
C H A P T E R ΛTI 

COMPLEX NUMBERS AND VECTORS 

70. Operators and operations. If an entity is changed into an 
entity v by some law, the change may be regarded as an opération per­
formed upon the operand^ to convert it into v ; and if ƒ be introduced 
as the symbol of the operation, the result may be written as v =fu. 

For brevity the symbol ƒ is often called an operator. Various sorts, 
of operand, operator, and result are familiar. Thus if is a positive 
number n, the application of the operator V gives the square root ; if  
represents a range of values of a variable x, the expression ƒ (,r) or fx 

denotes a function of x ; if be a function of x, the operation of dif­
ferentiation may be symbolized by D and the result Du is the deriva­
tive ; the symbol of definite integration ļ (#) đ* converts a function 

*J a 

(x) into a number ; and so on in great variety. 
The reason for making a short study of operators is that a consider­

able number of the concepts and rules of arithmetic and algebra may 
be so defined for operators themselves as to lead to a calculus of opera­
tions which is of frequent use in mathematics ; the single application to 
the integration of certain differential equations (§ 95) is in itself highly 
valuable. The fundamental concept is that of a product : If is oper­
ated upon by ƒ to gire ft = r and if v is operated upon by g to give gv = w, 
so that * * /ix 

fu = v, gv = gfu = w, gfu = w, (1) 
then the operation indicated as gf which converts directly into w is 
called the product of f by g. If the functional symbols sin and log be 
regarded as operators, the symbol log sin could be regarded as the 
product. The transformations of turning the ctry-plane over on the 
æ-axis, so that x' = x, y' = — y, and over the ?/-axis, so that x = — x, 
y' = ?/, may be regarded as operations ; the combination of these opera­
tions gives the transformation x' = — x9 y' = — y, which is equivalent 
to rotating the plane through 180° about the origin. 

The products of arithmetic and algebra satisfy the commutative law 
g f — f g, that is, the products of g by ƒ and of ƒ by g are equal. This 
is not true of operators in general, as may be seen from the fact that 
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log sin x and sin log x are different. Whenever the order of the factors 
is immaterial, as in the case of the transformations just considered, the 
operators are said to be commutative. Another law of arithmetic and 
algebra is that when there are three or more factors in a product, the 
factors may be grouped at pleasure without altering the result, that is, 

4¾/') = ( W = ½ / ' . (2) 
This is known as the associative law and operators which obey it are 
called associative. Only associative operators are considered in the 
work here given. 

For the repetition of an operator several times 

ff=Λ fff=f\ fmfn=fm+n, (3) 
the usual notation of powers is used. The law of indices clearly holds ; 
for fm + n means that ƒ is applied m -ļ- n times successively, whereas 
ĵmĵ m e a n s that it is applied n times and then m times more. Not 
applying the operator ƒ at all would naturally be denoted by f°, so that 
f°u = and the operator f° would be equivalent to multiplication by 1 ; 
the notation / ° = 1 is adopted. 

If for a given operation ƒ there can be found an operation g such 
that the product f g = f° = 1 is equivalent to no operation, then g is 
called the inverse of ƒ and notations such as 

fg = l, g=f-* = ķ, / / - i = / i = l (4) 
are regularly borrowed from arithmetic and algebra. Thus the inverse 
of the square is the square root, the inverse of sin is s in - 1 , the inverse 

of the logarithm is the exponential, the inverse of D is ļ . Some oper­
ations have no inverse ; multiplication by 0 is a case, and so is the 
square when applied to a negative number if only real numbers are 
considered. Other operations have more than one inverse ; integra­
tion, the inverse of D, involves an arbitrary additive constant, and the 
inverse sine is a multiple valued function. I t is therefore not always 
true that f~xf = 1, but it is customary to mean by f~1 that particular 
inverse of ƒ for which f~1f = ff-1 = 1. Higher negative powers are 

defined by the equation ƒ ~ n = (ƒ~ x)n, and it readily follows that 

fnf¯n = l j a s b e s e e n by the example 

ft* =ff(f-r1)/-1/-1 =f{f-f-')f'¯1 =ff¯1 = ι. 
The law of indices f mfn =fm + n also holds for negative indices, except 
in so far as ƒ~ lf may not be equal to 1 and may be required in the 
reduction of fmfn to fm + n. 
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If u, v, and -ļ- v are operands for the operator ƒ and if 

f(n + v)=fn+fv, (5)' 

so that the operator applied to the sum gives the same result as the 
sum of the results of operating on each operand, then the operator 
ƒ is called linear or distributive. If ƒ denotes a function such that 
f(x -\- y) = f(x) + f(y), it has been seen (Ex. 9, p. 45) that ƒ must be 
equivalent to multiplication by a constant and fx = Cx. For a less 
specialized interpretation this is not so ; for 

D(tr + r) = Du -f Du and ƒ (// + /•) = f + f v 

are two of the fundamental formulas of calculus and show operators 
which are distributive and not equivalent to multiplication by a constant. 
Nevertheless it does follow by the same reasoning as used before (Ex. 9, 
p. 45), that fnu = nfu if ƒ is distributive and if n is a rational number. 

Some operators have also the property of addition. Suppose that  
is an operand a n d / , g are operators such that fa and gu are things that 
may be added together as fa -f- gti, then the sum of the operators, ƒ- ļ - g, 
is defined by the equation ( ƒ -f- g)u•= fa'.-J- gu. If furthermore the 
operators ƒ, g, h are distributive, then 

h(f+g) = Kf+hg and (f+g)h fh + gĶ (6) 

and the multiplication of the operators becomes itself distributive. To 
prove this fact, it is merely necessary to consider that 

h f+9) nì = h (fa + <JU) = hfu + h9u 

and ( ƒ + g) Ģm) = fhu + ghu. 

Operators which are associative, commutative, distributive, and which 
admit addition may be treated algebraically, in so far as polynomials are 
concerned, by the ordinary algorisms of algebra ; for it is by means 
of the associative, commutative, and distributive laws, and the law of 
indices that ordinary algebraic polynomials are rearranged, multiplied 
out, and factored. Now the operations of multiplication by constants 
and of differentiation or partial differentiation as applied to a function 
of one or more variables x, y, z, • • • do satisfy these laws. For instance 

(Du) = D (cu), DxDyu = DyDxu, (Dx + Dy) Dzu = DxD2u + DyDzu. (7) 
Hence, for example, if y be a function of x, the expression 

Dny + r(ļDn-ιy + . . . + n_χī) + any, 

where the coefficients a are constants, may be written as 
(Dn + aļI)n-ι + . . . + an^ļD + (ln)īJ ( 8 ) 
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a n d m a y t h e n be factored in to t h e form 

[(/> - a¿Ų) - ¾ ) • • • ( / > - <t»_¿ŲJ - < ) ] / / , * (8') 

where av a2, • • -, αn a re t he roots of t he a lgebraic po lynomia l 

x* + ^ a ; » - i -ļ µ an_lX + αn = 0. 

EXERCISES 

1. Show that (fgħ)~1 = Λ-¾ - 1 / - 1 , that is, that the reciprocal of a product of 
operations is the product of the reciprocals in inverse order. 

2. By definition the operator gfg~1 is called the transform of ƒ by g. Show 
that (a) the transform of a product is the product of the transforms of the factors 
taken in the same order, and (ß) the transform of the inverse is the inverse of the 
transform. 

3 . If s ≠ 1 but ś2 = 1, the operator s is by definition said to be ínvolutory. Show 
that (a) an involutory operator is equal to its own inverse ; and conversely (ß) if 
an operator and its inverse are equal, the operator is involutory ; and (7) if the 
product of two involutory operators is commutative, the product is itself involu­
tory ; and conversely (δ) if the product of two involutory operators is involutory, 
the operators are commutative. 

4. If ƒ and g are both distributive, so are the products ƒ</ and gf. 

5. If ƒ is distributive and n rational, show/nu = nfu. 

6. Expand the following operators first by ordinary formal multiplication and 
second by applying the operators successively as indicated, and show the results 
are identical by translating both into familiar forms. 

(a) ( D - l ) ( D - 2 ) y , Ans. g _ 3 ^ + 2ž/, 

03) (D-l)D(D + l)y, (7) D ( D - 2 ) ( D + l ) ( D + 3)y. 

7. Show that (I)— a) e"x fe-<∞Xdx = X, where X is a function of æ, and 

hence infer that e"* I e-<∞(*)dx is the inverse of the operator (D — a) (*). 

8. Show that Ώ(ev*y) = e^30(D + ) %nd hence generalize to show that if' 
P (D) denote any polynomial in D with constant coefficients, then 

P(D). ¢∞y = e^P(D + a)y. 

Apply this to the following and check the results. 

(a) (D2 - 3 D + 2)&*y = e2*(i>2 + ĴD)y = e 2 * ( ^ + j \ , 

(ß) ( D 2 - 3 D - 2 ) e * ? / , (7) ( D » - 3 D + 2 ) e ^ . 

9. If is a function of x and χ — el show that 

I)xy = erWiy, B y = er**Dt(Dt-l)y, • • -, Ώ¦y = e - * ¾ ( A - 1) • • • ( A - p + 1)2/. 

10. Is the expression (hDx + kDy)
n, which occurs in Taylor's Formula (§ 54), 

the ?ith power of the operator hDx + kl)y or is it merely a conventional symbol ? 
The same question relative to (xΏx + yJ)y)k occurring in Euler's Formula (§ 53) ? 
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71. Complex numbers. In the formal solution of the equation 
ax2 -f- /λ¿' -f- <* = 0, where ìř < 4 </ , numbers of the form -f- n V— 1, 
where m and n are real, arise. Such numbers are called complex or 
imaginär ; the part m is called the rβ¿/¿ part and ^ V— 1 the pare 
imaginary part of the number. I t is customary to write V— 1 = and 
to treat i as a literal quantity subject to the relation i2 = — 1. The defini­
tions for the equality, addition, and multiplication of complex num­
bers are 

a -\- bι = -\- do if and only it a = c, b = d, 
[a + ¿fļ + [c + ¿fj = (“ -f 0 + (b + f/) ¿, (9) 

[a + ¿<¿J ļ> -f- <Z¿] = (</c — δď) + (ad + />r) ¿. 
I t readily follows that tit e commutative, associative, and distributive 
laws hold in the domain of complex numbers, namely, 

<x + ß = ß + a, (a + ß) + γ = a + (ß + γ), 
αø=#r, («ß)Ύ = “(ßΎ)> ( 

<*(ß + y)=<xß + <*γ, (a + 0) γ - αy + £γ, 

where Oreek letters have been used to denote complex numbers. 
Division is accomplished by the method of rationalization. 

a -\- bi a -ļ- — di _ (αo -ļ- Z>cZ) + i),(ì — a(l) i 
c + di¯¯¯ + di — di ¯~ 2 + ď2 ' ' ' 

This is always possible except when c2 -f- d2 = 0, that is, when both  
and d are 0. A complex number is defined as 0 when and only when 
its real and pure imaginary parts are both zero. With this definition 0 
has the ordinary properties that a -f- 0 = a and a 0 = 0 and that a/0 is 
impossible. Furthermore if a product aß vanishes, either a or ß vanishes. 
For suppose 

[a + >i¯] [c + di'] = (ne — hd) + (ad -f fø) i = 0. 

Then αc - hd = 0 and ad + ¿c = 0, (12) 

from which it follows that either a = b = 0 or = d = 0. From the 
fact that a product cannot vanish unless one of its factors vanishes 
follow the ordinary laws of cancellation. In brief, all the elementary 
laws of real algebra hold also for the algebra of complex numbers. 

By assuming a set of Cartesian coordinates in the av/-plane and asso­
ciating the number a -f- bi to the point (((, b), a graphical representation 
is obtained which is the counterpart of the number scale for real num­
bers. The point (a, b) alone or the directed line from the origin to the 
point (a, U) may be considered as representing the number a -\- bi. 
If OP and OQ are two directed lines representing the two numbers 
(f + bi and -f di, a reference to the figure shows that the line which 



154 D I F F E R E N T I A L CALCULUS 

represents the sum of the numbers is OR, the diagonal of the parallelo­
gram of which OP and OQ are sides. Thus the geometric law for adding 
complex numbers is the same as the law for compounding forces and is 
known as the parallelogram lav. A segment AB of a line possesses 
magnitude, the length AB, and direction, the 
direction of the line AB from A to . 
quantity which has magnitude and direction is 
called a vector ; and the parallelogram law is 
called the law of vector addition. Complex num­
bers may therefore be regarded as vectors. 

tri rt J¦p(a+c,h + d) 

ßÆŠ¿-J 

From the figure it also appears that OQ and PR have the same mag­
nitude and direction, so that as vectors they are equal although they 
start from different points. As OP + PR will be regarded as equal to 
OP -f- OQ, the definition of addition may be given as the triangle law 
instead of as the parallelogram law ; namely, from the terminal end P 
of the first vector lay off the second vector PR and close the triangle 
by joining the initial end 0 of the first vector to the terminal end R of 
the second. The absolute value of a complex number a -\- is the 
magnitude of its vector OP and is equal to Vα2 -\- b2, the square root of 
the sum of the squares of its real part and of the coefficient of its pure 
imaginary part. The absolute value is denoted by \a -f- bi\ as in the case 
of reals. If a and ß are two complex numbers, the rule \a\ + \ß\ ≥ \a -f ß\ 
is a consequence of the fact that one side of a triangle is less than the 
sum of the other two. If the absolute value is given and the initial end 
of the vector is fixed, the terminal end is thereby constrained to lie 
upon a circle concentric with the initial end. 

72. When the complex numbers are laid off from the origin, polar 
coordinates may be used in place of Cartesian. Then 

r = V Ì I 2 + l>1, Φ = tan~*¿/α*, a = r cos φ, b = r sin φ 

and a + íb = r(cos ψ + i sin φ). 

The absolute value r is often called the modulus or magnitude of the 
complex number ; the angle φ is called the angle or argument of the 
number and suffers a certain indétermination in that 2 nτr, where n is 
a positive or negative integer, may be added to φ without affecting the 
number. This polar representation is particularly useful in discussing 
products and quotients. For if 

ď = rλ (cos φλ + i sin φ¿, ß = r2(cos φ2 + i sin φ2), 
then aß = tλr2 [cos (ψχ + φ2) + i sin (φχ + ψ2)], 

* As both cos Φ and sin Φ are known, the quadrant of this angle is determined. 
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as may be seen by multiplication according to the rule. Hence the 
magnitude of a product is the product of the 7 agnitudes of the factors, 
and the angle of a product is the sum of the angles of the factors; the 
general rule being proved by induction. 

The interpretation of multiplication by a complex number as an oper­
ation is illuminating. Let ß be the multiplicand and a the multiplier. 
As the product aß has a magnitude equal to the product of the magni­
tudes and an angle equal to the sum of the angles, the factor a used as 
a multiplier may be interpreted as effecting the rotation of ß through 
the angle of a and the stretching of ß in the ratio \a\:l. From the 
geometric viewpoint, therefore, multiplication by a complex number is 
an operation of rotation and stretching in the plane. In the case of 
a = cos φ -f ί sin φ with r = 1, the operation is only of rotation and 
hence the factor cos φ + * sin φ is often called a cyclic factor or versor. 
In particular the number i = V— 1 will effect a rotation through 90° 
when used as a multiplier and is known as a quadrantal versor. The 
series of powers i, ι2 = — 1, ¿3 = — ί, ¿4 = 1 give rotations through 90°, 
180°, 270°, 360°. This fact is often given as the reason for laying off 
pure imaginary numbers hi along an axis at right angles to the axis 
of reals. 

As a particular product, the nth. power of a complex number is 

an = (a + ιb)n = ļ>(cos φ + i sin φ) ĵ n = rn (cos nφ + i sin nφ) ; (15) 

and (cos φ + i sin φ)n = cos nφ -f i sin nφ, (15') 

which is a special case, is known as De Moiυre's Theorem and is of use 
in evaluating the functions of nφ ; for the binomial theorem may be 
applied and the real and imaginary parts of the expansion may be 
equated to cos nφ and sin nφ. Hence 

n (n — 1) _ . ., cos nφ = cos“φ ^ ― — ¿ cos" “ 2φ s n r φ 
Z ! 

, n (n — 1) (n — 2) (n — 3) . , . . 
+ - ^ ^ - j ļ — — cosn^4ψ sm4φ (16) 

n (n _ \ ín _ 2) 
sin nφ = n cosn _ 1φ sin φ ^ ^ Y '– cosn_3ψ sin3φ + • • •. 

As the nth. root ^s/a of a must be a number which when raised to the 
nth power gives a, the nth root may be written as 

•Ųā = ">/ř(cos φ/n + sin φ/rì). (IT) 

The angle φ, however, may have any of the set of values 

φ, Φ + 2TΓ, Φ + 4TΓ, . . . , + 2 ( τ ι - l ) 7 r , 
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and the nth parts of these give the n different angles 

φ φ 2TΓ ψ 4TΓ φ 2(n-l)π 
— y 1 ? 1 ι • • • , 1 ( l ö ) 
71 71 71 71 7 

Hence there may be found just n different nth roots of any given com­
plex number (including, of course, the reals). 

The roots of unity deserve mention. The equation xn = 1 has in the real domain 
one or two roots according as n is odd or even. But if 1 be regarded as a complex 
number of which the pure imaginary part is zero, it may be represented by a point 
at a unit distance from the origin upon the axis of reals ; the magnitude of 1 is 1 
and the angle of 1 is 0, 2 7r, • • •, 2 (n — 1) 7r. The nth roots of 1 will therefore have 
the magnitude 1 and one of the angles 0, 2 7r/n, • • •, 2 (?ι — 1) π/n. The n nth roots 
are therefore 

27Γ . . 2 7 Γ ., 4τr . . 4tπ 1 ex = cos H s i n — , a1 = cos \- ¿sm — , •••, 
n n n n 

2 ( n - l ) 7 Γ . . 2 ( n - l ) π aH -1 = cos — \- sm — —, n n 

and may be evaluated with a table of natural functions. Now xìl — 1 = 0 is factor­
able as (x — l ) ( x " - 1 + xn~2 + • • • -f x + 1) = 0, and it therefore follows that the 
nth roots other than 1 must all satisfy the equation formed by setting the second 
factor equal to 0. As a in particular satisfies this equation and the other roots are 
α2, • • •, α n _ 1 , it follows that the sum of the n nth roots of unity is zero. 

EXERCISES 
1. Prove the distributive law of multiplication for complex numbers. 

2. By definition the pair of imaginaries a + and — are called conjugate 
imagίnaries. Prove that (a) the sum and the product of two conjugate imagîriaries 
are real ; and conversely (ß) if the sum and the product of two imaginaries are both 
real, the imaginaries are conjugate. 

3 . Show that if P(x, y) is a symmetric polynomial in x and with real coeffi­
cients so that P(x, y) = P(y, x), then if conjugate imaginaries be substituted for  
and /, the value of the polynomial will be real. 

4. Show that if a + is a root of an algebraic equation P(x) = 0 with real 
coefficients, then a — is also a root of the equation. 

5. Cany out the indicated operations algebraically and make a graphical repre­
sentation for every number concerned and for the answer : 

(a) (1 + if, 08) (l + V3 i) ( 1 - 0 , (7) (3 + V ^ 2 ) (4 + V ^ ), 

1 - * 1 - i V.3 V2 - i V.3 

y ' (i + if • ' (1 + if (ï-if ĸ ' V 2 J 

6. Plot and find the modulus and angle in the following cases: 

(a) - 2, (ß) - 2 V ^ Ί , (7) 3 + 4 ¿, (δ) ļ - ÷ V≡¯3. 
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7. Show that the modulus of a quotient of two numbers is the quotient of the moduli 
and that the angle is the angle of the numerator less that of the denominator. 

8. Carry out the indicated operations trigonometrically and plot: 

(a) The examples of Ex. 5, (ß) VΓ+¯¿ V l - , ( ) V - 2 + 2 / , 

(δ) ( V i + i + V Γ ^ l ) 2 , (e) / V 2 + V ^ 2 , (f) V'2 + 2VSt , 
(η) Vl6(cos200°+¿sin200°), ((9) \ ^ ĩ , (ι) VŠĪ. 

9. Find the equations of analytic geometry which represent the transforma­
tion equivalent to multiplication by a = — 1 + V— 3. 

10. Show that \z — a\ = r, where z is a variable and a a fixed complex number, 
is the equation of the circle (x — a)2 + (y — b)2 = r2. 

11 . Find cos 5 and cos8x in terms of cos , and sin 6 and sin 7 in terms of 
sinx. 

12. Obtain to four decimal places the five roots V l . 

13. If z = x + iy and z' — x' -f iy', show that z' = (cosø — ¿sin</>)z— a is the 
formula for shifting the axes through the vector distance a = a + ib to the new 
origin (α, 6) and turning them through the angle φ. Deduce the ordinary equa­
tions of transformation. 

14. Show that \z — a\ = k\z — ß| , where is real, is the equation of a circle ; 
specify the position of the circle carefully. Use the theorem : The locus of points 
whose distances to two fixed points are in a constant ratio is a circle the diameter 
of which is divided internally and externally in the same ratio by the fixed points. 

15. The transformation z' = > where α, ò, c, d are complex and ad — be ≠ 0, 
cz + d 

is called the general linear transformation of z into z'. Show that 

\z* — ď\ = k\z'— j8'ļ becomes \z— a\-=k\ r | z — ß\> 

Hence infer that the transformation carries circles into circles, and points which 
divide a diameter internally and externally in the same ratio into points which 
divide some diameter of the new circle similarly, but generally with a different ratio. 

73. Functions of a complex variable. Let z = a - + iy be a complex 
variable representable geometrically as a variable point in the íe¿/-plane, 

which may be called the complex plane. As z determines the two real 

numbers x and y, any function F(x, y) which is the sum of two single 

valued real functions in the form 

F(x, y) = X (x9 y) + iY(x, y) = R (cos Φ + sin Φ) (19) 

will be completely determined in value if z is given. Such a function 
is called a complex f unction (and not a function of the complex variable, 
for reasons that will appear later). The magnitude and angle of the 
function are determined by 

R = VJ£2 + Y'\ cos Φ = Ķ, sin Φ = - . (20) 
R R 
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The function F is continuous by definition when and only when both 
X and Y are continuous functions of (x, y) ; R is then continuous in 
(x, y) and F can vanish only when R = 0 ; the angle Φ regarded as a 
function of (x, y) is also continuous and determinate (except for the 
additive 2 wπ) unless R = 0, in which case X and Y also vanish and the 
expression for Φ involves an indeterminate form in two variables and 
is generally neither determinate nor continuous (§ 44). 

If the derivative of F with respect to z were sought for the value 
z = a -f- ib, the procedure would be entirely analogous to that in the 
case of a real function of a real variable. The increment z = Ax + ί y 
would be assumed for z and Δ F would be computed and the quotient 
ΔF/Δz would be formed. Thus by the Theorem of the Mean (§ 46), 

ΔF_ ΔX + ¾ Δ Y _ ¦ ( x ; + ¾r;) x + (K + ÌY¦) y | 

z x + ί y x -ļ- ¿ y ' ^ ^ 

where the derivatives are formed for (a, b) and where ζ is an infinitesi­
mal complex number. When z approaches 0, both x and y must 
approach 0 without any implied relation between them. In general the 
limit of ΔF/Δz is a double limit (§ 44) and may therefore depend on 
the way in which x and y approach their limit 0. 

Now if first y = 0 and then subsequently x = 0, the value of the 
limit of ΔF/Δz is X'x 4- iY'x taken at the point (a, b) ; whereas if first 

x ~ 0 and then y = 0, the value is — iXļ + Yý. Hence if the limit 
of ΔF/Δz is to be independent of the way in which z approaches 0, it 
is surely necessary that 

a x . a r _ _ . X. Y 
x x y y 

X Y X Y 
or 4~~^^~ a n α - T~ = ~" "̂ ~̄ * (22) 

ex ċy ΰy ex × y 

And conversely if these relations are satisfied, then 

AF_/ X , . y\ _( _ . X\ 
z ~ \ x + l x) + ζ - \ y y) + ĉ î 

and the limit is X'x + ίYx = Yý — iXý taken at the point (Ŵ, è), and is 
independent of the way in which z approaches zero. The desirability 
of having at least the ordinary functions difïerentiable suggests the 
definition: A complex function F(x, ÿ) = X(x, y) + iY(x, y) is con­
sidered as a function of the complex variable z = x + iy when and only 
when X and Y are in general differentiable and satisfy the relations (22). 
In this case the derivative is 
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dF X Y Y . X 
\z) = —- = — + ¿ —- = ¿ —• (23) w α £ Ć7Λ ex     

These conditions may also be expressed in polar coordinates (Ex. 2). 

A few words about the function Φ(x, y). This is a multiple valued function of 
the variables (x, ¾/), and the difference between two neighboring branches is the con­
stant 2 π . The application of the discussion of § 45 to this case shows at once that, 
in any simply connected region of the complex plane which contains no point (α, b) 
such that R (α, b) = 0, the different branches of Φ (x, y) may be entirely separated 
so that the value of Φ must return to its initial value when any closed curve is de­
scribed by the point (x, y). If, however, the region is multiply connected or contains 
points for which R = 0 (which makes the region multiply connected because these 
points must be cut out), it may happen that there will be circuits for which Φ, 
although changing continuously, will not return to its initial value. Indeed if it can 
be shown that Φ does not return to its initial value when changing continuously as 
(x, y) describes the boundary of a region simply connected except for the excised 
points, it may be inferred that there must be points in the region for which R= 0. 

An application of these results may be made to give a very simple demonstration 
of the fundamental theorem of algebra that every equation of the nth degree has at least 
one root. Consider the function 

F(z) = z* + cųtf»-1 + • • • + an-ιz + an = X(x, y) + ¿F(x, y), 

where X and Y are found by writing z as x + iy and expanding and rearranging. 
The functions X and Y will be polynomials in (x, y) and will therefore be every­
where finite and continuous in (x, y). Consider the angle Φ of F. Then 

Φ = ang. of F = a n g . oîz“(l + — + ••• + ^ - ^ + — ) = ang. of zn + ang. of (1 + • • •). 
\ z z«~1 zn/ 

Next draw about the origin a circle of radius r so large that 

K | , , |α»-ι| , K*I_KI , . K- i ļ , K Ļ r 
~Γ ' “ ' ^Γ - "T — T * * * "I ~ T" ^v €. 

\ Z \ | Z n - 1 j \ZH \ "-1 " 

Then for all points z upon the circumference the angle of F is 

Φ = ang. of F= n (ang. of z) + ang. of (1 + 77), |*?|<e. 
Now let the point (x, y) describe the circumference. The angle of z will change by 
2π for the complete circuit. Hence Φ must change by 2 nπ and does not return to 
its initial value. Hence there is within the circle at least one point (α, b) for which 
R (α, 6) = 0 and consequently for which X(α, b) = 0 and Y (a, b) = 0 and F(α, b)=O. 
Thus if çc = a + ŵ, then F (a) = 0 and the equation F(z) = 0 is seen to have at 
least the one root a. I t follows that z — a is a factor of F(z) ; and hence by induc­
tion it may be seen that F(z) = 0 has just n roots. 

74. The discussion of the algebra of complex numbers showed how 
the sum, difference, product, quotient, real powers, and real roots of 
such numbers could be found, and hence made it possible to compute 
the value of any given algebraic expression or function of z for a given 
value of z. It remains to show that any algebraic expression in z is 
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really a function of z in the sense that it has a derivative with respect 
to , and to find the derivative. Now the differentiation of an algebraic 
function of the variable x was made to depend upon the formulas of dif­
ferentiation, (6) and (7) of § 2. A glance at the methods of derivation 
of these formulas shows that they were proved by ordinary algebraic 
manipulations such as have been seen to be equally possible with imagi-
naries as with reals. I t therefore may be concluded that an algebraic 
expression in z has a derivative with respect to z and that derivative 
may be found just as if z were a real variable. 

The case of the elementary functions ez log æ, sin z, cos £, • • • other 
than algebraic is different ; for these functions have not been defined 
for complex variables. Now in seeking to define these functions when z 
is complex, an effort should be made to define in such a way that : 1° 
when z is real, the new and the old definitions become identical ; and 
2° tlîe rules of operation with the function shall be as nearly as possi­
ble the same for the complex domain as for the real. Thus it would be 
desirable that Dez = ez and ez + w = ezew, when z and w are complex. 
With these ideas in mind one may proceed to define the elementary 
functions for complex arguments. Let 

ez = R (x, y) [cos Φ(x, y)-\- i sin Φ (x, y)¯]. (24) 

The derivative of this function is, by the first rule of (23), 

Bez = — (R cos Φ) + i — (R sin Φ) 
ex 7 ex v J 

= (Rx cos Φ — R sin Φ • Φx) -ļ- i (R'x sin Φ -\- R cos Φ • Φx), 

and if this is to be identical with ez above, the equations 

R' cos Φ — R,Φ' sin Φ = R cos Φ R' = R 
Rx sm Φ -f RΦX cos Φ = R sin Φ Φx — 0 

must hold, where the second pair is obtained by solving the first. If 
the second form of the derivative in (23) had been used, the results 
Λvould have been Rý = 0, Φ'y = 1. I t therefore appears that if the 
derivative of ez, however computed, is to be , then 

RX = R, . ; = °> ¾ = O, Φ; = I 

are four conditions imposed upon R and Φ. These conditions will be 
satisfied if 7í* = </x and Φ = ;//.* Hence define 

(,z ^_ ,,a:+t»/ _ ,>'-((;ÜS (j _ļ_ I Si yy (25) 

* The use of the more general solutions R = Gex, Φ = + would lead to expressions 
which would not reduce to ex when ~ 0 and z= x or would not satisfy ez + w = ezew. 
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With this definition Dez is surely ez, and it is readily shown that the 
exponential law ez + w = ezew holds. 

For the special values ļ- πί, τri, 2 πi of z the value of ď is 

e½πi = i, eπi = — l, e2πi = l. 

Hence it appears that if 2 niri be added to z, ez is unchanged ; 

ez + 2 nni = ^ period 2 7Γ¿\ (26) 

Thus in the complex domain ez has the period 2 7r¿, just as cos x and 
sin x have the real period 2 7Γ. This relation is inherent ; for 

eyi = cos y + sin v/, e~yί = cos y — i sin y, 

and cos y = ) sin y = — (27) 

The trigonometric functions of a real variable may be expressed in 
terms of the exponentials of yi and — yi. As the exponential has been 
defined for all complex values of z, it is natural to use (27) to define 
the trigonometric functions for complex values as 

ezi + e~zi . ezi — e~zi
 /ftp.IN cos z = ? sm z = — — (2 i ') 

Δ Δ i 

With these definitions the ordinary formulas for cos (z + w), D sin z, • • • 
may be obtained and be seen to hold for complex arguments, just as the 
corresponding formulas were derived for the hyperbolic functions (§5) . 

As in the case of reals, the logarithm log z will be defined for com­
plex numbers as the inverse of the exponential. Thus 

if ez = w, then log w = z + 2 mri, (28) 

where the periodicity of the function ez shows that the logarithm is not 
uniquely determined but admits the addition of 2 niri to any one of its 
values, just as t a n - 1 x admits the addition of nπ. If w is written as a 
complex number -f- iv with modulus r = V¾¿2 -ļ- ¿/2 and with the angle 
φ, it follows that 

w = + iv = r (cos φ + i sin φ) = re** = e 0ër + φl ; (29) 
and log w = log r -\- φi = log Vu2 -+- ¡ř + i t an - 1 (v/u) 

is the expression for the logarithm of w in terms of the modulus and 
angle of w ; the 2 niri may be added if desired. 

To this point the expression of a power r/ft, where the exponent h is 
imaginary, has had no definition. The definition may now be given in 
terms of exponentials and logarithms. Let . 

ah _ eb\oga 0 1 . ļ 0 g ab _ Ļ ļ Q g íLt 

ftp://ftp.IN


162 DIFFERENTIAL CALCULUS 

In this way the problem of computing ab is reduced to one.already 
solved. From the very definition it is seen that the logarithm of a 
power is the product of the exponent by the logarithm of the base, as 
in the case of reals. To indicate the path that has been followed in 
defining functions, a sort of family tree may be made. 

real numbers, x real angles, x 
I I 

real powers and real trigonometric functions, 
roots of reals, xn cosx, sin , tan~*x, • • • 

I ' , , ' I 
exponentials, logarithms real powers and roots 

of reals, e% logx of imaginaries, zn * 
I , 

1 i 
exponentials of imaginaries, ez 

. ' ' 1 
logarithms of imaginaries, log z trigonometric functions 

I of imaginaries 
imaginary powers, za 

EXERCISES 

1. Show that the following complex functions satisfy the conditions (22) and 
are therefore functions of the complex variable z. Find F'(z): 

(a) x2 - ž/2 + 2ixy, (ß) x3 - S(xy'2 + x2 - 2) + ί(Sx2y - ys - 6xy), 

{ ) ^ ~1 4 ?' ( « ) l o g V ? T Í 5 + i t a n - ι | , 
( e) e? cos + ief0 sin y, (¿-) sin x sinh + cos x cosh y. 

2. Show that in polar coordinates the conditions for the existence of F'(z) are 

X \ Y Y l X _ ._„ ( X . Y\, . .  
— = , — = with F'(z) = [ h — )(cosø — i s m ø ) . 

r r φ r r φ \ r rΓ 

3. Use the conditions of Ex. 2 to show from Ώ log z = z~1 that log z = log r + φi. 

4. From the definitions given above prove the formulas 
(a) sin (x + ίy) = sin x cosh + i cos x sinh y, 
(ß) cos (x + iy) = cos x cosh — sin x sinh y, 

_ sin 2 x + i sinh 2 y 
cos 2 x 4- cosh 2 y 

5. Find to three decimals the complex numbers which express the values of : 

(a) eìπi, (ß) e\ (y) e½ + ì ^ , (δ) e - ι -" , 
(e) sinļ7Γ¿, (f) cosi, (η) s in ( ļ + ļ V - 3 ) , (θ) t a n ( - 1 - ), 
( ι ) l o g ( - 1 ) , log , (λ) log(i + ļ V ^ 8 ) , (µ) l o g ( - l - i ) . 

6. Owing to the fact that logα is multiple valued, ab is multiple valued in such 
a manner that any one value may be multiplied by e2nπbi. Find one value of each 
of the following and several values of one of them : 

8 . 

(a) 2Š (ß) i\ (7) ^ĩ, (δ) ½, (β) (ļ + ļV=Ί*)*“*“\ 
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7. Show that Daz = a*\oga when a and z are complex. 

8. Show that (ab)c = abc ; and fill in such other steps as may be suggested by 
the work in the text, which for the most part has merely been sketched in a broad 
way. 

9. Show that if f(z) and g(z) are two functions of a complex variable, then 
f(z)±g(z), af(z) with a a complex constant, ƒ(z) g{z), f(z)/g(z) are also func­
tions of z. 

10. Obtain logarithmic expressions for the inverse trigonometric functions. 
Find sin-1/. 

75. Vector sums and products. As stated in § 71, a vector is a quan­
tity which has magnitude and direction. If the magnitudes of two 
vectors are equal and the directions of the two vectors are the same, 
the vectors are said to be equal irrespective of the 
position which they occupy in space. The vector 
— a is by definition a vector which has the same 
magnitude as a but the opposite direction. The 
vector ma is a vector which has the same direction 
as a (or the opposite) and is m (or — m) times as 
long. The law of vector or geometric addition is 
the parallelogram or triangle law (§ 71) and is still 
applicable when the vectors do not lie in a plane 
but have any directions in space ; for any two vec­

dζ^ a ; ļ 
X 

tors brought end to end determine a plane in which the construction 
may be carried out. Vectors will be designated by Greek small letters 
or by letters in heavy type. The relations of-equality or similarity 
between triangles establish the rules 

<x + ß=ß + a, a+ (ß + γ) = (a + ß) + γ, m(a + ß)=ma + mß (30) 

as true for vectors as well as for numbers whether real or complex. A 
vector is said to be zero when its magnitude is zero, and it is writ-
ten 0. From the definition of addition it follows that 
a + 0 = a. In fact as far as addition, subtraction, and 
multiplication by numbers are concerned, vectors obey 
the same formal laws as numbers. 

A vector p may be resolved into components par­
allel to any three given vectors a, ß, y which are not 
parallel to any one plane. For let a parallelepiped 
be constructed with its edges parallel to the three 

½X/ T 
a 

given vectors and with its diagonal equal to the vector whose compo­
nents are desired. The edges of the parallelepiped are then certain 
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multiples xa, yß, zy of a, ß, y ; and these are the desimi eomponents 
of p. The vector p may he written as 

p = xa + yß + Zy* (31) 

I t is clear that two equal vectors would necessarily have the same 
components along three given directions and that the components of a 
zero vector would all be zero. Jus t as the equality of two complex 
numbers involved the two equalities of the respective real and imagi­
nary parts, so the equality of two vectors as 

p = xa + yß + zy = x'a + y'ß + z'y = p' (31') 

involves the three equations x = x', y = y', z = z'. 

As a problem in the use of vectors let there be given the three vectors α, /3, y 
from an assumed origin to three vertices of a parallelogram ; required the vector 
to the other vertex, the vector expressions for the sides and diagonals of the paral­

ß-a  

//y\ ^ K × /  

H 

lelogram, and the proof of the fact that the diagonals bisect 
each other. Consider the figure. The side AB is, by the 
triangle law, that vector which when added to A = a 
gives 07? = ß, and hence it must be that AB = ß — a. 
In like manner i C = 7 - α . Now OD is the sum of  
and CD, and CD = AB; hence OD = 7 + ß - a. The diag­
onal AD is the difference of the vectors OD and OA, and 
is therefore 7 + ß — 2 α. The diagonal 0 is 7 — ß. Now the vector from 0 to the 
middle point of may be found by adding to OB one half of . Hence this 
vector is ß + ļ (7 — /3) or \ (ß + 7). In like manner the vector to the middle point of 
AD is seen to be a + ļ (7 + /3 — 2 or) or ļ (7 + ß), which is identical with the former. 
The two middle points therefore coincide and the diagonals bisect each other. 

Let a and ß be any-two vectors, \a\ and \ß\ their respective lengths, 
and Z (a, ß) the angle between them. For convenience the vectors may 
he considered to be laid off from the same origin. The product of the 
lengths of the vectors by the cosine of the angle between the vectors 
is called the scalar product, 

scalar product = a*ß = \cc\\ß\ cos Z (a, ß), (32) 

of the two vectors and is denoted by placing a dot between the letters. 
This combination, called the scalar product, is a number, not a vector. 
As | /3 |cosZ (a, ß) is the projection of ß upon the direction of a, the 
scalar product may be stated to be equal to the product of the length 
of either vector by the length of the projection of the other upon it. 
In particular if either vector were of unit length, the scalar product 
would be the projection of the other upon it, with proper regard for 

* The numbers x, y, z are the oblique coordinates of the terminal end of p (if the 
initial end be at the origin) referred to a set of axes which are parallel to a, ß, 7 and 
upon which the unit lengths are taken as the lengths of a, ß, 7 respectively. 



COMPLEX NUMBERS AND VECTORS 165 

the sign ; and if both vectors are unit vectors, the product is the cosine 
of the angle between them. 

The scalar product, from its definition, is commit feti re, so th¡\,ta»ß=ß»(t. 
Moreover (mά)»ß = a»(mß) = in, (#•/?), thus allowing a numerical factor 
m to be combined with either factor of the product. Furthermore the 
distributive law 

a*(ß + γ) = a-ß + a*y or (a + ß).y = <x.y + ß»y (33) 

is satisfied as in the case of numbers. For if a be written as the product 
(fa of its length a by a vector α of unit length in the direction of a, 
the first equation becomes 

aa¿(ß + γ) = aa¿ß + aaχ*y or a^(ß + y) = cc^ß + α^γ. 

And now af(ß + γ) is the projection of the sum ß -j- γ upon the direc­
tion of #, and aχ*ß + α^«γ is the sum of the projections of ß and y upon 
this direction ; by the law of projections these are equal and hence the 
distributive law is proved. 

The associative law does not hold for scalar products ; for (a»ß) y 
means that the vector y is multiplied by the number a*ß, whereas 
a (/3«γ) means that a is multiplied by (ß»γ), a very different matter. 
The laws of cancellation cannot hold ; for if 

a.ß = 0, then ļ a \ ļ ß \ cos Z (a, ß) = 0, (34) 

and the vanishing of the scalar product a*ß implies either that one of 
the factors is 0 or that the two vectors are perpendicular. In fact 
a*ß = 0 is called the condition of perpendicularity. I t should be noted, 
however, that if a vector p satisfies 

P-α = 0, p.jβ = O, p.y = 0, (35) 

three conditions of perpendicularity with three vectors a, ß, y not 
parallel to the same plane, the inference is that p = 0. 

76. Another product of two vectors is the vector prodìtct, 

vector product = <x×ß = v \a\ \ß\ sin Z (a, ß), (3G) 

where v represents a vector of unit length normal to the plane of a 
and ß upon that side on which rotation from a to 
ß through an angle of less than 180° appears posi­
tive or counterclockwise. Thus the vector product 
is itself a vector of which the direction is perpen­
dicular to each factor, and of which the magni­
tude is the product of the magnitudes into the 

a×ß 

pk 

sine of the included angle. The magnitude is therefore equal to the 
area of the parallelogram of which the vectors a and ß are the sides. 



166 D I F F E R E N T I A L CALCULUS 

The vector product will be represented by a cross inserted between the 
letters. 

As rotation from ß to a is the opposite of that from a to ß, it follows 
from the definition of the vector product that 

ß×a = — a×ß, not a×ß = ß×a, (37) 

and the product is not commutative, the order of the factors must be 
carefully observed. Furthermore the equation 

a×ß = v\a\\ß\smZ.(a,ß) = 0 (38) 

implies either that one of the factors vanishes or that the vectors a and 
ß are parallel. Indeed the condition a×ß = 0 is called the condition of 
parallelism. The laws of cancellation do not hold. The associative law 
also does not hold ; for (cc×ß)×y is a vector perpendicular to a×ß and γ, 
and since a×ß is perpendicular to the plane of a and ß, the vector (a×ß)×γ 
perpendicular to it must lie in the plane of a and ß ; whereas the vec­
tor a×(ß×γ), by similar reasoning, must lie in the plane of ß and γ ; and 
hence the two vectors cannot be equal except in the very special case 
where each was parallel to ß which is common to the two planes. 

But the operation (rna)×ß = a×(mß) = m(a×ß), which consists in 
allowing the transference of a numerical factor to any position in the 
product, does hold ; and so does the distributive law 

a×(ß -f y) = a×ß -f oc×y and (a + ß)×y = a×y -f- ß×γ, (39) 

the proof of which will be given below. In expanding according to 
the distributive law care must be exercised to keep the order of the 
factors in each vector product the same on both sides of the equation, 
owing to the failure of the commutative law; an interchange of the 
order of the factors changes the sign. I t might seem as if any algebraic 
operations where so many of the laws of elementary algebra fail as in 
the case of vector products would be too restricted to be very useful ; 
that this is not so is due to the astonishingly great number of problems 
in which the analysis can be carried on with only the laws of addition 
and the distributive law of multiplication combined with the possibility 
of transferring a numerical factor from one position to another in a 
product ; in addition to these laws, the scalar product a»ß is commuta­
tive and the vector product a×ß is commutative except for change of sign. 

In addition to segments of lines, plane areas may he regarded as 
vector quantities ; for a plane area has magnitude (the amount of the 
area) and direction (the direction of the normal to its plane). To specify 
on which side of the plane the normal lies, some convention must be 
made. If the area is part of a surface inclosing a portion of space, the 
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normal is taken as the exterior normal. If the area lies in an isolated 
plane, its positive side is determined only in connection with some 
assigned direction of description of its bounding curve ; the rule is : If 
a person is assumed to walk along the boundary of an area in an 
assigned direction and upon that side of the plane which 
causes the inclosed area to lie upon his left, he is said 
to be upon the positive side (for the assigned direction 
of description of the boundary), and the vector which 
represents the area is the normal to that side. I t has 
been mentioned that ,the vector product represented 
an area. 

Aλ 

That the projection of a plane area upon a given plane gives an area 
which is the original area multiplied by the cosine of the angle between 
the two planes is a fundamental fact of projection, following from the 
simple fact that lines parallel to the intersection of the two planes are 
unchanged in length whereas lines perpendicular to the intersection 
are multiplied by the cosine of the angle between the planes. As the 
angle between the normals is the same as that between the planes, the 
projection of an area upon a plane and the projection of the vector rep­
resenting the area upon the normal to the plane are equivalent. The 
projection of a closed area upon a plane is zero ; for the area in the 
projection is covered twice (or an even number of times) with opposite 
signs and the total algebraic sum is therefore 0. 

To prove the law a×(ß + γ) = a×ß -f a×y and illustrate the use of 
the vector interpretation of areas, construct a triangular prism with the 
triangle on ß, γ, and ß -f- y as base and a as lateral edge. The total 

vector expression for the surface of this prism is 

ß×cc + y×a + a×(ß + γ) + ļ(ß×y) - ļ ß×y = 0, 

and vanishes because the surface is closed. A cancel­
lation of the equal and opposite .terms (the two 
bases) and a simple transposition combined with the 
rule ß×a = — a×ß gives the result 

a×(ß -f- γ) = — ß×a — y×a = a×ß -ļ̄  a×y. 

ß×y 

hς¾ 
α ķ 

α 
Γ\ 

A system of vectors of reference which is particularly useful consists 
of three vectors i, j , of unit length directed along the axes X, Y, Z 
drawn so that rotation from A to appears positive from the side of 
the ¿c?/-plane upon which Z lies. The components of any vector r drawn 
from the origin to the point (x9 y, z) are 

xi, yj, , and r = xi + y] + ¿k. 
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T h e p roduc t s of i, j , in to each o ther are , from t h e definit ions, 

i . i = j . j = fc>k = 1, 

i . j = j . i = j . k = k . j = k . i - i . k = 0, 

i×i = jx j = k * k = 0, 

i×j = — jxi = k , j × k = — k × j = i, k x i = — i×k = j . 

B y m e a n s of these p roduc t s a n d t h e d i s t r i bu t ive l aws for scalar a n d 

vector p roduc t s , a n y given p roduc t s m a y be expanded . T h u s if 

a = a i + “ j + " 3 k a n d ß = \ i + hj + ¾k, 

t hen a.ß = afa + afa + ,Í8¾,* (41) 

a×ß = (afa - «J>¿ i + (afa - afa) j + (afa - afa) , 

b y d i rec t mul t ip l ica t ion . I n th i s w a y a passage m a y be m a d e from 

vector fo rmulas to Car te s i an formulas wheneve r desired. 

EXERCISES 

1. Prove geometrically that a + (ß + 7) = (« + ß) + 7 and m{a + ß) = ma + mß, 

2. If a and /3 are the vectors from an assumed origin to A and and if  
divides AB in the ratio m : n, show that the vector to is = (nα + mß)/(m + ? ). 

3 . In the parallelogram A BCD show that the line BE' connecting the vertex to 
the middle point of the opposite side CD is trisected by the diagonal AT) and 
trisects it. 

4. Show that the medians of a triangle meet in a point and are trisected. 

5. If mλ and m2 are two masses situated at and P 2 , the center of gravity or 
center of mass of m and nι2 is defined as that point G on the line 2 which 
divides PχP0 inversely as the masses. Moreover if Gx is the center of mass of a 
number of masses of which the total mass is Mx and if G2 is the center of mass of 
a number of other masses whose total mass is M2, the same rule applied to Mx and 
M0 and G1 and G2 gives the center of gravity G of the total number of masses. 
Show that 

+ ?/ .7 0 . _ mΛτΛ + m9r9 + • • • + mnτn • mτ 
mx + m2 . 7?iļ + m2 + • • • + ?>½ m 

where ĩ denotes the vector to the center of gravity. "Resolve into components to 
s ħ o w _ _ mx _ _ my - _ mz 

m m m 

6. If a and /3 are two fixed vectors and p a variable vector, all being laid off 
from the same origin, show that (p — ß)»a = 0 is the equation of a plane through 
the end of ß perpendicular to a. 

7. Let α, ß, 7 be the vectors to the vertices , , of a triangle. Write the 
three equations of the planes through the vertices perpendicular to the opposite 
sides. Show that the third of these can be derived as a combination of the other 
two ; and hence infer that the three planes have a line in common and that the 
perpendiculars from the vertices of a triangle meet in a point. 
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8. Solve the problem analogous to Ex. 7 for the perpendicular bisectors of the 
sides. 

9. Note that the length of a vector is Vćixr. If <r, /3, and — ß — <r are the 
three sides of a triangle, expand 7.7 = l — a)»(ß — ír) to obtain the law of cosines. 

10. Show that the sum of the squares of the diagonals of a parallelogram equals 
the sum of the squares of the sides. What does the difference of the squares of the 
diagonals equal ? 

(Ύ*β (a×8}×a 
11. Show that a and -– ; are the components of ß parallel and perpen-

a»a a»a 
dicular to a by showing 1° that these vectors have the right direction, and 2° that 
they have the right magnitude. 

12. If <:r, ß, 7 are the three edges of a parallelepiped which start from the same 
vertex, show that (a×ß)»y is the volume of the parallelepiped, the volume being 
considered positive if 7 lies on the same side of the plane of a and ß with the 
vector a×ß. 

13. Show by Ex. 12 that (a×ß)»y = a»(ß×y) and (a×ß)»y = (ß×y)»a; and hence 
infer that in a product of three vectors wτith cross and dot, the position of the cross 
and dot may be interchanged and the order of the factors may be permuted cyc­
lically without altering the value. Show that the vanishing of (a×ß)»y or any of 
its equivalent expressions denotes that a, /3, 7 are parallel to the same plane ; the 
condition a×ß*y = 0 is called the condition of complanarity. 

14. Assuming a = a i + α2j + <‰k, ß = hλi + h2j + ¾k, 7 = c i + r2] + <%k, 
expand n>7, α«/3, and <Ύ×(ß×7) in terms of the coefficients to show 

a×(ß×y) — (ćí>7) ß — ((Ύ*ß) 7 ; and hence (a×ß)×y = (a»y) ß — (y»ß) a. 

15. The formulas of Ex. 14 for expanding a product with two crosses and the 
rule of Ex. 13 that a dot and a cross may be interchanged may be applied to expand 

(a×ß)×(y×δ) = (a.y×δ)ß— (ß.y×δ)¿ï = (a×ß»δ)y — (a×ß.y)δ 
and (a×ß).(y×δ) = (a.y)(ß>δ) - (ß.y)(a.δ). 

16. If a and ß are two unit vectors in the a*?/-plane inclined at angles θ and φ 
to the ¿c-axis, show that 

a = i cos θ + j sin #, ß — i cos φ + j sin φ ; 

and from the fact that a»ß — cos(ø — θ) and a×ß = ks in(ø — θ) obtain by multi­
plication the trigonometric formulas for sin (φ — θ) and cos (ø — θ). 

17. If ¿, m, n are direction cosines, the vector li -f m] + wk is a vector of unit 
length in the direction for which ż, m, n are direction cosines. Show that the 
condition for perpendicularity of two directions (ż, m, n) and (Γ, m', n') is 
IV + mm' + nn' = 0. 

18. With the same notations as in Ex. 14 show that 

ļ i j ļ I í¾ļ α2 α3 I 
a»a = af + a + aļ and a×ß = ax a2 az and a×ß»y = \ h2 hz • 

I \ \ \ \ I c.χ r2 I 
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19. Compute the scalar and vector products of these pairs of vectors : 

. . Γ6i + O . 3 j - 5 k / Γi + 2j + 3k fi + k 
{a) ļ o . l i - 4.2 j + 2.5 k, {ß) { - 3 i - 2 j + k, W ļ j + i. 

20. Find the areas of the parallelograms defined by the pairs of vectors in 
Ex. 19. Find also the sine and cosine of the angles between the vectors. 

21. Prove a×[ß×(y×δ)~\ = (a»y×δ)ß — a»ßy×δ = ß»δ a×y — ß.y a×δ. 

22. What is the area of the triangle (1, 1, 1), (0, 2, 3), (0, 0, - 1) ? 

77. Vector differentiation. As the fundamental rules of differentia­
tion depend on the laws of subtraction, multiplication by a number, 
the distributive law, and the rules permitting rearrangement, it follows 
that the rules must be applicable to expressions containing vectors 
without any changes except those implied by the fact that a×ß =≠= ß×a. 
As an illustration consider the application of the definition of differen­
tiation to the vector product u×v of two vectors which are supposed 
to be functions of a numerical variable, say x. Then 

(u×v) = (u + u)×(v + v) — u×v 
= u× v -f u×v + u× v, 

(u×v) v u , u× v 
Ax Ax AX AX 

d( X×v) ,. Δ(U×V) dv dλi 
- 4 — ¿ = lim — –̂ ¿ = U×— + — × v -

dx x=o Ax dx dx 

Here the ordinary rule for a product is seen to hold, except that 
the order of the factors must not be interchanged. 

The interpretation of the derivative is important. Let the variable 
vector r be regarded as a function of some variable, say x, and suppose 

is laid off from an assumed origin so that, as x varies, 
the terminal point of r describes a curve. The incre­
ment r of r corresponding to Ax is a vector quantity 
and in fact is the chord of the curve as indicated. 
The derivative 

d£ r ^£ = ļ i ^î = t (ΛO\ 
dx Ax ds 'As ^' ' 

is therefore a rector tangent to the curve; in particular if 
the variable x were the arc .**, the derivative would have 

źĴr\ k dr 
x \ \dx 

/\\dr 
/4r\ 

V  

the magnitude unity and would be a unit vector tangent to the curve. 
The derivative or differential of a vector of constant length is per­

pendicular to the vector. This follows from the fact that the vector 
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then describes a circle concentric with the origin. I t may also be seen 
analytically from the equation 

d(r«r) = dτ.τ 4- τ.dr = 2 r»dr = d const. = 0. (43) 

If the vector of constant length is of length unity, the increment r is 
the chord in a unit circle and, apart from infinitesimals of higher 
order, it is equal in magnitude to the angle subtended at the center. 
Consider then the derivative of the unit tangent t to a curve with 
respect to the arc s. The magnitude of dt is the angle the tangent turns 
through and the direction of dt is normal to t and hence to the curve. 
The vector quantity, ^ T‰ 

curvature = — = - , ? (44) 
ds ds2 J 

therefore has the magnitude of the curvature (by the definition in § 42) 
and the direction of the interior normal to the curve. 

This work holds equally for plane or space curves. In the case of a space curve 
the plane which contains the tangent t and the curvature is called the osculating 
plane (§ 41). By definition (§ 42) the torsion of a space curve is the rate of turning 
of the osculating plane with the arc, that is, dψ/ds. To find the torsion by vector 
methods let be a unit vector C/ Vc»C along C. Then as t and are perpendicular, 
n = t×c is a unit vector perpendicular to the osculating plane and dn will equal dψ 
in magnitude. Hence as a vector quantity the torsion is 

_ dn d(t×c) dt L dc , dc ÍΛ^× 
T = — = -^ '– = —×c + t×— = t × — , (45) 

ds ds ds ds ds 

nļ 

where (since dt/ds = C, and is parallel to C) the first term 
drops out. Next note that dn is perpendicular to n because it 
is the differential of a unit vector, and is perpendicular to t 
because dn = d(t×c) = t×dc and t>(t×đc) = 0 since t, t, dc are 
necessarily complanar (Ex. 12, p. 169). Hence T is parallel 
to I t i¡f convenient to consider the torsion as positive when 
the osculating plane seems to turn in the positive direction when 
viewed from the side of the normal plane upon which t lies. An inspection of the 
figure shows that in this case dn has the direction — and not + c. As is a unit 
vector, the numerical value of the torsion is therefore — c»T. Then 

™ j . dc A d  
T= ^ c T = — c.t×— = — c t × =z 

ds ds VC«C 
. Γ ŵ 1 f _ d 1 ļ . ŵ 1 

= — ct× +C = = — c - t × — — = (457) 
[ds3 V(Ñē . ds VC«CJ dsd VC«C 
dh _ τ'»τ“×τ'" 

' Č Ñ Ō ¾ ~ r“.r" ' 
where differentiation with respect to s is denoted by accents. 

78. Another sort of relation between vectors and differentiation 

comes to light in connection with the normal and directional deriva­

tives (§ 48). If F(.r, ¿/, z) is a function which has a definite value at 
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each point of space and if the two neighboring surfaces F = and 
F = + dC are considered, the normal derivative of F is the rate of 

\ \ C + dC 

change of F along the normal to the surfaces and 
is written dF/dn. The rate of change of F along 
the normal to the surface F = is more rapid than 
along any other direction ; for the change in F be­
tween the two surfaces is dF = dC and is constant, 
whereas the distance dn between the two surfaces is 
least (apart from infinitesimals of higher order) along the normal. In 
fact if dr denote the distance along any other direction, the relations 
shown by the figure are 

dr = sec θdn and —— = —— cos θ. (46) 
dr dìi 

If now n denote a vector of unit length normal to the surface, the 
product ΩdF/dn will be a vector quantity which has both the magnitude 
and the direction of most rapid increase of F. Let 

n — = VF = grad F (47) 

be the symbolic expressions for this vector, where VF is read as "del F" 
and grad F is read as “ the gradient of F ." If dr be the vector of which 
dr is the length, the scalar product n»dr is precisely cos θdr, and hence 
it follows that 

dτ.VF = dF and r^VF = ^ , (48) 

where rχ is a unit vector in the direction dr. The second of the equa­
tions shows that the directional derivative in ani/ direction is the com­
ponent or projection of the gradient in that direction. 

From this fact the expression of the gradient may be found in terms 
of its components along the axes. For the derivatives of F along the 
axes are F/ x, F/ y, F/ z, and as tliese are the components of VF 
along the directions i, j , k, the result is 

. F . F , F 
VF = grad F=l- h i - h k — • 

° ex J c ċz 
- ( 4 9 ) 

Hence V = i — -\- \ — + — 
òx ĵ y Cz 

may be regarded as a symbolic vector-differentiating operator which 
when applied to F gives the gradient of F. The product 

^F = ^ ļ + <!,ļ + <b^F=đF (50) 
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is immediately seen to give the ordinary expression for clF. From this 
form of grad F it does not appear that the gradient of a function is 
independent of the choice of axes, but from the manner of derivation 
of VF first given it does appear that grad F is a definite vector quan­
tity independent of the choice of axes. 

In the case of any given function F the gradient may be found by 
the application of the formula (49) ; but in many instances it may also 
be found by means of the important relation dr»VF = tlF of (48). For 
instance to prove the formula V(FG) = FVG + GVF, the relation may 
be applied as follows : 

dτ*V(FG) = d(FG) = FđG + GdF 
= Fđτ.VG + Gdr.VF = dτ*(FVG + GVF). 

Now as these equations hold for any direction dr, the dr may be can­
celed by (35), p. 165, and the desired result is obtained. 

The use of vector notations for treating assigned practical problems involving 
computation is not great, but for handling the general theory of such parts of 
physics as are essentially concerned with direct quantities, mechanics, hydro­
mechanics, electromagnetic theories, etc., the actual use of the vector algorisms 
considerably shortens the formulas and has the added advantage of operating 
directly upon the magnitudes involved. At this point some of the elements of 
mechanics will be developed. 

79. According to Newton's Second Law, when a force acts upon a 
particle of mass m, the rate of change of momentam is equal to the 
force acting, and takes )lace in the direction of the force. I t therefore 
appears that the rate of change of momentum and momentum itself 
are to be regarded as vector or directed magnitudes in the application 
of the Second Law. Now if the vector r, laid off from a fixed origin 
to the point at which the moving mass m is situated at any instant of 
time t, be differentiated with respeot to the time t, the derivative dr/dt 
is a vector, tangent to the curve in which the particle is moving and of 
magnitude equal to ds/dt or v, the velocity of motion. As vectors *, 
then, the velocity v and the momentum and the force may be written as 

v = — y my, F = — (/wv). 

f/v d2r , . , . dy cPr 
Hence = m ~r — -rτ = m*- it * = ~r — ¯TĪ * 

dt dt2 dt dt2 

From the equations it appears that the force F is the product of the 
mass m by a vector f which is the rate of change of the velocity regarded 

* In applications, it is usual to denote vectors by heavy type and to denote the magni­
tudes of those vectors by corresponding italic letters. 
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as a vector. The vector f is called the acceleration ; it must not be con­
fused with the rate of change dv/dt or d?s/dtf of the speed or magnitude 
of the velocity. The components fx, fy, fz of the acceleration along the 
axes are the projections of f along the directions i, j , and may be 
written as f «i, f * j , f « . Then by the laws of differentiation it follows 

t h a t , 7 -4 7 
- . dv . d (v»í) dvx †x = f-1 = —• 1 = \ 7 = —r 9 Jx dt dt dt 

, - . dfr . ¢P(r.i) cPx 
ý* í'1 ¯ďē9l-~dē~ d?' 

d^x d?v d?^ 
Hence fx = —s f„=w fz=-÷, 

and it is seen that the components of the acceleration are the acceler­
ations of the components. If X, Γ, Z are the components of the force, 
the equations of motion in rectangular coordinates are 

»ŝ=*. m ŝ = r ' m%=z- (52) 
Instead of resolving the acceleration, force, and displacement along 

the axes, it may be convenient to resolve them along the tangent and 
normal to the curve. The velocity v may be written as vt, where v is 
the magnitude of the velocity and t is a unit vector tangent to the 
curve. Then _ 7 / ^ 7 ΊΛ. 

, aw a(vt) dv ^ at I = — = \ = — t + V — • dt dt dt dt 
τ> j . . dt dt ds v / r o 4 
B u t Jt = JsJt = C,, = Jin> ^ 
where R is the radius of curvature and n is a unit normal. Hence 

i dēt + R*> = 5?' Λ = Ä ' ( 5 3 ) 

I t therefore is seen that the component of the acceleration along the 
tangent is d?s/d#, or the rate of change of the velocity regarded as a 
number, and the component normal to the curve is v2/R. If T and N 
are the components of the force along the tangent and normal to the 
curve of motion, the equations are 

d^s v^ 
T = mft = m—~7>'> N = mf„ = m —• Jt df • R 

I t is noteworthy that the force must lie in the osculating plane. 
If and + r are two positions of the radius vector, the area of 

the sector included by them is (except for infinitesimals of higher order) 
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A = ½r×(r + r) = ½r× r, and is a vector quantity of which the 
direction is normal to the plane of and r + r, that is, to the plane 
through the origin tangent to the curve. The rate of description of area, 
or the areal velocity, is therefore 

_ = l l m . r x _ = ļ r x _ = . r x v . (54) 

The projections of the areal velocities on the coordinate planes, which 
are the same as the areal velocities of the projection of the motion on 
those planes, are (Ex. 11 below) 

ĨΛ, Í Ĩ_ .M Λ ^ _ ^ \ ÎΛ.Ŵ_? /^\ /54'4 
2\J dt ~ dt) ' 2 \~ dt X dt) ' 2 \X dt dt)' ( 5 4 } 

If the force F acting on the mass m passes through the origin, then  
and F lie along the same direction and r×F = 0. The equation of 

motion may then be integrated at sight. 

dv _ dv _ _ 
dt ' dt ' 
dv d 

r×— — y (r×v) = 0, r×v = const. 

I t is seen that in this case the rate of description of area is a constant 
vector, which means that the rate is not only constant in magnitude 
but is constant in direction, that is, the path of the particle m must lie 
in a plane through the origin. When the force passes through a fixed 
point, as in this case, the force is said to be central. Therefore when a 
particle moves under the action of a central force, the motion takes place 
in a plane passing through the center and the rate of description of 
areas, or the areal velocity, is constant. 

80. If there are several particles, say n, in motion, each has its own equation 
of motion. These equations may be combined by addition and subsequent reduction. 

d2r _ ď% _ d2τn 

d2τ d2x d2τ d2 

But Wι ¯ďś + ™2 ¯¯d + * “ + mn ~d = 2 (mιΓι + m<ι4 + “ '+ mnXn)-
Let m1τl + m2x2 + • • • + rnnτn = (ml + m2 + • • • + ¾ ) τ = M τ 

- _ m ι r ι + Ίïhτ2 + • • • + WΊ»Γ,J _ mr _ rør 
mλ + m2 + • • • + r n ΣÌ M 

Then M ^ = F 1 + F 3 + . . . + F „ = ^ F . (55) 



176 DIFFERENTIAL CALCULUS 

Now the vector r which has been here introduced is the vector of the center of 
mass or center of gravity of the particles (Ex. 5, p. 168). The result (55) states, on 
comparison with (51), that the center of gravity of the n masses moves as if all the 
mass M were concentrated at it and all the forces applied there. 

The force F¿ acting on the żth mass may be wholly or partly due to attractions, 
repulsions, pressures, or other actions exerted on that mass by one or more of the 
other masses of the system of n particles. In fact let F¿ be written as 

F¿ = F i 0 + F¿i + F¿2 + • • • + F«, 

where F is the force exerted on m¿ by m¿ and F¿0 is the force due to some agency 
external to the n masses which form the system. Now by Newton's Third Law, 
when one particle acts upon a second, the second reacts upon the first with a 
force which is equal in magnitude and opposite in direction. Hence to F above 
there will correspond a force Fß =— F exerted by on m,j. In the sum F¿ all 
these equal and opposite actions and reactions will drop out and ΣF¿ may be re­
placed by F¿o, the sum of the external forces. Hence the important theorem that : 
The motion of the center of mass of a set of particles is as if all the mass were concen­
trated there and all the external forces were applied there (the internal forces, that is, 
the forces of mutual action and reaction between the particles being entirely 
neglected). 

The moment of a force about a given point is defined as the product of the force 
by the perpendicular distance of the force from the point. If r is the vector from 
the point as origin to any point in the line of the force, the moment is therefore 
r×F when considered as a vector quantity, and is perpendicular to the plane of the 
line of the force and the origin. The equations of n moving masses may now be 
combined in a different way and reduced. Multiply the equations by rχ, r2, • • -, τn 

and add. Then 

m ιΓ ι× ¯TΓ + m2 r2× ~¡f + • • • + »h¿n× -¡Ţ- = Γ I × F I + r2×F2 + • • • + rM×FΛ 
6lt ut6 l i t 

or mλ - r1×v1 + m2 - r2×v2 + • • • + ¾ - rM×v» = r1×F1 + r2×F2 + • • • + rMχF7i 

or — (m1r1×v1 + m2τ2×v2 + • • • + mnτn×yn) = Σr×F. (56) 

This equation shows that if the areal velocities of the different masses are multiplied 
by those masses, and all added together, the derivative of the sum obtained is equal 
to the moment of all the forces about the origin, the moments of the different forces 
being added as vector quantities. 

This result may be simplified and put in a different form. Consider again the 
resolution of F¿ into the sum F¿o + F + • • • + F,„, and in particular consider the 
action F and the reaction F^ = — F between two particles. Let it be assumed 
that the action and reaction are not only equal and opposite, but lie along the line 
connecting the two particles. Then the perpendicular distances from the origin to 
the action and reaction are equal and the moments of the action and reaction are 
equal and opposite, and may be dropped from the sum Σr,-×Ff, which then reduces 
to Σii×F{Q. On the other hand a term like m¿r¿×v¿ may be written as r¿×(m¿v¿). This 
product is formed from the momentum in exactly the same way that the moment 
is formed from the force, and it is called the moment of momentum: Hence the 
equation (56) becomes 
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— (total moment of momentum) = moment of external forces. 

Hence the result that, as vector quantities : The rate of change of the moment of 
momentum of a system of particles is equal to the moment of the external forces (the 
forces between the masses being entirely neglected under the assumption that action 
and reaction lie along the line connecting the masses). 

EXERCISES 

1. Apply the definition of differentiation to prove 

(a) đ(u.v) = u.ďv + v.đu, (ß) d [u.(v×w)] = đu.(v×w) + u.(đv×w) + u.(v×đw). 

2. Differentiate under the assumption that vectors denoted by early letters of 
the alphabet are constant and those designated by the later letters are variable : 

(a)- u×(v×w), ,(ß) acos¿ + bsin¿, (7) (u«u)u, 

đu . . /du ď2u\ _  

3 . Apply the rules for change of variable to-show that —- = —, where 
ds2 s'3 

accents denote differentiation with respect to x. In case r = xi -f y] show that 
1/VC-C takes the usual form for the radius of curvature of a plane curve. 

4. The equation of the helix is r = ia cos ø + jα sin φ + kbφ with s = Va2 + b2 φ; 
show that the radius of curvature is (a2 + b2)/a. 

5. Find the torsion of the helix. I t is b/(a2 + b2). 

6. Change the variable from s to some other variable t in the formula for torsion. 

7. In the following cases find the gradient either by applying the formula which 
contains the partial derivatives, or by using the relation dτ»VF = dF, or both : 

(a) r.r = x2 + ÿ2 + z2, (ß) logr, (7) r = VrTr, 

(δ) log (a* + y2) = log [r.r - (k.r)2], (6) (r×a).(r×b). 

8. Prove these laws of operation with the symbol V : 

(a) V(F + G) = VF + VG, (ß) G*V(F/G) = GVF- FVG. 

9. If r, φ are polar coordinates in a plane and rx is a unit vector along the radius 
vector, show that άτl/dt = ndφ/dt where n is a unit vector perpendicular to the 
radius. Thus differentiate r = rτλ twice and separate the result into components 
along the radius vector and perpendicular to it so that 

dt2 \dt/ φ dt2 dt dt rdt\ db/ 

10. Prove conversely to the text that if the vector rate of description of area is 
constant, the force must be central, that is, r×F = 0. 

11 . Note that r×v»i, r×v»j, r×v»k are the projections of the areal velocities upon 
the planes x — 0, y = 0, z = 0. Hence derive (54') of the text. 
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12. Show that the Cartesian expressions for the magnitude of the velocity and 
of the acceleration and for the rate of change of the speed dv/dt are 

v = VV 2 + '2 + z“\ f= Λ/x“* + y“* + z“z, ^ = *'*“ + y'y“ + z'z'\ 
Vz/2 + y'2 + z'2 

where accents denote differentiation with respect to the time. 

13. Suppose that a body which is rigid is rotating about an axis with the 
angular velocity ω = dφ/dt. Represent the angular velocity by a vector a drawn 
along the axis and of magnitude equal to ω. Show that the velocity of any point 
in space is v = a×r, where r is the vector drawn to that point from any point of 
the axis as origin. Show that the acceleration of the point determined by r is in a 
plane through the point and perpendicular to the axis, and that the components are 

a×(a×r) = (a»r)a — ω2r toward the axis, (da/dt)×τ perpendicular to the axis, 

under the assumption that the axis of rotation is invariable. 

14. Let τ denote the center of gravity of a system of particles and τ¡ denote the 
vector drawn from the center of gravity to the ith particle so that r¿ = ř + τ¡ and 
v» = v + Y¡. The kinetic energy of the żth particle is by definition 

ļ r ivf = \ m¿Vi.v¿ = ļ nų (v + v/ ) . (v + v/ ) . 

Sum up for all particles and simplify by using the fact ra¿r¿ = 0, which is due to 
the assumption that the origin for the vectors τ¡ is at the center of gravity. Hence 
prove the important theorem : The total kinetic energy of a system is equal to the . 
kinetic energy which the total mass would have if moving with the center of gravity 
plus the energy computed from the motion relative to the center of gravity as origin, 
that is, 

T = ļ mtv? = ì Mv2 + \ m¿<2. 

15. Consider a rigid body moving in a plane, which may be taken as the xy-
plane. Let any point r0 of the body be marked and other points be denoted rela­
tive to it by r'. The motion of any point r' is compounded from the motion of r0 

and from the angular velocity a = kω of the body about the point r0. In fact the 
velocity v of any point is v = v0 -f a×r. Show that the velocity of the point denoted 
by τ' = k×v0/ω is zero. This point is known as the instantaneous center of rotation 
(§ 39). Show that the coordinates of the instantaneous center referred to axes at 
the origin of the vectors r are 

1 dy() . , 1 dx0 
0 ω dt J ° ω dt 

16. If several forces ^, F2 , • • -, F№ act on a body, the sum R = F¿ is called 
the resultant and the sum Σr,×F¿, where r¿ is drawn from an origin to a point 
in the line of the force F¿, is called the resultant moment about 0. Show that the 
resultant moments Mø and M0/ about two points are connected by the relation 
Mo/ = Mo + Mo'(Ro)j where Mo'(Ro) means the moment about 0' of the resultant 
R considered as applied at 0. Infer that moments about all points of any line 
parallel to the resultant are equal. Show that in any plane perpendicular to R 
there is a point 0' given by r = R×Mo/R*R, where is any point of the plane, 
such that Mo/ is parallel to R. 


