
CHAPTER XV 

THE CALCULUS OF VARIATIONS 

155. The treatment of the simplest case. The integral 

J r*B nB 

F(x, y, ý)dx = ļ Φ(x, y, dx, dy), (1) 
J A 

where Φ is homogeneous of the first degree in dx and dy, may be evalu­
ated along any curve between the limits A and by reduction to an 
ordinary integral. For if is given by = f(x), 

1 = f F(x, y, y') dx= f lF(x, f(x), f(x)) dx ; 
J A Jx0 

and if is given by x = φ(t), = ψ(t), 

Φ(x, y, dx, dy) = Φ(φ, ψ, φ', ψ')dt. 
A Jt0 

The ordinary line integral (§ 122) is merely the special case in which 
Φ = Pdx + Qdy and F = P + Qy\ In general the value of I will depend 
on the path of integration ; the problem of the calculus of variations 
is to find that path which will make I a maximum or minimum relative 
to neighboring paths. 

If a second path Ct be =f(x) -+- η(x), where η(x) is a small quan­
tity which vanishes at xQ and xχ, a whole family of paths is given by 

=f(x) + <*v(x), - 1 = a = ĥ v(xo) = V(xù = 0, 

and the value of the integral Y* 

I (a) = F(x, f + arj, f' + a ') dx, (V) ¿ Ù f 

taken along the different paths of the family, be- Q\ ¿ 0 — — ¿ ι x 

comes a function of α; in particular 7(0) and 7(1) 
are the values along and . Under appropriate assumptions as to 
the continuity of F and its partial derivatives F'x, F'y, FĻ, the function 
I (a) will.be continuous and have a continuous derivative which may 
be found by differentiating under the sign (§ 119) ; then 

T'(a) = f l [ Ŵ , / + «η,f + <zη') + η'FĻ(x,f+ aη,f' + aη<)¯\dx. 
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If the curve is to give I (a) a maximum or minimum value for all 
the curves of this family, it is necessary that 

) = f XvK(*> , ') + v'K<(*> > y*)Ί<ix = 0 ; (2) 

and if is to make I a maximum or minimum relative to all neighboring 
curves, it is necessary that (2) shall hold for any function η (x) which is 
small. I t is more usual and more suggestive to write η (x) = Sy, and to 
say that hj is the variation o f in passing from the curve or = f(x) 
to the neighboring curve or = f(x) + η(x). From the relations 

y' = /'(*), ý = /'(•'•) + v'(*), V = v'(χ) = ¿ > 

connecting the slope of with the slope of Cv it is seen that the variation 
of the derivative is the derivative of the variation. In differential nota­
tion this is dfoj — My, where it should be noted that the sign δ applies 
to changes which occur on passing from one curve to another curve Cv 

and the sign d applies to changes taking place along a particular curve. 
With these notations the condition (2) becomes 

\F &J + F ,hy*)đx = XbFdx = 0, (3) 
Jχ0 Jx0 

where δF is computed from F, hj, Sy' by the same rule as the differential 
dF is computed from F and the differentials of the variables which it 
contains. The condition (3) is not sufficient to distinguish between a 
maximum and a minimum or to insure the existence of either ; neither 
is the condition f(x) = 0 in elementary calculus sufficient to answer 
these questions relative to a function g (x) ; in both cases additional con­
ditions are required (§9). I t should be remembered, however, that 
these additional conditions were seldom actually applied in discussing 
maxima and minima of g (x) in practical problems, because in such cases 
the distinction between the two was usually obvious ; so in this case 
the discussion of sufficient conditions will be omitted altogether, as in 
§§ 58 and 61, and (3) alone will be applied. 

An integration by parts will convert (3) into a differential equation 
of the second order. In fact 

ƒ “ W * = ƒ 4 £ byđ, = \Fµ,V -f\ j- F¦Ŵ, 
Ux0 *Λr0 l_ Jx0 «/ƒ„ 

Hence f ' (F;b¦j + F¿δy') dx = Ίĸ~¦fχ JÇ W * = 0, (3') 
Jcc0 Jχ0 \ I 
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since the assumption that Sy = η (x) vanishes at xQ and xχ causes the 
integrated term [FĻby¯\ to drop out. Then 

y dx y'~ y x if cyCy V yì20 ¯¯¯ W 

For it must be remembered that the function by = η (x) is any function 

• that is small, and if F'y — — F'y, in (3') did not vanish at every point 

of the interval 
X(\ ~~̂  X ~ ^ *^i> 

the arbitrary function by could be chosen 
to agree with it in sign, so that the integral of the product would neces­
sarily be positive instead of zero as the condition demands. 

156. The method of rendering an integral (1) a minimum or maximum 
is therefore to set up the differential equation (4) of the second order 
and solve it. The solution will contain two arbitrary constants of inte­
gration which may be so determined that one particular solution shall 
pass through the points A and B, which are the initial and final points 
of the path of integration. In this way a path which connects A 
and and which satisfies (4) is found ; under ordinary conditions the in­
tegral will then be either a maximum or minimum. An example follows. 

Let it be required to render I = f 1 - Vl + y'2dx a maximum or minimum. 

F(x,y,,n = lVĪ+ψ, í = - ļ V Ī T ^ , ψ-, = y-^=• 
y by Vi + ý2 

Hence - l V l + y/2 + ~ , 1 : ž / - ¯ =v" = 0 or yý'+ý* + l = O 
2 2 V l + y / 2 (1 + ' 2 ) * 

is the desired equation (4). It is exact and the integration is immediate. 

(yy'Y + 1 = 0, yy' + χ = cv y2 + (x - cχ)2 = c2. 
The curves are circles with their centers on the x-axis. From this fact it is easy 
by a geometrical construction to determine the curve which passes through two 
given points A (x0, y0) and B(xv yj; the analytical determination is not difficult. 
The two points A and must lie on the same side of the x-axis or the integral I 
will not converge and the problem will have no meaning. The question of whether 
a maximum or a minimum has been determined may be settled by taking a curve 
Cx which lies under the circular arc from A to and yet has the same length. 
The integrand is of the form ds/y and the integral along Cx is greater than along 
the circle if is positive, but less if is negative. It therefore appears that the 
integral is rendered a minimum if A and are above the axis, but a maximum if 
they are below. 

For many problems it is more convenient not to make the choice of x 
or as independent variable in the first place, but to operate symmetri­
cally with both variables upon the second form of (1). Suppose that, the 
integral of'the variation of Φ be set equal to zero, as in (3). 
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δΦ = f [Φ> + Φ'ß>, + ΦdxMχ + *O¿dy\ = 0. 
JA JA 

Let the rules Mx = dSx and bd = dby be applied and let the terms 

which contain dbx and db be integrated by parts as before. 

ƒ δΦ = ƒ [(Φ; - dΦ¦ x)bχ + ( Φ ; - r¾,)δy] + [Φ; ,> + Φ;,Ŵ]* = °-

As and are fixed points, the integrated term disappears. As the 

variations δ.x and hj may be arbitrary, reasoning as above gives 

- d*'d* = 0, Φ; - dΦ'dy = 0. (4') 

If these two equations can be shown to be essentially identical and to 
reduce to the condition (4) previously obtained, the justification of the 
second method will be complete and either of (4') may be used to deter­
mine the solution of the problem. 

Now the identity Φ(x, y, dx, dy) = F(x, y, dy/dx)dx gives, on differentiation, 

Φ; = F > , Φ = r,dx, Φ¿, = F ; , Φ'dx = -F;,fχ + F 

by the ordinary rules for partial derivatives. Substitution in each of (4') gives 

*; - <¾=r,<¡x- dFĻ = ( 5 - 1 ) *=». 

- đΦ'dx = Fxdx -d(F- FĻy') = Fxdx-dF + F ,dV + y'dF , 

= F'xdx-Fxdx-F'ydy- F'y,dy' + FĻdy' + y'dFĻ 

= -F;dy + y'dF;, = - ķ - ± F ή d y = O. 

Hence each of (4') reduces to the original condition (4), as was to be proved. 

ƒ /7 /-» ~\/dx2 -4- du 
— = i Then  J   

J ( í s_ ç Vdx2 + dy2 _ ç Γdxδdx + dyδdy ds Ί  
J J L yds y2 J 

where the transformation has been integration by parts, including the discarding 
of the integrated term which vanishes at the limits. The two equations are 

, dx _ dy ds dx 1 
d = 0, đ — + — = 0 ; and = — 

yds yds y2 yds cχ 
is the obvious first integral of the first. The integration may then be completed to 
find the circles as before. The integration of the second equation would not be so 
simple. In some instances the advantage of the choice of one of the two equations 
offered by this method of direct operation is marked. 



404 INTEGRAL CALCULUS 

EXERCISES 

1. The shortest distance. Treat ƒ (1 + y'2)zdx for a minimum. 

2. Treat í ^Vdr2 + r2dφ2 for a minimum in polar coordinates. 

3 . The brachistochrone. If a particle falls along any curve from A to JB, the 
velocity acquired at a distance h below A is v = V ¾ Λ regardless of the path fol­
lowed. Hence the time spent in passing from A to is T = I đs/v. The path of 

quickest descent from to is called the brachistochrone. Show that the curve 
is a cycloid. Take the origin at A. 

4. The minimum surface of revolution is found by revolving a catenary. 

5. The curve of constant density which joins two points of the plane and has a 
minimum moment of inertia with respect to the origin is — sec (3<ļ> + c2). Note 
that the two points must subtend an angle of less than 60° at the origin. 

6. Upon the sphere the minimum line is the great circle (polar coordinates). 

7. Upon the circular cylinder the minimum line is the helix. 

8. Find the minimum line on the cone of revolution. 

9. Minimize the integral f - m l — ļ + -n2x2\dt. 
ö J [_2 \dt/ 2 J 

157. Variable limits and constrained minima. This second method 
of operation has also the advantage that it suggests the solution of the 
problem of making an integral between variable end-jjoints a maximum 

I ^ r 0 
OÌ X 

or minimum. Thus suppose that the curve which 
shall join some point A of one curve Γ0 to some 
point of another curve Γχ, and which shall make 
a given integral a minimum or maximum, is desired. 
In the first place must satisfy the condition (4) 
or (4') for fixed end-points because will not give 
a maximum or minimum value as compared with 
all other curves unless it does as compared merely with all other curves 
which join its end-points. There must, however, be additional condi­
tions which shall serve to determine the points A and which con­
nects. These conditions are precisely that the integrated terms, 

¦<Þ'aJx + Φφ,Sìj]B = 0, for A and for B, (5) 

which'vanish identically when the end-points are fixed, shall vanish at 
each point A or provided Sx and by are interpreted as differentials 
along the curves Γ0 and Tv 
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/
ds p \dx" 4- dy^ 
— = ƒ • treated above, the integrated  J   

terms, which were discarded, and the resulting conditions are 

dxδx dyδy¯¦B dxδx + dyðy~¦ B dxδx + dyδyl _ 
L yds yds J A ' yds J ' yds J A 

Here dx and dy are differentials along the circle and δx and δy are to be inter­
preted as differentials along the curves Γ0 and Tχ which respectively pass through 
A and B. The conditions therefore show that the tangents to and Γ0 at A are 
perpendicular, and similarly for and Tt at B. In other words the curve which 
renders the integral a minimum and has its extremities on two fixed curves is the 
circle which has its center on the x-axis and cuts both the curves orthogonally. 

To prove the rule for finding the conditions at the end points it will be suffi­
cient to prove it for one variable point. Let the equations 

C:X = φ(t), y = ‡(t), G\:X = φ(t) + ţ(t), y = ψ(t) + η(t), 

Wo) = v ( = o, nĥ) = *, -n (ĥ) = ; te = r(¿), = η (Í), 

determine and C\ with the common initial point A and different terminal points  
and B' upon Γ r As parametric equations of Tv take 

x - χB + al (s), y = yB + bm(s); — = al'(s), — = bm'(s), 
δs δs 

where s represents the arc along Γx measured from 2?, and the functions l(s) and 
m(s) vary from 0 at to 1 at B'. Next form the family 

x = φ{t) + l(s)ţ(t), = Ψ(t) + ™>(*)v(t), x' = Φ' + ¾Λ V = Ψ' + mη', 

Λvhich all pass through A for t = t0 and which for t = tλ describe the curve Γ r 

Consider 
g (s) = f %(x + l (s) f, y + m (s) 77, x' + ', y' + mif) dt, (6) 

which is the integral taken from A to along the curves of the family, where 
‰ -, x'-> ' a r e o n t n e curve corresponding to s = 0. Differentiate. Then 

ř/(*) = ƒ \l'(s)&x + m'{s)ηΦļ + / ¾ f ¾ + m'(s)η'ΦĻ¯]dt, 

where the accents mean differentiation with regard to s when upon #, Z, or m, but 
with regard to t when on x or ?/, and partial differentiation when on Φ, and where 
the argument of Φ is as in (6). Now if y (s) has a maximum or minimum when 
s = 0, then 

Sf'(O) = ftl [Z'(0) ÇΦ'¿x, ?Λ X', ?/') + w'(O) ιjΦ'v + ¿'(O) ξ'ΦĻ + m'(O) T ? % ] đř = 0 ; 

ļV(O) Ŵ + m'(O) ηΦ¿, J 1 + ft
 h [V(O) f (Φ; - I Φ;,) + m'(O) (φ^ - | φ ^ ) ] dt = 0. 

The change is made as usual by integration by parts. Now as 

Φ (x, y, x', y') dt = Φ (x, 2/, dx, dy), so Φ'xdt = Φ , ΦĻ = Φ^, etc. 
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Hence the parentheses under the integral sign, when multiplied by dt, reduce tű 
(4') and vanish ; they could be seen to vanish also for the reason that £ and η are 
arbitrary functions of t except at t = t0 and t = tv and the integrated term is a 
constant. There remains the integrated term which must vanish, 

r(o) ζ (u) *Ļ + v ¾) ΦĻ = ¦ ¦ Φ.;. + g Φ;, J' = ¦Φ;IX SX + ΦŴ ¾, J' = o. 

The condition therefore reduces to its appropriate half of (5), provided that, in 
interpreting it, the quantities δx and òy be regarded not as a = ¿*(¿χ) and b = η(t¡) 
but as the differentials along at B. 

158. In many cases one integral is to be made a maximum or minimum 
subject to the condition that another integral shall have a fixed value, 

ī= ļ F(x, y, y')dx ™^*, J = ƒ G(x, y, y')đx = const. (7) 

For instance a curve of given length might run from A to B, and the 
form of the curve which would make the area under the curve a maxi­
mum or minimum might be desired ; to make the area a maximum or 
minimum without the restriction of constant length of arc would be 
useless, because by taking a curve which dropped sharply from A, in­
closed a large area below the ¡r-axis, and rose sharply to the area 
could be made as small as desired. Again the curve in which a chain 
would hang might be required. The length of the chain being given, 
the form of the curve is that which will make the potential energy a 
minimum, that is, will bring the center of gravity lowest. The prob­
lems in constrained maxima and minima are called isoperimetrίc prob­
lems because it is so frequently the perimeter or length of the curve 
which is given as constant. 

If the method of determining constrained maxima and minima 
by means of undetermined multipliers be recalled (§§58, 61), it will 
appear that the solution of the isoperimetric problem might reasonably 
be sought by rendering the integral 

I + λJ=C \F(X, y, y') + \G (χ, y, y<)¯\äx (8) 
Jx0 

a maximum or minimum. The solution of this problem would contain 
three constants, namely, λ and two constants cv c2 of integration. The 
constants cv c2 could be determined so that the curve should pass through 
A and and the value of λ would still remain to be determined in such 
a manner that the integral J should have the desired value. This is 
the method of solution. 
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To justify the method in the ease of fixed end-points, which is the only case 
that will be considered, the procedure is like that of § 155. Let G be given by 
y = f(x) ; consider 

y =f(x) + aη (x) + ßÇ(x), ηo = -ni = fo = ś“i = °» 

a two-parametered family of curves near to C. Then 

g (α, ß) = f**F(x, y+aη + # , y' + aη'+ j8 đx, g (0, 0) = I 

h(a, ß)= f xG(x, y + aη + ]8f, y' + aiy' + /S cfø = J = const. 

would be two functions of the two variables a and ß. The conditions for the mini­
mum or maximum of y (¿r, ß) at (0, 0) subject to the condition that h (α, ß) = const, 
are required. Hence 

ÉC(O, o) + λ/ζ(o, o) = o, /3(0, o) + λ¾(o, o) =. 0, . 

or f X\ (F,; + λ¾) + '(FĻ + λ¾,) (tø = 0, 
Jχ0 

fy(K + λ¾) + *“'(*£ + λ^)dï = 0. 

By integration by parts either of these equations gives 

(F+\G) -±(F+\G) , = O; (9) 

the rule is justified, and will be applied to an example. 
Required the curve which, when revolved about an axis, will generate a given 

volume of r e v o l u t a bounded by the least surface. The integrals are 

X xχ nxχ 

yds, min., J = 7Γ ļ y2dx, const. 

J
f*Xχ ζ»Xχ 

(yds + \y2dx) min. or ļ δ (yds + λy2dx) = 0. 

fjlδ(yds + \y4x) =£l[syds + * ^ + * + 2\yδydx + \y4dx¦ = 0 

-j¿",K--<«-'ΐ)+*(*-''S!+"*)]-
Hence λđ(y2) + đ ^ = 0 or đs - đ ^ + 2λ¾ŵ = 0. 

ds ds 

The second method of computation has been used and the vanishing integrated 
terms have been discarded. The first equation is simplest to integrate. 

1 . λ(c, -y*)dy 
V Ί T ÿ 7 2 VP* - \2 (q - 2/2)2 

The variables are separated, but the integration cannot be executed in terms of 
elementary functions. If, however, one of the end-points is on the x-axis, the 
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values æ0, 0, y'0 or xχì 0, y\ must satisfy the equation and, as no term of the equa­
tion can become infinite, cλ must vanish. The integration may then be performed. 

± ×ydy =dx, l-×ψ = \*(x-c0)* or (¿ _ r2)2 + y* = 1 . 
V i - λV2 λ 

In tlús special case the curve is a circle. The constants cx and λ may be deter­
mined from the other point (xχ, ) through which the curve passes and from the 
value of J = υ ; the equations will also determine the abscissa x0 of the point on 
the axis. I t is simpler to suppose x0 = 0 and leave xλ to be determined. With this 
procedure the equations are 

4 = ¿ - (»i - <¾>2 + VÎ = ¿ • l = ¦~\ (*í - 8 ¾*? + 8 ¾¾ι)» 

*í + s ŵ - ^ = o, ¾ = ţ t l f , 
7Γ Z ¾ļ 

and Xj = iΓ i [ ( ? + V 9 υ2 + π ^ f ) ļ + ( υ - V θ ≠ + T¾f)¾]. 

EXERCISES 

1. Show that (α) the minimum line from one curve to another in the plane is 
their common normal ; (ß) if the ends of the catenary which generates the mini­
mum surface of revolution are constrained to lie on two' curves, the catenary shall 
be perpendicular to the curves ; (7) the brachistochrone from a fixed point to a 
curve is the cycloid which cuts the curve orthogonally. 

2. Generalize to show that if the end-points of the curve which makes any inte­

gral of the form ƒ F(x, y)ds a maximum or a minimum are variable upon two 

curves, the solution shall cut the curves orthogonally. 

3 . Show that if the integrand Φ(x, 2/, dx, dy, xx) depends on the limit æ1? the 

condition for the limit becomes Φ'dxδx + Φ'dyδy + δx ^ = 0. 

4. Show that the cycloid which is the brachistochrone from a point J., con­
strained to lie on one curve Γ0, to another curve I \ must leave Γ0 at the point  
where the tangent to Γ0 is parallel to the tangent to χ at the point of arrival. 

5. Prove that the curve of given length which generates the minimum surface 
of revolution is still the catenary. 

6 . If the area under a curve of given length is to be a maximum or minimum, 
the curve must be a circular arc connecting the two points. 

7. In polar coordinates the sectorial area bounded by a curve of given length is 
a maximum or minimum when the curve is a circle. 

8. A curve of given length generates a maximum or minimum volume of 
revolution. The elastic curve 

B = < - ! ± Ü 3 Ì = - Λ or <tr.= fr1-*.>** . 
v" 2v Vλ2 - (≠ - cλf 
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9. A chain lies in a central field of force of which the potential per unit mass is 
V(r). If the constant density of the chain is /o, show that the form of the curve is 

/

dr 
_. 

r[c?<pF+λ)«-1]* 

10. Discuss the reciprocity of I and J , that is, the questions of making I a maxi­
mum or minimum when J is fixed, and of making J a minimum or maximum when 
I is fixed. 

11 . A solid of revolution of given mass and uniform density exerts a maximum 
attraction on a point at its axis. i n s . 2λ(x2 + y2)z + x = 0, if the point is at the 
origin. 

159. Some generalizations. Suppose that an integral 

I = J F(x,y, y\ z,z>,--.)dx= J Φ(x, dx, y, dy, z, dz, • • •) (10) 

(of which the integrand contains two or more dependent variables 
y, z, • • • and their derivatives y\ z', • • • with respect to the independent 
variable x, or in the symmetrical form contains three or more variables 
and their differentials) were to be made a maximum or minimum. In 
case there is only one additional variable, the .problem still has a geo­
metric interpretation, namely, to find 

y=f(x), z = g(x), or x = φ(t), y = ψ(t), » = χ(t), 

a curve in space, which will make the value of the integral greater or 
less than all neighboring curves. A slight modification of the previous 
reasoning will show that necessary conditions are 

K-4¯K = 0 and K—4¯K = O 
y dx y z dx z (11) 

or <¾ - dΦ'te = o, Φ; - d&dy = o, Φ; - < ‰ = o, 
where of the last three conditions only two are independent. Each of 
(11) is a differential equation of the second order, and the solution of 
the two simultaneous equations will be a family of curves in space 
dependent on four arbitrary constants of integration which may be so 
determined that one curve of the family shall pass through the end-
points A and B. 

Instead of following the previous method to establish these facts, an 
older and perhaps less accurate method will be used. Let the varied 
values of y, z, y', z', be denoted by 

y + Sy, z + δz, y' + δy, *' + &', δy' = (δy)', &' = (&)'. 
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The difference between the integral along the two curves is 

Δ / = \F(X, + by, y' + by\ z + Ss, s' + - F{x, , y\ z, z*)]dx 
Jx0 

= Ç \Fdx = í \F Sy + FĻŭy' + F'M + Flßz') dx + • - •, 
JxQ Jx0 

where F has been expanded by Taylor's Formula* for the four variables 

y, y\ z, z which are varied, and ĸx -\ “ refers to the remainder or the 

subsequent terms in the development which contain the higher powers 

of by, by', bz, δs'. 
For sufficiently small values of the variations the terms of higher 

order may be neglected. Then if Δ7 is to be either positive or nega­
tive for all small- variations, the terms of the first order which change 
in sign when the signs of the variations are reversed must vanish and 
the condition becomes 

\F by + F &ý + F bz + F'Jz')đx = J 'bFdx = 0. (12) 
JxQ JxQ 

Integrate by parts and discard the integrated terms. Then 

Xl(F ;- 'έφ+( r :-έp->]-°- <1S> 
* In the simpler case of § 155 this formal development would run as 

AI = f X\F¦,δy+ F'y,òy') dx + ±- f *\Fÿybiß + 2 FĻδyδy' + FyĻδý2)dx+ higher terms, 
Jχ0 ¿\ Jχ0 

and with the expansion AI = δl H δ2I -\ δsI-\- • • • it would appear that 

δl = f**(Fļδy + FĻδý)dx, δ2I = Ç*\Fÿyδy* + 2FĻδyδy' + FÿΎδy'2)dx, 
JχQ JχQ 

δ4 = Ç*\F'¿Ò≠ + ZFÿĻδy4y' + 3Fyy:2δyδy'* + F¦£δý*)đx, • • • . 
Jχ0 

The terms δl, δ2I, δsI, • • • are called the first, second, third, • • - variations of the integral 
I in the case of fixed limits. The condition for a maximum or minimum then becomes 
δl= 0, just as dg = 0 is the condition in the case of g (x). In the case of variable limits 
there are some modifications appropriate to the limits. This method of procedure sug­
gests the reason that δx, δy are frequently to be treated exactly as differentials. It also 
suggests that δ2I > 0 and δ2I < 0 would be criteria for distinguishing between maxima 
and minima. The same results can be had by differentiating (Γ) repeatedly under the 
sign and expanding I (a) into series; in fact, δl= I'(O), δ2I= I“(O), • • •. No emphasis 
has been laid in the text on the suggestive relations δl= ļ δFdx for fixed limits or 
δl= ļ δΦ for variable limits (variable in x, y, but not in t) because only the most ele­
mentary results were desired, and the treatment given has some advantages as to 
modernity. 
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As δv/ and Sz are arbitrary, either may in particular be taken equal to 
0 while the other is assigned the same sign as its coefficient in the 
parenthesis ; and hence the integral would not vanish unless that coeffi­
cient vanished. Hence the conditions (11) are derived, and it is seen 
that there would be precisely similar conditions, one for each variable 
y, z, • • -, no matter how many variables might occur in the integrand. 

Without going at all into the matter of proof it will be stated as a 
fact that the condition for the maximum or minimum of 

ļ Φ (x, dx, y, dy, z, dz, . . . ) is δΦ = 0, 

which may be transformed into the set of differential equations 

¾ — dφdx = o, Φ; - dΦ'đy = o, Φ; - đΦ'đz = o, ..., 
of which any one may be discarded as dependent on the rest ; and 

Φ'¿J&x + Φ'đJļby + Φ'dzbz -\ = 0, at A and at B, 

where the variations are to be interpreted as differentials along the loci 
upon which A and are constrained to lie. 

I t frequently happens that the variables in the integrand of an inte­
gral which is to be made a maximum or minimum are connected by an 
equation. For instance 

ļ Φ(x, dx, y, dy, z, dz) min., S(x, y, z) = 0. (14) 

I t is possible to eliminate one of the variables and its differential by 
means of S = 0 and proceed as before ; but it is usually better to 
introduce an undetermined multiplier (§§58, 61). From 

S(x, y, z) = 0 follows S*Jx + ¾δy + S bz = 0 

if the variations be treated as differentials. Hence if 

Γ [ ( Φ ; - dΦ'ώ te + (Φ; - dφ-đ9) by + (Φ; - d#dx) &] = o, 

Γ[(Φ; - dΦ'dx + λ¾)δtf + (Φ; - dΦđ¥ + λ.%)¡>y 

+ (Φ -dΦđt + λSř
t)Sz] = 0 

no matter what the value of λ. Let the value of λ be so chosen as to 
annul the coefficient of δ^. Then as the two remaining variations are 
independent, the same reasoning as above will cause the coefficients of 
bx and Sy to vanish and 

¢ ; - ¾ + λ¾ = o, Φ -dΦđv + λs¦ = o9 Φ;-<¾ + λs; = o (i5) 
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will hold. These equations, taken with S = 0, will determine y and z 
as functions of x and also incidentally will fix λ. 

Consider the problem of determining the shortest lines upon a surface 
S(x, y, z) = 0. These lines are called the geodesies. Then 

/

dxδx + duby + dzbz\ Γ\ dx . Ίdy ^ , 7dz . ļ ,.n× 

Ms = O= ->U- ¦-j¦d-bx + d¿by + d-^¦,(U) 
j{a f + xή , + (a ¾ + λ¾)¾, + (äĝ + xs:) s* = o, 

dx dy dz 

d‡ + λS'χ = dCķ + λS = dţ + λS: = 0, and _ £ = _ £ = _ £ • 
Ŵ </* Ŵ ¾ ; ¾ 

In the last set of equations λ has been eliminated and the equations, 
taken with S = 0, may be regarded as the differential equations of the 
geodesies. The denominators are proportional to the direction cosines 
of the normal to the surface, and the numerators are the components of 
the differential of the unit tangent to the curve and are therefore pro­
portional to the direction cosines of the normal to the curve in its oscu­
lating plane. Hence it appears that the osculating plane of a geodesic 
curve contains the normal to the surface. 

The integrated terms dxδx + dyδy + dzδz = 0 show that the least geodesic which 
connects two curves on the surface will cut both curves orthogonally. These terms φ 

will also suffice to prove a number of interesting theorems which establish an analogy 
between geodesies on a surface and straight lines in a plane. For instance : The 
locus of points whose geodesic distance from a fixed point is constant (a geodesic 
circle) cuts the geodesic lines orthogonally. To see this write 

Γp Cp Γp Γp \p 

\ d§ = const., Δ I ds = 0, δ I ds = 0, | δds = 0 = dxδx + dyδy + dzδz\ . 
Jo Jo Jo Jo I 
The integral in (16) drops out because taken along a geodesic. This final equality 
establishes the perpendicularity of the lines. The fact also follows from the state­
ment that the geodesic circle and its center can be regarded as two curves between 
which the shortest distance is the distance measured along any of the geodesic 
radii, and that the radii must therefore be perpendicular to the curve. 

160. The most fundamental and important single theorem of mathe­
matical physics is Hamilton's Principle, which is expressed by means 
of the calculus of variations and affords a necessary and sufficient con­
dition for studying the elements of this subject. Let T be the kinetic 
energy of any dynamical system. Let Xiy Yi9 Z¿ be the forces which 
act at any point xi9 y{, zi of the system, and let Sxi7 δ¿/¿, δ¿¿ represent 
displacements of that point. Then the work is 

SW = ] ? (Xfc + Yfi,/i + Zfc). 
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Hamilton's Principle states that the time integral 

f \ST + bW)dt = f \ST + V (XSx + Yby + Zhz)-]dt = 0 (17) 
«Λ0 Jt0 

vanishes for the actual motion of the system. I f in pa r t i cu l a r t h e r e is 
a po ten t i a l func t ion V, t h e n δ W = — δ V a n d 

f^(T-V)dt = δ f\τ-V)dt = 0, (17 ' ) 

a n d the time integral of the difference betiveen the kinetic and potential 
energies is a maximum or minimum for the actual motion of the system 
as compared w i t h a n y ne ighbo r ing mot ion. 

Suppose that the position of a system can be expressed by means of n independ­
ent variables or coordinates qχ, q21 - • -, qn. Let the kinetic energy be expressed as 

T= ^ i m ¿ ü ? = ƒ i ¾ ‰ = fax, ç2, ...., qn, qv q2, • •-, qn), 

a function of the coordinates and their derivatives with respect to the time. Let 
the work done by displacing the single coordinate qr be δ W = Q,δqr, so that the total 
work, in view of the independence of the coordinates, is Qļδq^ Q 2 ¾ + • • • + Q äq -
Then 

0 = Γ\δT + δW) dt = *\ ' + ;δq 2 + • • - + T'qδqn + T'*qx + T¡δq2 

+ ' ' ' + T¡J<ln + Qiδςfx + Q2δq2 + • • • + Qnδqn)dt. 
Perform the usual integration by parts and discard the integrated terms which 
vanish at the limits t = t0 and t = tv Then 

o=ļ'*[(^ + ¾ - l φ x + (¾+¾-l¾)¾ 

In view of the independence of the variations δ(/lţ δ(/.2, • -, δ(/n, 

đ ĈΓ r r _ der der _ 
α¿ <:ςr1 cqχ at cq2 q2 at cqn cqn 

These are the Lagrang ian equations for the motion of a dynamical system.* If 
there is a potential function V (q1 q2, • • -, qn), then by definition 

Q = - — , Q = - — , •.., ‰ = - — , ^ = ̂  = . . . = ? I = 0. 
1 ĉ¢ļ 2 ¾ ' ĉçr„ β cq1 q2 qn 

d L L d L L d L L 
Hence = 0, = 0, •••, = 0, L — T — V. 

dt 'qx ĉq1 dt q2 q2 dt qn qn 

The equations of motion have been expressed in terms of a single function L, which 
is the difference between the kinetic energy T and potential function V. By 

* Compare Ex. 19, p. 112, for a deduction of (18) by transformation. 
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comparing the equations with (17') it is seen that the dynamics of a system which 
may be specified by n coordinates, and which has a potential function, may be stated 
as the problem of rendering the integral f Ldt a maximum or a minimum ; both the 
kinetic energy T and potential function V may contain the time t without chang­
ing the results. 

For example, let it be required to derive the equations of motion of a lamina 
lying in a plane and acted upon by any forces in the plane. Select as coordinates 
the ordinary coordinates ( , ) of the center of gravity and the angle <ļ> through 
which the lamina may turn about its center of gravity. The kinetic energy of the 
lamina (p. 318) will then be the sum ļMv2 + \lω2. Now if the lamina be moved a 
distance δx to the right, the work done by the forces will be Xδx, where X de­
notes the sum of all the components of force along the x-axis no matter at what 
points they act. In like manner Yδy will be the work for a displacement by. Sup­
pose next that the lamina is rotated about its center of gravity through the angle 
δφ ; the actual displacement of any point is rδψ where r is its distance from the 
center of gravity. The work of any force will then be Rrdφ where R is the com­
ponent of the force perpendicular to the radius r ; but Rr = Φ is the moment of 
the force about the center of gravity. Hence 

T = ļM(x2 + y2) + ļ i ø 2 , δW= Xδx + Yby + Φδφ 

and M-— = A, M—÷- = Y. I—— — Φ, 
dt2 ' dt2 ' dt2 

by substitution in (18), are the desired equations, where X and Y are the total 
components along the axis and Φ is the total moment about the center of gravity. 

A particle glides without friction on the interior of an inverted cone of revo­
lution; determine the motion. Choose the distance r of the particle from the ver­
tex and the meridional angle φ as the two coordinates. If I be the sine of the 
angle between the axis of 'the cone and the elements, then ds2 = dr2 + r2l2dφ2 and 
v2 = r2 + r2l2φ2. The pressure of the cone against the particle does no work ; it is 
normal to the motion. For a change δφ gravity does no work; for a change δr it 
does work to the amount — mg V i — l2δr. Hence 

T=ļm(r2 + r2l2φ2), δW = - ?/¾rVl - l2δr or V = ingVl - l2r. 

Then ^ _ r P ^ Y = - í f V Γ = P , *(,*P**) = Q or r^-*=C. 
dt2 \dt/ dt\ dt) dt 

The remaining integrations cannot all be effected in terms of elementary functions. 

161. Suppose the double integral 

1 = JJ F(x,y,%p,q)dxd¡/, P = ̂  q = %' (19) 

extended over a certain area of the . /-plane were to be made a maxi­
mum or minimum by a surface z = z(x, y), which shall pass through a 
given curve upon the cylinder which stands upon the bounding curve 
of the area. This problem is analogous to the problem of § 155 with 
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fixed limits ; the procedure for finding the partial differential equation 
which z shall satisfy is also analogous. Set 

\¦bFdxdy = f f (F'ßz + F'pìp + Ffiq)dxdy = 0.' 

r¡S\— r\Sí 

Write bp — -¿— ? î>q = -ĸ- and integrate by parts. 
GX  

bz \ dF' 

J J Fp ¯ x¯ dxdy =J FpδΊ dy ~ ) } ¯úx bzdxdy-
The limits A and for which the first term is taken are points upon 
the bounding contour of the area, and Sz = 0 for A and by virtue of the 
assumption that the surface is to pass through a fixed curve above 
that contour. The integration of the term in δq is similar. Hence the 
condition becomes 

jĵbFäxdy =ĴĴ(F; -í%~lψ)*d*äy = 0 (20) 

— - — — - — — = 0 (20') 
z dx dp dy q ' ^ 

by the familiar reasoning. The total differentiations give 

- - Fm> - KP - K<i - K> - 2 K> - K¿ = o. 
The stock illustration introduced at this point is the minimum surface, 

that is, the surface which spans a given contour with the least area and 
which is physically represented by a soap film. The real use, however, 
of the theory is in connection with Hamilton's Principle. To study the 
motion of a chain hung up and allowed to vibrate, or of a piano wire 
stretched between two points, compute the kinetic and potential energies 
and apply Hamilton's Principle. Is the motion of a vibrating elastic 
body to be investigated ? Apply Hamilton's Principle. And so in 
electrodynamics. In fact, with the very foundations of mechanics some­
times in doubt owing to modern ideas on electricity, the one refuge of 
many theorists is Hamilton's Principle. Two problems will be worked 
in detail to exhibit the method. 

Let a uniform chain of density p and length I be suspended by one extremity 
and caused to execute small oscillations in a vertical plane. At any time the shape 
of the curve is = ( ), and = ?/ (x, t) will be taken to represent the shape of the 
curve at all times. Let y' — y/ x and ŷ = y/ t. As the oscillations are small, 
the chain will rise only slightly and the main part of the kinetic energy will be in 
the whipping motion from side to side ; the assumption dx = ds may be made and 
the kinetic energy may be taken as 

Jo 2P\ t) 
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The potential energy is a little harder to compute, for it is necessary to obtain the 
slight rise in the center of gravity due to the bending of the chain. Let λ be the 
shortened length. The position of the center of gravity is 

Ckx{i + \y'*)dx ļλ 2+ΓVž/ / 2¿z 
x=^ = *° = h-1 fΊh-±z)v*đx-

/•λ />λ 2 λ « / o \ 4 2 / 
f (1+1 *) λ+ f \Ý4¡L X ' 

Here ds = V l + ?//2dx has been expanded and terms higher than y'2 have been 
omitted. 

J
^Λ i i I nλ 1 /1 \ 

2 ^ X ' ¯2l-* = d 2 ( λ - æ ) ž / ' ‰ ' ^=H'“ψ 
Then /V- *=££ $*-\»«-*)(^** ÖD 
provided λ be now replaced in "Γ by I which differs but slightly from it. 

Hamilton's Principle states that (21) must be a maximum or minimum and the 
integrand is of precisely the form (19) except for a change of notation. Hence 

d[ n . yi a y\ _ l a ¾ ,. xc
2y y 

\—p (l — x)—\ [p — )=O or ¦ = (l — χ)— ~. 
őx _ ' cx\ dt \ t/ g et2 ' x2 ex 

The change of variable I — x — ι¿2, which brings the origin to the end of the chain 
and reverses the direction of the axis, gives the differential equation 

cHj l y 4 2y ő?P ldP 4 n 2
p 

- 4 H = - —- or — - H P = 0 if y = P(u) cosnt. 
u2 g t2 du2 du g v ; 

As the equation is a partial differential equation the usual device of writing the 
dependent variable as the product of two functions and trying for a special type 
of solution has been used (§ 194). The equation in P is a Bessel equation (§ 107) 
of which one solution P (u) = AJ0 (2 ng~ ) is finite at the origin = 0, while the 
other is infinite and must be discarded as not representing possible motions. Thus 

( , t) = ΛJ0 (2 ng~ ÏM) cos nt, with (/, t) = AJ0 (2 ng~ 2/2) — 0 

as the condition that the chain shall be tied at the original origin, is a possible 
mode of motion for the chain and consists of whipping back and forth in the peri­
odic time 2 / . The condition J0(2ng~?l2) = 0 limits n to one of an infinite set 
of values obtained from the roots of J0. 

Let there be found the equations for the motion of a medium in which 

V = ļ fff (f* + g* + hλ dxdydz 

are the kinetic and potential energies, where A and are constants and 

4rf=í£_£?, 4¿» = ^ - ' X 4,ΓA = Í 5 - £ * 
cy cz z x x y 
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are relations connecting/, </, h with the displacements £, 77, ξ along the axes of , ?/, z. 
Then 

ffffδíìΛ « 2 + ^2 + ¿2) - i ΰ ( / 2 + 92 + Λ2)] đa¾¾Ŵ*í = 0 (22) 

is the expression of Hamilton's Principle. These integrals are more general than 
(19), for there are three dependent variables £, 77, f and four independent variables 
æ, y, z, ¿ of which they are functions. I t is therefore necessary to apply the method 
of variations directly. 

After taking the variations an integration by parts will be applied to the varia­
tion of each derivative and the integrated terms will be discarded. 

f ff f δ }¿A{Ż2 + ^ + t2) dxdydzdt = f fff (£δ£ + m + tĤ) dxdydzdt 

= - ffffA + '≠v + '&) dxdydzdt. 

f f f f δiB (f2 + 2 + /¿2) dxdydzdt = f f f f (fδf + gδg + hδh) dxdydzdt 

=////ac-ï)-(î-ïv^(i'-s)]«^ 
After substitution in (22) the coefficients of δ£, δ77, δξ may be severally equated to 
zero because δ£, δ77, δξ are each arbitrary. Hence the equations 

4 „ A ^ = _Bß_cg\ 4„ , = _ áπAĶ=_Bίtl_ĉf\ 
t2 \ y z/ t2 \cz x/ t2 \cx y/ 

With the proper determination of and and the proper interpretation of £, 77, £*, 
ƒ, g, h, these are the equations of electromagnetism for the free ether. 

EXERCISES 

1. Show that the straight line is the shortest line in space and that the shortest 
distance between two curves or surfaces will be normal to both. 

2. If at each point of a curve on a surface a geodesic be erected perpendicular 
to the curve, the locus of its extremity is perpendicular to the geodesic. 

3 . With any two points of a surface as foci construct a geodesic ellipse by tak­
ing the distances FP -f F'P = 2 a along the geodesies. Show that the tangent to 
the ellipse is equally inclined to the two geodesic focal radii. 

4. Extend Ex. 2, p. 408, to space. If F(x, y, z)ds = const., show that the 
Jo 

locus of P is a surface normal to the radii, provided the radii be curves which 

make the integral a maximum or minimum. 

5. Obtain the polar equations for the motion of a particle in a plane. 

6. Eind the polar equations for the motion of a particle in space. 

7. A particle glides down a helicoid (z = Jcφ in cylindrical coordinates). Find 
the equations of motion in (r, </>), (r, z), or (z, ø), and carry the integration as far 
as possible toward expressing the position as a function of the time. 
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8. If z — ax2 + by2 4- • • •, with a > 0, b > 0, is the Maclaurin expansion of a 
surface tangent to the plane z = 0 at (0, 0), find and solve the equations for the 
motion of a particle gliding about on the surface and remaining near the origin. 

9. Show that r ( l + q2) -f £(l + p2) — 2pqs = 0 is the partial differential equa­
tion of a minimum surface ; test the helicoid. 

10. If p and S are the density and tension in a uniform piano wire, show that 
the approximate expressions for the kinetic and potential energies are 

r = ì ΓW‰ v = l r W ‰ 
2 r \ t] 2 W 

Obtain the differential equation of the motion and try for solutions = P(x) cos nt. 
11 . If £, η, ¿*are the displacements in a uniform elastic medium, and 

« = *, 6 = *?, c = *l, f=ß+*>), -7 = ß + % h = (^+'Λ) 
x y z \ y z/ \ z x/ \ x by) 

are six combinations of the nine possible first partial derivatives, it is assumed that 

V — fff Fdxdydz, where F i s a homogeneous quadratic function of α, ò, c, ƒ, gr, /¿, 

with constant coefficients. Establish the equations of the motion of the medium. 

4_(?F_ j ^ F 2F ç 2 î 7 _ ^ F ?F a2^ 

t2 x a y h zðg' t2 x h y b z f 

_4_Č*F_ _Ć F̂ 2^ 
t2 x g ycf z c 

12. Establish the conditions (11) by the method of the text in § 155. 

13. By the method of § 159 and footnote establish the conditions at the end 
points for a minimum of f F(x, y, y')dx in terms of F instead of Φ. 

14. Prove Stokes's Formula I = f F»dτ = f f V×F»đS of p. 345 by the calculus 

of variations along the following lines : First compute the variation of I on pass­
ing from one closed curve to a neighboring (larger) one. 

δl=δ f F.dr = f (δF.đr - dF.δτ) + f d{F*δτ) = f (V×F).(δr×đr), 
Jo Jo «/o Jo 

where the integral of d(F»δr) vanishes. Second interpret the last expression as 
the integral of V×F»Í¿S over the ring formed by one position of the closed curve 
and a neighboring position. Finally sum up the variations δl which thus arise on 
passing through a succession of closed curves expanding from a point to final coin­
cidence with the given closed curve. 

15. In case the integrand contains y" show by successive integrations by 
parts that 

δ F(x,y,y',y“)dx = \Y'ω+Y“ω'--—-ω\ + ( [Y — + — — )ωdx, 
JχQ L ώ Jo J.r0 \ dx dx2 ļ 

. __ F F „„ F 
where Y= — , I ' = — , Y — , ω = δy. 

y y' y" 


