebraS(V ) embeds in a
naturalU equivariant fashion intoL2(U/Uv), whereUv is the subgroup ofU fixing a point
v in V whoseG orbit is open. This fact gives a first limitation on what representations can
occur inS(V ).

A “nilpotent element”e in a finite-dimensional Lie algebrag is an element for which
ade is nilpotent. Ifg is complex semisimple, the Jacobson–Morozov Theorem says that
such ane, if nonzero, can be embedded in an “sl2 triple” (h, e, f ), spanning a copy of
sl(2, C).

When a complex semisimple Lie algebra is graded as
⊕

gk , adg0 provides a represen-
tation of g0 on g1, and Vinberg’s Theorem says that the result yields a prehomogeneous
vector space. All such gradings arise from parabolic subalgebras ofg. The examples above
of the action ofK C onp

+ and of certain actions obtained from indefinite orthogonal groups
are prehomogeneous vector spaces of this kind.

For the first of these two examples, the action ofK on S(p+) is described by a theorem
of Schmid. In the special case ofSU (m, n), this theorem reduces to a classical theorem
about the action of the product of two unitary groups on the space of polynomials on a
matrix space. For the second of these two examples, the action on the symmetric algebra
can be analyzed by using this classical theorem in combination with Littlewood’s Theorem
about restricting respresentations from unitary groups to orthogonal groups.

In the general case of Vinberg’s Theorem, ifv is suitably chosen in the prehomogeneous
vector spaceV , thenU/(Uv)0 fibers by a succession of three compact symmetric spaces, and
henceL2(U/(Uv)0) can be analyzed by iterating various branching theorems for compact
symmetric spaces. This fact gives a second limitation on what representations can occur in
S(V ).

615



616 X. Prehomogeneous Vector Spaces

1. Definitions and Examples

A consequence of Chapter IX is that we are able to use branching
theorems to give a representation-theoretic analysis of theL2 functions
on certain compact quotient spaces that arise in the structure theory of non-
compact groups. The goal of the present chapter is to develop methods for
giving a representation-theoretic analysis of some spaces of holomorphic
functions. The discussion will be necessarily incomplete as the topics in
the chapter remain an active area of ongoing research.

The context will be as follows. LetG be a connected complex Lie group;
usually we shall assume thatG is the complexification of a compact Lie
groupU . A prehomogeneous vector spacefor G is a complex finite-
dimensional vector spaceV together with a holomorphic representation of
G on V such thatG has an open orbit inV . The representation ofG on V
yields a holomorphic representation ofG on each summandSn(V ) of the
symmetric algebraS(V ), and, whenG is the complexification ofU , the
same thing is true of the restriction of the representation fromG to U . We
can lump the representations on theSn(V ) together and think in terms of
a single infinite-dimensional representation ofG or U on S(V ) itself. We
do so even thoughS(V ) is not a Hilbert space; we shall completeS(V )

to a Hilbert space shortly. The question is what can be said about this
infinite-dimensional representation.

Let g be the (complex) Lie algebra ofG, and letϕ be the differential
of the representation ofG on V . By the Inverse Function Theorem, the
condition that the orbit ofG throughv be open inV can be expressed
equivalently as

(i) every member ofV is of the formϕ(X)v with X in g, or
(ii) the subalgebragv of g annihilatingv has dimC V + dimC gv =

dimC g.

EXAMPLES.

1) The standard representation ofG = GL(N , C) on V = CN . The
nonzero vectors form an open orbit. The groupU may be taken to be
U (N ), and the representation ofU on Sn(CN ) is irreducible with highest
weightne1.

2) The standard representation ofG = Sp(N , C) on V = C2N . The

members of the Lie algebrag are of the form
(

A B

C −At

)
with B and C

symmetric. A count of the dimension of the subspace of members ofg

whose first column is 0 shows that (ii) holds forv equal to the first standard
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basis vector, and hence the orbit of thatv is open. The groupU may be
taken to beSp(N ), and the representation ofU on Sn(C2N ) is irreducible
with highest weightne1, as a consequence of Example 1 and Theorem 9.76.

3) The action ofK C on p+ by Ad whenG/K is Hermitian. LetG be
a linear semisimple group, letK be a maximal compact subgroup, and let
G/K be Hermitian in the sense of §VII.9. In the notation of that section, the
complexificationK C of K acts holomorphically on the sump+ of the root
spaces for the noncompact roots that are positive in a good ordering. Let
{γ1, . . . , γs} be a maximal set of strongly orthogonal positive noncompact
roots, and letEγ1, . . . , Eγs be corresponding nonzero root vectors. Let us
use (i) above to see that theK C orbit of e = ∑

k Eγk is open. By way
of preliminaries, we show that ifβ is a compact root, thenβ + γi and
β + γj cannot be roots for two different indicesi and j . If, on the contrary,
both are roots, then the sum ofβ + γi andβ + γj cannot be a root since
[p+, p+] = 0 and the difference cannot be a root sinceγi andγj are strongly
orthogonal. Thus 0= 〈β + γi , β + γj〉 = |β|2 + 〈β, γi〉 + 〈β, γj〉. One
of the inner products on the right side must be negative; say〈β, γi〉 < 0.
Then〈β + γj , γi〉 = 〈β, γi〉 < 0, andβ + γi + γj is a root, in contradiction
to [p+, p+] = 0. We conclude thatβ + γi andβ + γj cannot both be
roots. Now letα be any positive noncompact root. We show that a nonzero
multiple of the root vectorEα lies in ad(k)e, k being the Lie algebra ofK C.
If α = γi , then [Hγi , e] is a nonzero multiple ofEγi . Thus assume thatα
is not someγi . Since [p+, p+] = 0, noα + γk is a root. By maximality
of {γ1, . . . , γs}, someβ = α − γi is a root, necessarily compact. Our
preliminary computation shows that [Eβ, e] is a nonzero multiple ofEα,
and we conclude from (i) that theK C orbit of e is open. The analysis of
S(p+) will be discussed in §4.

4) Action of a certain groupLC on a spaceu ∩ p relative to either of
the groupsG given by SO(2m, 2n)0 or SO(2m, 2n + 1)0 whenm ≤ n.
Form the standard Vogan diagram associated with the Lie algebrag0 of G
as in Figure 6.1 or Appendix C, relative to a compact Cartan subalgebra
h0. There is one simple noncompact root, namelyα = em − em+1. Write
the complexification ofg0 asg = ⊕2

k=−2 gk , wheregk is the sum of the
root spaces for roots whose coefficient ofα is k in an expansion in terms
of simple roots; include the Cartan subalgebrah within g0. This direct
sum decomposition exhibitsg asgraded in the sense that [g j , gk ] ⊆ g j+k .
If l = g0 andu = ∑

k>0 gk , then in particular [l, gk ] ⊆ gk for all k and
l ⊕ u is a maximal parabolic subalgebra ofg. For the complexification
g = k ⊕ p of the usual Cartan decomposition ofg0, we havep = g1 ⊕ g−1,
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and thusu ∩ p = g1 is stable under adl. Now let us pass to a group action.
The centralizer ing of the elementH = He1+···+em is just l, andi H is in
k0. By Corollary 4.51 the centralizer inK of i H is a compact connected
subgroupL of K , and the complexificationLC of L has Lie algebral. The
adjoint representation ofLC on u ∩ p is the holomorphic representation
of interest to us. We show thatLC acts onu ∩ p with an open orbit. For
each noncompact positive rootβ, choose a root vectorEβ normalized as
in §VI.7 so that [Eβ, Eβ ] = H ′

β ; here the bar denotes the conjugation ofg

with respect tog0. Let e be the sum of theEβ ’s for β equal toe1 ± em+1,
e2 ± em+2, . . . , em ± e2m, let f be the sum of the corresponding elements
Eβ , and leth = [e, f ]. We prove that theLC orbit of e is open by showing
that [l, e] contains a basis ofu ∩ p = g1. The strong orthogonality of the
rootsβ we have used makes it so that{h, e, f } spans a copys of sl(2, C)

and so thath is a multiple of the elementH above. By Theorem 1.67,g
is the direct sum of subspaces on whichs acts irreducibly. Sincel is the
centralizer ofh, l is spanned by the weight vectors underh of weight 0 from
the various irreducible subspaces. Theorem 1.66 then shows that [l, e] is
the sum of the weight vectors of weight 2, and this includes all the root
vectors for the noncompact positive roots. Hence theLC orbit of e is open.
A partial analysis ofS(u ∩ p) will be discussed in §4.

Proposition 10.1. If V is a prehomogeneous vector space forG, then
there is just one open orbit, and that orbit is dense.

PROOF. Fix bases overC for the vector spacesV andg, and let� and
ϕ be the representations ofG and g on V . For eachv in V , consider
X �→ ϕ(X)v as a linear transformation fromg into V , and letAv be the
(dim V ) × (dimg) matrix of this map relative to these bases. The entries
of Av are linear functions ofv ∈ V , with values inC. For somev = v0,
we know thatϕ(g)v0 = V sinceV is assumed prehomogeneous. Thus the
rank of Av0 is dimV , and some(dim V ) × (dim V ) minor of Av0 has to be
nonzero. IfF denotes the vector-valued function onV whose value atv is
the tuple of all(dim V ) × (dim V ) minors ofAv, thenF is a vector-valued
polynomial function onV whose value atv0 is not zero. By Lemma 2.14
the set ofv for which F(v) �= 0 is connected, and it is certainly open and
dense. Hence the subset� of v ∈ V for whichϕ(g)v = V is open, dense,
and connected.

If g is in G andϕ(g)v = V , thenϕ(g)�(g)v = �(g)ϕ(Ad(g)−1g)v =
�(g)ϕ(g)v = �(g)V = V , and it follows that� is carried to itself
by �(G). Thus� is the union of disjoint orbits under�(G). For any
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v ∈ �, we haveϕ(g)v = V , and hence the orbit�(G)(v) is open inV .
Consequently� is exhibited as the disjoint union of open orbits, and the
connectivity of� implies that there is just one orbit in�.

Proposition 10.2.LetG be the complexification of a compact connected
groupU , let V be a prehomogeneous vector space forG, and suppose that
theG orbit of v0 is open. IfUv0 denotes the subgroup ofU fixing v0, then
S(V ) embeds in a natural one-oneU equivariant fashion intoL2(U/Uv0).
In particular the multiplicity of any irreducible representation ofU in S(V )

is bounded by the degree of the representation.

REMARK. For example, in the action ofGL(1, C) onC1, the groupU is
U (1). Fix a nonzero memberZ of C1. The action byU (1) is(eiθ )Z = eiθ Z ,
and the subgroupUZ is trivial. The symmetric algebraS(C1) consists of
all polynomial expressionsp(Z), and the action is(eiθ )p(Z) = p(eiθ Z).
The embedding ofS(C1) is into L2 of the circle; ifeiϕ denotes a point on
the circle, the embedding sendsp(Z) into the functioneiϕ �→ p(eiϕ). The
closure of the image is the subspace of members ofL2 that are boundary
values of analytic functions on the unit disc.

PROOF. Let P(V ) be the space of all holomorphic polynomial functions
from V into C, and letPn(V ) be the subspace of those functions that are
homogeneous of degreen. The spacePn(V ) is the vector space dual of
Sn(V ) by Corollary A.24, and the representation ofG or U on Pn(V )

given by g(p(v)) = p(g−1v) is contragredient to the representation on
Sn(V ). For eachp in P(V ), definep̃ : G → C by p̃(g) = p(gv0); this is
holomorphic, being the composition of the functionG ×v0 → V followed
by p. The mapp �→ p̃ is one-one because the only holomorphic function
vanishing on the open setGv0 is the 0 function. Restriction of holomorphic
functions fromG to U is one-one since, in a chart about the identity, the
function onG can be reconstructed from the power series expansion of
the function onU . In this way we obtain an embedding ofP(V ) into
L2(U/Uv0), and this embedding certainly respects the action byU .

To complete the proof, we pass from eachPn(V ) to its contragredient
Sn(V ), and thereby embed eachSn(V ) into the contragredient of a finite-
dimensional invariant subspace ofL2(U/Uv0). Complex conjugation of
functions carries invariant subspaces withinL2 to their contragredients, and
in this wayS(V ) is embedded intoL2(U/Uv0). We may regardL2(U/Uv0)

as a subspace ofL2(U ), and thus the bound on the multiplicities follows
from the Peter–Weyl Theorem (Theorem 4.20).
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2. Jacobson–Morozov Theorem

A membere of a finite-dimensional Lie algebrag overC is said to be
nilpotent if ade is a nilpotent linear transformation. In this section we
develop tools for working with nilpotent elements.

A triple (h, e, f ) of nonzero elements ing is called ansl2 triple if the
elements satisfy the bracket relations of (1.6): [h, e] = 2e, [h, f ] = −2 f ,
[e, f ] = h. In this case the span of the elementsh, e, f is isomorphic with
sl(2, C). Theorem 1.67 shows that the complex-linear representation of
this copy ofsl(2, C) ong by ad is completely reducible, and Theorem 1.66
allows us to conclude that ade is nilpotent ong; consequently the membere
of thesl2 triple(h, e, f ) is a nilpotent element ing. The Jacobson–Morozov
Theorem is a converse to this fact wheng is semisimple.

Theorem 10.3(Jacobson–Morozov). Ife is a nonzero nilpotent element
in a complex semisimple Lie algebrag, thene can be included in ansl2
triple (h, e, f ). More specifically, there exists a nonzeroh in (ade)(g)

such that [h, e] = 2e, and, for any nonzeroh in (ade)(g) with [h, e] = 2e,
there exists a uniquef in g such that(h, e, f ) is ansl2 triple.

The proof will be preceded by a lemma.

Lemma 10.4. If V is a finite-dimensional complex vector space and if
A and B are linear transformations fromV to itself with A nilpotent and
with [ A, [ A, B]] = 0, thenAB is nilpotent.

PROOF. PutC = [ A, B]. Then [A, C ] = 0 by hypothesis, and it follows
for every integern ≥ 0 that

[ A, BCn] = ABCn − BCn A = ABCn − B ACn = [ A, B]Cn = Cn+1.

ConsequentlyCn+1 is exhibited as a commutator, and it follows thatC p has
trace 0 for everyp ≥ 1. Let us see thatC is therefore nilpotent. Arguing
by contradiction, suppose thatC is not nilpotent, so that the numberd
of distinct nonzero roots of the characteristic polynomial ofC is ≥ 1.
Let λ1, . . . , λd be these distinct nonzero roots, and letm1, . . . , md be the
multiplicities. The condition on the trace is that

d∑
q=1

mqλ
p
q = 0
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for every p ≥ 1. If we regard this condition for 1≤ p ≤ d as a homo-
geneous linear system with themq as unknowns, then the 0 solution is the
only solution because the determinant of the coefficient matrix{λp

q }d
p,q=1 is∏d

q=1 λq times a Vandermonde determinant and is therefore nonzero. Thus
we have a contradiction, and we conclude thatC is nilpotent.

Now letλ be any eigenvalue ofAB, and letv �= 0 be an eigenvector for
λ. Since [B, A] A = A[B, A] by hypothesis, we have

[B, An] =
n−1∑
j=0

A j [B, A] An− j−1 =
n−1∑
j=0

[B, A] An−1 = n[B, A] An−1.

The transformationA is assumed nilpotent, and thus there exists an integer
r > 0 such thatAr−1v �= 0 andArv = 0. For thisr ,

λAr−1v = Ar−1 ABv = Ar Bv = B Arv − [B, Ar ]v = 0 − r [B, A] Ar−1v,

and we see that−λ/r is an eigenvalue of [B, A]. Since [B, A] is nilpotent,
we conclude thatλ = 0. ThereforeAB is nilpotent.

PROOF OFTHEOREM 10.3. Let B be the Killing form. If n denotes
the kernel of(ade)2, then everyz ∈ n has 0= (ade)2z = [e, [e, z]] and
therefore 0= ad [e, [e, z]] = [ade, [ade, adz]]. Applying Lemma 10.4
with A = ade andB = adz, we find that(ade)(adz) is nilpotent. Hence
Tr((ade)(adz)) = 0 and

(10.5) B(e, n) = 0.

The invariance ofB implies that

(10.6) B((ade)2x, y) = B(x, (ade)2y)

for all x and y in g. Taking y arbitrary inn and using (10.6), we obtain
B((ade)2g, n) = 0. Therefore

(10.7) (ade)2
g ⊆ n

⊥,

where( · )⊥ is as in §I.7. Takingy arbitrary in((ade)2g)⊥ in (10.6) and
using the nondegeneracy ofB given in Theorem 1.45, we see that

((ade)2
g)⊥ ⊆ ker((ade)2) = n.
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Application of the operation( · )⊥ to both sides and use of (10.7) gives

(10.8) (ade)2
g ⊆ n

⊥ ⊆ ((ade)2
g)⊥⊥.

But Proposition 1.43 and the nondegeneracy ofB combine to show that
V ⊥⊥ = V for every subspaceV of g, and therefore (10.8) yields

(10.9) n
⊥ = (ade)2

g.

From (10.5) and (10.9), it follows thate = (ade)2x for somex ∈ g.
If we put h = −2[e, x ], then h is a nonzero member of(ade)g with
[h, e] = −2[[e, x ], e] = 2[e, [e, x ]] = 2e. This proves the existence ofh.

Next let h be any nonzero member of(ade)g such that [h, e] = 2e.
If k = ker(ade), then the equation(adh)(ade) − (ade)(adh) = 2(ade)
shows that(adh)(k) ⊆ k. Choosez such thath = −[e, z]. For A in
EndC g, defineL(A), R(A), and adA to mean left byA, right by A, and
L(A) − R(A), respectively. Then we have

(ad(ade))(adz) = [ade, adz] = ad [e, z] = −adh

(ad(ade))2(adz) = [ade, −adh] = ad [e, −h] = 2 ade

(ad(ade))3(adz) = [ade, 2 ade] = 0.

Imitating part of the proof of Lemma 5.17, we obtain, for everyn > 0,

(L(ade))n(adz) = (R(ade) + ad(ade))n(adz)

= (R(ade))n(adz) + n(R(ade))n−1(ad(ade))(adz)

+ 1
2n(n − 1)(R(ade))n−2(ad(ade))2(adz) + 0

= (R(ade))n(adz) − n(adh)(ade)n−1

+ n(n − 1)(ade)n−1.

Therefore

n(adh − (n − 1))(ade)n−1 = (adz)(ade)n − (ade)n(adz).

This equation applied tou with v = (ade)n−1u shows that

n(adh − (n − 1))v − (adz)(ade)v is in (ade)n(g).

If v is in k in addition, then(adh)v is in k and(adz)(ade)v = 0, so that

n(adh − (n − 1))v is in k.
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Thus(adh − (n − 1)) carriesk∩ (ade)n−1(g) into k∩ (ade)n(g). For some
N , (ade)N (g) = 0 since ade is nilpotent. It follows that

( N−1∏
p=0

(adh − p)
)
(k) = 0.

Consequently the eigenvalues of adh onk are all≥ 0, and(adh + 2) must
be invertible onk. The element [h, z] + 2z is in k because

[e, [h, z]] + 2[e, z] = −[h, [z, e]] − [z, [e, h]] + 2[e, z]

= [h, h] + 2[z, e] + 2[e, z] = 0.

Thus we can definez′ = (adh + 2)−1([h, z] + 2z) as a member ofk. Then
we have [h, z′] + 2z′ = [h, z] + 2z and hence [h, z′ − z] = −2(z′ − z). In
other words the elementf = z′ − z has [h, f ] = −2 f . Sincez′ is in k, we
have [e, f ] = [e, z′] − [e, z] = h, and f has the required properties.

Finally we are to show thatf is unique. Thus suppose thatf ′ has
[h, f ′] = −2 f ′ and [e, f ′] = h. Theorem 1.67 shows thatg is fully
reducible under the adjoint action of the spans of h, e, f , and we may take
s itself to be one of the invariant subspaces. Writef ′ = ∑

f ′
i according

to this decomposition into invariant subspaces. From−2
∑

f ′
i = −2 f ′ =

[h, f ′] = ∑
[h, f ′

i ], we see that [h, f ′
i ] = −2 f ′

i for all i . Also h =
[e, f ′] = ∑

[e, f ′
i ] shows that [e, f ′

i ] = 0 for all componentsf ′
i other than

the one ins. If any f ′
i outsides is nonzero, then we obtain a contradiction

to Theorem 1.66 since that theorem shows that ade cannot annihilate any
nonzero vector whose eigenvalue under adh is −2. We conclude that
f ′
i = 0 except in the components, and therefore we must havef ′ = f .

Theorem 10.10(Malcev–Kostant). LetG be a complex semisimple
group with Lie algebrag, and let(h0, e0, f0) be ansl2 triple in g. For each
integerk, definegk = {X ∈ g | [h0, X ] = k X}, and letG0 be the analytic
subgroup ofG with Lie algebrag0. Then the set� of all e in g2 such that
ade carriesg0 ontog2

(a) containse0,
(b) is open, dense, and connected ing2,
(c) is a single orbit underG0, and
(d) consists of alle ∈ g2 that can be included in ansl2 triple (h0, e, f ).

PROOF. Let s be the span of{h0, e0, f0}. Theorem 1.67 allows us to
decomposeg into the direct sum of irreducible spacesVi under ads, and
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Theorem 1.66 describes the possibilities for theVi . Since adh0 carries
eachVi into itself, we havegk = ⊕

i (Vi ∩ gk) for all k. From Theorem
1.66,(ade0)(Vi ∩ g0) = Vi ∩ g2, and therefore [e0, g

0] = g2. This proves
part (a).

Part (a) says thatg2 is a prehomogeneous vector space forG0, and (b)
and (c) then follow from Proposition 10.1.

Finally if e ∈ g2 is in �, write e = Ad(g)e0 with g ∈ G0, by (a) and (c).
Thene is included in thesl2 triple (h0, Ad(g)e0, Ad(g) f0). Conversely
the argument that proves (a) shows that anye included in somesl2 triple
(h0, e, f ) lies in�. This proves (d).

Proposition 10.11.If g is a complex reductive Lie algebra, then

(a) any abelian subalgebras of g for which the members of adg s are
diagonable can be extended to a Cartan subalgebra and

(b) the elementh of anysl2 triple in g lies in some Cartan subalgebra.

PROOF. Part (a) follows from Proposition 2.13, and part (b) is the special
case of (a) in whichs = Ch.

Proposition 10.12. Let g be a complex semisimple Lie algebra, leth

be a Cartan subalgebra, and let(h, e, f ) be ansl2 triple such thath lies in
h. Then in a suitable system of positive roots, each simple rootβ hasβ(h)

equal to 0, 1, or 2.

PROOF. Theorems 1.67 and 1.66 show that the eigenvalues of adh are
integers, and henceα(h) is an integer for every rootα. Consequentlyh
lies in the real formh0 of h on which all roots are real, and we can takeh
to be the first member of an orthogonal basis ofh0 that defines a system
of positive roots. Thenα(h) is ≥ 0 for every simple rootα, and we are to
prove thatα(h) cannot be≥ 3.

Using Theorem 1.67, writeg = ⊕
Vi with each Vi invariant and

irreducible under the span of{h, e, f }. Suppose thatα is a root with
α(h) = n ≥ 3. Decompose a nonzero root vectorXα as

∑
Xi with Xi in

Vi . From the equalityn
∑

Xi = α(h)Xα = [h, Xα] = ∑
[h, Xi ] and the

invariance ofVi under adh, we see that [h, Xi ] = nXi wheneverXi �= 0.
Sincen ≥ 1, Theorem 1.66 shows that [f, Xi ] �= 0 for any suchi , and
therefore [f, Xα] �= 0. Writing f as a sum of root vectors and possibly a
member ofh, we see in the same way thatf is a sum of root vectorsX−γ

with γ (h) = 2. Since [f, Xα] �= 0, we must have [X−γ , Xα] �= 0 for some
γ with γ (h) = 2. Thenβ = α − γ is a root withβ(h) = n − 2 > 0,
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andβ must be positive. Sinceγ (h) = 2 > 0, γ is positive as well. Thus
α = β + γ exhibitsα as not being simple.

Corollary 10.13. Let g be a complex reductive Lie algebra, and let
G = Int g. Up to the adjoint action ofG ong, there are only finitely many
elementsh of g that can be the first element of ansl2 triple in g.

PROOF. All sl2 triples lie in [g, g], and thus we may assumeg is semi-
simple. If h is given, Proposition 10.11b produces a Cartan subalgebrah

containingh. With h fixed, Proposition 10.12 shows, for a certain system
of positive roots, that there are at most 3l possibilities forh, wherel is
the rank. Any two Cartan subalgebras are conjugate viaG, according to
Theorem 2.15, and the number of distinct positive systems equals the order
of the Weyl group. The corollary follows.

Proposition 10.14. Let g be a semisimple Lie algebra, and leth be
a Cartan subalgebra. Ifs is a subspace ofh, then the centralizerZg(s)

is the Levi subalgebra of some parabolic subalgebra ofg, and hence it is
reductive.

PROOF. Let 	 be the set of roots, and leth0 be the real form ofh on
which all roots are real. The centralizer ofs containsh, is therefore stable
under adh, and consequently is a subspace of the formh ⊕ ⊕

γ∈
 gγ for
some subset
 of 	, gγ being the root space for the rootγ . If γ is in 
,
thenγ vanishes ons, and conversely. Hence
 = {γ ∈ 	 | γ (s) = 0}.
If bar denotes the conjugation ofh with respect toh0, then eachγ ∈ 
,
being real onh0, vanishes on̄s. Hence eachγ ∈ 
 vanishes ons + s̄,
which we write ast. Sincet is stable under bar, it is the complexification
of the real formt0 = t ∩ h0 of t. Thus
 = {γ ∈ 	 | γ (t0) = 0}. Let
t⊥0 be the orthogonal complement oft0 in h0 relative to the Killing form,
choose an orthogonal basis ofh0 consisting of an orthogonal basis oft0

followed by an orthogonal basis oft⊥0 , and let� be the simple roots for
the corresponding ordering. Define�′ to be the set of members of� that
vanish ont0. If a positive root in
 is expanded in terms of simple roots,
then each of the simple roots with nonzero coefficient must vanish ont0

as a consequence of the choice of ordering; thus each simple root with
nonzero coefficient is in�′. ConsequentlyZg(s) is the Levi subalgebra
of the parabolic subalgebra corresponding to�′ in Proposition 5.90. The
Levi subalgebra is reductive by Corollary 5.94c.
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3. Vinberg’s Theorem

A complex semisimple Lie algebrag is said to begraded if vector
subspacesgk are specified such thatg = ⊕∞

k=−∞ gk and [g j , gk ] ⊆ g j+k

for all integersj andk. In other words,g is to be graded as a vector space
in the sense of (A.35), and the grading is to be consistent with the bracket
structure. Sinceg is by assumption finite dimensional,gk has to be 0 for
all but finitely manyk. The statement of Theorem 10.10 gives an example,
showing how anysl2 triple (h, e, f ) leads to a grading; the indices in the
grading are integers because Theorems 1.67 and 1.66 show that adh acts
diagonably with integer eigenvalues. Examples 3 and 4 of §1 arise from
gradings associated with special parabolic subalgebras ofg; more generally
any parabolic subalgebra ofg leads to gradings as follows.

EXAMPLE. Gradings associated with a parabolic subalgebra. Fix a
Cartan subalgebrah and a choice	+ of a system of positive roots ofg with
respect toh. Let � be the set of simple roots, and letn be the sum of the
root spaces for the members of	+, so thatb = h⊕n is a Borel subalgebra
of g. Proposition 5.90 shows how to associate a parabolic subalgebraq�′

containingb to each subset�′ of simple roots. Fix�′, associate a positive
integermβ to each memberβ of the complementary set� − �′, and letH
be the member ofh such that

β(H) =
{

0 if β is in �′

mβ if β is in � − �′.

Thenα(H) is an integer for every rootα. Define

g
0 = h ⊕

⊕
α∈	,

α(H)=0

gα and g
k =

⊕
α∈	,

α(H)=k

gα for k �= 0.

Theng = ⊕
k gk exhibitsg as graded in such a way thatq�′ = ⊕

k≥0 gk ,
the Levi factor ofq�′ is g0, and the nilpotent radical ofq�′ is

⊕
k>0 gk .

In fact, the next proposition shows that any gradingg = ⊕
k gk of a

complex semisimple Lie algebrag arises as in the above example. First we
prove a lemma.

Lemma 10.15. If g = ⊕
k gk is a graded complex semisimple Lie

algebra, then there existsH in g0 such thatgk = {X ∈ g | [H, X ] = k X}
for all k.
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PROOF. Define a memberD of EndC g to be multiplication byk on gk .
Direct computation shows thatD is a derivation, and Proposition 1.121
produces an elementH in g such thatD(X) = [H, X ] for all X in g. Since
[H, H ] = 0, H is in g0.

Proposition 10.16. If g = ⊕
k gk is a graded complex semisimple Lie

algebra, then there exist a Borel subalgebrab = h ⊕ n, a subset�′ of the
set� of simple roots, and a set{mβ | β ∈ � − �′} of positive integers
such that the grading arises from the parabolic subalgebraq�′ and the set
{mβ} of positive integers.

PROOF. Let H be as in Lemma 10.15. Proposition 10.11a withs = CH
produces a Cartan subalgebrah of g containingH . The membersX of g that
commute withH are exactly those withD(X) = [H, X ] = 0 and hence
are exactly those ing0. In particular,h is contained ing0. The eigenvalues
of adH are integers, and thusH is in the real formh0 of h on which all the
roots are real. ExtendH to an orthogonal basis ofh0, and use this basis to
define positivity of roots. Let� be the set of simple roots, and let�′ be the
subset on whichβ(H) = 0. Forβ in � − �′, definemβ = β(H); since
H comes first in the ordering, the nonzero integermβ has to be positive.
Then the given grading is the one associated to the parabolic subalgebra
q�′ and the set of positive integers{mβ | β ∈ � − �′}.

Corollary 10.17. In any graded complex semisimple Lie algebra
g = ⊕

k gk , the subalgebrag0 is reductive.

PROOF. Combine Proposition 10.16 and Corollary 5.94c.

Lemma 10.18. Let g = ⊕
k gk be a graded complex semisimple Lie

algebra, and suppose thate is a nonzero element ing1. Then there existh
in g0 and f in g−1 such that(h, e, f ) is ansl2 triple.

PROOF. Since(ade) j(gk) ⊆ g j+k , e is nilpotent. Theorem 10.3 produces
elementsh ′ and f ′ in g such that(h ′, e, f ′) is ansl2 triple. Decompose
h ′ and f ′ according to the grading ash ′ = ∑

h ′
k and f ′ = ∑

f ′
k . From

2e = [h ′, e] = ∑
[h ′

k, e], we see that [h ′
0, e] = 2e and [h ′

k, e] = 0 for
k �= 0. From

∑
[e, f ′

k ] = [e, f ′] = h ′ = ∑
h ′

k , we see that [e, f ′
−1] = h ′

0,
hence thath ′

0 is in (ade)(g). A second application of Theorem 10.3 shows
that there existsf ′′ such that(h ′

0, e, f ′′) is ansl2 triple. Writing f ′′ = ∑
f ′′
k ,

we obtain [e, f ′′
−1] = h ′

0 and [h ′
0, f ′′

−1] = −2 f ′′
−1. Therefore(h ′

0, e, f ′′
−1) is

the requiredsl2 triple.
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In any gradingg = ⊕
k gk of the complex semisimple Lie algebrag,

adg0 provides a complex-linear representation ofg0 on eachgk . Let G be
a connected complex Lie group with Lie algebrag, for exampleG = Int g,
and letG0 be the analytic subgroup ofG with Lie algebrag0. Then the
adjoint action ofG on g yields a holomorphic representation ofG0 on
eachgk .

Theorem 10.19(Vinberg). LetG be a complex semisimple Lie group
with a graded Lie algebrag = ⊕

k gk , and letG0 be the analytic subgroup
of G with Lie algebrag0. Then the adjoint action ofG0 on g1 has only
finitely many orbits. Hence one of them must be open.

REMARK. In other words the representation ofG0 on g1 makesg1 into
a prehomogeneous vector space forG0. This kind of prehomogeneous
vector space is said to be ofparabolic type.

PROOF. Once it is proved that there are only finitely many orbits, one of
them must be open as a consequence of (8.18). To prove that there are only
finitely many orbits, we shall associate noncanonically to each elemente
of g1 a member of a certain finite set of data. Then we shall show that two
elements that can be associated to the same member of the finite set are
necessarily in the same orbit ofG0.

Let e be ing1, and extende by Lemma 10.18 to ansl2 triple (h, e, f )

with h in g0 and f in g−1. Write sl2 for the copy ofsl(2, C) spanned by
{h, e, f }. By Lemma 10.15, there exists an elementH in g0 such that, for
every integerk, [H, X ] = k X for all X in gk .

Among all abelian subalgebras of the centralizerZg0(sl2) whose mem-
bersT have adT diagonable, lett be a maximal one. The subalgebra
t̃ = t ⊕ Ch of g0 is abelian. The elementH commutes with every
member of̃t becausẽt ⊆ g0, and hence so doesh−2H . Also [h−2H, e] =
[h, e] − 2[H, e] = 2e − 2e = 0 since adH acts as the identity ong1. Thus
h − 2H centralizese andh. From Theorems 1.67 and 1.66 we know that
any element ofg that centralizese andh automatically centralizessl2. Thus
h − 2H is a member ofZg0(sl2) such that ad(h − 2H) is diagonable and
[h − 2H, X ] = 0 for all X in t. By maximality oft, h − 2H is in t. Let us
write

(10.20) h = 2H + T0 with T0 in t.

By Proposition 10.11a we can extendt̃ to a Cartan subalgebrah of g. From
(10.20) we see that [H, h] = 0, and thereforeh ⊆ g0.
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Let z = Zg(t). By Proposition 10.14,z is a Levi subalgebra ofg, and
the definition oft implies thatsl2 ⊆ z. Let us see that the grading ofg

induces a grading onz, i.e., that the subspaceszk = z∩gk have the property
thatz = ⊕

zk . If X is in z, decomposeX according to the grading ofg as
X = ∑

Xk . For anyT in t, we have 0= [ X, T ] = ∑
[ Xk, T ]. SinceT is

in g0, [Xk, T ] is in gk , and thus [Xk, T ] = 0 for all k. Hence eachXk is in
z, and we conclude thatz is graded.

Sincez is a Levi subalgebra, Proposition 5.94c shows thatz is reductive.
Using Corollary 1.56, writez as the sum of its center and its commutator
ideal, the latter being semisimple:

(10.21) z = Zz ⊕ s with s = [z, z].

We shall identifyZz ast. In fact, we know thath is contained inz, and hence
so is the subalgebrat. Sincez is defined as the centralizer oft, t commutes
with each member ofz. Thereforet ⊆ Zz. In the reverse direction let
X be in Zz. Then [X, h] = 0. Sinceh satisfiesNg(h) = h by definition
of Cartan subalgebra,X must be inh. Therefore adX is diagonable. We
know thatsl2 is contained inz, and therefore [X, sl2] = 0. Consequently
X is in Zg0(sl2), and the maximality oft shows thatX is in t. Thus indeed
Zz = t.

Let us see thats is graded, i.e., that the subspacessk = s ∩ gk have the
property thats = ⊕

sk . The subalgebras is generated by all [z j , zk ], and
such a subspace is contained ing j+k , hence ins j+k . Thus every member of
s lies in

⊕
sk , ands is graded. We can identify eachsk a little better; since

t centralizesz, (10.20) yields

s
k = s ∩ g

k = {X ∈ s | [H, X ] = k X} = {X ∈ s | [h, X ] = 2k X}

for all k.
The subalgebraZz is graded, being completely contained inz0.

Hence (10.21) giveszk = (Zz)
k ⊕sk for all k, and we conclude thatsk = zk

for all k �= 0. Thuse is in z1 = s1 and f is in z−1 = s−1, and we see that
the triple(h, e, f ) lies ins. Let S0 be the analytic subgroup ofG with Lie
algebras0. Sinces is semisimple ands0 = {X ∈ s | [h, X ] = 0}, Theorem
10.10 applies and shows thate lies in the unique open orbit ofS0 in s1.

Let us now exhibit a finite set of data in the above construction. The
grading ofg was fixed throughout, and the other gradings were derived
from it. Starting frome, we worked with the tuple(e, h, t, h, z, s), and
then we locatede in the open orbit ofS0 in s1. If we had started withe′, let
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us write(e′, h ′, t′, h′, z′, s′) for the tuple we would have obtained. Before
comparing our two tuples, we introduce a normalization. The Lie algebra
g0 is reductive, andh andh′ are Cartan subalgebras of it. By Theorem 2.15
we can findg ∈ G0 such that Ad(g)h′ = h. We replace(e′, h ′, t′, h′, z′, s′)
by Ad(g) of the tuple, namely

(e′′, h ′′, t′′, h, z′′, s′′) = (Ad(g)e′, Ad(g)h ′, Ad(g)t′, h, Ad(g)z′, Ad(g)s′),

and then we readily check that if we had started with Ad(g)e′, we could
have arrived at this tuple through our choices. Sincee′ ande′′ are in the
sameG0 orbit, we may comparee with e′′ rather thane with e′. That is our
normalization: we insist on the sameh in every case.

Onceh is fixed,z is the Levi subalgebra of a parabolic subalgebra ofg

containingh, h is an element ofh that is constrained by Proposition 10.12
to lie in a finite set,t is the center ofz, ands is the commutator subalgebra
of z. Our data set consists of all pairs

(Levi subalgebra containingh, elementh in h as in Proposition 10.12).

The number of Borel subalgebras containingh equals the order of a Weyl
group, and the number of parabolic subalgebras containing a given Borel
subalgebra is finite; therefore the number of Levi subalgebras ofg contain-
ing h is finite. Consequently our data set is finite.

What we have seen is that anye, possibly after an initial application of
some member of Ad(G0), leads to a member of this finite set. Suppose
thate ande′′ lead to the same member of the set. Thens = s′′, e lies in the
unique open orbit ofS0 ons1, ande′′ lies in that same orbit. SinceS0 ⊆ G0,
e ande′′ lie in the same orbit underG0. This completes the proof.

Corollary 10.22. Let G be a complex semisimple Lie group with a
graded Lie algebrag = ⊕

j g
j , and letG0 be the analytic subgroup ofG

with Lie algebrag0. Then the adjoint action ofG0 on anygk , with k �= 0,
has only finitely many orbits. Hence one of them must be open.

PROOF. Let H be as in Lemma 10.15, and let� be the automorphism
of g given by� = Ad(exp 2π i H/k). The subalgebras fixed by � is⊕

jk g jk , and thuss is graded withs0 = g0 ands1 = gk . ExtendCH to a
Cartan subalgebrah of g that lies withing0. Thens containsh, and we find
thats = h ⊕ ⊕

γ∈
 gγ , where
 is the set of rootsγ for whichγ (H) is a
multiple of k. The set
 is closed underγ �→ −γ , and that is all that is
needed for the proof of Corollary 5.94cto show thats is reductive with its



3. Vinberg's Theorem 631

center contained ins0 = g0. Replacings by [s, s] and applying Theorem
10.19, we obtain the corollary.

Examples 3 and 4 in §1 are cases of Theorem 10.19 that contain the
overlay of a real form of the underlying complex group. This additional
structure can be imposed in complete generality. The grading of the com-
plex semisimple Lie algebrag leads, via an elementH as in Lemma 10.15,
to a parabolic subalgebraq = l⊕u. It does not completely specify a Cartan
subalgebra or a system of positive roots, only the 1-dimensional subspace
CH of a Cartan subalgebra and the positivity of the roots that are positive on
H , namely those that contribute tou. Let us therefore extendCH to a Cartan
subalgebra by means of Proposition 10.11a and then introduce a system of
positive roots that takesH first in the ordering. To this much information
we can associate a Dynkin diagram forg. This diagram we make into an
abstract Vogan diagram by imposing zero 2-element orbits and by painting
the simple roots that contribute tou. Theorem 6.88 says that this abstract
Vogan diagram arises from a real formg0 of g and a Cartan involutionθ
of g0. Changing the meaning ofG, let us writeG for the analytic group
corresponding tog0 andGC for its complexification with Lie algebrag. Let
K be the maximal compact subgroup ofG corresponding toθ . Since the
Vogan diagram has zero 2-element orbits, we have rankG = rankK . The
closure of exp(iRH) is a torus inK and its centralizerL is a connected
compact group whose Lie algebra is the real forml0 = g0 ∩ g0 of l = g0.
The complexificationLC of L has Lie algebral. Then Theorem 10.19 says
thatLC acts ong1 with an open orbit. In the definition of prehomogeneous
space in §1, the complex group is thereforeLC, and the vector space is
V = g1. The compact form ofLC, which was calledU in the definition of
prehomogeneous space, is the groupL.

We will be especially interested in the special case in which the parabolic
subalgebra is maximal parabolic. This is the case in which�−�′ consists
of just one root, sayβ. If mβ = k, then the indexing for the grading uses
only the integers inkZ; so we may as well normalize matters by making
mβ = 1. If the complexified Cartan decomposition is written asg = k⊕ p,
thenk = ⊕

j eveng
j andp = ⊕

j oddg
j . Instances of this situation arise in

Examples 3 and 4 in §1. Example 3 covers all cases in which the underlying
group is simple and the unique noncompact simple root occurs just once in
the largest root. The instances ofSO with m ≥ 2 in Example 4 are some
classical cases in which the underlying group is simple and the unique
noncompact simple root occurs twice in the largest root.
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4. Analysis of Symmetric Tensors

Using notation as at the end of §3, let us examine Examples 3 and 4 of
§1 from the point of view of decomposingS(g1) under the adjoint action
of L or LC.

We begin with the instance of Example 3 in whichG = SU (m, n). This
example is discussed at length in §VII.9. The notation will be less cum-
bersome if we work instead withG = U (m, n) andGC = GL(m + n, C).
HereK = U (m)×U (n), andK C = GL(m, C)×GL(n, C). We can write
members ofg = gl(m + n, C) in blocks of sizesm andn as

( ∗ ∗
∗ ∗

)
. In the

complexified Cartan decompositiong = k⊕p, k consists of all the matrices(
∗ 0

0 ∗

)
, andp consists of all the matrices

(
0 ∗
∗ 0

)
. We are interested in the

action ofK or K C on p+, which consists of all the matrices
(

0 ∗
0 0

)
. Then

Ad of a member
(

k1 0

0 k2

)
of K C on thep+ matrix

(
0 x

0 0

)
is thep+ matrix(

0 k1xk−1
2

0 0

)
. Thus we can identifyp+ with the spaceMmn(C) of m-by-n

matrices, andK or K C is acting by(k1, k2)(x) = k1xk−1
2 . On the Lie algebra

level,k = gl(m, C)⊕gl(n, C) is acting onp+ by(X1, X2)(x) = X1x−x X2.
We use the direct sum of the diagonal subalgebras as Cartan subalgebra,
and the positive roots are theei − ej with i < j . We are interested in the
decomposition ofS(Mmn(C)) underK = U (m) × U (n), and the result is
as follows.

Theorem 10.23. Let r = min(m, n). In the action ofU (m) × U (n)

on S(Mmn(C)), the irreducible representations that occur are exactly the
outer tensor productsτm

λ ⊗̂(τ n
λ )c, whereλ is any nonnegative highest weight

of depth≤ r , and the multiplicities are all 1. Hereτm and τ n refer
to irreducible representations ofU (m) andU (n), respectively, and( · )c

indicates contragredient.

REMARK. Let m ≤ n for definiteness, so thatr = m; the argument
for m > n is similar. If λ = (a1, . . . , am), thenτm

λ has highest weight
(a1, . . . , am), and(τ n

λ )c haslowest weight(−a1, . . . , −am, 0, . . . , 0). The
highest weight of(τ n

λ )c is therefore(0, . . . , 0, −am, . . . , −a1).

FIRST PART OF THE ARGUMENT. Let us prove that the indicated ir-
reducible representations actually occur. It is more convenient to work
with the spaceP(Mmn(C)) of polynomials with action(k1, k2)(p)(x) =
p(k−1

1 xk2) than to work with the space of symmetric tensors; we take con-
tragredients, one degree at a time, to get the decomposition ofS(Mmn(C)).
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Let Pd(Mmn(C)) be the subspace of polynomials homogeneous of degree
d. Since the representation ofK C on eachPd(Mmn(C)) is holomorphic,k
acts by

(10.24) ((X1, X2)p)(x) = d
dt

p((expt X1)
−1x(expt X2))|t=0.

We are to show that each((−am, . . . , −a1), (a1, . . . , am, 0, . . . , 0)) occurs
as a highest weight.

For 1 ≤ l ≤ m, let x# = x#(l) be thel-by-l submatrix ofx obtained
by using rowsm − l + 1 throughm and columns 1 throughl, and let
dl(x) = det(x#). Suppose thatk1 andk2 are upper triangular. Letk#

1 be
the lower rightl-by-l block of k1, and letk#

2 be the upper leftl-by-l block
of k2. A little computation shows thatdl(k

−1
1 xk2) = det(k#

1
−1x#k#

2) =
(detk#

1)
−1dl(x)(detk#

2), and it follows thatdl is a nonzero highest weight
vector with weight− ∑m

i=m−l+1 ei + ∑m+l
j=m+1 ej . From formula (10.24)

we see that a product of powers of highest weight vectors is a highest
weight vector and the weights are additive. Ifa1 ≥ · · · ≥ am ≥ 0,
thenda1−a2

1 da2−a3
2 · · · dam−1−am

m−1 dam
m is a highest weight vector with the required

highest weight.

SECOND PART OF THE ARGUMENT. We give a heuristic proof that the
multiplicities are 1 and that the only highest weights are the ones mentioned;
the heuristic proof can be made rigorous without difficulty, but we will omit
here the steps needed for that purpose.

There is one rigorous part. The linear functionsx �→ xi j on p+ with
i ≤ m < j form a basis forP1(Mmn(C)), and (10.24) shows that such a
function is a weight vector with weight−ei +ej . Since linear combinations
of products of such functions yield all polynomials, we can conclude that
the only weights are sums of the expressions−ei + ej . That is, all the
weights are of the form((b1, . . . , bm), (c1, . . . , cn)) with all bi ≤ 0 and all
cj ≥ 0. In particular, this is true of the highest weight of any irreducible
constituent.

For the heuristic part, we use the choiceγj = ej − em+ j for 1 ≤ j ≤ m
in Example 3 of §1. Thene = ∑m

j=1 Ej,m+ j is a member ofp+ in the
unique open orbit underK C. If we write (m + n)-by-(m + n) matrices

in block form with blocks of sizesm, m, andn − m, thene =
(

0 1 0

0 0 0

0 0 0

)
,

where 1 is them-by-m identity matrix. The members ofK C are anything

invertible of the form

(
z 0 0

0 a b

0 c d

)
. Let (K C)e be the subgroup ofK C fixing
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e; direct computation shows that(K C)e consists of all invertible matrices(
a 0 0

0 a 0

0 c d

)
. We can identifyK C/(K C)e with the open subset Ad(K C)e of

p+. We are interested in identifying the action ofK C on the restric-
tions of the holomorphic polynomials to this set, and we only make the
space of functions bigger if we considerall holomorphic functions on
K C/(K C)e. The result is something like an induced representation except
that only holomorphic functions are allowed. We introduce the notation
“holo-ind” for this ill-defined construction, which we might call “holomor-
phic induction.” We seek to understand holo-indK C

(K C)e
1. If we write(K C)int

for the intermediate group consisting of all invertible matrices

(
z 0 0

0 a 0

0 c d

)
,

then the formal computation, which we explain in a moment, is

holo-indK C

(K C)e
1 = holo-indK C

(K C)int

(
holo-ind(K C)int

(K C)e
1
)

= holo-indK C

(K C)int

(⊕
λ

(τm
λ )c⊗̂τm

λ ⊗̂1
)

= ⊕
λ

(τm
λ )c⊗̂(

holo-indK C

(K C)int
(τm

λ ⊗̂1)
)

= ⊕
λ

(τm
λ )c⊗̂τ n

λ .

The symbol
⊕

here admits an interpretation as an orthogonal sum of
Hilbert spaces, but let us not belabor the point. What deserves attention
is the formal reasoning behind each line: The first line is holomorphic
induction in stages, and the second line is the usual result for induction
when a groupH is embedded diagonally inH × H . The embedding here
is of thea as the diagonal subgroup of pairs(z, a); the inner representation
does not depend on the variablesc andd. The parameterλ varies over all
highest weights of depth≤ m. The third line uses commutativity of

⊕
and holomorphic induction, and again the innermost representation does
not depend on the variablesc andd. The fourth line is the crux of the matter
and follows from the Borel–Weil Theorem, which is discussed briefly in
the Historical Notes. The highest weightλ of τm

λ has to be nonnegative, as
we saw above, and we obtain the desired upper bound for the multiplicities.

Let us state without proof a generalization of Theorem 10.24 that handles
all instances of Example 3 of §1.

Theorem 10.25(Schmid). IfG/K is Hermitian and if a good ordering
is used to define positivity of roots, introduce{γ1, . . . , γs} as follows: γ1
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is the largest positive noncompact root, and, inductively,γj is the largest
positive noncompact strongly orthogonal to all ofγ1, . . . , γj−1. Then the
highest weights of the representations ofK C that occur inS(p+) are exactly
all expressions

∑s
j=1 ajγj with all aj ∈ Z and witha1 ≥ · · · ≥ as ≥ 0.

Moreover, all these representations occur inS(p+) with multiplicity 1.

Lemma 7.143 shows thats in Theorem 10.25 is the real rank ofG. For
this s, the theorem says that ans-parameter family of representations of
K C handles the analysis ofS(p+).

Now let us turn to Example 4 in §1. The two classes of groups behave
similarly, and we concentrate onG = SO(2m, 2n)0. A look at the roots
shows thatl0 = R ⊕ su(m) ⊕ so(2n), and one readily checks thatL ∼=
U (m) × SO(2n). The noncompact positive roots, namely allei ± ej with
i ≤ m < j , are the weights occurring inu ∩ p. The variousei ’s are
the weights of the standard representation ofU (m), and the±ej ’s are the
weights of the standard representation ofSO(2n). As a result we can check
thatu ∩ p ∼= Mm,2n(C) and that the action ofL on P(u ∩ p) corresponds to
the action onP(Mm,2n(C)) by U (m) on the left andSO(2n) on the right.
Hence the action ofL onS(u∩p) corresponds to the action onS(Mm,2n(C))

byU (m) on the left andSO(2n) on the right. This is the natural restriction
of the action ofU (m) × U (2n) on S(Mm,2n(C)), which is addressed in
Theorem 10.23. According to that theorem, the irreducible constituents are
all τm

λ ⊗̂(τ 2n
λ )c for λ nonnegative of depth≤ m, and the multiplicities are

all 1. Sincem ≤ n, the restriction ofτ 2n
λ to SO(2n) is given by Littlewood’s

result stated as Theorem 9.75; from the theorem we see that only the first
m entries of then-tuple highest weight of an irreducible constituent can be
nonzero. Moreover, the resulting reducible representation ofSO(2n) is its
own contragredient, and hence the restriction of(τ 2n

λ )c is the same as the
restriction ofτ 2n

λ . This much argument proves Theorem 10.26 below for
SO(2m, 2n)0, and a similar argument handlesSO(2m, 2n + 1)0.

Theorem 10.26 (Greenleaf). ForG equal to either of the groups
SO(2m, 2n)0 or SO(2m, 2n + 1)0 with m ≤ n, every highest weight
of L in the adjoint action onS(u ∩ p) is in the span ofe1, . . . , e2m.

Thus the number of parameters of irreducible representations ofL ap-
pearing inS(u ∩ p) is bounded above by the real rank 2m of G. (The
multiplicities may be greater than 1, however.) Of course, the number of
parameters for all the irreducible representations ofL is the (complex) rank
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m + n of G, and hence only very special representations ofL can occur in
S(u ∩ p) whenm is much less thann.

Theorem 9.75 is explicit enough so that one can say more about the
decomposition. The groupsSO(2, 2n)0 andSO(2, 2n + 1)0 are handled
by Theorem 10.25. Here is a precise result aboutSO(4, 2n)0. To avoid
becoming too cumbersome, the statement takes liberties with the notion
of representation, allowing a countable sum of irreducible representations,
with no topology, to be considered as a representation.

Theorem 10.27(Gross–Wallach). ForSO(4, 2n)0 with n ≥ 2, the
1-dimensional representationτ of L with highest weight 2e1 + 2e2 occurs
in S4(u ∩ p) and has the property that the adjoint representation ofL on
S(u ∩ p) decomposes as the tensor product of 1⊕ τ ⊕ τ 2 ⊕ τ 3 ⊕ · · ·
with a multiplicity-free representationσ whose irreducible constituents
have highest weights described as follows: Let(a, b, k, d) be any integer
4-tuple satisfying

a ≥ b ≥ 0, 0 ≤ k ≤ [a/2], max(0, b − 2k) ≤ d ≤ min(b, a − 2k).

Then the corresponding highest weight forn ≥ 3 isae1 + be2 + ce3 + de4,
wherec = a + b − 2k − d. Forn = 2, the same parameters are to be used,
but the 4-tuple yields two highest weightsae1 + be2 + ce3 ± de4 if d �= 0.

PROOF. As we observed before the statement of Theorem 10.26, we
are to decompose, for each integer pair(a, b) with a ≥ b ≥ 0, the
representation ofU (2)×U (2n) with highest weightae1 +be2 +ae3 +be4

under the subgroupU (2)×SO(2n). We use Theorem 9.75 for this purpose.
The expressionµ in that theorem takes values of the form 2ke3 +2le4 with
k ≥ l ≥ 0, 2k ≤ a, and 2l ≤ b. The contributions fromµ = 2ke3 will be
part ofσ , and the other contributions will havek ≥ l ≥ 1. Writing σ both
for the representation and for the space on which it acts and comparing the
analysis that is to be done for(k, l) with that for(k − 1, l − 1), we see that
Sm(u ∩ p) ∼= (σ ∩ Sm(u ∩ p)) ⊕ (τ ⊗ Sm−4(u ∩ p)) for m ≥ 4. The tensor
product relation follows, and we are left with analyzingσ .

With a andb fixed, we now want to work withλ = ae3 + be4 andµ =
2ke3, where 0≤ k ≤ [a/2]. Consider the possibilities for an expression
ν = ce3+de4 that is to contribute a Littlewood–Richardson coefficientcλ

µν ;
ν is at least to havec ≥ d ≥ 0, c ≤ a, andd ≤ b. The diagram that arises
in the statement of Theorem 9.74 has two rows. The first row consists of 2k
0’s followed bya−2k x’s, and the second row hasb x’s. The number of x’s
must matchc+d, and thusc+d = a +b−2k. The pattern ofν consists of
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c 1’s andd 2’s, and only 1’s can be used for the x’s in the first row because
of (a) and (c) in Theorem 9.74. Also the substitution of 1’s and 2’s for the
x’s in the second row must result in 1’s followed by 2’s because of (a) in
that theorem. This fact already means that the diagram can be completed
in at most one way, and we see as a result thatσ is multiplicity free. The
count of 1’s and 2’s is that we must havec − (a − 2k) 1’s andd 2’s in
the second row. Condition (b) in the theorem says that no column in the
completed diagram can have a 1 above a 1; this means that the number of
1’s in the second row, which isc − (a − 2k), must be≤ 2k. This condition
simplifies toc ≤ a and is already satisfied. Finally condition (c) in the
theorem says that the number of 2’s in the appropriate listing, when all 2’s
have been listed, must not exceed the number of 1’s to that point, and this
means thatd ≤ a − 2k. The complete list of constraints is therefore

c + d = a + b − 2k, 0 ≤ c ≤ a, 0 ≤ d ≤ b, c ≥ a − 2k, d ≤ a − 2k.

Definec by c = a + b − 2k − d. The conditionc ≥ a − 2k is equivalent
with d ≤ b, andc ≥ a − 2k forcesc ≥ 0. Thus the condition 0≤ d ≤
min(b, a − 2k) incorporates all the inequalities exceptc ≤ a. From the
definition ofc, this is equivalent withd ≥ b − 2k. The theorem follows.

Apart from Examples 3 and 4 in §1, what can be said in some generality?
We give just one result of this kind. It allows the induced representation in
Proposition 10.2 to be analyzed in stages using three compact symmetric
spaces.

Proposition 10.28.Suppose that the grading of the complex semisimple
g is built from a maximal parabolic subalgebra, and suppose that(h, e, f )

is ansl2 triple withh ∈ l, e ∈ g1, and f ∈ g−1 such that̄h = −h andē = f ,
where bar is the conjugation ofg with respect to the real formg0. Define
c = Ad(exp1

4π i(e + f )). This is an element of Intg of order dividing 8.
Then the set ofX ∈ l0 with [X, e] = 0 equals the subalgebra ofl0 fixed
by c.

SKETCH OF PROOF. If X ∈ l0 has [X, e] = 0, then [X, f ] = [ X, ē] = 0
andc(X) = X . Conversely ifX is in l andc(X) = X , let H be as in
Lemma 10.15. The Lie algebras = span{H, h, e, f } is reductive with
centerC(H − 1

2h). Decomposeg into irreduciblesVi under ads, and write
X = ∑

Xi accordingly. Then [H, Xi ] = 0 andc(Xi) = Xi for all i . Also
ad(H − 1

2h) is scalar on eachVi , and henceXi is a weight vector for adh.
An easy check shows thatc cannot fix a nonzero weight vector inVi unless
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dim Vi = 1; in this case, [e, Xi ] = 0. Summing oni gives [e, X ] = 0. The
result follows.

5. Problems

1. LetG beSO(n, C) with the nonzero scalar matrices adjoined. Prove that the
standardn-dimensional representation ofG yields a prehomogeneous vector
space forG.

2. Prove that the usual representation ofGL(2n, C)on
∧2C2n makes

∧2C2n into
a prehomogeneous vector space forGL(2n, C). Prove that the corresponding
statement is false for

∧3Cn if n is large enough.

3. Fix a complex semisimple groupG. Prove that, up to isomorphism, there can
be only finitely many representations ofG that yield prehomogeneous vector
spaces.

4. Let g be a complex reductive Lie algebra, and letG = Int g. Starting from
Corollary 10.13, prove that, up to the adjoint action ofG, there are only finitely
many nilpotent elements ing.

5. Let the gradingg = ⊕
k gk of the complex semisimple Lie algebra be associ-

ated to a maximal parabolic subalgebra, and suppose thatg1 �= 0. Prove that
the representation ofg0 ong1 is irreducible.

6. State and prove a converse result to Problem 5.

Problems 7–9 develop and apply a sufficient condition for recognizing the open
orbit in a prehomogeneous vector space of parabolic type.

7. Letg = ⊕
k gk be a graded complex semisimple Lie algebra, letG = Int g,

and letG0 be the analytic subgroup ofG with Lie algebrag0. Suppose that
e �= 0 is in g1, and suppose thate can be included in ansl2 triple (h, e, f )

such thath is a multiple of the elementH given in Lemma 10.15. Prove that
theG0 orbit of e is open ing1.

8. For the groupSp(2, 2), let the simple roots be as in (2.50), and takee2 − e3

to be the only simple root that is noncompact. In the notation at the end of
§3,u ∩ p is then spanned by root vectorsEα for α equal toe1 ± e3, e1 ± e4,
e2 ± e3, ande2 ± e4. Prove for all nonzero constantsa andb that the orbit
underLC of e = aEe1+e3 + bEe2−e3 is open inu ∩ p.

9. In the notation of Example 4 of §1 and the end of §3, the vector spaceu ∩ p

was shown in §1 to be prehomogeneous for the subgroupLC of SO(2m, 2n)0

when m ≤ n, but Vinberg’s Theorem says thatu ∩ p is prehomogeneous
without this restriction. By mixing the definitions in Example 4 of §1 and in
Problem 8 and by using Problem 7, obtain an explicit formula for an element
e in the open orbit under the weaker restrictionm ≤ 2n.




