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CHAPTER XVIL

THETA RELATIONS ASSOCIATED WITH CERTAIN GROUPS OF CHARACTERISTICS.

294. TFor the theta relations now to be considered*, the theory of the
groups of characteristics upon which they are founded, is a necessary
preliminary. This theory is therefore developed at some length. When the
contrary is not expressly stated the characteristics considered in this
chapter are half-integer characteristicst; a characteristic

1 = Q1,, q2/7 4“') Qpl>
2q %<Q1; G2y -5 Qp

is denoted by a single capital letter, say . The characteristic of which all
the elements are zero is denoted simply by 0. If R denote another charac-
teristic of half-integers, the symbol @ + R denotes the characteristic, S = }s,

* The present chapter follows the papers of Frobenius, Crelle, Lxxx1x. (1880), p. 185, Crelle,
xcvl. (1884), p. 81. The case of characteristics consisting of n-th parts of integers is considered
by Braunmiihl, Math. Annal. xxxvir. (1890), p. 61 (and Math. Annal. xxx1. (1888), where the
case n=3 is under consideration).

To the literature dealing with theta relations the following references may be given : Prym,
Untersuchungen iiber die Riemann’sche Thetaformel (Leipzig, 1882) ; Prym u. Krazer, Acta Math.
ur. (1883); Krazer, Math. Annal. xx11. (1883); Prym u. Krazer, Neue Grundlagen einer Theorie
der allgemeinen Thetafunctionen (Leipzig, 1892), where the method, explained in the previous
chapter, of multiplying together the theta series, is fundamental: Noether, Math. Annal. x1v.
(1879), xv1. (1880), where groups of half-integer characteristics are considered, the former paper
dealing with the case p=4, the latter with any value of p; Caspary, Crelle, xc1v. (1883), xcvr.
(1884), xcvir, (1884); Stahl, Crelle, rxxxvir. (1879) ; Poincaré, Liouville, 1895 ; beside the books
of Weber and Schottky, for the case p=3, already referred to (§§ 247, 199), and the book of
Krause for the case p=2, referred to § 199, to which a bibliography is appended. References to
the literature of the theory of the transformation of theta functions are given in chapter XX.
In the papers of Schottky, in Crelle, cir. and onwards, and the papers of Frobenius, in
Crelle, xcvii. and onwards, and in Humbert and Wirtinger (loc. cit. Ex. iv. p. 340), will be found
many results of interest, directed to much larger generalizations; the reader may consult Weier-
strass, Berlin. Monatsber., Dec. 1869, and Crelle, Lxxx1x. (1880), and subsequent chapters of the
present volume.

1 References are given throughout, in footnotes, to the case where the characteristics are n-th
parts of integers. In these footnotes a capital letter, Q, denotes a characteristic whose elements
are of the form ¢'i/n, or of the form g,/n, ¢/, g¢; being integers, which in the ‘reduced’ case are
positive (or zero) and less than n. The abbreviations of the text are then immediately extended
to this case, n replacing 2,
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whose elements s/, s; are given by s’ =¢/ +7/, s;=g¢;+7;. The charac-
teristic, ¢, wherein ¢/=s/, t;=s; (mod. 2) and each of ¢/, ..., ¢, is either
0 or 1, is denoted by QR. TUnless the contrary is stated it is intended in
any characteristic, 3¢, that each of the elements ¢/, g; is either 0 or 1. If
%q, 37, 3k be any characteristics, we use the following abbreviations

2 ’ 4
Q=90 =q@ + - + 00, 1@ Rl=g¢"—qr= 2 (g7 —qi72),

QR K|=(RBK|+|KQ+]Q Rl () =erir=eritmssaimy;

further we say that two characteristics are congruent when their elements
differ only by integers, and use for this relation the sign =. In this sense
the sum of two characteristics is congruent to their ditference. And we
say that two characteristics @, R are syzygetic or azygetic according as
|Q, R|=0or=1 (mod. 2), and that three characteristics P, @, R are
syzygetic or azygetic according as | P, @, BR|=0 or =1 (mod. 2).

Ez. Prove that the 2p+1 characteristics arising in § 202 associated with the half

periods u® 4, w® % 4™ % u® % y% ¢ are azygetic in pairs. Further that if any four of

these characteristics, 4, B, C, D, be replaced by the four, BCD, CAD, ABD, ABC, the
statement remains true ; and deduce that every two of the characteristics 1, 2, ..., 7 of
§ 205 are azygetic.

295. A preliminary lemma of which frequent application will be made
may be given at once. Let a1, ..., @y n, ..., @1, ..., @y » De integers, such
that the 7 linear forms

Ui=a; 2+ ...... + @i 2%y, =12, ..,7),
are linearly independent (mod. 2) for indeterminate values of =y, ..., @, ;
then if a,, ..., a, be arbitrary integers, the r congruences

Ui=a, ..., U, = a,, (mod. 2),

have 27" sets of solutions* in which each of «y, ..., z, is either 0 or 1. For
consider the sum

1 3 [l 4emiiUimad] | [1+ emilUrman)],

2 2y 2n
wherein the 27 terms are obtained by ascribing to #, ..., @, every one of the
possible sets of values in which each of 2, ..., #, is either 0 or 1. A term in

which z,, ..., #, have a set of values which constitutes a solution of the
proposed congruences, has the value unity. A term in which #,, ..., z, do
not constitute such a solution will vanish ; for one at least of its factors will
vanish. Hence the sum of this series gives the desired number of sets of

* When the forms U, ..., U, are linearly independent mod. m, the number of incongruent
. 2w 5
sets of solutions is m»~". In working with modulus m we use w=em , instead of ¢'” ; and instead

of a factor 1+¢™ (V1) we uge a factor 1+ p+p2+...+p* 1, where y:wU'_"‘.
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solutions of the congruences. Now the general term of the series is typified
by such a term as

2
where x may be 0, or 1, or ..., or p; and this is equal to
1

57 e-m'(a,+...+a,") Eem' (('|1'|+..~+'3u1-n)’

1 s UT = )+ (Vy=at i (U - ay) )

where
Ci=0y i+ ovuen. + a,, ;, (?:=1, 2,...,%),
and, therefore, equal to

'21‘1. e-—?ﬂ‘((h"‘...*l-ll“)(l + eiricl) (1 + em'c.,) e (1 + eiridn);

now, when x>0, one at least of the quantities ¢, ..., c, must be =1 (mod. 2),
since otherwise the sum of the forms U, ..., U, is = 0 (mod. 2), contrary to
the hypothesis that the » forms U,, ..., U, are independent (mod. 2); hence
the only terms of the summations which do not vanish are those arising for
#=0, and the sum of the series is

1
=3.1
7y b
or 27,

Ez. 1. 1f, of all 2% half-integer characteristics, 3¢, the number of even characteristics
be denoted by g, and % be the number of odd characteristics, prove by the method here
followed that g— 4, which is equal to 5¢™99, is equal to 2». This equation, with g+A=2%,
determine the known numbers¥* g=2r-1(20 1), A=20-1(2P—1). '

Ez. ii. If }a denote any half-integer characteristic other than zero, and ¢ become in
turn all the 2% characteristics, the sum se™!4: € = 54" (47 =% vanishes. For it isequal to

(14€™®) (14678 ... (14e~ ™ ... (1+¢~™r),

and if 4a be other than zero, one at least of these factors vanishes. On the other hand it
is obvious that se™ !0 Q1 =g,

‘We may deduce the result from the lemma of the text. For by what is there proved

there are 2%-! characteristics for which |4, @|=0 (mod. 2) and an equal number for
which |4, @|=1.

296. We proceed now to obtain a group of characteristics which are
such that every two are syzygetic.

Let P, be any characteristic other than zero; it can be taken in 2% —1
ways.
Let P, be any characteristic other than zero and other than P,, such that
| P, Py| =0 (mod. 2);
* Among the n® incongruent characteristics which are n-th parts of integers, there are

n?~1 (nP +n - 1) for which | @ | =0 (mod. n), and n?~1 (n? - 1) for which | Q | =r (mod. n), when r
is not divisible by =,
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by the previous lemma (§ 295), P, can be taken in 2#—1— 2 ways; also by
the definition, if P, P, be the reduced sum* of P,, P,,

| P, P,P,|=|P,, P,|+| P,, P,| =0 (mod. 2).

Let P; be any characteristic, other than one of the four 0, P,, P,, P, P,,
such that the two congruences are satisfied
| Ps, P,|=0, | P, P,|=0, (mod. 2);
then P, can be chosen in 22— 22 ways; also, by the definition,
| Py, P,P,|=| Py, P,|+|P;, P,| =0, (mod. 2),

and
| Ps, PP, | =0, ete.

Let P, be any characteristic, other than the 2 characteristics
o, P, P, P, PP, PP, P,P, P,P,P,,
which is such that
| P, P,|=0, | P, P,|=0, | P, Py| =0, (mod. 2);
then P, can be chosen in 2%—3 — 23 ways, and we have

; | P,P,, P,|=| P, P,|+| P, P,| = 0, (mod. 2), etc.,
an
| P,P,P,, P,|=| P, P,|+| P, P,| +| P, P,| =0, (mod. 2).

Proceeding thus we shall obtain a group of 2" characteristics,
0, P, P, ..., PP, .. PPP, ..,

formed by the sums of r fundamental characteristics, and such that every
two are syzygetic. The r-th of the fundamental characteristics can be
chosen in 2%+ — 2r—1=2r1 (2%-7+2_ 1) ways; thus we may suppose r as
great as p, but not greater. Such a group will be denoted by a single
letter, (P); the » fundamental characteristics, P;, P,, P;, ..., may be called
the basis of the group. We have shewn that they can be chosen in
(27 —1) (2771 —2) (272 —27) ... (22771 = 27 )/]r,
or
(27 —1)(272 - 1) (27~ —1)... (2Pt — 1) 20O/ I

ways. But all these ways will not give a different group; any r linearly
independent characteristics of the group may be regarded as forming a basis
of the group. For instance instead of the basis

P, P, ..., P,

we may take, as basis,
P1P2) P2) ---yPr’

wherein P, P, is taken instead of P,; then P, will arise by the combination

* So that the elements of P, P, are each either 0 or }.
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of P,P, and P,. Hence, the number of ways in which, for a given group, a
basis of r characteristics, Py, ..., P/, may be selected is

@ =1) (2 —2)...2 —2)|r,

for the first of them, P, may be chosen, other than 0, in 2" —1 ways; then
Py, other than 0 and Py, in 2" — 2 ways; then P may be chosen, other than
0, P/, P/, P/P,, in 2" —2? ways, and so on, and the order in which they are
selected 1s immaterial.

Hence on the whole the number of different groups, of the form
0, P, P, ..., PP, ... PPP, ..
of 27 characteristics, in which every two characteristics of the group are
syzygetic*, 1s
@r-1)2r:-1)...... (242 1)
@2 -1)2*-1)...... (2-1)

Such a group may be called a Gopel group of 2% characteristics. The
name is often limited to the case when r=p, such groups having been
considered by Gopel for the case p =2 (cf. § 221, Ex. i.).

297. We now form a set of 27 characteristics by adding an arbitrary
characteristic 4 to each of the characteristics of the group (P) just obtained ;
let P, @, R be three characteristics of the group, and 4’, A”, A", the three
corresponding characteristics of the resulting set; then

|4, A", A" |=|AP,AQ,AR|=|P.Q R|=|Q R|+|R,P|+|P,Q|, (mod.2),

as is immediately verifiable from the definition of the symbols; thus the
resulting set is such that every three of its characteristics are syzygetic, that
is, satisfy the condition

|4, A", A" | =0, (mod. 2);

this set is not a group, in the sense so far employed; we may choose » +1
fundamental characteristics 4, 4,, ..., 4,, respectively equal to 4, AP,
AP, ..., AP,, and these will be said to constitute the basis of the system;
but the 27 characteristics of the system are formed from them by taking only
combinations which involve an odd number of the characteristics of the basis.
The characteristics of the basis are not necessarily independent ; there may,
for instance, exist the relation A + AP,= AP,, or A =P,P,. But there can
be no relation connecting an even number of the characteristics of the basis;
for such a relation would involve a relation connecting the set, Py, P,, ..., P,,
of the group before considered, and such a relation was expressly excluded.
Hence it follows that there is at most one relation connecting an odd number

* When the characteristics are n-th parts of integers, the number of such syzygetic groups is
(n® 1) ... (n?=2+2_1) divided by (n"~1) ... (n - 1).
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of the characteristics of the basis; for two such relations added together
would give a relation connecting an even number.

Conversely if 4, 4,, ..., 4, be any r+1 characteristics, whereof no
even number are connected by a relation, such that every three of them
satisfy the relation

|4’, A”, A" | =0, (mod. 2),
we can, taking P,= 4,4, obtain » independent characteristics P, ..., P,, of
which every two are syzygetic, and hence, can form such a group (P) of 27
pairwise syzygetic characteristics as previously discussed. The aggregate of
the combinations of an odd number of the characteristics 4, 4,, ..., 4, may
be called a Gopel system* of characteristics. It is such that there exists no
relation connecting an even number of the characteristics which compose the
system, and every three of the 27 characteristics of the system satisfy the
conditions

|4, A7, A" =0, (mod. 2).
We shall denote the Gipel system by (4P).

To pass from a definite group, (P), of 27 pairwise syzygetic characteristics
to a Gopel system, the characteristic A may be taken to be any one of the
2 characteristics. But if it be taken to be any one of the characteristics of
the group (P), we shall obtain, for the Gopel system, only the group (P); and
more generally, if P denote in turn every one of the characteristics of the
group (P), and A4 be any assigned characteristic, each of the 2 characteristics
AP leads, from the group (P), to the same Gopel system. Hence, from a
given group (P) we obtain only 22— Gipel systems. Hence the number of
Gipel systems is equal to
(2% —1) (222 —1)... (22— 1) o

@ -2 —1)...(2-1)

We shall say that two characteristics, whose difference vs a characteristic of

the group (P), are congruent, mod. (P). Thus there exist only 27—
characteristics which are incongruent to one another, mod. (P).

2%

It is to be noticed that the 2%~ Gopel systems derived from a given
group (P) have no characteristic in common ; for if P,, P, denote character-
istics of the group, and 4,, 4, denote two values of the characteristic 4, a
congruence A,P,=A4,P, would give 4,=4,P,P,, which is contrary to the
hypothesis that 4, and A4, are incongruent, mod. (P). Thus the Gopel
systems derivable from a given group (P) constitute a division of the 2%
possible characteristics into 27~ systems, each of 2" characteristics. We can
however divide the 2% characteristics into 2%~ systems based upon any
group (Q) of 27 characteristics; it is not necessary that the characteristics of
the group (@) be syzygetic in pairs.

* By Frobenius, the name Gopel system is limited to the case when r=p.
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Ez. For p=2, r=2, the number of groups (P) given by the formula is 15. And the
number of Gopel systems derivable from each is 4. We have shewn in Example iv.,
§ 289, Chap. XV., how to form the 15 groups, and shewn how to form the systems
belonging to each one. The condition that two characteristics P, @ be syzygetic is equiva-
lent to | PQ|=| P |+| Q| (mod. 2), or in words, two characteristics are syzygetic when their
sum is even or odd according as they themselves are of the same or of different character.
It is immediately seen that the 15 groups given in § 289, Ex. iv., satisfy this condition.
The four systems derivable from any group were stated to consist of one system in which
all the characteristics are even and of three systems in which two are even and two odd.
We proceed to a generalization of this result.

298. Of the 27" Gopel systems derivable from one group (P), there is a
certain definite number of systems consisting wholly of odd characteristics,
and a certain number consisting wholly of even characteristics*. We shall
prove in fact that when p > there are 2°71(2° 4+ 1) of the systems which
consist wholly of even characteristics, o being p —r; these may then be
described as even systems; and there are 27~ (2 — 1) systems which may be
described as odd systems, consisting wholly of odd characteristics. When p=r,
there is one even system, and no odd system. In every one of the 2% (27—1)
Gopel systems in which all the characteristics are not of the same character,
there are as many odd characteristics as even characteristics.

For, if P,, ..., P, be the basis of the group (P), a characteristic 4 which
is such that the characteristics 4, AP,, ..., AP, are all either even or odd,
must satisfy the congruences

| XP,|=|XP;|=......=| X |, (mod. 2)
which are equivalent to
| X, P;|=| F:|, =12, ...,7),
as is immediately obvious. Since, when | X, P,|=| P, |, and | X, P,|=| P, |,
|X,P1P2|'_—‘|X,Pl|+|X,P2|EfX,P1|+|X,P2|+fP1,P2I
E‘PII+|P2|+|P1: P2IElPlP2I’

etc., it follows that these r congruences are sufficient, as well as necessary.
These congruences have (§ 295) 27— solutions. If A be any solution, each
of the 27 characteristics forming the Gopel system (AP) is also a solution;

for it follows immediately from the definition, if P, @ denote any two
characteristics of the group, that

[APQ[=]A[+|P|+[Q|+[4, P[+]|4,Q[+| P, Q|
' =[4|+2[P[+2]Q|+| P, Q]
=[4],
because | P, @ |=0. Hence the 27— solutions of the congruences consist of

* This result holds for characteristics which are n-th parts of integers, provided the group (P)
consist of characteristics in which either the upper line, or the lower line, of elements, are zeros.
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22— (2" = 2%~ characteristics 4, and the characteristics derivable therefrom
by addition of the characteristics, other than 0, of the group (P); namely
they consist of the characteristics constituting 2% Gopel systems, these
systems being all derived from the group (P). In a notation already
introduced, the congruences have 2%~ solutions which are incongruent

(mod. (P)).

Ez. If S be any characteristic which is syzygetic with every characteristic of the
group (P), without necessarily belonging to that group, prove that the 22°— 2" characteristics
84 are incongruent (mod. P), and constitute a set precisely like the set formed by the
characteristics 4.

299. Put now o =p—r, and consider, of the 2 Giopel systems just
derived, each consisting wholly either of odd or of even characteristics,
how many there are which consist wholly of odd characteristics and how
many which consist wholly of even characteristics. Let & be the number of
odd systems, and g the number of even systems. Then we have, beside the
equation

g+h=2%,
also
— 9o il R 7wl R, P,| —wil P, 7i| R, P.|—mi| P,
g—h=2 Ee IRI[ | gril R P=mil i1 | [ 4 gmil B P,I=mil P,1],

wherein P,, ..., P, are the basis of the group (£), and R is in turn every one
of the 2% possible characteristics. For, noticing that the congruence
| RP|=|R|is the same as | R, P|=]| P]|, it is evident that the element of
the summation on the right-hand side has a zero factor when R is a
characteristic for which all of R, RP,, ..., RP, are not of the same
character, either even or odd, and that it is equal to 27¢m!'Z! when
these characteristics are all of the same character; while, corresponding
to any value of R, say R=A, for which all of R, RP,, ..., RP, are of
the same character, there arise, on the right hand, 2 values of R, the
elements of the Gopel set (4P), for which the same is true.

Now if we multiply out the right-hand side we obtain

27 (g — k) =Sl Bl 4 3, [Seril BI+milR Pyl +.+IR, P[] g=ril Pi=wmmil P |
R P, Py R

wherein 3 denotes a summation extending to every set of u of the
Py, Py, ..

characteristics P,, ..., P,, and u is to have every value from 1 to r; but
we have, since P,, P,, ..., are syzygetic in pairs,

|B|+|R, P |+...... +|R, P,|=|RP,... P, |+ | P, |+...... + P,
and therefore

zem:IR|+1ri|R,P.I+...+1ri|R,PFI--m'lP,]—...—trilP,Ll = Zgﬂi[RPp--P,,,l = zem'lsl’
R R S

where S, =RP,... P,, will, as R becomes all 2% characteristics in turn,
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also become all characteristics in turn; also e £l = Z eS| 1s immediately
R 8

seen to be 27; it is in fact the difference between the whole number of even
and odd characteristics contained in the 2% characteristics. Hence
r(r—1)

2”(g~h)=2P|:1+r+T+ ...... +1:|=2P[(1+x)r]x=1=2p+r:

and therefore g — h = 277 =27,

This equation, with g + 4 =2%, when o > 0, determines g =27 (2" + 1)
and A= 2"1(27 — 1), and when ¢ =0 determines g=1, A=0.

These results will be compared with the numbers 2°-1(27 + 1), 2771 (27 — 1),
of the even and odd characteristics, which make up the 2% possible character-
istics.

If P; denote every characteristic of the group () in turn, and P, denote
one characteristic of the bases P,, ..., P,, and R be such a characteristic that
the 27 characteristics RP; are not all of the same character, at least one of
the r quantities | R, Py, | +| Py |is =1 (mod. 2), and therefore the product

r
I {1 + et Pul+mil R, Pml}
m=1

is zero. But, in virtue of the congruences,
IPinI——_:IPi!'*‘]Pj‘; |R,P5|+IR, leEIR, PinI,
this product is equal to
g enilPiI+1ri]R,Pi|’ or e—m Rl § em | RP:| |
i=1 =1
Now ¢m!&Pilis 1 or —1 according as RP; is an even or odd characteristic.
Hence the system of 27 characteristics RP; contains as many odd as even

characteristics, and therefore 27! of each, unless all its characteristics be of
the same character.

300. The 2% Gopel systems thus obtained, each of which consists wholly
of characteristics having the same character, either even or odd, have a
further analogy with the 2% single characteristics. We have shewn (§ 202,
Chap. XL) that the 2% characteristics can all be formed as sums of not more
than p of 2p + 1 fundamental characteristics, whose sum is the zero charaeter-
istic; we proceed to shew that from the 2% Gopel systems we can choose
20 +1 fundamental systems having a similar property for these 22 systems.

Let the s = 2> Gopel systems be represented by
(4,P), ..., (4,P),

the first of them, in a previous notation, consisting of 4, and all characteristics
which are congruent to 4, for the modulus (P), and similarly with the others.
Then we prove that it is possible, from 4,, ..., As to choose 20 + 1 character-
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istics, which we may denote by 4,, ..., A3, such that every three of them,
say 4’, A", A", satisfy the condition

|4, A", A | =1, (mod. 2);
but it is necessary to notice that, if P be any characteristic of the group (P),
|A'P, 47, A", = | 4', 4", A7 | +| P, 4" | +| P, 4",

is=|A4,4", A" |; for| P, A" |,=| P|, is also = | P, A" |; hence, if B, B”, B”
be any three characteristics chosen respectively from the systems (A4'P),
(4" P),(A" P), the condition | 4, A", A” | =1 will involve also | B, B, B” |=1;
hence we may state our theorem by saying that it is possible, from the
2% (3opel systems, to choose 20 + 1 systems, whereof every three are azygetic.

Before proving the theorem it is convenient to prove a lemma; if B be
any characteristic not contained in the group (P), in other words not
=0 (mod. (P)), and R become in turn all the 22¢ characteristics 4,, ..., 4;,

then*
Semil B Bl =,
R

For let a characteristic be chosen to satisfy the »+ 1 congruences
|X,B|=1,|X,P,|=0,...,| X, P, |=0, (mod. 2),
and, corresponding to any characteristic B which is one of 4,, ..., 4,, and
therefore satisfies the r congruences | R, P;|=| P;|, take a characteristic
S=RX; then
{S,B|—|R,B|=|X,B|=1,and |8, P;|=|RX, P;|=| R, P;|+| X, P;|=| P;|,
because | X, P;|=0; hence the characteristics 4,, ..., 4, can be divided into
pairs, such as R and S, which satisfy the equation ¢m!5 Bl= —¢gmi| % Bl This
provest that Zem!& Bl =0,
R

We now prove the theorem enunciated. Let the characteristic 4, be
chosen arbitrarily from the s characteristics 4,, ..., 4,; this is possible in
2% ways. Let A, be chosen, also from among 4,, ..., 4,, other than A4,;
this is possible in 22— 1 ways. Then A, must be one of the characteristics
A,,...,A,, other than A4,, 4,, and] must satisfy the congruence | 4,, 4,, X | =1.
The number of characteristics satisfying these conditions is equal to

P31 - el an 2]

* We have proved an analogous particular proposition, that if B be not the zero characteristic,
and R be in turn all the 2° characteristics, s B Bl_g (§ 295, Ex. ii.).
R
+ If R be all the 2P characteristics in turn, e %Rl _gw_ If P be one of the group (P),
R
and R be one of 4, ..., 4,, so that | R, P|=| P|, we have s PRI il Plgss
R

+ We do not exclude the possibility d;=4,4,. 8ince |4, d;, d;4,|=]4,, 4,], it is a
possibility only if | 4,, 43]|=1.



496 DETERMINATION OF GOPEL SYSTEMS [300

wherein R is in turn equal to all the characteristics 4,, ..., 4,. For a term
of this series, in which R satisfies the conditions for 4,, is equal to unity*,
while for other values of R the terms vanish. Now, since | 4,, 4,, R|
=|R, 4,4,|+ ] 4,, 4,], the series is equal to

Q=1 _ L gmi| 4y, 4] Eem’l& Aidsl

the characteristic 4,4, cannot be one of the group (P), for if 4,4,= P, then
A,=A,P, which is contrary to the hypothesis that 4,, ..., 4, are incon-
gruent for the modulus (P); hence by the lemma just proved the sum of the
series 1s 2%, and 4, can be chosen in 2% ways.

We consider next in how many ways 4, can be chosen; it must be one of
4,, ..., 4, other than 4,, 4,, 4; and must satisfy the congruences

|4, 4,, X |=1, |4, 4,, X|=1,
which, in virtue of the congruence | 4,, 4,, 45| =1, and the identity
IA2)A3:X‘+|A37 AlaXl'l'lAl)Am XIEIAls AZ) A3|)

involve also |A4,, 4;, X [=1. The number of characteristics which satisfy
these conditions is equal to

223, (1 — emil4u 43 R1) (1 — gmi| 41, 45, RI)
R

or
Qur—2 _ 9—2Fgmi| 4y, A, R| _ 2-23gmi| 4y, 4s, RI 4 9=2Sgril Ay, 4y, RI+mil 4y, 4s, B
R R R
where R is in turn equal to every one of 4,, ..., 4,; hence, in virtue of the

lemma proved, using the equations,
’Alx AQ’RlzlAly A2!+'R)A1A2"
'AI) AE:-R‘+‘AI; A31RIE|AI: Azl‘i“An A3‘+|A2A:'.) R‘,
the number of solutions obtained is 22—2, But we have
|A1A2A3;A1,A2|E‘AI;A2|+|A1A2A3;A1A2|E|A1;A2I+|A3,A1A2’-=-IA1,A2)A3151:
so that A,4,4, also satisfies the conditions.

Now it is to be noticed that, for an odd number of characteristics
B,, ..., By, the condition that every three be azygetic excludes the
possibility of the existence of any relation connecting an even number of
these characteristics, and for an even number of characteristics B, ..., By,
the condition that every three be azygetic excludes the possibility of the
existence of any relation connecting an even number except the relation
BB, ... B4 =0. For, B being any one of B,, ..., By, other than By, ..., By,
we have, as is easy to verify,

‘BI-B?"' B2m—1: Bm: B ‘ = IBI; Bz’m: B I + | Bﬂl Bzm; B i + ... + l Bzm—l; Bam: B l)

* It is immediately seen that | 4, B, B|=0.
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so that the left hand is = 1; therefore, as | B,,, By,, B| =0, we cannot have
B;n=B,B; ... Byy. This holds for all values of m not greater than k, and
proves the statement.

Hence, 20 + 1 being greater than 4, we cannot have A,=A4,4,4,, for we
are determining an odd number, 20+ 1, of characteristics. On the whole,
then, 4, can be chosen in 2%—% —1 ways.

To find the number of ways in which A4, can be chosen we consider the

congruences
|4, 4, X|=1, |A4,,4,, X |=1, |4,,4,, X|=1,

which include such congruences as |4,, 4;, X |=1, | 4,, 4,, X |=1, etc.
The characteristic 4; must be one of 4,, ..., 4,, other than 4,, 4,, 4,, A;
the condition that 4, be not the sum of any three of A4,, 4,, 4,, 4, is
included in these conditions. The number of ways in which A4, can be
chosen is therefore

233, (1 — g™t i, 4y, Rl)(l — g™l 4y, 4, Rl) (1 — gmil 4y, AQJRI)’
R

where R is in turn equal to every one of 4,, ..., 4,; making use of the fact
that 4, 4,44, is not =0, we find the number of ways to be 223,

Proceeding in this way, we find that a characteristic A,,1, can be chosen
in a number of ways equal to the sum of a series of the form

2—@Em—1) 'y, [1 — emtldy, 4, Rl] [1 — g™l 4y, As)R|] e [1 —erildy, Aﬂm:R‘]’
R

and therefore in 22—"—) ways, and that a characteristic 4,, can be chosen
in 2%2—@m—2) _1 ways, the value A,,=4,4,... Ay, being excluded. In
particular 4,, can be chosen in 22 — 1 ways, and 4,,4, in 2 ways.

To the 20 + 1 characteristics thus determined it is convenient* to add
the characteristic Ayyqo=A,4,... Aseps; if A;, A; be any two of 4,, ..., Asopy
we have

}A2¢+2, Ai, Aj|E|Ai, Aj, Al|+ ...... +‘Ai, Aj, A2a+1|51;
the expressions | 4;, 4;, 4;|, | 4, 4;, A;| being both zero. We have then
the result : From the 2 characteristics 4,, ..., A 1t ts possible to choose a
set A,, ..., Ayyys, Such that every three of them satisfy the condition
|A’, AII’ AIII ] = 1’
m
9o (27 _ 1) Q-1 (-2 1), (2 —1)2  wret (2o _1) (22 —1)...(2—1)

[20‘+2 20+ 2

ways ; there exists no relation connecting an even number of the characteristics
A, ..., Ay, except the prescribed condition that their sum is zero; since the
sum of two relations each connecting an odd number is a relation connecting

* In the particular case of § 202, Chap. XI., 4,,,, is zero.
B. 32
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an even number, there can be at most* only one independent relation con-
necting an odd number of the characteristics 4, ..., As42. And, as before
remarked, to every one of the characteristics A4,, ..., Ay, is associated a
Gopel system of 2" characteristics.

301. The 2 systems (4,P), ..., (4,P), which have been considered,
were obtained by limiting our attention to one group (P) of 2" pairwise
syzygetic characteristics. We are now to limit our attention still further to
the sets A4, ..., Asp4s just obtained satisfying the condition that every three
are azygetic.

If to any one of the characteristics 4,, ..., Ay, say A, we add the
characteristic X, the conditions that the resulting characteristic may still
be a characteristic of the set 4,, ..., 4;, are (§ 298) the r congruences
| XAy, P;|=|P;|,in which s=1, ..., r; in virtue of the conditions | Az, P;|
=| P;|, these are equivalent to the r congruences | X, P;|=0, which are
independent of k; these latter congruences have 2%-" solutions, but from
any solution we can obtain 2" others by adding to it all the characteristics of
the group (P). There are therefore 2%~ = 2% congruences X, incongruent
with respect to the modulus (P), each of which+, added to the set 4,, ..., Azgys,
will give rise to a set 4/, ..., A’y 1., also belonging to 4,, ..., 4,. Further
| Af, Aj, Ay |=| XA;, XA4;, XA, | =] A;, 4;, Ax|=1; and any relation con-
necting an even number of the characteristics 4/, ..., A%, gives a relation
connecting the corresponding characteristics of 4,, ..., Ay,. Thus the

2% sets derivable from 4,, ..., 4,,., have the same properties as the set
4, ..., A2a’+2'

Hence all the sets 4,, ..., 4,5, can be derived from
297(2% —1) (2 2—-1)...(22—1)
|20' +2

root sets by adding any one of the 227 characteristics X to each characteristic
of the root set.

302. Fixing attention upon one of these root sets, and selecting
arbitrarily 20 +1 of its characteristics, which shall be those denoted by
4,, ..., Ay1, We proceed to shew that of the 22 characteristics X, there is
just one such that the characteristics X4,, ..., XA4,,,,, derived from

Ay, ..., A3, have all the same character, either even or odd. The
conditions for this are

X4, |=| Xdy[= o = X,

* If the characteristic of which all the elements, except the i-th element of the first line, are
zero, be denoted by E;/, and E; denote the characteristic in which all the elements are zero
except the i-th element of the second line, every possible characteristic is clearly a linear aggre-
gate of EY, ..., Ey/, E,, ..., Ep. Thus when o has its greatest value, =p, there is certainly one
relation, at least, connecting any 2¢ + 1 characteristics.

1 It is only in case all the characteristics of the group (P) are even that the values of X can
be the characteristics 4,, ..., 4,.
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which are equivalent to the 25 congruences
| X, A, 4;|=|4,|+]4;], (=23, ..,(20+1));

if X be a solution of these congruences, and P be any characteristic of the
group (P), we have

| XP, A,A;|=| X, 4,4;|+| P, A, | +| P, A;|=| 4, | +| 4;| + 2| P|,

so that X P is also a solution; since the other congruences satisfied by X
were in number 7, and similarly, associated with any solution, there were 2"
other solutions congruent to one another in regard to the group (P), it
follows that the total number of characteristics X satisfying all the
conditions is 2—2—7=1. Thus, as stated, from any 2¢ + 1 characteristics,
A, ..., Aoy, of a root set, we can derive one set of 2 +1 characteristics

4,, ..., Ay, which are all of the same character, their values being of the
form A;=XA4,.

Starting from the same root set, and selecting, in place of A,, ..., Ay,
another set of 20+ 1 characteristics, say A, ..., duwys, We can similarly
derive a set of the form

X'4,, ..., X'4,.,.,

consisting of 20 +1 characteristics of the same character. The question
arises whether this can be the same set as 4, ..., A_wﬂ. The answer is in
the negative. For if the set X'4,, ..., X'4,,,, be in some order the same as
the set XA4,, ..., XA4,,,,, or the set XX'A4,, ..., XX A,,, the same as the
set A, ..., Ay, 1t follows by addition that XX'A4,= Ay, or XX'= 4, 4,54
Thence the set A; 4,405, A1 4340040, ooy A1 o1 Asgys, A, is the same as
A4, A,, ..., Ay, or we have 20 equations of the form A,A4;A4,.,,=4;, in
which ¢=2, ..., 20+1, j=2, ..., 20+1. Since there is no relation con-
necting an even number of the characteristics 4,, ..., A5, except the one
expressing that their sum is 0, these equations are impossible*.

Similarly the question may arise whether such a set as 4, ... App, of
20 + 1 characteristics of the same character, azygetic in threes, subject to no
relation connecting an even number, and incongruent for modulus (P), can
arise from two different root sets. The answer is again in the negative.
For if A,, ..., Aypyy, and By, ..., By, be two sets taken from different root
sets, the 20+ 1 conditions XA4;=X"B;, for t=1, ..., 20+1, to which by
addition may be added XA4,,,, = X'B,,.,, shew that the set B, ..., By, is
derivable from the set 4,, ..., A4, by addition of the characteristic XX’ to
every constituent. This is contrary to the definition of root sets. Conversely
if 4/, ..., A's4; be any one of the 2% sets which are derivable from the root
set A;, ..., Awys by equations of the form A;/=2Z4;, the set of 20+1

* To the sets 4,, ..., dy5y, and X'4,, ..., X'dyp., We may adjoin respectively their respective
sums. The two sets of 20+ 2 characteristics thus obtained are not necessarily the same. When
o is odd they cannot be the same, as will appear below (§ 303).

32—2



500 UTILITY OF FUNDAMENTAL SETS. [302

characteristics of the same character, say 4/, e A4',,.,, which are derivable
from A/, ..., A’y by equations of the form A/ =X'A/, will also be derived
from A, ..., Ay, by the equations 4= XA4;, in which X = X'Z.

On the whole then it follows that there are

?j’z(22" —-1)(2*2-1)...(22-1)
20 +1

different sets, A, ..., Ay, of 20+ 1 characteristics of the same character,
azygetic in threes, subject to no relation connecting an even number, and
incongruent for the modulus (P).

Of the characteristics 4, ..., Ay, there can be formed
(20+1,1)+(20+1,3)+...4(20+1,20 +1)=2%

combinations*, each consisting of an odd number; and, since there is no
relation connecting an even number of 4, ..., A, no two of these com-
binations can be equal. These combinations all belong to the characteristics
4,, ..., A, satisfying the r congruences | X, P;|=| P;|; for

| A\ 4, ... Ay, Pi|= |4, Pi|+ ... +| Ay, Pi|=| P;|.

And no two of them are congruent in regard to the modulus (P); for a
relation of the form

4,.. Ay =A4,4,,, ... 4., P,
wherein P is a characteristic of the group (P), would lead to a relation of the

form AQP 4,4, . AQP_IP and thence give |A 2p_lP Agp, A2p+1|_
whereas

lz, ‘e zgp—]-P) ZQp) Z2p+l[

Il

‘M N
P bag

p—1>5 zﬁp: Z2p+l ! + l ng, -P I + l Z2p+1y PI
2p—1: -Zzp) Z2p+l [
'Al) AEp: A2p+1 | +...4+ | A2p—l) Asz A2p+l | =

Thus the 22 combinations, each consisting of an odd number of the
characteristics 4,, ... , Ay, are in fact the characteristics 4,, ..., 4,. We+t
call the set 4, ... ZW“ a fundamental set. We may associate therewith
the characteristic ZWH— 4, ... Ay, which is azygetic with every two of the
set 4,, ..., Ay, ; the case in which it has the same character as these will
appear in the next article. And it should be remarked that the argument
establishes, for the 2* Gopel systems (4,P), ..., (4,P), the existence of
fundamental sets, (4,P), ..., (ZMHP), which are Gopel systems, by the odd
combinations of the constituents of which, the constituents of the systems
(4,P), ..., (4,P) can be represented.

1l

|
l
i

* Where (n, k) denotes n (n~1)...(n~k+ 1)k
1 By Frobenius the term Fundamental Set is applied to any 2¢+2 characteristics (incon-
gruent mod. (P)) of which every three are azygetic.
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303. The characteristics 4,, ..., A, have been derived to have the
same character. We proceed to shew now, in conclusion, that this character
is the same for every one of the possible fundamental sets, and depends only

on o. Let (%) be the usual sign which is +1 or —1 according as ¢ is a

quadratic residue of 4 or not, in other words, (%) =1 when o is =1 or

=0 (mod. 4), and ( E) =—1 when ¢ is =2 or = 3 (mod. 4); then the character
of the sets 4, ... A.,}.H_1 is ( ) that is, 4,, ..., Ay are even when (g) =41
and are otherwise odd, and the character of the sum Zg.,+2=11 o Ay s

5kd (7—1:) . Or, we may say

when o =1 (mod. 4), 4,,...,4,,, are even, 4,,,, is odd ;

wheno=0,4,, ..., ZW.H are even, 4,,,, is even,
when o = 2 (mod. 4), 4, ..., Zwﬂ are odd, A, is odd ;

when =3, 4,, ..., Ay, are odd, Ay, is even.

For if 4,, ..., Ay, be all of character € we have
| A A, Ay | =14, |+ ... + | duna | + 2| 43, 4;),
where 4;, Zj consist of every pair from 4, ..., Zuﬂ; also
(2k—1)S | 4;, 4;| =S| 4;, 4;, 43,

where 4, ZJ, 4, consist of every triad from 4,, ..., Ay, ; hence, since
| 4;, 4;, Ahl_l and, as is easily seen, n(n— 1)(n—2)/3 is even or odd
according as 7 is of the form 4m+ 1 or 4m + 3, it follows that 3 | 4;, 4;] is
even or odd according as 2k +1 is of the form 4m +1 or 4m + 3; therefore
4,4, ... A, has the character ¢ or —¢ according as 2k+1=1 or
=3 (mod 4). Thus the number of combinations of an odd number from
4, ..., 4, which have the character e is

(20+1,1)+ (20 +1,5)+(20+ 1, 9)+...
=} {A+2p -1 —a)t + o (1 —dz) — o (1 + i)+,

= Q2014 0~} gin 20: 1

™5

this number is 2214271 when ¢=0 or =1 (mod. 4); otherwise it is
220—1_ 99-1: now we have shewn (§ 298) that the characteristics 4, ..., 4,
contain respectively 2271+ 2771, 227~1 — 2~ even and odd characteristics, and
(§ 302) that every one of Al, ..., 45 can be formed as an odd combina-
tion from A4, ..., Ay ; hence e=41 when 0 =0 or ¢=1 (mod. 4), and
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otherwise e=—1; this agrees with the statement made. Further, by the same
argument A, A, ... Ay, has the character e or —e according as 20+1=1
or =3 (mod. 4); and this leads to the statement made for 4,,.,.

The reader will find it convenient to remember that the combinations,
from the fundamental set 4, ..., Ao, consisting of 1, 5, 9, 13, ... of them,
are all of the same character, and the combinations consisting of 3, 7, 11, ...
are all of the opposite character.

Ex. If 4, ..., 4y, be half-integer characteristics azygetic in pairs, and S be the
sum of the odd ones of these, prove that a characteristic formed by adding § to a sum of
any p+r characteristics of these is even when r=0 or =1 (mod. 4), and odd when =2 or
=3 (mod. 4). (Stahl, Crelle, LxxxVIIL (1879), p. 273.)

304. It is desirable now to frame a connected statement of the results
thus obtained. It is possible, in

@2r-1)(2r2—-1)..27 72 -1)/(2"-1)(2*-1)...(2-1)
ways, to form a group,
o,P,P, .., PP,... PPP, ..

of 2" characteristics, consisting of the combinations of r independent charac-
teristics Py, ..., P,, such that every two characteristics P, P’ of the group
are syzygetic, that is, satisfy the congruence | P, P'|=0, (mod. 2). Such a
group is denoted by (P), and two characteristics whose difference is a
characteristic of the group are said to be congruent for the modulus (P).

From such a group (P), by adding the same characteristic 4 to each
constituent, we form a system, which we call a Gopel system, consisting of
the combinations of an odd number of r+ 1 characteristics 4, AP,, ..., AP,,
among an even number of which there exists no relation ; this system is such
that every three of its constituents, say L, M, N, satisfy the congruence
|L, M, N|=0, or, as we say, are syzygetic. Such a Gopel system is
represented by (4 P).

It is shewn that by taking 2%~ different values of A and retaining the
same group (P), we can thus divide the 2% possible characteristics into
2%w— (Gopel systems. Among these 2% Gipel systems there are 2@
systems of which all the elements have the same character. Putting
2p —2r=20 we shew further that 2°7'(27+1) of these Gopel systems
consist wholly of even characteristics, and that 2771 (29 —1) of them consist
wholly of odd characteristics. Putting s=2% we denote the 2% Gopel
systems which have a distinct character by (4,P), ..., (4,P); and, still
retaining the same group (P), we proceed to consider how to represent these
2% systems by means of 20+ 1 fundamental systems.

It appears then tlE\.t from_ the characteristics 4,, ..., 4; we can choose
20 + 1 characteristics 4,, ..., 4y, in

20 (27 — 1) (22— 1) .. (22— 1)/|20 + 1
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ways, such that every three of them arve azygetic, and all have the same

character ; this character is not at our disposal but is that of (%); the sum

of 4y, ..., Ay,,, denoted by A,,.,, bas the character e (%) Then all the

combinations of 1,5, 9, ... of 4, ..., Z%Ll have the character <%) , and all

the combinations of 3, 7, 11, ... have the opposite character. These combi-
nations in their aggregate are the characteristics 4,, ..., 4,. The charac-
teristics 4,, ..., As, are, like 4, ..., 4, incongruent for the modulus (P).
To each of them, say 4;, corresponds a Gopel system (d4;P), to any con-

stituent of which statements may be applied analogous to those made for 4;
itself.

The characteristic Ay, is such that every three of the set 4, ..., 4.,
are azygetic. This set is in fact derived, as one of 2¢ + 2 such, from a set of
20 + 2 characteristics, here called a root set, which satisfies the condition
that every three of its constituents are azygetic without satisfying the
condition that 20 + 1 of them are of the same character. There are

2o (27 — 1) ... (2*— 1)/[20 + 2

such root sets. It is not possible, from any root set, to obtain another by
adding the same characteristic to each constituent of the former set.

The root sets are not the most general possible sets of 2¢ + 2 charac-
teristics of which every three are azygetic. Of such sets there are

2ot (230 — 1) ... (28— 1)] |20 + 2,

but they break up into batches of 2%, each derivable from a root set by the
addition of a proper characteristic to all the constituents of the root set.

305. As examples of the foregoing theory we consider now the cases ¢=0, o=1, =2,
o=p. When o0=0, the number of Gopel groups of 2¢ pairwise syzygetic characteristics is

(2P +1) (2P 14+1) e (241)

from any such group we can, by the addition of the same characteristic to each of its
constituents obtain one Gdpel system consisting wholly of characteristics of the same even
character. These results have already been obtained in case p=2 (§ 289, Ex. iv.),
and, ag in that particular case, the 2 —1 other systems obtainable from the Gopel group
by the addition of the same characteristic to each constituent, contain as many odd
characteristics as even characteristics.

When ¢=1, we can, from any Gopel group of 20-1 pairwise syzygetic characteristics,
obtain 4 Gopel systems, three of them consisting of 2~1 even characteristics and one of
2p~1 odd characteristics. The characteristics of the latter (odd) system are obtainable as
the sums of three characteristics taken one from each of the three even systems.

When o =2, the number of fundamental sets 4, ..., 4y is

2(2-1)(22-1) .
R
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a

each of them has the character (Z) , or is odd, and their sum, 4, is odd. Among the

92916 characteristics 44, ..., 4, there are 920-1_97-1 o1 § 0dd characteristics ; these
clearly consist of the characteristics 4, ..., 44; the six fundamental sets are obtained by
neglecting each of 4, ..., 45 in turn. Among the characteristics 4,, ..., 4, there are 10
even characteristics, obtainable by combining 4, ..., 4, in threes. And, to each of the
characteristics 4,, ..., 4, corresponds a Gopel system of 2r=2r-7=2r-2 characteristics,
for the constituents of which similar statements may be made.

Of the cases for which o =2, the case p=2 is the simplest. After what has been said
in Chap. XI., and elsewhere, we can leave that case aside here. For p=3 the Gopel
systems consist of two characteristics ; adopting, for instance, as the group (P), the pair

% g&) >y & ((1)83) , the condition for the characteristics 4, ..., 4,, namely | X, P; |=| P/,

reduces to the condition that the first element of the upper row of the characteristic
symbol of X shall be zero ; hence the 16 characteristics 4,, ..., 4, may be taken to be
3 (?) @ a’) , where % (a‘ 02> represents in turn all the characteristic symbols for p=2.
a; ag a; ag

Taking next the case o=3, there are s=22=64 Gopel systems, (4 P), each consisting
wholly either of odd characteristics or of even characteristics, there being 20-1 (29 —1), =28,
odd systems, and 36 even systems. From the representatives, 4, ..., 4,, of these systems,
which are incongruent mod. (P), we can choose a fundamental set of 7 characteristics

4, ..., 4; in
20(26-1)(2¢—1) (22

v

ways; A, ..., 4, will be odd, and their sum, 4y, will be even; for (g)=(§)=-—1,

-1
)| _ags,

Fikd (%):1. The set 4, ..., 4;, 4, is, in accordance with the theory, derived from one

of 288/(2¢+2), =36, root sets 4,, ..., 44 (§ 301), by equations of the form A;=XA4,, in
which X is so chosen that 4y, ..., 4; are of the same character ; from this root set we can
similarly derive 8 fundamental sets of seven odd characteristics, according as it is 44 or is
one of 4y, ..., 4; which is left aside. Now the fact is, that, in whichever of the eight
ways we pass from the root set to the seven fundamental odd characteristics, the sum of
these seven fundamental characteristics is the same. We see this immediately in an
indirect way. Let 4, ..., 4, be a fundamental set of odd characteristics derived from the
root set 4, ..., g by the equations 4;=X4;; putting d;=4, ... 4;, consider the set
Ay, AgA Ay, ..., Ag4,A;, 4,, derived from 4, ..., A, by adding 444, to each ; in the first
place it consists of one even characteristic, 45, and seven odd characteristics ; for

|AsAlAiIEIAs|+lzll+lzi]+|zs: 4, 4;|=|4,, 4,, 4;|=1, (wod. 2),
because 4, ..., 4, are azygetic in threes ; in the next place

| dg, 4y, 434, 4;|=] 4, 4, EiIEI;

so that every three of its constituents are azygetic. Hence the characteristics 434, 4,,
woy Ag A, A, 4, which, as easy to see, are not congruent to 4, ..., 4, mod. (P), form,
equally with 45, ..., 4;, a fundamental set, whose sum is likewise 4g; they are derived
from 4, ..., 45 by adding 4,4, X to each of these. There are clearly six other such
fundamental sets, derived from 4,, ..., 4, by adding respectively dz4,X, ..., 4g4, X.
Hence to each of the 36 root sets there corresponds a certain even characteristic and to

each of these even characteristics there correspond 8 fundamental sets. We can now shew
further that the even characteristics, thus associated each with one of the 36 root sets, are
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in fact the 36 possible* even characteristics of the set 4,, ..., 4,. This again we shew
indirectly by shewing how to form the remaining 7.36 fundamental systems from the
system 4, ..., 4;. The seven characteristics A, 4, d;, dg A, 4,, A, 4, 4,, 4,, 4,, 4,, 4,,
are in fact incongruent mod. (P), they are all odd, have for sum A, 4,4,, which is even,
and are azygetic in threes ; for 44,4, is a combination of five of Al, veey 4y, and

|A4» As’ 4, A 4, |—|Asy 4, 51+|A2: A4, |+|A'«n A«n 51"1 |A4» 45, dgl=1,

|A4aA AlAz’A 4 A3| IA A1A4,A2,A |'_1 |A 4 AsaA 4 AI’A 4 Azl"IAls 3]’_ ’
(the modulus in each case being 2) ; hence these seven characteristics form a fundamental
system. There are 35 sets of three characteristics, such as 4,, 4,, 4,, derivable from the
seven A, ..., 4;; each of these corresponds to such a fundamental system as that just
explained ; and each of these fundamental systems is associated with seven other funda-
mental systems, derived from it by the process whereby the set 4;, 4,44, ..., 4; 44,
is derived from 4,, ..., 4,.

When o=p, a Gopel system consists of one characteristic only ; we can, in
20% (2% —1) (2P-2—1)...... (22-1)/|]2p+1

ways, determine a set of 2p+1 characteristics, all of character ({{) , of which every three

are azygetic; their sum will be of character e™ ({'—;) ; all the possible 22 characteristics
can be represented as combinations of an odd number of these.
306. We pass now to some applications of the foregoing theory to the

theta functions. The results obtained are based upon the consideration of the
theta function of the second order defined by

¢(ua; 39 =N (u+a; $9)¥(u—a; }g),
where 3¢ is a half-integer characteristic; as theta function of the second
order this function has zero characteristic; the addition of any integers to
the elements of the characteristic 4¢ does not affect the value of the function.
By means of the formulae (§ 190, Chap. X.),
S(uta; g+ N)=eVS(u+a; }g),

Y(u+3; @)=Y (u; b+ 4g),
wherein N denotes a row of integers and A (u; s)=H;(u+4Q,)— miss’, we
immediately find %

¢ (u+§0% a5 1) =i () §(u, as o)

where $/kq denotes the sum of the characteristics 3%, ¢; to save the repeti-
tion of the %, this equation will in future be written in the form (cf. § 294)

Bt 0y a5 Q= ® ()¢ (u,a; KQ);

when the contrary is not stated capital letters will denote half-integer
characteristics, and K@ will denote the reduced sum of the characteristics
K, @, having for each of its elements either O or }.

* Thus, when p=3=g, the result quoted in § 205, Chap. XI., is justified.
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We shall be concerned with groups of 2" pairwise syzygetic characteristics,
such as have been called Gopel groups, and denoted by (P); corresponding
to the r characteristics Py, ..., P, from which such a group is formed, we
introduce r fourth roots of unity, denoted by e, ..., €, which are such that

et=eI Pl . e2=¢milPil;

the signs of these symbols are, at starting, arbitrary, but are to be the same
throughout unless the contrary be stated. Since the characteristics of the
group (P) satisfy the conditions

| P;, Pj| =0, (mod. 2), (ﬁ;) = (1;:) s

we may, without ambiguity, associate with the compound characteristics of
the group the 2" — r symbols defined by

P, P :
=1, €,;=¢g¢ (Pz) » 80 that ¢ ;= emil Plmil Pyl g 5 =1,
J

G k= €6,k (Pf},) A (11;) (?) (P,) A (PfP> B <PP1'3)

P; P;
and € =€, 5= eiei,-( -'LP-J>, ete.
T

Consider now the function* defined by

P (4, a; 4)=3 (ﬁ’) & ¢ (u,a; AP;),

where A is an arbitrary half-integer characteristic, and P; denotes in turn all
the 27 characteristics of the group (). Adding to u a half-period Qp,,
corresponding to a characteristic Py of the group (P), we obtain

® (u+ Qp,a; A)= 2( )(Ap)ee-w P (u, a; AP;Py);

if then Py = P; Py, or P; = P, P}, we have

() (e e= () C) ) (B2 (22) v () =aerion () o

now, as P; becomes in turn all the characteristics of the group (P), Py, = P; Py,
also becomes all the characteristics of the group, in general in a different
order ;- thus we have

D (u+Qp, a; A)=eem! RGP O (u, a; A),

=e 1P P D (u, a; A).

* If preferred the sign (i’) , whose value is +1, may be absorbed in ¢;. But there is a cer-

tain convenience in writing it explicitly.
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If 2Q) be any period, we immediately find
D(u+20y, a; 4)=e:2 D (y,a; A).
Thus, N (u; Py) being a linear function of the arguments u,, ..., u,, the
function ® (u, a; A) is a theta function of the second order with zero
characteristic, having the additional property that all the partial differential

coefficients of its logarithm, of the second order, have the 2’ sets of simul-
taneous periods denoted by the symbols Qp,.

Ez.i. If 8 be a half-integer characteristic which is syzygetic with every characteristic
of the group (P), prove that

® (1494, a; A)=5) (i) ®(u, a; AS)

B (U, at+-Qq; A)m @ TTiISI4mil 8 Al (i) ®(u, a; AS)
and ] '
& (04 Qs, a+Qs; A)=2@OTN@G O +ilS, Al gy ¢ 5 4),

Ex. ii. If Py be any characteristic of the group (2), prove that
®(u,a; APk)=<§") 1@ (u,a; A).

Ez. iii. When, as in Ex. i., S is syzygetic with every characteristic of the group (27),
shew that .
PN G (uy a5 AP)® (0, b3 APY=¢"'S @ (u,a; )& (n, b; A).

Conversely it can be shewn that if a theta function of the second order
with zero characteristic, IT (u), which, therefore, satisfies the equation
II (u + Q) = 2@ 11 (u),
for integral m, be further such that for each of the two half-periods associated
with the characteristics $m = P, $m = ), there exists an equation of the form
1I (’Lb + %‘Q’m) = ettt vpup T (u)’
where y, vy, ..., vp are independent of u, then the characteristics P, @ must

be syzygetic. Putting vu=wvu, + ...... + vyu,, we infer from the equation
just written that

I (u + Q) = et @td0m 1 (u + £ Q,,) = e 2t 1 (u);
comparing this with the equation
I (u + Qm) = eZAm () 11 (u) — e?IIm(u+§ﬂ,,,)—21ri'mm’ 11 (u)

we infer that v=H,,, p=kmrt+}H,Q,, —mmm’, where £ is integral, and
hence
II (u + %Qm) — i’ e—}m’mm'+24\(u; 3m) I (’Ll).

307. In accordance with these indications, let @ (u) denote an analytical
integral function of the arguments w,, ..., u, which satisfies the equations

Q(ut Q)= im Q(u); Q(ut Qpy) = e AT TY Q(u),
for every integral m and every half-integer characteristic Py of the group (P).
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We may regard the group (P) as consisting of part of a group of 27
pairwise syzygetic characteristics formed by all the combinations of the
constituents of the group (P) with the constituents of another pairwise
syzygetic group (R) of 27— characteristics. Then the 27 characteristics of
the compound group are obtainable in the form P;R;, wherein P; has the 2~
values of the group (P), and R; has the 27— values of the group (R). Since
every 27 + 1 theta functions of the second order and the same characteristic
are connected by a linear equation, we have

0Q(w)=73 C; ;¢ (u, a; PRy,
¥

where C, C;, ; are independent of u and are not all zero*. Hence, adding to
u the half-period Qp,, we have
Oerem! P+ Py Q (u) = 2 Cf, je™ s Py ( v >¢»(u, a; P;PyR),
o P;R;
and therefore, as ege™ ! ! = €1,

. P
0Q@)=X 0s;(p 3 ) e (w a5 PuPLR));

forming this equation for each of the 27 values of Py, and adding the results,
we have

Py
20Q(0= 3 s, ( N Rj) «d (v, a; PiPR);
herein put Pj, = P; Py, so that as, for any value of ¢, P; becomes in turn all
the characteristics of the group (P), the characteristic P; also becomes all the

characteristics in turn, in general in a different order; then

() e () (25 = () ()

and, therefore, P P
r = e[ ) emi P h : .
270Q (u) ?%eh [?C’,,Jq(Rj)e [ ](Rj)¢(u,a, Py Ry),

Py .
= ]2 % Cj (Rj) €h¢ (u, (22 .PhRj),
where
C;= ? Ci,; (2:) €™ Pl
and thus
270Q (u)=2 C;® (v, a; R)).
7

Now the 27~ functions ® (u, @; R;) are not in general connected by any
linear relation with coefficients independent of w; for such a relation would
be of the form

SHS (u+a; 4Q)Y(u—a; 4Q) =0,

* It is proved below (§ 308) that the functions ¢ (1, a; P;R;) are linearly independent, so
that, in fact, C is not zero.
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wherein H; is independent of u, and @; becomes, in turn, all the constituents
of a group (Q) of 27 pairwise syzygetic characteristics, and we shall prove (in
§ 308) that such a relation is impossible for general values of the arguments
a. Hence, all theta functions of the second order, with zero characteristic,
which satisfy the equation

Q(u+ Q) = e P P Q (u)
Jor every half-integer characteristic Pr of the group (P), are representable

linearly by 2P—", =27, of them, with coefficients independent of u. We have
shewn that the functions ® (u, a; A), defined by the equation

®(u, a; A)=z_(§f) eS@ta; AP)S(u—a; APy,

where the summation includes 27 terms, are a particular case of such theta
functions.

308. Suppose there exists a relation of the form
SH;S (uta; 4Q:) 9 (u+b; 4€:)=0,
(2

where the summation extends to all the 27 characteristics @; of a Gopel group (@), and H;
is independent of w. Putting for u, u+Qq,, where @. is a characteristic of the group (9),
we obtain

S8, (&) (u+as 40:09 (w3 40,:09=03

hence, if ¢, ..., €, are fourth roots of unity associated with a basis @, ..., @, of the group
(@), as before, and this equation be multiplied by e«, and the equations of this form
obtained by taking €. to be, in turn, all the 2P characteristics of the group (), be added
together, we have

s3H(5) cd (uka; 40009 (u+b; 4G:Q)=0;

now let @;=@.@;, then for any value of 7, as Q. becomes all the characteristics of the
group (@), @; will become all those characteristics; therefore, substituting

@) =@ @) w=s(®)

SHie () 369 (utas 4Q)9(wrb; 46)=0;

we have

hence one at least of the expressions
249 (u+a; 4Q) 9(u+b; 4Q), SHiel,
must vanish.
Here ¢, ¢;, ... have any one of 27 possible sets of values. The expression EiI{ie,-' ! cannot

vanish for every one of these sets ; for, multiplying by ¢;*, we have then

24 () =0
where ¢ ;, like ¢;, becomes in turn the symbol associated with every characteristic of the

group, and there are 2?7 equations of this form; adding these equations we infer H;=0,
and, therefore, as j is arbitrary, we infer that all the coefficients are zero.
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Hence it follows that there is at least one of the 27 sets of values for ¢, e, ..., for
which
39 (uta; 4Q)I(u+b; 4G)=0.

When the arguments z+a, v+b are independent, this is impossible; for putting
u+a=U, u+b="V, this is an equation connecting the 27 functions $(U; A4¢;) in which
the coefficients are independent of U (cf. §§ 282, 283, Chap. XV.).

‘When the arguments »+a, 2+b are not independent, this equation is not impossible.
For instance, if e, = — ™! %l it is easy to verify that

1Y (u+Qq; i) I (u; Gne)=—eand (utQq; )9 (u; @)
and hence the equation does hold when 4 =0, a= Qg b=0, = —eWIQ"', for all
the values of e, ..., €x_q, €441y .., €. For any values of the arguments u+4a, u+b
we infer from the reasoning here given that if the functions 9 (u+a; 4Q;) 9 (u+b; 4,
are connected by a linear equation with coefficients, H;, independent of %, then (i) they
are connected by at least one equation

39 (uta; 4Q)9(ut+b; 46,)=0,

for one of the 27 sets of values of the quantities ¢, ¢, ..., and (ii) similarly, since the 2P
functions 9 (u+a; 4Q;) 3 (u+b; AQ;) do not all vanish identically, that the coefficients
are connected by at least one equation

gfﬂs;l=0.
(]

309. The result of § 307 is of great generality; we proceed to give
examples of its application (§§ 309—313). The simplest, as well as the most
important, case is that in which ¢ =0, r=p, and to that we give most
attention (§§ 309—311).

When ¢ =0, any two of the functions ®(u, a; A) are connected by a
linear equation, in which the coefficients are independent of w. If v, a, b be
any arguments, and 4, B any half-integer characteristics, introducing the
symbol e to put in evidence the fact that ®(u, a; 4) is formed with one
of 27 possible selections for the symbols ¢, ..., ¢y, and so writing ® (v, a; 4, ¢)
for @ (u, a; A4), we therefore have the fundamental equation

D, b; B, e)P(a,v; 4, ¢)
®(a, b; B, ¢) -
By adding the 27 equations of this form* which arise by giving all the
possible sets of values to the fourth roots of unity e, ..., ¢, bearing in mind

that every symbol ¢;, except ¢, =1, occurs as often with the positive as with
the negative sign, we obtain

2 (utv; A)S (u—v; A)=22_(§") &S (utv; AP)S (u—v; AP

D(u,v; 4,¢)=

_2<I>(u,b; B,e)®(a,v; 4, ¢)
- D (a,b; B, e ’

* Wherein it is assumed that @, b have not such special values that any one of the 27 quanti-
ties & (a, b; B, €) vanishes. Cf. § 308.
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whereby the function ¢ (u, v; 4) is expressed in terms of 2? functions
®(u,b; B,e).

By taking, in the formula
D(u,v; 4,e)P(a,b; B,e)=DP(u,b; B, e)D(a,v; 4, e¢),

or
Py (P;
s N (9 eoes b (. v , . ,
7}2 (A)(B) eicip (v, v; AP)¢p(a,b; BP)
Py (P;
=33 1)( ’)eie- u, b; BP) ¢ (a,v; AP)),
23 () (B) ao 8¢ )6 ( )
all the 27 possible sets of values for e, ..., ¢, and adding the results, we
obtain

P\ .
E(AB) e 1P & (u, v; AP)¢(a,b; BP)

P; .
== (AB) e1P ¢ (u,b; BP;) ¢ (a,v; AP));
increasing u and b each by the half-period Qp, we have
s (121;,-) eI’ & (u, v; ARP) & (a, b; BRP))
P\ .
=§ (AB> em | PR Pl oy (u, by BPy)¢(a,v; AP;);

taking R to be all the possible 2% half-integer characteristics in turn, and
adding the resulting equations we deduce*, putting C' = 4B,

20 (u, b; AC)p(a,v; A)
=273 <RC},)i> €™ RP ¢ (u, v; RAP;)¢p(a,b; RAP,C)
i R

=§ <AGS> em1481 ¢ (u, v; S)P (a, b; SC),

where A, C' are arbitrary half-integer characteristics, and S becomes all 2%
possible half-integer characteristics in turn; for (Ex. ii. § 295), Zem & F;l = 2%
R

when P; =0, and is otherwise zero, while, for any definite characteristic 4P;,
as R becomes all possible characteristics, so does RAP;. The formula can be
simplified by adding the half-period Q¢ to the argument b; the result is
obtainable directly by taking C'= 0 in the formula written.

This agrees with a result previously obtained (§ 292, Chap. XVL.); for a
generalisation of it, see below, § 314.

* This equation has been called the Riemann theta formula. Cf. Prym, Untersuchungen iiber
die Riemanw'sche Thetaformel, Leipzig, 1882.
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310. The formula just obtained may be regarded as a particular case of another which

is immediately deducible therefrom. Let (A) be a group of 2* characteristics formed by
taking all the combinations of p independent characteristics Xy, ..., Ku; if 4 be any
characteristic whatever, we have

sl 4 Kl (1 g @il A Kly (14 0m1 4 Buly—or or 0,
X

according as |4, K;|=0 (for =1, ..., p), or not; hence, putting C=0 in the formula
of § 309, and replacing the 4 of that formula by K;, we deduce

o o .
or-13 ¢ 4Kil g (u, b; K (a, v; K)=2"+3 ¢ 4K 3emi  ESl gy (u, v; S) ¢ (a, b; S),
i=1 i=1 S
where S becomes all 2% characteristics,
. L2t
=g7Hg AT 3 AR Kl (4, 0 8) p (0, 05 8)
F i=1

o . ™
-2 M»em-lAllziemlARl<EemlR,Kil>¢(u’,v; AR) ¢ (a, b; AR),

i=1

where R becomes all 2% characteristics,

=g #gmtl 4] 2"§e"ﬂ‘4m¢ (u,v; AR) p(a, b; AR),

where R extends to all the 2%P~* characteristics for which | R, K;|=0, ..., | R, K, |=0.
Putting u+Qp, e+, for 4, o respectively, and replacing 4B by C, we obtain

R o
27* 3 1B g (4, b; BE) ¢ (0, v; BE)
2p=p
= IR, 0 0L) @, b; 0L

wi| BO|
=e

here (K) is any group of 2* characteristics, (Z) is an adjoint group of 2% ~# characteristics
defined by the conditions |Z, K|=0 (mod. 2), and B, ¢ are arbitrary half-integer
characteristics. The formula of the previous Article is obtained by taking p=0. The
formula of the present Article may be regarded as a particular case of that given below
in § 315.

311. The function ¢ (u, v; A) is unaffected by the addition of integers
to the half-integer characteristic 4 ; we may therefore suppose that in the
functions ¢ (v, v; AP;) which have frequently occurred in the preceding
Articles, the characteristic 4 P; is reduced, all its elements being either 0 or 4.
In the applications which now immediately follow (§ 811) it is convenient, to
avoid the explicit appearance of certain fourth roots of unity (cf. Ex. vii,,
p- 469), not to use reduced characteristics. Two, or more, characteristics
which are to be added without reduction will be placed with a comma between
them; thus 4, P; denotes 4 + P;. The characteristics P; are still supposed
reduced.

Taking the formula (§ 309)

. . P b; A, e)D(a,v; 4, €
2% (u+v; 4)S (w—v; 4)=3 e T ).
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where A’ replaces the B of § 309, suppose a = b, and put, for

u—b, a+v, a—v, u+v, u—v, a+bd a-5b u+b,
respectively,

u, v, W, U+V, U+W, V+W, 0, U+V+W;
then we obtain

2N (U+V; A)SU+W; 4)

3 (ﬁﬁ (ﬁj) S (U+V+W; A, PYN(U; A, P)N(V; A, P)S(W; A, F))
=S iJ e/ a8/ B .

: 3 ({5 as (74 s 4,P)30; 4P
k

b

adding to ¥ and W respectively the half-periods Qp, Q, this becomes
2¢[U, V; A,B][U, W; 4, C]

23 wipt; ;[U, V,W; A, B,C, P;][U; A, P;][V; 4, B, P;][W; 4, C, Pj]
= SV, W; 4B, 0, PJ[0; 4, P]

wherein [U, V; A, B] denotes S [U + V; A + B], etc., pi= (f;’) € vi= (if) &,

ete., and, if B=14 (g) , 0= 1}(?;’) , P;= %(Z{) , then ¢; ;, s; are fourth roots of
unity given by ¢; ; = e ImEN @419 5 = e ITEHYIG,

In connexion with this formula several results may be deduced.

(o) Putting W=-V, A+ B=K, A+ C=D, A= D, the formula gives
an expression of ¥ [U+ V; K]S [U— V; D] in terms of the quantities
S[U; KP], S[V; KP;], Y[U; DP;], S[V:DP;], ¥[0; KP;], [0; DP];
the expression contains in the denominator only the constants & [0; KP;],

S [0; DP;]; it has been shewn (§ 299) that not all the characteristics K P;,
DP; can be odd.

Putting further K =0, we obtain an expression of S[U+ V; 0]
S[U-V; D] in terms of

S[U; P, S[V; P, S[U; DR, S[V; DR, %[0; P, S[0; DP;).

Dividing the former result by the latter we obtain an expression for
S[U+V; K]|/S[U+ V; 0] in terms of theta functions of U and V with the
characteristics DP;, KP;, P;, the coefficients being combinations of ¥ [0; P;],
S[0; DP;], [0; KP;] with numerical quantities. In this expression the
characteristic D is arbitrary ; it may for instance be taken to be zero.

B. 33
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The formulae are very remarkable ; replacing, on the right hand, e;™!4: 7;!
by e;, as is clearly allowable, and taking D=0, they are both included in the
following formula (cf. Ex. viii. § 317)

2y [u+v; K]¥[u—v; 0]
[3 eae ¥ *eaS (u; K+ P,)S(u; P,)][Eee ¥ 9atmil PalS (v; K+ P,)S(v; P,))

=2 S et %95 (0; K+ Pl)S(0; Py ’

where K =} (]Z_) , Po= %(Z") , and the summation in regard to a extends to

all the 2? characteristics, P,, of the group (P).

It is assumed that the characteristic K is such that the denominator on
the right hand does not vanish for any one of the 27 sets of values for the
quantities ,. For instance the case when K is one of the characteristics of
the group (P), other than zero, is excluded (cf. § 308).

Ez.i. For p=1, if P denote any one of the half-integer characteristics other than
zero,

[ @)+ 95, (u) % (0)] 92 (0) — [92 (u) 95 (v) +™1 195, (u) 92(2)] 9% (0)
B 94(0)—e™ ! P19%,(0) ’
where 9 (u), 3, (v) denote 9 (u; 0), 9 (u; P), etc.

9 (u+ v)S(ufw)

Ez. ii. By putting, in case p=2,
10 01 01
K=} (10 y Pri=% (Ol)’ P2=&<11);

deduce from the formula of the text that
4912(0) 391 (0) Ipp (w+2') 95 (u — )= 42 [i16ed — & B+, C+ DY [A' =i B — O -, (D),
19 92
wherein ;= +1, {,=+1, and
A=35(w) I (W), B=35(w) 914 () C=3(u) Y4 (w), D=3y () Iy (),

A’y B, €', I’ denoting the same functions of the arguments %’

Hence obtain the formula given at the bottom of page 457 of this volume.

(B) Putting B=C, V=W=0, A’=A, we obtain

S3pipiti, i [U; A, B, B, P][U; AP;][0; 4, B, P;)

. _ ij
¥ (U; 4, B == Smnl0; 4, B, B, i [0; 4, Pi] :
k

which shews that the square of any theta function is expressible as a linear
function of the squares of the theta functions with the characteristics forming
the Gopel system (AP). We omit the proof that these 27 squares,
32 (U; AP;), are not in general connected* by any linear relation in which
the coefficients are independent of U.

* Cf. the concluding remark of § 308, § 291, Ex. iv. and § 283.
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Ez. For p=2 obtain the formula
(93— 98 95 ()= 95 92 92 )+ 9, 9%, 9%, (o) 9%, 9, 9%, (o) - 9, 92 9 )
where 9,=29, (0), etc.

(y) There is however a biquadratic relation connecting the functions
Y (u; AP;) provided p be greater than 1. In the formula (§ 309)

%e""'P-"S(u+'v; 4, P)S(u—v; 4, P)S(a+b; 4, P)Y(a-b; 4, P;)
=§e"’"”’i|3(u+b; A4, P)S(u—0b; A, P)S(a+v; A, P)S(a—v; 4, P)),

supposing the characteristic 4 to be chosen so that all the characteristics

AP; are even, as is possible (§ 299) by taking A suitably, substitute for

w+v, u—-v, a+b, a—-b, u+bd u—-0>0, a+v, a—v

respectively

ut+v+w, u—v, a+b+w, a—-b u+b+w, u-50, a+v+w, a-—v;

then, putting a =b =0, we have

e PIS (05 4, P)Y(w; A, P)S(u—v; 4, P)S(u+v+w; A, Py)

T —SeiPuS (u; 4, P)S(v; 4, P)S(utw; 4, P)S (vt w; 4, P;

herein put w= Qp, v=1u+ Qp,, where P,, P, are two of the characteristics
belonging to the basis P;, ..., P, of the group (P); then we obtain

s (Pifz) e\ PIS(0; A, P)S(0; A, P, P)S(0; 4, P, P)S(2u; 4, Py, Py, P)

= 2 <P})P2)em'|P.'|§(u; A,P,,)S’(u, A’Pl, P,L-)S-(u; A’PmPi)S,(u; A, PI’P2’ Pz)

1
Now every characteristic of the group (P) can be given in one of the forms
Qs, QP., Q;P,, QP P,, where @, becomes in turn all the characteristics of
a group (@) of 27~ characteristics ; putting

"l" (u; Qs)
= (PéPﬂ)ewiwsts(u; 4,00 (u; 4,P,, Q) (u; A, Py, Q)S(u; A, P, P, Qy),

8

we immediately find

\[r(u; Q8)=‘P‘(u’ QS: Pl)=\P(u) Qs: P2)=‘\P‘(1L; st -Pln P2);
hence the equation just obtained can be written

2?7 _ L 92u; 4,Q, Ry 2%
IO Q) 2 SGAQ, Ry Y (5 )

where R, has the four values 0, P,, P,, P, + P,.
Again, if in the formula (§ 309) '
22y (u+v; A)S(u—v; A)=2

P(u,b; A, e)P(a,v; 4, ¢)
D(a,b; 4, €
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we add to u the half period Qp , we obtain, after putting u =9, a =b =0, the
result

P\« 1 ®(w0; A, &)@ (O, u; 4,
%(%;A’P")S(O;A’P")ﬂ-p(f)ee} = q)(o,eg;jl,:; 2

=2_p<Pk)21¢2(u,0; A, ¢€)
A) g P(0,0; 4,¢)°
where

®(u,0; 4, =3 (1;*') «(u; AP); ®(0,05 4,6 =3 (12,-) 32 (0; AP)).

By substitution of the value of ¥(2u; A, P;) given by this formula, in
the formula above, there results the biquadratic relation* connecting the
functions ¥ (u; AP;).

(8) As an indication of another set of formulae, which are interesting as
direct generalizations of the formulae for the elliptic function @ (), the
following may also be given. Let

0 0
8=Xla—vl~+.+7\p87p,

where 2, ..., A, are undetermined quantities, &Y (v) =% (v), Y (v) =Y (v),
and let

p; A)==—8logh(v; 4)=—[S(v; )N (v; 4)=¥*(v; A)]+ ¥ (v; 4);
then, differentiating the formula

22Y (utv; A)S(u—v; 4)=3 DL A )P(a,v; 4,¢)

D(a,b; 4d,¢)
twice in regard to v, and afterwards putting v =0 and b = 0, we obtain
Ay so. Y w; AP)
p(ll, A)—%CZ m~ ’

wherein

P,
P 2(4) oM@ AP)p(; AP)
O,=<A)EE,

3 (ﬁ") «S(a; AP,

2N (a; APj) g (a; AP))
J— . J
=2e SN (a; APY
k

the 27 quantities C; being independent of « and of a. By this formula the

function @ (u; A) is expressed linearly by the squares of 27 theta quotients
(cf. Chap. XI. § 217).

* Frobenius, Crelle, Lxxxix. (1880), p. 204. The general Gopel biquadratic relation has also

been obtained algebraically (for Riemann theta functions) by Brioschi, dnnal. d. Mat., 2* Ser.,
t. x. (1880—1882).
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312. These propositions (§ 309—311) are corollaries from the fact that
the functions ® (u, @; A, €) are linearly expressible by 27— of them; we
have considered the case r = p at great length, on account of its importance.

Passing now to the case r=p —1, there is a linear relation connecting
any three of the functions

2p-1 P
D(u,a; A,6)= 3 (ﬁ’)e,&(u+a; AP)S (u—a; AP)).
i=1

There is one case in which we can immediately determine the coefficients in
this relation; we have o =p —r=1, 2°9 =4 there are thus four character-
istics A, whereof three are even and one odd, which are such that all the
271 characteristics (A P) are of the same character. Taking the single case
in which these are all odd, we have

D(u,a; 4, e)=—D(a,u; 4,¢), and P(a,a; 4,¢)=0;
hence, if, in the existing relation
AP (u,a; A, ) +uP(u,b; A, e)+vP (u,c; 4,¢)=0,
wherein A, u, v are independent of u, we put « = @, we infer
piv=>(,a; A,¢): P(a,b; 4, ¢);
thus the relation is
Db,c; A,e)P(u,a; A, e)+P(c,a; A,e)DP(u,b; 4, ¢)
+®(a,b; 4,e) P (u,c; 4, €)=0,
or

£ <f{ ) (12') eer (5, ) =0,

i=1 j=1
where

Y, N=u+a; AP)Su—a; AP)Nb+c; AP)NY(b—c; AP))
+Nu+b; AP)S(u—0>b; AP)Y(c+a; AP)Y(c —a; AP))
+Yw+c; AP)NY(w—c; AP)Y(a+b; AP)S(a—b; AP)).

Adding together all the equations thus obtainable, by taking all the 27—

possible sets of values for the fourth roots of unity e, ..., €,—;, we obtain

2p-1

3, emilPil 4y (7, 1) = 0.
i=1

For instance, when p=1, this is the so-called equation of three terms, from which all
relations connecting the elliptic functions can be derived. When p=2, it is an equation
of six terms and there are fifteen such equations, all expressed by

f S(uta; A)S(u—a; A)I(b+c; A)I(b—c; 4)
a, b, ¢ .
=—¢4Bl 5 9(uta;B)Y(w—a;B)I(b+c; B)I(b-c; B),
a, b, c
4 and B being any two odd characteristics*,

* Cf. Frobenius, Crelle, xcv1. (1884), p. 107.
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313. Taking next the case r=p—2, every 22+1, or 5, functions
® (u, a; A, €) are connected by a linear relation. In this case there are
sixteen characteristics 4 such that all the 272 characteristics (4 P) are of
the same character, six of them being odd. Denoting the six odd character-
istics in any order by 4,, ..., 4,, and an even characteristic by 4, there is an
equation of the form

MO (u,a; Ay, €) + NP (u, a; A,y €)+ X P (u, a; 4s, €)
=®(u,a; A, )+ AP (u, a; 4, €);
putting herein u =a, this equation reduces to A®(a, a; 4,€) =0, so that

A=0. The other coefficients can also be determined; for, if C = A4,4,, we
have (§ 306, Ex. i.),

Q(u+ Q, a; 4, €)=eR®: D <Aj4A3)q’(% a; AA.4,, ¢€);

putting therefore for w, in the equation above, the value a+ Q;, where
C'= A,4;, and recalling (§ 303) that 4,4,4,, 4,44, are even characteristics,
we infer
M (Az‘fa) ®(a, a; AA,4,, €)= (AEA‘*) ®(a, a; A,4:4,, ©).

/ 4
Proceeding similarly with the characteristics 4;4,, 4,4, in turn, instead of
A,4;, we finally obtain
(112113

>¢(a, a; AA,d)®(u, a; A,)+(

4,4
4,4, 3 1) D(a,a; A4, 4,)P(u, a; 4,)

A4,

+ (j’Az) D(a,a; 4,4,4,)P(w, a; 4;)=D(a,a; 4,4,4;)P (u, a; 4),
3444

where, for greater brevity, the e is omitted in the sign of the function &
(cf. Ex. viii,, § 289).
Ez. For p=2, deduce the result
I31934 (2) J2 (U +0) Jgp (0 — V) — 343903 (20) Iog (w+) 3y (2 — ¥) + 93955 (20) Sp4 (2 +0) J4 (2 =)
=959; (20) 9; (u+v) 9, (w—v),
where 9;,=29,,(0), etc. When v»=0 this is an equation connecting the squares of 9, (%),
a4 (u)y S04 () 91 (w)-

314. The results of §§ 309, 310 are capable of a generalization, obtainable by a repeti-
tion of the argument there employed.

A group of 2% pairwise syzygetic characteristics may be considered as arising by the
composition of two such groups. Take k,=r+s, characteristics Py, ..., Pr, @1, ..., @
every two of which are syzygetic ; form the groups

(P)=0, P,, ..., Py, PPy, ..., P,P,P,, ...
(Q)=O) Ql) “eey Qn QlQZr eeey QlQZQa, ..

respectively of 2" and 2 characteristics ; the 2"+# combinations B, ;=P;¢; form a group
(R) of 2**¢ pairwise syzygetic characteristics ; for distinctness the fourth roots of unity
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associated respectively with Py, ..., P,, @y, ..., @,, may be denoted by e, ..., €, {1y ooy &
then with P ;, @, R;; will be associated the respective quantities

€,y = €€ (ﬁ;) v Ga=GG (gj}): Eij=e; (g:) ;

thus if 4 be any characteristic

(%) 2= () 6 ()= (@) & (46) «=(2) - (2) -

Therefore, using the symbol ¥ for a sum extending to the whole group (°Q),

v a; 4, E)=3 (R"’f') E;9(u+a; AR,;)S (u—a; AR, ;)
- (§ <Q,) s ( Q>s‘9(u+a, AQP) Y (u—a; AQP)
(Q’> o (u,a; AQ;, ¢),

where & denotes a sum extending to the 27 terms corresponding to the characteristics of
the group ().

By the .theorem of § 307 the functions obtainable from ¥ (v, a; 4, E) by taking
different values of ¢ and 4, and the same group (P@), are linearly expressible by
2P~ 7-8=27-8 of them, if ¢=p—r, with coefficients independent of ». The 2¢ functions
® (4, a ; AQ;, €), obtained by varying a and ¢, are themselves expressible by 27 of them.

Thus, taking 7+s=p, or s=¢, we have
Y(u,v; 4, E)¥(a,b; 4, BE)=¥ (4, b; 4, E)¥ (a,v; 4, E)

W n(QJ) (Q“) GG ®(u, v; A€, €) 2(a, b5 4y, ¢€)
_J .71( Qj) (le) GG ® (v b3 A?i’ ) (a,v; Aij €);

taking for ¢}, ..., {, all the possible 2¢ values, and adding the 2¢ equations of this form,
we obtain

28 28

21e (05 4Q, B (a, b5 4Q;, =3 U@ (0,55 4G B (e, v 465, ).

- =1

Suppose now that 4,,..., 4, are the 227 characteristics satisfying the 7 relations
| X, P;|=| P;]|, (mod. 2), and let C,,=4,4,,; then |C,,, P;|=0; hence, by the formulae of
§ 306, Ex. i, adding the half period ,, to  and b, and dividing by the factor ¢”!%m: 41,

we have

20 .
3% @ (u, 05 40,9, @ (a0, b5 4CQ, O

J=1
20 . .
=3 GO Gl g (4, b5 4Q;,€) @ (2,05 4G5, €);
J=1
taking, here, all the 22° values of C,, in turn, and adding the equations, noticing that
220 . . 20 .
s &7 O Q1 gril s Q15 il dm, G

m=1 m=1
is zero because @ is not a characteristic of the group (P), except for the special value
@;=0, when its value is 227 (§ 300), we derive the formula

90 920 . )
2@ (u,b; A, (@, v; A, =3 S MU @ (05 40,0, ) @ (a,b; ACuE;, €);
j=1 m=1
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now, as already remarked (§ 298, Ex.), if a characteristic S which is syzygetic with
every characteristic of the group (2) be added to each of the 227 characteristics 4,, ..., 4,

the result is another set of 22 characteristics satisfying the same congruences, | X, P;|=| 2|,
as the set 4,, ..., 4,, and incongruent mod. (2); thus, taking a fixed value of j, we have
C,Q;=C,P;, where, as C,, takes its 22° values, C, also takes the same values in another
order, and P; varies with m. Hence (Ex. iii. § 306) we have

e 1O @ (u,0; AC,,Q;, €)@ (a,b; ACQ;, €)="1Pil & (u, v; AC,P;,¢) ®(a, by AC,P;, €)

q =%l @ (u, v; AC,, & ®(a, b; AC,, ),
an 2!0

s 1% g (u, v; 40, €) @ (a, b3 ACy, €)

m=1

2o .
=30 @ (4, 05 ACp, ) B (a,b; AC, €),
m=1
and therefore, finally, dividing by a factor 27 (there being 2° characteristics in (Q)), we
have

mi| A,

220
27 @ (u, b; 'AI ‘) 3 (a; v; 4, ‘)= 2e m! ® (u, v; AAlAm) 5) @ (a, b; AAlAma €)-
m=1

When o=p, this becomes the formula of § 309. We infer that the functions
& (u, a; A, €) are connected by the same relations as the functions of the form
3 (u+a; )9 (u—aj; A) when the number of variables (in the latter functions) is o.

Ezx. Prove that, with the notation of the text,

o . _ \Ir(u,b; A’E)‘I’(a’”;AyE)
2 d)(u,v,A,e)—?—— ¥(a b; 4, E) .
315. The formula of the last Article is capable of a further generalization. Let (R) be
a group of 2# characteristics, formed with &, ..., R, as basis, which satisfy the conditions

|R, P,|=0, ..., | B, P,|=0.

Thus (P) is a sub-group of (£); the group (&) consists of (P), together with groups (RP),
whereof the characteristics 2 form a group of 2#~7 characteristics, whose constituents are
incongruent for the modulus (P). The basis of this sub-group of 2#—7 characteristics will
be denoted by R,, ..., Bx_,. The total number of characteristics satisfying the prescribed
conditions is 2%~7; thus p3#2p—r, and, when p<2p—r the given conditions are not
enough to ensure that a characteristic belongs to the group (R).

Then, if , G' be arbitrary characteristics, and R; become in turn all the characteristics
of a group of 2*~7 characteristics of the group (&) which are incongruent mod. (), we
have

27T i | FGR;
2P-HF 3 ¢ ®(u, b; GR;, €)®(a,v; GR;, €)

i=1

op—r . 90
=gr-w-o 5 TRl s mi1Onl g (4 5 GRCoy €)@ (0, b; GRChy €),
i=1 m=1
where C,,=A4,4,,. Since | R;, P|=0, the constituents of the set R;C,,, where R, is a fixed
characteristic and m=1, 2, ..., 2%, are in some order congruent (mod. (P)) to the con-
stituents of the set C, ; hence (§ 306, Ex. iii.) the series is equal to
220 Qu-1 _ . .
gr-n's 3 I FORIFITIR ] & (4 95 GOy €)@ (b5 GCpy €),
m=1 i=1
oM~

s ¢ FCm Bily g (4 vy GO,y e) @ (@, b5 GOy €);

m=1 i=1

27 wi| FG|+mi| C
=9r-K 3 e"”l |+mi] m|(
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oM
now 3 "B B gy zero, unless | L, R;|=0 (mod. 2) for every characteristic R;, in which
i=1

case its value is 2#~; thus the series is equal to
3 FEIT T EGSnl @ (u, 05 FS,, €)@ (@, b5 FiSp, ),

where S, satisfies the conditions involved in |S,,, B;|=0, FGC,,=S,,, namely the con-
ditions
[ Sy By|=0, ooy | Sy Buer|=0, | FGS,, Py|=0, ..., | FGS,, P |=0;

the number of characteristics satisfying these u conditions is 22 ™* ; the number of these
which are incongruent for the modulus (P) is 2% ~# 7 =227 +7#,

Suppose now that | FG, P,|=0, ..., | FG¢, P,|=0; then the characteristics .S, con-
stitute a group satisfying the conditions |S,,, B|=0, where R becomes in turn all the 2*
characteristics of the group (R). The group (S) of the characteristics S, may be obtained

by combining the characteristics of the group () with the characteristics of a group of

22017 characteristics which also satisfy these conditions and are incongruent for the

modulus (P) ; putting u=r+p, we have therefore*

2° .
20-P .Ele’"lFGRi' ®(u,b; GR;y €) ® (a,v; GR;, €)
iz
. 220-p .
=" FC "5 qmIECSl g (w, 05 FS,, €)@ (ay b; FiSp, ).

m=1

In this equation each of R;, S, represents the characteristics, respectively of the
groups (R), (S), which are incongruent mod. (P). But it is easy to see (§ 306, Ex. iii.)
that we may also regard £;, S,, as becoming equal to all the characteristics, respectively,
of the groups (R), (S).

316. We have shewn in Chap. XV. (§ 286, Ex. i.) that a certain addition
formula can be obtained for the cases p=1, 2, 3 by the application of one
rule. We give now a generalization of that rule, which furnishes results for
any value of p.

Suppose that among the 22v characteristics 4,, 4,, ..., 4, which, for any
Gopel system (P) of 27 characteristics, satisfy the conditions

lX!PIIE]P1|J ""‘X) .P,«]Ei.P,\,

we have £+ 1 =27+ 1 characteristics By, ..., By, B, of which B is even, which
are such that, when ¢ is not equal to j, BB;B; is an odd characteristic; as
follows from § 302 of this chapter, and § 286, Ex. i, Chap. XV., this is
certainly possible when o =1, or 2, or 3; and, since

* The formula is given by Frobenius, Crelle, xcvi. p. 95, being there obtained from the
formula of § 310, which is a particular case of it. The formula is generalised by Braunmiihl to
theta functions whose characteristics are n-th parts of integers in Math. Annal. xxxvir. (1890),
p. 98. The formula includes previous formulae of this chapter.
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the characteristics BB;B; will be among the set 4,, ..., 4,, so that all
characteristics congruent to BB;B; (mod. (P)) are also odd. Then by § 307
there exists an equation of the form*

AP (u,c; B, e)= 2 )\mq)(u a; B, €),
wherein the coefficients A, A, ..., A\;, are independent of . Put in this
equation u=a + Qpg,; then we infer (§ 306, Ex. i.)

AD (a,c; B, ) =MD (a,a; B, €);

hence we have
k
D (a,a; B, D(u,c; B e)= E e"ilBBm‘CD(a, ¢; B, € ®(u, a; Bn,¢),

which is the formula in questlon'l'

Adding the 27 equations obtainable from this formula by taking the
different sets of values for the fourth roots of unity ,, ..., ¢, there results

z eril7il g, (BPy = 3 8 e BBl Il o (B Py),

m=1 i=1
where

Vo (BP))=%(0; BP;)Y(2a; BP)Y(u+c; BP;)Y(u—c; BP)),
Y (BuPy) =S (a+c; BuPi) S (a—c; BuPy)Y(u+a; B,P)Y(u—a; B,P)).
Herein we may replace the arguments
2a, wu+c, u—c¢, a+c, a—c¢, ut+a, Uu—a
respectively by

UV, WAU+V-W), 3(U-V+ W), 3(U+V+W), $(U+V+W),

and thence, in case p=2, or p=3, obtain the formula of Ex. xi, § 286,
Chap. XV.

Or we may put a =0, and so obtain

2

y .
2 emil PN (0; BP)S(u+c; BP)S(w—c; BP)

=t 20 of
=3 X ¢m!Bn BRIN (u; B,P)Y (c; B.P;).
m=11=1
Other developments are clearly possible, as in § 286, Chap. XV.
Ex. When o=1 there are three even Gopel systems, and one odd; let (BP), (B,P),
(B3 P) be the three even Gopel systems; then we have
®(ay,a; B, e)®(u,c; Be)
=8B g (q, c; By, e)®(u,a; B, )+ BBl g (q, c; By, €)@ (u, a; By, ¢),
* We may, if we wish, take, instead of the characteristic B on the left hand, any characteristic
A4 such that | 4, P;|=|P;|, (i=1,..., 2).

+ For similar results, cf. Frobenius, Crelle, Lxxx1x. (1880), pp. 219, 220, and Noether, Math.
Annal. xvI. (1880), p. 327.
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where & (%, a; B, ¢) consists of 27~1 terms; for instance when p=1 we obtain
3(0; B)3(2a; B)IY (u+c; B)Y(u—c; B)
=¢" BBl g (atc; B)S(a-c; B)S(u+a; B)S (u—a; B)
+e™ BBl 9 (agc; B9 (a—c; B) S (uta; B9 (u—a; By).
317. Exz i. If P be a fixed characteristic and ¥ (z; A) denote the function
9 (u; A) $(u; A+ P), prove that

¥ (u4Qp; d)=emIPIFR@ Py 4y
and

¥ (w4005 )/% (u+205 B)=( 7)) ¥ (s 4+Q)/% (u; B+Q)
Hence, if By, ..., By, Bbe k+1=2r"141 characteristics each satisfying the condition

| X, P|=|P|, such that, when ¢ is not equal to j, BB;B; is odd, we have (§ 307) an
equation

201
AY (u; A)= S An¥ (u; -Bm)’
m=1
where 4 is any other even characteristic such that | 4, P|=| P |; putting u=Qp+Q B,y We

obtain

BB; . Y . X, P . .
x(ABi)v(O, A+B+B)=\¥(0; B+2B) =\ (B‘_)wo, B);

therefore

2-1 /BB [ P
v B =3 (457) (5.) ¥ ©0; 44B+BYv s B,)

Ez.ii. Obtain applications of the formula of Ex. i. when p=2, 3, 4; in these cases
g, =p—1, =1, 2, 3 respectively, so that we know how to choose the characteristics
B, ..., By, B (Ex. i., § 286, Chap. XV., and § 302 of this Chap.).

Ex. iii. From the formula (§ 309)
I(u+b; A)I(u—>b; A)¥(a+v; A)I(a—-v; A)
=2ipze""“19(u+v; R)S (u—v; R)9(a+b; R)S(a—b; R),
R
by putting a+ 2p for @, and b=v=0, we deduce »
2 (u; A) 92 (a; AP)=2-73 ¢ 4B P>32(u; R) 92 (a; PR),
R AR
where 4, P are any half-integer characteristics and R becomes all the 22 half-integer
characteristics in turn; putting RP for R we also have, from this equation,
92 (u; 4) 9 (a; AP)=2-vzeﬂ‘“'(fR) il 4R Pl (y. RP) 92 (a; R);
R
therefore
[1 4714 PI¥mIP g0, 4)92(0; AP)
e P , i
=273 ”AR'(AR) [14™ I PIFmiIR Pl1g2 0. R)92(0; PR).

The values of R may be divided into two sets, according as | R, P|+|P|=1 (mod. 2),
or =0; for the values of the former set the corresponding terms vanish; the values of R
for which | R, P|+| P|=0 (mod. 2) may be either odd or even; for the odd values the
zero values of the corresponding theta functions are zero; there remain then (§ 299) only
2.2p=2(2p-141) terms on the right hand corresponding to values of R which satisfy the
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conditions |R|=|RP|=0 (mod. 2); these values are divisible into pairs denoted by
R=FE, R=EP; for such values l+e"“R’P|+"i|P|=2, and

wildB|( P\ miagp /[ P )

¢ (AE)+e (AEP
_emIIAE|<P>[1+evri]AE,P|]_efri|AE|( P)[l+eni|A,Pl+m§|Pl .
= AE, = AE, IE

thus, provided | 4, P|+|P|=0 (mod. 2),

9(; 4) 9 AP)=2-<ﬂ-l)ge"“AE'(f;,) $(; £)9(; EP), (@)

wherein 92(; A) denotes 9%(0; A), etc., and, on the right hand there are 22-2(20-141)
terms corresponding to values of £ for which | £|=| EP|=0 (mod. 2), only one of the two
values, E, EP, satisfying these conditions being taken.

Putting P=0, u=aq, in the second equation of this example, we deduce in order
9 (u; A>=2—pzzee"“ARI94 (u; R); 9% (u; AP)=2‘1°§e"i|APRI 9 (u; R);
so that, by addition,
GO R e Ui U C S E R OF

thus, as before,
9(; A)+ewi|A,PI34(; AP)=2—(p—1)§eﬂlAEl{94(; E)+eﬁ|A’P|94(; EP), (ii).

Ex. iv. Taking p=2, let (P)=0, P, P,, PP, be a Gopel group of even charac-
teristics*; let B;, B,;, BB, be such characteristics (§ 297) that the Gopel systems
(P), (B, P), (ByP), (BB, P) constitute all the sixteen characteristics; each of the systems
(B, P), (ByP), (ByB,P) contains two odd characteristics and two even characteristics.
Then, in the formulae (i), (ii) of Ex. iii., if /> denote any one of the three characteristics
P, P,, P P,, the conditions for the characteristics £ are | £, P|=|P|=0, | £|=0; the
2.20~2(2p~141), =6, solutions of these conditions must consist of 0, §, B and P, QP, BP,
where ¢ is defined by the condition that the characteristics 0, @, P, @P constitute the
group (P), and B is a certain even characteristic chosen from one of the systems (B, P),
(B, P), (B,B,P). Hence, when P=P;, we may, without loss of generality, take for the
20-2(2p~141)=3 values of £ which give rise to different terms in the series (i), (ii), the
values 0, P,, B, ; similarly, when P=/2,, we have, for the values of £, E=0, P,, B,; and
when P=P,P,, E=0, P;, B,B,; taking 4 to be respectivelyt B,, B,, BB, in these
cases, we obtain the six equations

P’> 9009 P1>+e"“B'P=‘( Py )92(; P)9(; PLP)—9(; B)S(; BP)=0,
B B, P,

1

(G O+ P+ BB Py 491 (5 PyP)]-[94(; B+ (; B, PY]=0,
P g2 5 092G 4ot Bl (B2 Vg2 (s pysa(; PupY-92(; By Sr(; ByPyY=0
B, B,P, ’
BGO)+BG P+ BP9 P 498 (5 PyPY]-[9(; B +9(; ByPy]=0,
PPN s oy ars. wi| BB, P,| [ P1l; . .

(55) %G 0O%G PPy+e PRV ILIRALIRD
) —'92(§ 3132)92(3 B132P1P2)=0:
$4( 00+ 9 (; PP+ BEPI[9 (5 P49 (; PY]=[94(; By By)+9(; B,B,P, Py)]=0,

* There are six such groups (Ex. iv. § 289).
+ We easily find |B;B,P,|=|B,B,P,|= -|B,B,|. Thus the case when BB, is odd is
included by writing B,P, in place of B;.
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wherein ¢ BiPal =g B Prl — il LB Py — | These formulae express the zero values of
all the even theta functions in terms of the four $(; 0), 3(; Py), 3(; Py), $(; P, Py).
Thus for instance they can be expressed in terms of 3;, 9., 9,5, 99; the equations have
been given in Ex. iii,, § 289, Chap. XV.

Ez.v. We have in Chap. XVI. (§ 291) obtained the formula

Su-v; @)% (utv; r)=3| vu—v; (g)]ﬂl:uﬂ); (:, :]

é(e+q+7’) L(—g+7)
T g ]I: —gtr

where ¢ represents a set of p integers, each either 0 or 1, and has therefore 2¢ values.
Suppose now that ¢, r represent the same half-integer characteristic, =3 ( ) +3 ( >
=C+K_, say; then we immediately find

RGN g [, 3 @=g )] g [, 3 rioeg [, Be
91[% i 3| v; _gtr =9, »; %, S s 2 s

where €'c’ denotes the row of p integers, each either 0 or 1, which are given by (¢'¢');=¢/+¢;’
(mod. 2); herein the factor e”i“’!}l l:v; %::j is independent of £#,. For K, we take now, in

turn, the constituents
0, X,, K,, ..., Ky, K, K,, ..., K, K, K, ...

of a Gopel set of 27 characteristics, in which

_,(0,0,0, ... . (0, 0, 0, > ( , 0, o>
K'_%<l, 0, 0,...)’ Ky=3% 0,1,0,../°"" K=} ,0,1
then denoting 9 [u+v; CK, ]9 [u—v; CK,] by [CK,], we obtain 27 equa,tlons which are all
included in the equation

(R oy [0RD=7 (¢ 9, 5 2], o omeds, [0 1)),

wherein =27, ¢/, ..., ¢, represent the different values of ¢, and J is a matrix wherein the
B-th element of the a-th row is 9,| «; %Ekﬁc
The 2? various values of ¢4¢, for an assigned value of ¢, are, in general in a different
order, the same as the various values of ¢; ; We may suppose the order of the columns of
J to be so altered that the various values of ¢5¢’ become the values of ¢ tn an assigned
1 r

order, the order of the elements emice’ SII: 521] 5 ey €miCC" G [v; fzs] being correspond-
ingly altered. When this is done the matrix J is independent of the characteristic C.
Now it is possible to choose 2¢ characteristics C, say €, ..., Cs; such that the Gopel
systems (C;K) give, together, all the 27 possible characteristics; then the 2P equations
obtainable from that just written by replacing €' in turn by (i, ..., C,, are all included,
using the notation of matrices, in the one equation*

(3[u+v; C K )3 [u—v; C K] )=(e“'°“°'°81 v;%g ) (9 u; 3¢, ),

| ok i kg |
wherein ¢’ denotes a row of p integers, each either O or 1, and has 27 values. In each
matrix the element written down is the 8-th element of the a-th row.

* We can obviously obtain a more general equation by taking 2% different sets of arguments,
the general element of the matrix on the left hand being 3 [u‘® +v®; CaKa1S[u® —v® ; CaKp].
Cf. Chap. XV. § 291, Ex. v., and Caspary, Crelle, xcv1. (1884), pp. 182, 324; Frobenius, Crelle,
xcvi. (1884), p. 100. Also Weierstrass, Sitzungsber. der Ak. d. Wiss. zu Berlin, 1882, 1.—XxvIL.
p. 506.
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Ez. vi. If in Ex. v., p=2, and the group (X) consists of the characteristics

Hoo) 2 (o) (o) 2 ():

while the characteristics C consist of

) 1 08)- 1 ()1 6.

and the values of ¢ are, in order,

0,0, 01, (1,0, (1,1)
shew that the sixteen equations expressed by the final equation of Ex. v. are equivalent to

( 00 107 _FOI_ I =( a, a3 —ay aq)( B, —Bs Bs B,
11§’ 00}> [10]° LO1 ]
_[1 007 (117 [O17] —a3, a4y @, a B2y B By — B
01> [10) [00]” [ 11
ory 117 [7007] 107] ap, Gy, a3, Ty -8 B B B
00 )’ 11> [01 ] | 10]
11 017] 107 007 ay, —a;, a, ag By B —Be B3
“l10]* TLo1 > T|11 ] [oo]

wherein, on the left hand, I:(l)(l)] denotes 9 [u+v e ((1)(1)):' 9 [u -v; % (??)] , etc., and on
the right hand,

A R T P Y )

815 B2, B3, By being respectively the same theta functions with the argument ».

Now if 4, B denote respectively the first and second matrices on the right hand, the
linear equations

(F15 Y2s Y35 Ya) =4 (21, Bp, T3, T4), (1, Ty, By, T)=B (2, 25, 23, 2y)
are immediately seen to lead to the results
Y2+ +yf +yld=(a’ +al +al+a?) (22 + 2+ 22+ 2,7),
2P+l ol + 2 l=(B2+B +BE+B,5) (o2 +aP+at+af) ;
hence if the j-th element of the ¢-th row of the compound matrix 4B, which is the matrix
on the left-hand side of the equation, be denoted by v, j» We have

4 4 4
izl 7?' s=1_fl‘yf-_ » ifly,-, » Vi, 3=0, (7'4:8) r, 8=1, 2, 37 4);

and these equations lead to
4

4
[ leﬁ'j ’ jzlyr' 3 Y55 =0
. 00 107 . ; .
Denoting [:11], [00 » by [ae], [ac], etc., as in the table of § 204, and inter-
changing the second and third rows of the matrix on the left-hand side, we may express
the result by saying that the matrix

(a1, [@a], —[aye], [a] )

[ages], —[aze],  [apel,  [a4]
[ 5 [ed 5 [ 5 [mag)
—[ee)] 5 —leeg] 5 —[eres],  [0]

gives an orthogonal linear substitution of four variables*.

* An algebraic proof may be given ; f. Brioschi, Ann. d. Mat. x1v.
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Ez. vii. Deduce from § 309 that

&1 [Ee_82 (u; AP,,,)] [Eeae"i 14Pal g2y, 4 P,)]
29 (utv; AP)I(u-v; AP)=3 L > 32(5' APy -,

where P;, P, are characteristics of a Gopel group (P), of 2° characteristics. Infer that, if
n be any positive integer, and A P; be an even characteristic, $ (nv ; AP;) is expressible as an
tntegral polynomial of order n* in the 2° functions 3 (v; AP,).

B viil. If K=} (’Z), Pu=} (2‘) , deduce from § 309, putting

a=b=u—U=v— V=49,
that
x(U+V, U=-V)x(0,0)=x (U, U)x(V, = V),
where

X (4 v)=Seqe ¥ *% 3 (u; K+P,)9(v; Pa).



